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Préface

Ce document contient le résumé d’une partie de mes travaux de recherche depuis la fin de ma
thèse de doctorat. Il constitue le document principal sur lequel un jury d’experts s’appuiera
afin de décider si j’ai acquis un niveau d’expertise suffisant pour obtenir une “Habilitation
à diriger des recherches”. Ce manuscrit est donc construit de manière à donner, le plus
succinctement possible, un aperçu des thématiques de recherche sur lesquelles je me suis
penché ces dernières années.

Le document s’articule autour de trois chapitres principaux. Le premier chapitre présente les
différentes questions scientifiques auxquelles je me suis intéressé. Chaque section est dédiée
à une thématique particulière, en détaille la problématique générale et décrit certaines de
mes contributions dans ce domaine. Une liste de publications illustratives de mes travaux
conclut chaque partie. Les références sont assorties d’un hyperlien vers les documents cor-
respondants afin de permettre aux experts d’accéder facilement aux détails techniques de
mes contributions ainsi qu’à une revue plus détaillée de la littérature. Le deuxième chapitre
contient une description de mes perspectives de recherche à court et moyen termes. Dans
ce chapitre, chaque section (au nombre de trois) décrit un axe de recherche particulier.
Finalement, le dernier chapitre est consacré à l’exposition de mon curriculum vitae dans
lequel les experts pourront trouver des éléments plus factuels sur ma carrière.

Durant la rédaction de ce manuscrit, la question de l’utilisation du “je” (certains passages
ne se référant qu’à moi ou à mon interprétation personnelle des choses) ou du “nous” (la
plupart de mes travaux ayant été effectués en collaboration avec d’autres personnnes) s’est
posée à moi. J’ai opté pour une utilisation mixte de ces deux pronoms, l’emploi du “nous”
devant être comprise comme “moi” plus une des nombreuses personnes avec qui j’ai eu la
chance de travailler durant ma carrière.1

Comme vous le constaterez lorsque vous tournerez cette page, ce manuscrit est écrit en
langue anglaise. Ce choix découle de l’observation suivante: la majorité des textes scien-
tifiques étant de nos jours rédigés en anglais, une description précise de mes travaux dans

1Je réfrène ici mon envie de les citer par peur d’en oublier quelques uns. Ils se reconnaîtront néanmoins
aisément à la lecture des parties qui les concernent.
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l’état de l’art actuel se fait plus naturellement dans cette langue. J’espère néanmoins que
les amoureux de la langue de Molière, dont je fais partie, sauront excuser cette décision
purement pragmatique.
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Foreword

This document contains a summary of a part of my research work. It constitutes the
material on which a panel of experts will leverage to decide if I have attained a sufficient
level of expertise to obtain an “Habilitation à diriger des recherches” (HdR), a French
diploma that allows to officiate as a PhD advisor. This manuscript has therefore been
organized to give, as succinctly as possible, an overview of my work during the last few
years.

The document is structured around three main chapters. The first chapter presents some
problems I have addressed. In this chapter, each section is dedicated to one particular
theme. For each theme, the central question of interest and some of my contributions to
the field are described. At the end of each section, I provide a list of contributions illustrative
of my work in the domain with hyperlinks to the corresponding documents. The second
chapter contains a description of my short- and medium-term research perspectives. Finally,
the last chapter is dedicated to the exposition of my curriculum vitae in which experts will
find more factual elements about my career.

During the writing of this manuscript, the question of the use of either “I” (some parts of
the document only referring to me or my personal interpretations) or “we” (most of my
work having been done in collaboration with colleagues) occurred to me. I have adopted a
mixed strategy and decided to use both pronouns; the use of “we” has to be understood as
“myself plus one of the many people I have had the opportunity to work with during my
career”.2

2I refrain from mentioning them here for fear of forgetting some of them. They will nevertheless easily
recognize themselves when reading some parts of this manuscript.

4



Contents

1 Summary of my work 9
1.1 Synchronization of digital receivers . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Sparse representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Screening acceleration methods . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Model-order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Perspectives 40
2.1 Low-dimensional invariance-preserving models . . . . . . . . . . . . . . . . . 40
2.2 Generalized screening tests for frugal methods . . . . . . . . . . . . . . . . . 41
2.3 Theoretical guarantees for reconstruction problems . . . . . . . . . . . . . . 43

3 Curriculum vitae 45

5



Notational conventions

a scalar
a vector
A matrix
A set
A operator
A subspace or scalar
·T transpose
·† pseudo inverse
〈·, ·〉X inner product defined on X
‖ · ‖X norm defined on X

dist(·, ·) distance defined on X
0 zero vector (of proper dimension)
0n zero vector of dimension n
1n one vector of dimension n
In identity matrix of dimension n
a(i) ith element of a
ai ith column of A
aS restriction of a to its elements indexed by S
AS restriction of A to its columns indexed by S
Ā complement set of A

card(A) cardinality of A

Notations for reconstruction problems

X target space
Xtarget target set

x target vector
Y observation space
y observed vector
ε additive noise

M observation operator
D decoder
D set of decoders
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Notations for communication problems

b information sequence
k length of the information sequence
C codebook
C coding operator
m length of the coded sequence
x vector of synchronization parameters
n length of x

Notations for sparse representations

x sparse vector
n length of x
‖x‖0 number of non-zero elements in x
k maxx∈Xtarget ‖x‖0
m length of the observed vector
A dictionary
ai ith atom of A

Notations for Bayesian methods

s support vector
w amplitude vector
γ2 variance of the elements of w
σ2 variance of the elements of ε
b Boltzmann-machine parameter
C Boltzmann-machine parameter
∝ equality up to a normalization factor

Notations for safe screening

z primal variable
u dual variable
x? minimizer of the primal problem
u? maximizer of the dual problem
R safe region (u? ∈ R)
A subset of Rm

B(c, r) safe ball with center c and radius r
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Notations for theoretical guarantees

supp(x) set of indices of the nonzero elements of x
kruskal(A) Kruskal rank of A
µ(A) mutual coherence of A, see (1.31)
H Hilbert space
Θ set of parameters defining a “continuous” dictionary

a(θ) a : Rd → H evaluated at θ
A {a(θ) : θ ∈ Θ}
S support of a sparse vector
Q side information on the support S

Notations for reduced-order models

θ parameter
Θ set of parameters
ε accuracy parameter, see (1.37)

PDE(·,θ) differential operator parameterized by θ
PDErelax(·,θ) surrogate differential operator
Xrelax surrogate target set
Vn n-dimensional subspace of X
ε̂n parameter of Xrelax, see (1.40) and (1.59)

Dwc worst-case optimal decoder (1.45)
εwc worst-case optimal reconstruction error (1.46)
σn inf-sup constant (1.49)
κn Kolmogorov n-width of a set, see (1.54)
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Chapter 1

Summary of my work

During my thesis, my postdocs and, later on, during my professional life as a researcher at
Inria, I have been interested in different facets of the following general problem:

“Can we recover the value of some quantity of interest from observations?”

This seemingly very simple question underpins many fundamental problems that the scien-
tific community has been working on for centuries. The goal of this document is to provide
an overview of some of my contributions to this general question.

Before going any further, as in any sound scientific process, it is first necessary to clarify
the terms appearing in the question at hand. In particular, the terms “quantity of interest”,
“observations” or “recover ” need to be defined properly to provide meaningful answers to the
above problem. To this end, I identify below four fundamental ingredients of reconstruction
problems. These ingredients allow to formally characterize most of the reconstruction prob-
lems encountered in the literature, and will be used throughout this document to describe
precisely the nature of my contributions.

1. The target set: the term “quantity of interest” generally refers to some vector, matrix
or function which one would like to have access to. We will denote this quantity as x
hereafter. In practice, one is rarely interested in the recovery of one single element x
but rather targets the reconstruction of any element of some set Xtarget. We will refer
to this set as “target set” hereafter. Depending on the application, the target set may
correspond to images, audio signals, responses of a physical system, etc. It can also
have more formal definitions as e.g., “the set of k-sparse vectors of dimension n” or
“the set of finite-energy band-limited functions with maximum frequency fc”.

The target set Xtarget is typically a subset of a more general space X with some de-
sirable mathematical properties (for instance a structure of Hilbert or Banach space).
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For example, “the set of k-sparse vectors of dimension n” is embedded in X = Rn; the
set of finite-energy band-limited functions with maximum frequency fc is contained
in the (Hilbert) space of square-integrable functions X = L2(R).

2. The observation model: an “observation” is some quantity (e.g., a vector, a func-
tion, a sequence of real numbers, etc.) that the practitioner has at its disposal to
attempt to identify one element x of the target set Xtarget. This quantity will be
denoted y hereafter. As the elements of the target set, the observation y belongs to
some mathematical space which will be denoted Y hereafter. The term “observation”
intuitively suggests that y is somehow related to the element x ∈ Xtarget we wish to
recover. We refer to the “observation model ” as the mathematical characterization of
the relation between a target vector x ∈ Xtarget and the observation y.

In its most general formulation, the model relating the observation to the target
vector x ∈ Xtarget is probabilistic and can be fully characterized by the conditional
distribution of y given x. A simplified version of this model that I have considered in
several of my works is as follows:

y = M (x) + ε (1.1)

where M : Xtarget → Y is some function often referred to as measurement operator
and ε is some additive perturbation. Model (1.1) corresponds to the quite common
situation where y stems from some deterministic measurements of x and is corrupted
by noise ε.

3. The decoder: We will call a “decoder ” any function taking an observation y as input
and returning an element of X as output, that is

D : Y → X . (1.2)

In practice, a “good” decoder must try to attain two (often contradictory) objectives.
First, the decoder must meet certain accuracy requirements. More specifically, the
output of the decoder should be close in some sense to the element x which generated
its input (see item “The accuracy criterion” below).

Second, the decoder must usually be compliant with some complexity constraints. In
particular, any practical decoder should exhibit a complexity scaling (at most) as a
polynomial function of the dimensions of the problem at stake. This constraint can
be accounted for by requiring D to belong to some prescribed set of decoders D.

4. The accuracy criterion: The purpose of the accuracy criterion is to define mathe-
matically what is meant by the fuzzy statement “the elements of Xtarget are correctly
recovered by decoder D from the received observations”. In other words, the accuracy
criterion specifies what is the level precision that should be attained by the output of
the decoder to be considered as “correct”.
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The simplest accuracy criterion encountered in practice is probably “exact recovery”.
In this case, the decoder D is assumed to be successful if it identifies unambiguously
any element of Xtarget from the received observations. In the noiseless setting, this
criterion formally writes as

∀x ∈ Xtarget : D(M (x)) = x. (1.3)

Achieving exact recovery is unfortunately rarely possible in practice, for instance when
the observations are corrupted by unbounded noise or Xtarget is not a low-dimensional
manifold of X . In these cases, more refined accuracy criteria allowing for discrepancies
between the target vector and the output of the decoder, can be considered.

For example, a standard accuracy criterion used to assess the robustness of a decoder
to noise reads:

∀x ∈ Xtarget, ∀ε ∈ Y : ‖D(M (x) + ε)− x‖X ≤ δ‖ε‖Y , (1.4)

where δ is some constant and ‖ · ‖X , ‖ · ‖Y are norms on X and Y respectively.

The four ingredients described above can be used to give a more precise formulation of our
initial (naive) question, e.g.,

“Given a target set Xtarget, a family of decoders D and some accuracy criterion, is there
some D ∈ D such that any element of Xtarget can be reconstructed to the prescribed accuracy
from y = M (x) + ε?”

Depending on the definition of D, this general question may have different scope and mean-
ing. If D corresponds to the set of all possible decoders (that is, there is no constraints on
the decoders), the question addresses the intrinsic possibility of solving the reconstruction
problem. If D is the set of polynomial-time decoders, it raises the question of the existence
of some “practical” solving procedures. In the latter case, providing an answer may some-
times be incredibly difficult since it underpins fundamental questions such as “Does P equal
NP?”.

A more pragmatic point of view is therefore to particularize this question to D = {D}
where D is some particular polynomial-time procedure. The question of interest then reads
as follows:

“Given a target set Xtarget, a decoder D and some accuracy criterion, under which conditions
on M and ε does decoder D reconstruct any element of Xtarget to the prescribed accuracy
from y = M (x) + ε?”

11



.

The practitioner is then faced with two subtasks:

1. For a given decoder D , he/she wishes to find the most general conditions (ideally
necessary and sufficient) ensuring that the decoder carries out the prescribed recon-
struction task.

2. For a given computational budget, she/he wants to find the decoder that performs
correctly under the most general operating conditions.

In my work, I have addressed different instantiations of these two subtasks. In the rest of
this chapter, I give a brief overview of some of them and describe how they relate to the
general framework of reconstruction problems.

1.1 Synchronization of digital receivers

In digital communications, one wishes to send a sequence of bits b ∈ {0, 1}k through a
noisy channel (wireless environment, digital subscriber line, etc). In order to counter the
noise induced by the transmission channel, some redundancy is added to the transmitted
sequence. This process is known as “channel coding”.

In its simplest version, channel coding consists in designing a “codebook” C ⊂ {−1, 1}m
(m > k) and a coding operator

C : {0, 1}k → C (1.5)

which associates one (different) element of C to each element of {0, 1}k. The idea underpin-
ning channel coding is as follows: if the element of C are sufficiently “far apart” in {−1, 1}m
(for example in terms of Hamming distance), it may be possible to unambiguously identify
a codeword (and therefore the corresponding bitstream b) from its noisy observation.

Codebooks are typically designed to deal with “additive noise” channels where the codeword
associated to any b ∈ {0, 1}k is observed up to some additive noise:

y = C (b) + ε. (1.6)

The elements of ε are commonly assumed to be independent and identically distributed.
During the last decades, many procedures have been proposed to design good (and tractable)
codebooks for additive channels [1]. This line of search has culminated in the 1990’s with
the discovery of the “Turbo” [2, 3] codes and the rediscovery of “LDPC” codes [4, 5].
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Model (1.6) is unfortunately rarely encountered in practice and more realistic models have
therefore to be considered. One refined model that I have considered in my work writes as
follows:

y = H(x)C (b) + ε (1.7)

where H(x) ∈ Rm×m is a matrix depending on some “external” parameters x ∈ Rn. For
instance, the elements of x may correspond to parameters of the electronic devices used
to implement the digital transmission (e.g., the frequency and the offset of the carrier, the
frequency of the sampling clock, etc).

When x is known, the presence of H(x) in model (1.7) can usually be compensated to
recover ideal model (1.6) (and thus benefits from the full power of codes designed for additive
channels). In practice, x is unknown and must be estimated. This task is commonly referred
to as “synchronization” and was the main topic of my PhD. I also published several works
in this field at the early stages of my research career.

In the field of synchronization, the set of target signals typically takes the trivial form
Xtarget = Rn, although some probability distribution p(x) may possibly enforce constraints
on the admissible values of x. The observation model is probabilistic and p(y|x) is defined
by (1.7) by using the following typical assumptions: i) ε is an i.i.d. Gaussian vector; ii) b
is uniformly distributed on {0, 1}k.

Two relevant questions to address in the field of synchronization are as follows:

1. How to design a tractable decoder D fully exploiting the probabilistic model p(y|x)?1

2. Considering the mean-square estimation error

Ey,x[‖D(y)− x‖22] ≤ δ (1.8)

as an accuracy criterion, what is the smallest value of δ attainable within the family
of unbiased decoders?

The main difficulty in answering these two questions lies in the mathematical structure of
the likelihood function p(y|x): Using the above assumptions, it can easily be seen that
p(y|x) corresponds to a mixture of 2k Gaussians with means equal to H(x)C (b), b ∈
{0, 1}k. As 2k becomes rapidly large even for moderate values of k, handling such a huge
number of terms may appear numerically intractable at first sight.

In a series of paper, I showed with some co-authors that tractable implementations of
maximum a posteriori estimates of x (or good approximations thereof in some cases) exist
by exploiting the specific structure of the channel codebook C, see [6–8]. Similarly, exploiting

1In particular, one usually wishes to derive maximum-likelihood or maximum-a-posteriori estimates of
x to benefit from the desirable statistical properties of these estimators.
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the particular structure of the probability model at hand, we showed that Bayesian Cramer-
Rao bound, lower-bounding the mean-square error achievable by any unbiased decoder (and
thus also the parameter δ appearing in (1.8)), can be evaluated with tractable complexity
[9, 10].

Some papers representative of my work in this field are:

• C. Herzet et al., “Code-aided Turbo Synchronization”, The Proceedings of the IEEE,
vol. 95, pp. 1255-1271, June 2007.

doi.org/10.1109/JPROC.2007.896518

• S. Bay, C. Herzet, J.-M. Brossier, J.-P. Barbot and B. Geller, “Analytic and Asymp-
totic Analysis of the Bayesian Cramér-Rao Bound for Dynamical Phase Offset Esti-
mation”, IEEE Transactions on Signal Processing, vol. 56, pp. 61-70, Jan. 2008.

doi.org/10.1109/TSP.2007.906760

• C. Herzet, K. Woradit, H. Wymeersch and L. Vandendorpe, “Code-Aided Maximum-
Likelihood Ambiguity Resolution Through Free-Energy Minimization”, IEEE Trans-
actions on Signal Processing, vol. 58, no. 12, pp. 6238-6250, Dec. 2010.

doi.org/10.1109/TSP.2010.2068291

1.2 Sparse representations

A second line of research that I have pursued over the last decade is in the field of “sparse
representations”. In this context, the goal is to identify (to some accuracy) a vector with a
few non-zero elements from a set of measurements.

More formally, the set of target vectors Xtarget ⊂ Rn is here defined as

Xtarget = {x ∈ Rn : ‖x‖0 ≤ k} (1.9)

for some k ∈ N, where ‖·‖0 denotes the counting function which returns the number of non-
zero components in its argument. It is easy to see that any vector of Xtarget contains at most
k non-zero elements and Xtarget is commonly referred to as the set of “k-sparse” vectors of
Rn. In its standard formulation, the observation model considered in sparse-representation
problems is linear:

y = Ax + ε (1.10)

for some matrix A = [a1| . . . |an] ∈ Rm×n, m < n, and additive noise ε ∈ Rm. Matrix A is
often referred to as “dictionary” and its columns as “atoms”.
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Despite of its apparent simplicity, addressing a reconstruction problem involving target set
(1.9) and observation model (1.10) is often a challenging task. To illustrate our point, let
us focus on the simplified case where (1.10) holds with ε = 0m (noiseless setting) and exact
recovery (1.3) is considered as an accuracy criterion. In this setup, it may be shown (see
e.g., [11, Theorem 2.13]) that there exist some decoders achieving exact recovery if and
only if

“Any 2k columns of A are linearly independent”. (EkC)

In the sequel, we will refer to this condition as “Exact k-sparse recovery Condition” (EkC).
An instance of decoder achieving exact recovery under (EkC) writes as follows:

D : Rm → Rn
y 7→ arg min

z∈Rn
‖z‖0 subject to y = Az . (P0)

Unfortunately, solving (P0) turns out to be an NP-hard problem, see e.g., [11, Section 2.3].
Now, in the current state of knowledge no polynomial-time solver has been found for NP-
hard problems. In fact, it is conjectured by many mathematicians that no polynomial-time
solver exists for NP-hard problems although this result has not been proved yet. If this
conjecture is correct, NP-hardness of (P0) means that there is no polynomial-complexity
algorithm solving any instance of (P0) (that is for any choice of y and A). We note
nevertheless that there may possibly exist polynomial-complexity procedures solving some
instances of (P0).

We thus face the following question:

“Given A ∈ Rm×n, is there some polynomial-complexity algorithm achieving exact recovery
of any k-sparse vector x from y = Ax? (and if so, under which conditions?)”

This question (extended to more general notions of accuracy such as e.g., stability or robust-
ness of the decoder, see e.g., [12]) has sparked of surge of interest in the scientific community
over the two last decades. I personally contributed to this field of research in several of my
contributions. My work has addressed methodological, theoretical and application aspects
of this question as described below.

1.2.1 Bayesian methods

A first avenue of my research focused on the design of polynomial-complexity decoders
achieving good reconstruction performance (at least empirically) for sparse-representation
problems. My contributions mainly took place within a Bayesian framework where “sparsity-
inducing” probabilistic priors are assumed on x.2 In this context, a popular prior used in

2More formally, p(x) is such that
∫
x∈Xtarget

p(x)dx ' 1.
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many contributions of the literature (see e.g., [13, 14]) reads as follows:

x = s�w (1.11)

where

s(i) ∼ Bernoulli(p) (1.12)

w ∼ Gaussian(0n, γ
2In) (1.13)

and� denotes element-wise product. This model is known as the (multiplicative) “Bernoulli-
Gaussian” model in the literature and has been declined in other similar variants, see e.g.,
[13, 15,16].

Interestingly, when the distribution of the noise ε corrupting the observations is zero-mean
i.i.d Gaussian, i.e.,

ε ∼ Gaussian(0m, σ
2Im), (1.14)

the MAP estimate of x is closely related to an `0-penalized sparse-regression problem. More
specifically, when γ2 →∞ the MAP estimate of x can also be found by solving the following
problem for some λ > 0:

arg min
z∈Rn

1
2‖y −Az‖22 + λ‖z‖0, (P2,0)

see e.g., [17, Section 7], [14, Section II.B]. This observation has motivated three of my lines
of research that I briefly describe hereafter.

Bayesian greedy procedures: In a first series of works [17–19], I investigated (in collaboration
with A. Drémeau) how several standard greedy procedures (e.g., MP [20], OMP [21], SP
[22], CoSaMP [23]) can be revisited in a Bayesian framework. The main idea of these
contributions was to depart from the simple i.i.d. model (1.12) to consider more complex
dependencies between the activation probabilities of the atoms.

One general model that we considered in these works writes as

p(s) ∝ exp
(
bTs + sTCs

)
, (1.15)

where ∝ denotes equality up to a normalization constant, and b ∈ Rn, C ∈ Rn×n are some
model parameters. This model is often known as “Boltzmann machine” or “Ising model” and
plays an important role in statistical physics. We then derived several greedy procedures
targeting the following problem:

arg max
w∈Rn,s∈Rn

p(w, s|y) (1.16)
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where p(w, s|y) is implicitly defined by (1.13)-(1.14) and (1.15).

The proposed procedures were similar in spirit to standard strategies of the literature but
leveraged the cost function in (1.16) rather than the residual “y − Ax”3 to make their
greedy decisions. This choice had two desirable consequences:

1. A “backward” step (i.e., the removal of some atom previously selected by the greedy
algorithm) naturally appears in the considered Bayesian framework.

2. The parameters of the model (and in particular more general priors on the support s)
can straightforwardly be taken into account.

For example, when prior (1.15) is considered, the locally-optimal4 decision regarding the
activation coefficient s(i) reads as

arg max
s(i)∈{0,1}

(
max
w(i)∈R

p(w, s|y)

)
=

{
1 (aT

i ri)
2 > Ti

0 otherwise
(1.17)

where

Ti = −2σ2σ
2 + γ2

γ2

b(i) + 2
∑
j 6=i

C(i, j) s(j)

,
ri = y −

∑
j 6=i

ajw(j).

It is clear from (1.17) that removing atom ai from the sparse decomposition becomes (lo-
cally) more advantageous as soon as (aT

i ri)
2 ≤ Ti. Moreover, the value of Ti is an explicit

function of the model parameters b and C. We note that, when b = log( p
1−p)1n and

C = 0n×n, prior model (1.15) reduces to the standard i.i.d Bernoulli model (1.12). In that
particular case, the Bayesian framework considered in our work thus naturally leads to a
“forward-backward” extension of some existing greedy procedures.

Variational methods for sparse representations: In [24, 25], I explored (in collaboration
with A. Drémeau) how variational inference tools can be applied to Bayesian formulations
of sparse-representation problems.

In a nutshell, the main idea of these contributions was to benefit from the Bayesian frame-
work to “marginalize out” some of the variables of the problem at hand and (hopefully)

3As commonly used in standard greedy methods.
4That is, when p(w, s|y) is optimized with respect to (s(i),w(i)) while the other components of (s,w)

are fixed to a given value.
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obtain a better estimate of the sparse vector underlying the data. More specifically, we
targeted the following problem ∀i ∈ {1, . . . , n}:

arg max
s(i)∈{0,1}

p(s(i)|y) (1.18)

where the cost function is the marginal of the joint probability p(w, s|y). As previously,
we assumed that p(w, s|y) is implicitly defined by (1.13)-(1.14) and (1.15).

Unsurprisingly, the evaluation of the marginal p(s(i)|y) turns out to be intractable. We
thus considered a particular variational approximation of p(w, s|y), known as “mean-field
approximation”, where a surrogate probability q(w, s) verifying

q(w, s) =
n∏
i=1

q(w(i), s(i)) with
∑

s(i)∈{0,1}

∫
R
q(w(i), s(i))dw(i) = 1 ∀i (1.19)

is computed by optimizing the Kullback-Leibler divergence between q(w, s) and p(w, s|y),
see e.g., [26]. We emphasized that the factors q(w(i), s(i)) appearing in the decomposi-
tion (1.19) have a simple parametric form at optimality and used this feature to efficiently
search a local minimum (or a saddle point) of the Kullback-Leibler divergence between
q(w, s) and p(w, s|y).

Interestingly, the iterates of the numerical procedure derived in our variational framework
can also be seen as a “soft-decision” version of the “Bayesian Matching Pursuit” algorithm
proposed in [17–19]: here the mean and the variance of the elements of s and w (according
to the current value of q(w, s)) appear in the recursion of the optimization procedure rather
than hard decisions on these variables, see [25, Section IV.D].

Dictionary learning in a Bayesian framework: In [27], I investigated (in collaboration with
C. Elvira and H.-P. Dang) the use of some variants of the Bernoulli-Gaussian model (1.12)-
(1.14) for dictionary learning. Our goal was not only to estimate the decomposition dictio-
nary A ∈ Rm×n and the sparse vectors corresponding to a set of observations {yl}Ll=1 but
also to infer the dimension n (that is the number of atoms) of A.

We followed two lines of thought. In a first approach, we assumed that

s(i) ∼ Bernoulli(pi)

pi ∼ Beta,

that is the activation parameter s(i) of each atom is drawn independently from a Bernoulli
distribution with parameter pi but the latter parameter is also considered as a random
variable following a non-informative Beta distribution. This over-parameterization of the
problem aimed to trigger “Occam’s razor” effects by automatically tuning some activation
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parameters pi to zero in the estimation process.5 In a second approach, we considered the
case where s is a binary sequence whose realizations obey an Indian buffet process [28].
This setup enabled us to handle dictionaries containing (virtually) an infinite (countable)
number of atoms.

In both approaches, we assumed that the atoms follow a unit-variance centered Gaussian
distribution:

ai ∼ Gaussian(0m, Im).

We then computed estimates of the quantities of interest by using a “small-variance asymp-
totics” approximation of the Gibbs sampler associated to our probabilistic model, see [29].
This approach allowed us to obtain a Bayesian method automatically tuning the parameters
of our model while exhibiting a reasonable computational complexity (as compared to a
standard implementation of a Gibbs sampler).

Some papers representative of my work on Bayesian methods for sparse problems:

• C. Herzet and A. Drémeau, “Bayesian pursuit algorithms”, EURASIP European Signal
Processing Conference (EUSIPCO), Aalborg, 2010.

ieeexplore.ieee.org/document/7096474

• A. Drémeau, C. Herzet, and L. Daudet, “Boltzmann machine and mean-field approx-
imation for structured sparse decompositions”, IEEE Transactions on Signal Process-
ing, 60(7):3425–3438, July 2012.

doi.org/10.1109/tsp.2012.2192436

• J. Arbel, H.-P. Dang, C. Elvira, C. Herzet, Z. Naulet and M. Vladimirova, “Bayes in
action in deep learning and dictionary learning”, ESAIM: Proc. and Surveys, 2022

esaim.org/arbel2022

5Strictly speaking, in this setup the size of the dictionary is therefore fixed in advance and equal to n.
However, since in practice only a subset of atoms are activated in the learning process, the effective size of
the final dictionary is typically much smaller that n.
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1.2.2 Screening acceleration methods

One of the most popular alternatives to decoder (P0) writes as6

D : Rm → Rn
y 7→ arg min

z∈Rn
‖z‖1 subject to y = Az , (P1)

or in its “noise-aware” version,

D : Rm → Rn
y 7→ arg min

z∈Rn

1
2‖y −Az‖22 + λ‖z‖1 , (P2,1)

for some λ > 0.

Problems (P1) and (P2,1) are convex programs and are respectively known as “Basis Pursuit”
and “Basis Pursuit Denoising” in the literature, see [30, 31]. These decoders owe their
popularity to two important facts:

• First, they enjoy very good reconstruction properties under mild conditions (see e.g.,
[11, Chapter 4] for an overview of standard recovery results). In particular, they
correctly identify the elements of (1.9) from (noiseless) partial measurements under
conditions slightly stronger than (EkC).

• Second, they can respectively be reformulated as linear or quadratic programs with
linear constraints for which it is known to exist generic polynomial-complexity solving
procedures, see e.g., [32, Chapters 13 & 16].

Despite of the existence of generic polynomial-complexity algorithms, many dedicated meth-
ods have been proposed in the literature to accelerate the resolution of problems (P1)-(P2,1),
see e.g., [33–36]. These methods leverage the fact that the solutions of (P1)-(P2,1) contain
(under mild conditions) at most m non-zero coefficients, see e.g., [11, Theorem 3.1]. This
property can be exploited to decrease the storage/computational burden of solving proce-
dures. Some of my works fall within this line of search.

More specifically, I have been interested in a family of acceleration procedures called “safe
screening” and first proposed by El Ghaoui et al. in [37]. The idea of safe screening
consists in identifying some of the zeros of the minimizers of (P2,1) with a low computational
burden.7 These elements can then be withdrawn from the optimization variables, resulting
in a problem of smaller dimension.

6To simplify our discussion and notations, we suppose hereafter that the minimizers of these problems
are unique.

7We focus hereafter on problem (P2,1) since standard screening procedures are specifically tailored to
this problem.
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Standard screening tests leverage the following “complementary slackness” necessary opti-
mality condition:

|aT
i u

?| < λ =⇒ x?(i) = 0, (1.20)

where x? ∈ Rn is a minimizer of (P2,1) and u? the maximizer of the following “dual”
problem:

u? = arg max
u∈Rm:‖ATu‖∞≤λ

1
2‖y‖

2
2 − 1

2‖y − u‖22. (1.21)

The inequality in the left-hand side of (1.20) is clearly a sufficient condition to identify
if the ith element of x? is equal to zero. Unfortunately, the implementation of (1.20) is
conditioned to the knowledge of u? and solving (1.21) turns out to be as difficult as solving
(P2,1). This prevents from using (1.20) as a simple test to identify the zeros of x?.

This difficulty can be nevertheless circumvented by introducing the concept of “safe region”,
as suggested in [37]. A safe region is a subset R ⊂ Rm verifying u? ∈ R. If a safe region R
is available to the practitioner, (1.20) can be relaxed to

max
u∈R
|aT
i u| < λ =⇒ x?(i) = 0. (1.22)

For proper choices of R, the maximum in the left-hand side of (1.22) is easy to evaluate
and the corresponding inequality may become a tractable test to identify (some) zeros of
x?. For example, if R is a sphere, that is

R = B(c, r) , {u ∈ Rm : ‖u− c‖2 ≤ r}, (1.23)

(1.22) takes a particularly simple form:

|aT
i c| < λ− r‖ai‖2 =⇒ x?(i) = 0. (1.24)

In this case, provided that c and r are known, the screening test can be implemented at the
expense of evaluating one inner product between c and ai. We note that, in many setups,
this inner product is already computed by the numerical procedure addressing (P2,1) and
screening can then be implemented at virtually no cost.

Following El Ghaoui’s seminal work, screening has become a central research theme for
many researchers and has proved to allow dramatic computational savings in many setups.
I describe below some of my personal contributions to this field.

Design of new safe regions: As mentioned above, the standard formulation of safe screening
is grounded on the concept of “safe region”, that is a subset of the dual space provably
containing the dual optimal solution u?. The choice of a “good” safe region reveals to be
crucial to the final effectiveness and efficiency of the screening tests. On the one hand,
loosely speaking, “smaller” regions lead to more effective tests, see [38, Lemma 1].8 On the

8In particular, if R = {u?}, (1.22) reduces to standard optimality condition (1.20).
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other hand, the complexity of the tests is closely related to the geometry of the safe regions
(see e.g., (1.23)-(1.24) for the case of a sphere). As a consequence, several geometries have
been considered (ball [39], ellipsoid [40], dome [38], truncated dome [38]) and different
strategies to tune the parameters of the corresponding regions have been proposed ([39,41,
42]) in the literature.

In [43], I participated (in collaboration with A. Malti) to this research effort by introducing
a strategy to reconcile two of the most effective screening procedures of the literature, the
so-called “FNE” [42] and “GAP” [39] balls. More recently, in the thesis of Thu-Le Tran, we
initiated a work (still ongoing) to show that these two balls can in fact be seen as particular
cases of a more general framework. A first output of our line of thought has been published
in [44]. In this contribution, we introduced a new safe dome (called “Hölder dome”) whose
construction requires the same computational cost as GAP regions [39] but which is always
included (strictly under very mild conditions) in the latter, see [44, Theorems 1 and 2].

Safe screening for SLOPE/OWL: Following El Ghaoui’s seminal work, it was soon recog-
nized that screening can also be applied to problems involving sparsity-inducing regular-
ization terms different from standard `1 norm, see e.g., [45, 46]. In [47], I addressed (in
collaboration with C. Elvira) the derivation of screening rules for one particular instance
of this type of problems:

find x? ∈ arg min
z∈Rn

1
2‖y −Az‖22 + λ

n∑
i=1

γi|z|[i] (P2,slope)

where |z|[i] denotes the ith largest element of z in absolute value, that is

∀z ∈ Rn : |z|[1] ≥ |z|[2] ≥ . . . ≥ |z|[n],

and

γ1 > 0, γ1 ≥ · · · ≥ γn ≥ 0.

Problem (P2,slope) is known as “Sorted L-One Penalized Estimation” (SLOPE) or “Ordered
Weighted L-One Linear Regression” (OWL) in the literature [48,49] and has been shown to
be of interest in many application domains during the last decades, see e.g., [50–55].

One particular feature of SLOPE/OWL is that, in contrast to previous works of the lit-
erature, the regularization term appearing in the cost function is not “separable” (that is
it cannot be written as a sum over a partition of the elements of z). We showed that a
tractable implementation of screening tests is nevertheless possible although the latter take
the form of a set of n inequalities to verify for each atom,9 see [47, Theorem 4.3]. We

9Rather than a single inequality as in (1.22).
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moreover introduced an efficient algorithm to evaluate the proposed screening tests for all
the atoms of the dictionary with a complexity scaling as O(n log n + LT ) where L is the
number of elements passing the test and T (≤ n) is some problem-dependent constant,
see [47, Section 4.3].

Scalable screening for large dictionaries: In [56, 57], I addressed (in collaboration with
A. Drémeau and C. Dorffer) the problem of implementing screening when the decompo-
sition dictionary contains a huge number of atoms. We proposed a strategy to identify
several zeros10 of the solution of (P2,1) by performing one single test, see [56, 57]. These
contributions leverage the following simple implication:

max
a∈A

max
u∈R
|aTu| < λ =⇒ ∀ai ∈ A : x?(i) = 0. (1.25)

Here, A represents a region of Rm containing a subset of atoms of the dictionary. Implica-
tion (1.25) simply states that if the inequality in the left-hand side is verified, then all the
atoms contained in region A can be safely discarded from the dictionary. In [56, 57], we
applied this methodology to dictionaries containing a large (but finite) number of atoms
and emphasized that the maximization in (1.25) remains simple for proper choices of R
and A. We are currently investigating the use of this method with Thu-Le Tran to deal
with “continuous” setups where the dictionary contains an infinite uncountable number of
atoms [58,59].

Beyond screening for sparse problems: In [60, 61], I emphasized (in collaboration with
C. Elvira) that screening can be extended to different optimization problems, not necessarily
involving sparse solutions. More specifically, we focused on a variant of (P2,1) enforcing an
`∞ penalization (rather than `1):

find x? ∈ arg min
z∈Rn

1
2‖y −Az‖22 + λ‖z‖∞. (P2,∞)

The solutions of this problem are known to be “flat”, that is many elements of the minimizers
have the same absolute magnitude. We proposed a procedure (similar to screening and
dubbed “squeezing”) able to identify these elements and we exploited these detections to
accelerate the optimization algorithms addressing this problem. Similarly to screening, our
test leverages the problem’s optimality conditions and takes the following simple form:

|aT
i c| < λ− r‖ai‖2 =⇒ x?(i) = sign(aT

i c)‖x?‖∞,

where c and r respectively denotes the center and the radius of a safe sphere for the dual
problem of (P2,∞), see e.g., [60, Theorem 2].

10We note that standard screening tests, as stated in (1.22), require to verify one inequality per element
of the primal vector x?.
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Beyond screening for convex problems: In [62], I extended (in collaboration with T. Guyard
and C. Elvira) the concept of screening to non-convex setups. More specifically, we targeted
the following problem:

find x? ∈ arg min
z∈Rn

1
2‖y −Az‖22 + λ‖z‖0 subject to ‖z‖∞ ≤M, (1.26)

for some M > 0. We note that(1.26) reduces that standard “`0-penalized sparse-regression
problem” (P2,0) for sufficiently-large values of M .

In our work, we considered a “branch-and-bound” strategy [63] to search for the minimizers
of (1.26). In a nutshell, the crux of branch-and-bound procedures consists in identifying
subsets of supports which cannot attain the optimal value of (1.26); this knowledge can
then be exploited to decrease the dimension of the combinatorial problem at stake. The
most common approach of the literature to identify such irrelevant subsets is based on the
resolution of a convex relaxation of (1.26) where some constraints on the support of z are
enforced. More specifically, if

pup < plow(S0,S1) (1.27)

where S0,S1 are two disjoint subsets of {1, . . . , n}, pup is an upper bound on the optimal
value of (1.26) and

plow(S0,S1) = min
z∈Rn

1
2‖y −Az‖22 + λ

M ‖zS0∪S1‖1 + λcard(S1) (1.28)

subject to

{
‖z‖∞ ≤M
zS0 = 0card(S0),

then there exists no minimizer of (1.26) verifying{
x?(i) = 0 ∀i ∈ S0

x?(i) 6= 0 ∀i ∈ S1.

Unfortunately, when the number of subsets to test increases (i.e., one has to solve many
instances of (1.28)), this task may become computationally costly. Our screening method
in [62] can be seen as a fast and low-complexity procedure to test many subsets of sup-
ports. Our methodology is grounded on the following observations: i) condition (1.27) can
be weakened by considering the dual function of (1.28) evaluated at any dual feasible point;
ii) this dual function only differs by one single (easily-computable) term when the couple
(S0,S1) is changed by one element, see [62, Corollary 1]; iii) the value of the dual function
obeys some nesting property for nested couples (S0,S1), see [62, Corollary 2].
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Some papers representative of my work in screening:

• C. Herzet, C. Dorffer, and A. Drémeau, “Gather and conquer: Region-based strate-
gies to accelerate safe screening tests”, IEEE Transactions on Signal Processing,
67(12):3300–3315, 2019.

doi.org/10.1109/TSP.2019.2914885

• C. Elvira and C. Herzet, “Safe squeezing for antisparse coding”, IEEE Transactions
on Signal Processing, 68:3252–3265, 2020.

doi.org/10.1109/TSP.2020.2995192

• T. Guyard, C. Herzet, and C. Elvira, “Node-screening tests for `0-penalized least-
squares problem”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Singapur, 2022.

doi.org/10.1109/ICASSP43922.2022.9747563

• T. L. Tran, C. Elvira, H.-P. Dang, and C. Herzet, “Beyond GAP screening for Lasso
by exploiting new dual cutting half-spaces”, EURASIP European Signal Processing
Conference, EUSIPCO’22, 2022.

preprint/tran:eusipco22

1.2.3 Theoretical guarantees

Another line of research that I have pursued in recent years is the study of theoretical
conditions ensuring the “success” of some sparse representation algorithms. This part of
my work has been done in collaboration with A. Drémeau, C. Elvira, R. Gribonval, J. Idier
and C. Soussen.

In my contributions, I mainly focused on the exact recovery of the support of sparse vectors,
that is the correct identification of the positions of their non-zero entries:

supp(x) , {i : x(i) 6= 0}.

More precisely, I considered the following general question: If Xtarget is equal to (some
subset of) (1.9), under which conditions does some decoder D verify

∀x ∈ Xtarget, ∀‖ε‖2 ≤ δ : supp(D(Ax + ε)) = supp(x)? (1.29)

I described below some variations of this question that I have addressed during the last
decade.

25

http://doi.org/10.1109/TSP.2019.2914885
http://doi.org/10.1109/TSP.2020.2995192
http://doi.org/10.1109/ICASSP43922.2022.9747563
http://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Publications_files/Tran2022a.pdf


Support recovery for OMP/OLS : In [64], I tackled the support-recovery problem when D
corresponds to the well-known “Orthogonal Matching Pursuit” (OMP) [21] or “Orthogonal
Least Squares” (OLS) [65] algorithms. Letting S ⊂ {1, . . . , n} be some subset of k indices,
my co-authors and I first studied conditions ensuring that OLS (with y = Ax as input)
identifies in at most k steps the support of any vector x in

Xtarget =
{
x′ ∈ Rn : supp

(
x′
)
⊆ S

}
. (1.30)

This notion of success is often referred to as “k-step recovery” in the literature [66]. We
came up to the conclusion that the well-known “Exact Recovery Condition”11, i.e.,

AS is full column-rank and max
i/∈S
‖A†Sai‖1 < 1, (ERC)

first derived by J. Tropp for OMP in [67, Theorems 3.1 and 3.10], is still necessary and
sufficient for OLS to achieve “k-step recovery” of any element of Xtarget, see [64, Theorems
3 and 4]. We further refined our analysis to identify operating regimes where OLS has
provably better reconstruction performance than OMP: On the one hand, we showed that
there exist matrices A such that OMP fails to reconstruct all the elements of (1.30) in
at most k steps, see [64, Theorem 7]; on the other hand, when k ≤ kruskal(A) − 1 we
emphasized that there always exists a non-empty subset of (1.30) (made up of vectors with
“sufficiently decaying” non-zero coefficients) for which OLS achieves k-step recovery of S,
see [64, Lemma 3].

Recovery condition for decaying vectors: The favorable behavior of OLS for sparse vectors
with decaying non-zero coefficients led me to the following question: Can we relax stan-
dard recovery conditions for OMP/OLS when Xtarget is restricted to k-sparse vectors with
decaying non-zero coefficients?

In [68], we provided some elements of answer to this question by deriving recovery guaran-
tees for OMP/OLS based on mutual coherence:

µ(A) , max
i 6=j
|aT
i aj |. (1.31)

We note that, although this type of conditions are known to be pessimistic, they can
be easily evaluated in practice and lead to interesting insights into the operating regimes
favoring the success of reconstruction algorithms.

In the noiseless setting, if Xtarget corresponds to the set of k-sparse vectors (1.9), it is a
well-established fact that

µ(A) <
1

2k − 1
(1.32)

11Here, AS denotes the restriction of A to its columns in S and + is the pseudo-inverse operator.
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is a sufficient condition for OMP/OLS to achieve “k-step recovery” of any x ∈ Xtarget, see
e.g., [64, 67]. This condition is moreover known to be tight in the following sense: There
exist a k-sparse vector x and a dictionary A with µ(A) = 1

2k−1 such that OMP/OLS selects
a wrong atom at the first iteration, see [69, Theorem 3.1]. This shows that (1.32) cannot
be weakened for the recovery of arbitrary k-sparse vectors.

In [68, Theorem 1], we emphasized that more favorable conditions can nevertheless be ob-
tained when considering the set of k-sparse vectors with decaying non-zero coefficients: We
showed that if x is a k-sparse vector with non-zero amplitudes not all equal, there exists
some µ? > 1

2k−1 such that OMP/OLS identifies the support of x in at most k steps for any
dictionary A with mutual coherence µ(A) < µ?. The value of µ? was made precise as a
function of the decay of the non-zero coefficients ([68, Theorem 2]) and different variations
of the reconstruction problem were considered (partial recovery ([68, Theorem 3]), robust
and stable recovery [68, Theorems 4 and 5])).

Towards “k-step recovery” in continuous dictionaries: In [70], we considered the recent
paradigm of sparse representations in “continuous” dictionaries. In this context, the dic-
tionary used in the sparse decomposition is assumed to contain an infinite uncountable
number of atoms obeying some continuity property, see e.g., [58, 59,71,72].

In our work, we supposed that the set of atoms forming the dictionary can be written
as

A , {a(θ) : θ ∈ Θ}

where a : Rd → H is a continuous function, H a Hilbert space and Θ an interval of Rd. We
addressed the following question: If

y =
k∑
i=1

a(θi)xi

for some distinct parameters {θi ∈ Θ}ki=1 and non-zero scalars {xi ∈ R∗}ki=1, are there
situations where OMP can identify the set {θi ∈ Θ}ki=1 in exactly k steps for any choice of
xi’s?

Although the existence of a positive answer to this question may be surprising at first
sight, we showed that k-step recovery of {θi ∈ Θ}ki=1 from y is indeed possible for some
particular instances of dictionaries A. In particular, we derived generic conditions on A and
{θi ∈ Θ}ki=1 ensuring that this type of recovery occurs (see [70, Theorem 1]) and showed
that these requirements can be met by some supports {θi ∈ Θ}ki=1 and some general families
of dictionaries (see [70, Theorems 2-6]).
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Interestingly, in the particular case where d = 1, our results revealed that “universal k-step
recovery” is possible in some dictionaries A. More precisely, we found instances of dictio-
naries for which OMP correctly identifies any subset of parameters {θi ∈ Θ}ki=1 in k steps
for any k ≥ 1 and any choice of the weighted coefficients xi’s. To our knowledge, this is the
first occurrence of a “universal” recovery result for signed combinations of atoms.

Support recovery with side information: In [73], we studied a variation of the support-
recovery problem where some “side information” about S is available to the decoder. In our
work, we assumed that side information takes the form of a set of indices Q ⊆ {1, . . . n},
available to the practitioner, which may contain a subset of the true support S but also
possibly include wrong indices. In this context, we derived conditions ensuring that some
decoders exploiting this (possibly imperfect) knowledge can successfully identify the support
of some sparse vectors.

The “side-information-aware” decoders considered in our paper were constructed as sim-
ple modifications of standard procedures of the literature, namely OMP, OLS and `0/`1
decoders (P0)-(P1). For example, the “informed” versions of OMP and OLS simply con-
sist in initializing the greedy procedures with Q rather than the empty support. As for
the `0 and `1 decoders, the following obvious modification of the original decoders were
considered:

D`p : Rm → Rn
y 7→ x̂ ∈ arg minz ‖zQ̄‖p subject to y = Az ,

where zQ̄ denotes the restriction of z to its elements not in Q.

The recovery conditions obtained in our work can be regarded as generalizations in an
informed setup of standard results of the literature. In particular, our results reduce to
standard conditions when Q = ∅ (that is no side information is provided to the decoder).
A general conclusion of our work is as follows: Informed decoders have more favorable
recovery conditions than their standard counterpart as soon as card(S ∩ Q) > card(Q\S),
that is the prior support estimate Q identifies more correct than incorrect atoms.

This conclusion takes a particularly simple form when recovery conditions are expressed in
terms of the mutual coherence of A, see (1.31). Letting k = card(S), g , card(S ∩ Q) and
b , card(Q\S), we showed that any k-sparse vector x can be correctly identified by the
above “informed” decoders with y = Ax and Q as inputs provided that

µ(A) <
1

2k − g + b− 1
,

see [73, Theorems 3 and 5]. This condition has to be compared to (1.32). We see that a
more favorable recovery condition is obtained as soon as g > b.
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Some papers representative of my work on theoretical guarantees for sparse problems:

• C. Soussen, R. Gribonval, J. Idier, and C. Herzet, “Joint k-step analysis of Orthogonal
Matching Pursuit and Orthogonal Least Squares”, IEEE Transactions on Information
Theory, 59(5):3158–3174, May 2013.

doi.org/10.1109/TIT.2013.2238606

• C. Herzet, C. Soussen, J. Idier, and R. Gribonval, “Exact recovery conditions for sparse
representations with partial support information”, IEEE Transactions on Information
Theory, 59(11):7509–7524, Nov. 2013.

doi.org/10.1109/TIT.2013.2278179

• C. Herzet, A. Drémeau, and C. Soussen, “Relaxed recovery conditions for OMP/OLS
by exploiting both coherence and decay”, IEEE Transactions on Information Theory,
62(1):459–470, Jan. 2016.

doi.org/10.1109/TIT.2015.2490660

• C. Elvira, R. Gribonval, C. Soussen, and C. Herzet, “When does OMP achieve exact
recovery with continuous dictionaries?”, Applied and Computational Harmonic Anal-
ysis, 51:374–413, 2021.

doi.org/10.1016/j.acha.2020.12.002

1.3 Model-order reduction

In its most widespread formulation, the “model-order reduction” (MOR) problem aims
to find a low-complexity approximation to the following problem. Given some operator
PDE: X ×Θ→ Y and some parameters θ ∈ Θ,

find x ∈ X verifying PDE(x,θ) = 0. (1.33)

In the context of MOR, PDE often denotes a differential operator on X which depends on
some parameter θ, see [74, Chapter 2] for many practical examples. In this case, (1.33)
amounts to solving a parametric partial differential equation. In many applications, calcu-
lating the solution of (1.33) proves to be too expensive in terms of computing resources.
The general question addressed by MOR is therefore as follows: is it possible to transform
(1.33) into another problem, easier to solve, while keeping some guarantees of accuracy on
the solution? The name “model-order reduction” stems from the fact that standard proce-
dures of the literature achieve this goal by reducing the original model (1.33) into a new
system with fewer equations and unknowns.
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MOR as a reconstruction problem. MOR can be seen as a particular reconstruction
problem and be rephrased in the terminology introduced at the beginning of this chap-
ter. The formulation given hereafter is nevertheless rather personal and is not standard in
the literature dedicated to MOR.

The set of target signals is here represented by the set of solutions of (1.33) for all values
of θ ∈ Θ, that is

Xtarget = {x : PDE(x,θ) = 0,θ ∈ Θ}. (1.34)

It is usually assumed that (1.33) is well-posed, that is there exists a unique solution to
(1.33) for each θ ∈ Θ. Hereafter, we denote S : Θ→ Xtarget the mapping which associates
the solution of (1.33) to each element of Θ and, assuming it exists, by S −1 : Xtarget → Θ
its inverse.12

Regarding the observation model, the practitioner has two sources of information to recon-
struct some x ∈ Xtarget. First, the value of θ corresponding to x (that is θ = S −1(x)) is
usually assumed to be an input of the MOR problem. Second, given some θ = S −1(x),
the target vector x must obviously verify “PDE(x,θ) = 0”. Gathering these two elements
leads to the following observation model:

y = M (x) (1.35)

where

y =

[
θ
0

]
, M (x) =

[
S −1(x)

PDE(x,S −1(x))

]
. (1.36)

We note that the construction of the observation model can here appear slightly artificial;
nevertheless it obeys the definition given at the beginning of this chapter: it provides a
mathematical characterization between what is wanted (i.e., some x ∈ Xtarget) and what is
available to the practitioner. We will see hereafter that such a formulation is enlightening
to recast MOR into the general framework of reconstruction problems.

The target set and the observation model being clearly defined, we will now emphasize that
the main challenge of MOR lies in the design of low-complexity decoders with controlled
reconstruction performance. Let us first note that, by definition of the problem at stake,
given the target set (1.34) and the observation model (1.35)-(1.36), there always exists a
decoder, say Dexact, achieving exact reconstruction (simply choose Dexact(y) = x where
x is the unique solution of PDE(x,θ) = 0). However, as mentioned previously, imple-
menting such a decoder may often be computationally too-demanding. Hence, the idea of

12If the inverse does not exist (that is some x ∈ Xtarget is the solution of (1.33) for several θ ∈ Θ), the
discussion remains valid as long as S−1 : Xtarget → Θ is chosen so that S−1(x) returns some θ ∈ Θ such
that x is the solution of (1.33).
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MOR consists in trading some accuracy against computational savings. More specifically,
we wish to design some decoder D with a complexity significantly smaller than Dexact, while
verifying13

sup
x∈Xtarget

dist(x,D(M (x))) ≤ ε (1.37)

for some pre-specified accuracy ε ≥ 0 and metric dist : X × X → R+ . In the construction
of reduced-order models, the complexity of the decoder is usually controlled by imposing
D to belong to a prescribed family of functions D =

{
Dζ : Y → X : ζ ∈ P

}
.14 Our MOR

problem can then be expressed as the search of some D ∈ D fitting an accuracy criterion,
e.g., (1.37).

Some specificities of MOR when viewed as a learning problem. At this stage, it
becomes very tempting to draw some connections between MOR and standard “learning”
problems. Indeed, letting {(xl,yl) : xl ∈ Xtarget,yl = M (xl)}Ll=1 be a set of samples of the
target set together with the corresponding observations, the MOR problem can be seen as
the search of some ζ ∈ P optimizing a fitting criterion, e.g.,

find ζ? ∈ arg min
ζ∈P

(
sup
l

dist(xl,Dζ(yl))

)
. (1.38)

This problem closely matches the standard formulation of conventional (supervised) learn-
ing problems where one wants to fit the parameters of a function relating a training set of
“input-output” couples {(yl,xl)}Ll=1, see e.g., [75]. As a matter of fact, this observation has
led an increasing number of researchers (including myself [76,77]) to draw their inspiration
from the machine-learning community to build new MOR procedures in the last few years,
see e.g., [78, 79].

The MOR problem has however certain specific features that distinguish it from classical
learning problems:

• First, a closed-form (although implicit) definition (1.34) of the target set Xtarget is
available. This is in contrast to many learning problems where the model underlying
the training samples is usually unknown.

• Second, forming large training sets may often be computationally very demanding
since accessing one element of Xtarget requires to solve problem (1.33).

These peculiarities have given rise to techniques for the design of “good” decoders specifically
tuned to MOR problems.

13We restrict here our discussion to this “`∞” accuracy criterion because it is the most widespread in the
MOR community. Our discussion can nevertheless be extended to other accuracy measures.

14Here, ζ must be seen as a set of parameters fully characterizing the decoder.
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On the one hand, the availability of a closed-form expression of the target set has two main
consequences. First, the knowledge of “PDE(x,θ) = 0” is commonly explicitly exploited in
the construction of the decoder. For example, a well-known approach (partially) exploiting
this information is the so-called “Petrov-Galerkin projection” that I shall describe below.
Second, the knowledge of a generative model for Xtarget is conducive to the derivation
of accuracy guarantees on the decoder’s performance. As a matter of fact, contrarily to
many contributions in machine learning, the derivation of such guarantees has become
quasi-systematic in most MOR papers, and plays an important role in the validation of
proposed reduction techniques. I shall briefly describe below one of my contributions ([80])
in this field (see item “Beyond standard Petrov-Galerkin projection: the multi-slice
model”).

On the other hand, the problem of forming large data set has given birth to different strate-
gies to circumvent this issue. I elaborate on this topic in the paragraph “Building good
approximation subspaces from partial observations” where I shall briefly describe
two of my contributions ([81, 82]) dealing with the identification of good approximation
subspaces for Xtarget from partial observations.

Petrov-Galerkin MOR. The idea behind most MOR techniques of the literature is to
replace the original reconstruction problem (involving the target set Xtarget and observation
model M ) with a simpler problem, that allows for a decoder with low complexity and “good”
reconstruction performance. The most widespread approach to achieve this goal is known as
“Petrov-Galerkin projection” and is based on the two ingredients described hereafter.

Target set relaxation: In order to simplify our original reconstruction problem, the target
set Xtarget can be relaxed into another set Xrelax such that

Xtarget ⊆ Xrelax. (1.39)

In the conception of the reduced-order model, the relaxed set Xrelax then plays the role of
a new (surrogate) target set. The idea is that it can be much easier to design a decoder
and study its performance with Xrelax than with the original set Xtarget. A typical choice
for Xrelax, encountered in many contributions of the literature, is as follows:

Xrelax = {x ∈ X : dist(x, Vn) ≤ ε̂n} (1.40)

where Vn is an appropriate n-dimensional subspace of X , ε̂n ≥ 0 and

dist(x, Vn) , inf
z∈Vn

dist(x, z). (1.41)

In this case, Xrelax can be interpreted as the set of elements of X whose distance to some
subspace Vn is no greater than ε̂n. In the sequel, we will refer to (1.40) as an “n-dimensional
slice of X ”.
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Subsampling of the observation constraints: Another simplification of our original recon-
struction problem can be made at the level of the observation model (1.35)-(1.36). In the
context of Petrov-Galerkin MOR, the standard approach consists in only exploiting a finite
subset of the infinite-dimensional set of constraints “PDE(x,θ) = 0”. This subset typically
takes the form

〈mj ,PDE(x,θ)〉Y = 0 ∀j ∈ {1, . . .m} (1.42)

where 〈mj , ·〉Y denotes a bounded linear form on Y. In the sequel, we will refer to the opera-
tor returning the value of the left-hand side of (1.42) ∀j ∈ {1, . . .m} as PDErelax(x,θ).

The relaxed version of the observation model considered in MOR then reads as[
θ
0

]
=

[
S −1(x)

PDErelax(x,S −1(x))

]
. (1.43)

We note that the second part of the observed vector is always equal to 0 and does therefore
not change with x ∈ Xtarget. This is the reason why we will express the reduced decoder as
a function of θ only (that is D : Θ→ X ) in the sequel.

Performance limits of a Petrov-Galerkin “reduced” decoder. As mentioned in
the previous paragraph, the construction of a “reduced” Petrov-Galerkin decoder implies
the degradation of some parts of the information available to the practitioner. First, our
“prior” knowledge “x ∈ Xtarget” is relaxed to “x ∈ Xrelax”. Second, the infinite-dimensional
set of constraints “PDE(x,θ) = 0” is reduced to the finite set “PDErelax(x,θ) = 0”. On
top of these two relaxations, the part “θ = S −1(x)” of the observation model (1.35)-
(1.36) is usually never taken explicitly into account in the construction of the decoder since
the knowledge of S (or its inverse S −1) is basically equivalent to solving our original
problem (1.33).

These degradations imply that the reconstruction performance of any decoder based on
these new sources of information is somehow lower-bounded. In particular, no decoder
verifying (1.37) may exist for arbitrarily small ε. A relevant question is therefore as follows:
what is the smallest value of ε achievable by a decoder only exploiting the relaxed prior
information Xrelax and constraints PDErelax?

In order to give some insights into this question, let us consider the subset of X whose
elements are compatible with the constraints “x ∈ Xrelax” and “PDErelax(x,θ) = 0”,
i.e.,15

Xpost(θ) , {z ∈ X : PDErelax(z,θ) = 0} ∩ Xrelax. (1.44)

15The subscript “post” stands for “posterior” in the sense that Xpost gathers the information provided by
the observation model and the prior model Xrelax.
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Since, from a worst-case perspective, any element of Xpost(θ) can potentially correspond to
the target solution, the worst-case optimal decoder Dwc : Θ→ X writes as16

Dwc(θ) = arg min
z′∈X

(
sup

z∈Xpost(θ)
dist(z, z′)

)
(1.45)

and leads to the following worst-case reconstruction performance:

εwc(θ) = sup
z∈Xpost(θ)

dist(z,Dwc(θ)). (1.46)

In view of the definition of εwc(θ), we see that the existence of a decoder verifying (1.37) and
only exploiting the constraints “x ∈ Xrelax”/“PDErelax(x,θ) = 0” is guaranteed provided
that

sup
θ∈Θ

εwc(θ) ≤ ε. (1.47)

In particular, if (1.47) holds then decoder (1.45) verifies (1.37).

Affine constraints and n-dimensional slice prior. Although (1.47) gives a precise
characterization of the achievable reconstruction performance as a function of Xrelax and
PDErelax, it does not provide any information about the complexity required to attain such
a goal.

In practice, tractable (i.e., polynomial-time) complexity can be obtained when Xrelax and
PDErelax have some desirable mathematical structure. If X is a Hilbert space and dist(·, ·) =
‖ · − · ‖X , this is for example the case when Xrelax corresponds to an n-dimensional slice of
X and PDErelax(·,θ) is an affine operator, that is Xrelax obeys model (1.40) and PDErelax

is defined as

PDErelax(x,θ) =

 〈w1(θ),x〉X − b1(θ)
...

〈wm(θ),x〉X − bm(θ)

 (1.48)

for some {wj : Θ→ X }mj=1, { bj : Θ→ R }mj=1. More specifically, when m = dim(Vn) and
the following well-posedness condition is verified17

σn , inf
v∈Vn

sup
w∈W

〈v,w〉X
‖v‖X ‖w‖X

> 0 (1.49)

16We again assume that the minimizer exists and is unique to simplify our discussion. We note moreover
that the minimization is over X rather than Xtarget because, in the general case, the worst-case optimal
estimate does not belong to Xtarget.

17We refer the reader to [83] for more details on the case m > dim(Vn).
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where W , span
(
{wj(θ)}mj=1

)
, the worst-case optimal decoder (1.45) takes the following

simple form:

Dwc(θ) = arg min
z∈Vn

m∑
j=1

(
〈wj(θ), z〉X − bj(θ)

)2
(1.50)

and the corresponding worst-case error reads:

εwc(θ) = σ−1
n ε̂n, (1.51)

see [83].

Problem (1.50) is equivalent to solving a system of linear equations (corresponding to
the problem’s first-order optimality conditions) and can therefore be implemented with a
polynomial-time complexity. We also note that (1.50) is equivalent to finding the oblique
projection (parallel to the subspace W ) onto Vn. It thus justifies (a posteriori) the name
“Petrov-Galerkin projection” introduced in the previous paragraph and widely used in the
MOR community.

Models (1.40), (1.48) and decoder (1.50) form the core of numerous MOR techniques pro-
posed in the literature during the last decades, see e.g., [74]. In the rest of this section, I
shall describe some of my contributions taking place within this context. A first contribu-
tion addresses the problem of finding a good approximation subspace Vn when the elements
of the target set Xtarget are only partially observed, see item “Building good approxi-
mation subspaces from partial observations”. A second contribution deals with the
characterization of the worst-case performance of a refined version of decoder (1.50), in
which the intersection of several “low-dimensional slices” is exploited as a prior knowledge
on the target vector x, see item “Beyond standard Petrov-Galerkin projection: the
multi-slice model”.

On the importance of identifying a good approximation subspace Vn. At this
stage, it should become clear that the reconstruction performance achievable by Petrov-
Galerkin projection (1.50) depends on the “quality” of the approximation subspace Vn used
in the construction of the relaxed set Xrelax. In particular, since σn ≤ 1 (by Cauchy-
Schwarz), we have from (1.51) that attaining a worst-case reconstruction error of ε neces-
sarily requires that

ε̂n ≤ ε. (1.52)

Moreover, since ε̂n can always be chosen as

ε̂n = sup
x∈Xtarget

dist(x, Vn) (1.53)
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while verifying the inclusion condition (1.39), (1.52) can be interpreted as follows: the
approximation error of any element of Xtarget in Vn should be upper bounded by ε. In other
words, Vn must be an “ε-good” approximation subspace for Xtarget.

Many contributions have therefore addressed the problem of finding good approximation
subspaces for the elements of Xtarget. We can for example mention Taylor [84] or Hermite
[85] expansions, proper orthogonal decomposition (POD) [86], balanced truncation [87],
reduced basis techniques [74], etc.

We note that the smallest worst-case approximation error achievable by some n-dimensional
subspace is known as the “Kolmogorov n-width of Xtarget” and writes:

κn(Xtarget) , inf
V :dim(V )=n

(
sup

x∈Xtarget

dist(x, V )

)
. (1.54)

This metric thus often serves as a gold-standard lower bound on the performance achievable
by methods constructing approximation subspaces for Xtarget. In the next paragraph, I shall
emphasize that the Kolmogorov n-width (of a different set) is also of interest to characterize
the achievable worst-case performance when only some “partial information” about the
target set Xtarget is available to the practitioner.

Building good approximation subspaces from partial observations. As mentioned
previously, one particular feature of MOR is that the formation of large training sets may
be computationally very demanding. This observation has given birth to different strategies
to circumvent this issue. A first family of approaches, known as “reduced-basis techniques”,
constructs (and assesses) the accuracy of a decoder by optimizing some (easily-computable)
upper bound on the approximation error, see [74]. Another family of procedures is based
on the exploitation of partial observations and/or prior information about the elements of
Xtarget in the construction of the reduced model, see [88]. Two of my recent contributions
focused on the latter approach, see [81,82].

In [81], we assumed that only the following two sources of information are available to build
a proper approximation subspace for Xtarget:

• A prior manifold Xprior, which collects all the knowledge we have “a priori” about
Xtarget. The only constraint we impose on Xprior is to be such that18

Xtarget ⊆ Xprior. (1.55)
18We use the notation Xprior to avoid any confusion with the set Xrelax used in the construction of the

reduced model. Both Xprior and Xrelax nevertheless play the same role in different contexts and have in
common that they must contain the target set Xtarget, see (1.39) and (1.55)
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• A set of partial observations of the elements of Xtarget: we assume that we collect,
∀x ∈ Xtarget, a set of noiseless linear measurements:

{〈mj ,x〉X }
m
j=1 (1.56)

where {mj}mj=1 denotes m orthonormal elements of a Hilbert space X .

On the one hand, the prior information typically derives from some physical considerations
and/or constraints we may have about the system under study. An example of construc-
tion of Xprior is given in [81, Section 4]. On the other hand, the nature of the observations
available in practice depends on the experimental setup. In our work, we made the assump-
tion that the measurements can be seen as the outputs of some noiseless linear operator to
simplify our analysis.

The main question addressed in [81] is then as follows: given (1.55) and (1.56) what is
the best worst-case approximation performance achievable when projecting the element of
the (unknown) target set Xtarget onto an n-dimensional subspace Vn? We showed that the
answer to this question is intimately related to the Kolmogorov n-width of the following
set

Xpost , ∪x∈Xtarget

{
z ∈ X : 〈mj , z〉X = 〈mj ,x〉X ∀j ∈ {1, . . . ,m}

}
∩ Xprior, (1.57)

and the worst-case optimal n-dimensional approximation subspace for the set of target sets
compatible with (1.55) and (1.56) is given by

Vn ∈ arg min
V :dim(V )=n

(
sup

z∈Xpost

dist(z, V )

)
, (1.58)

see [81, Section 3]. This allowed to propose a numerical strategy to try and identify this
approximation subspace, see [81, Section 4]. We also derived a theoretical analysis relating,
in some simplified setup, an upper bound on κn(Xpost) to the parameters of the prior and
observation models (1.55) and (1.56), see [81, Section 6].

In [82], we addressed the same kind of question in a Bayesian setup. In this context, both
the prior and observation models (1.55)-(1.56) took a probabilistic form and we derived a
methodology based on the sampling of the corresponding posterior probability to construct
reduced models combining these two sources of information.

Beyond standard Petrov-Galerkin projection: the multi-slice model. As men-
tioned previously, “Petrov-Galerkin projection” is the most standard approach to construct
reduced-order models. The reasons of its popularity lie both in its simplicity of implemen-
tation and in our good understanding of its theoretical performance.

Unfortunately, Petrov-Galerkin projection may sometimes fall short in providing sufficiently
accurate reconstruction performance. For example, in the affine/linear case described in
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item “Affine constraints and n-dimensional slice prior”, the worst-case performance
attained by Petrov-Galerkin projection is given in (1.51). Now, the factors ε̂n and σ−1

n

appearing in the latter expression have antagonistic behaviors: ε̂n is a non-increasing func-
tion of n whereas σ−1

n is a non-decreasing function of n. As a consequence, even if the
choice of the approximation subspace Vn and its dimension n are degrees of freedom to the
practitioners, there exist setups where the worst-case error σ−1

n ε̂n may remain large for any
choice of n and Vn.

In [80], we studied a possible remedy to this problem by considering a refined definition of
the relaxed target set Xrelax. Following [83], we considered the following setup. We assumed
that X is a Hilbert space19 and

Xrelax = ∩nk=0{x ∈ X : dist(x, Vk) ≤ ε̂k} (1.59)

where ε̂k ≥ 0 and

V0 ⊂ V1 ⊂ . . . ⊂ Vn with dim(Vk) = k. (1.60)

Model (1.59) thus corresponds to the intersection of n + 1 low-dimensional slices. This
is in contrast with the “single-slice” relaxed model (1.40) considered in standard Petrov-
Galerkin projection where all the elements of the target set were assumed to be ε̂n-close to
some n-dimensional subspace Vn.

We note that model (1.59)-(1.60) is relevant in practice since many procedures of the lit-
erature designed to construct “good” n-dimensional approximation subspaces for Xtarget

proceed sequentially and return a set of approximation subspaces of increasing dimension
{Vk}nk=0 together with some (possibly approximate) upper bounds ε̂k ≥ supx∈Xtarget

dist(x, Vk),
see [74, 86].

Unfortunately, even in the case where the observation operator considered in the construc-
tion of the reduced model is affine, the worst-case optimal decoder (1.50) associated to
model (1.59) does not have an easily-computable closed-form expression. In [80], we thus
considered the following “multi-slice” variation of Petrov-Galerkin projection:

D(θ) = arg min
z∈Vn

m∑
j=1

(
〈wj(θ), z〉X − bj(θ)

)2

subject to dist(z, Vk) ≤ ε̂k ∀k ∈ {0, . . . , n}. (1.61)

This decoder has the following desirable features: i) it exploits all the available prior infor-
mation (1.59); ii) its output is constrained to belong Vn so that only n-dimensional quan-
tities have to be handled in this resolution; iii) it can be cast as a quadratic problem with

19As previously, the considered metric is then defined as dist(·, ·) = ‖ · − · ‖X .
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quadratic (convex) inequality constraints and can therefore be solved to any arbitrary pre-
cision with polynomial-time complexity (e.g., with gradient-projected method [89, Chapter
2]).

In [80], we provided a theoretical characterization of the worst-case performance achievable
by this decoder. More specifically, we derived a computable upper-bound on the worst-case
performance of D only depending on the problem’s main ingredients, see [80, Theorem 2].
Particularizing this result to different setups, we showed that the multi-slice decoder (1.61)
can outperform standard Petrov-Galerkin projection by order of magnitude in some cases.

My main contributions in the domain of model-order reduction are:

• C. Herzet, P. Héas, and A. Drémeau, “Model reduction from partial observations”,
International Journal for Numerical Methods in Engineering, 113(3), 2018.

doi.org/10.1002/nme.5623

• P. Héas and C. Herzet, “Reduced modeling of unknown trajectories”, Archives of
Computational Methods in Engineering, 25(1):87–101, 2018.

doi.org/10.1007/s11831-017-9229-0

• P. Héas and C. Herzet, “Low-rank dynamic mode decomposition: An exact and
tractable solution”, Journal of Nonlinear Science, 32(1):8, 2021.

doi.org/10.1007/s00332-021-09770-w

• C. Herzet and M. Diallo, “Performance guarantees for a variational multi-space de-
coder”, Advances in Computational Mathematics, 46(1):10, 2020.

doi.org/10.1007/s10444-020-09746-6
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Chapter 2

Perspectives

In line with of my contributions presented in Chapter 1, my future research will aim to push
the frontiers of knowledge of the general reconstruction problem stated at the beginning
of my research summary. The three pillars of my previous work, namely “Models” - “Algo-
rithms” - “Theoretical Guarantees”, will remain central to my research themes. I describe
below several directions that I wish to pursue in the coming years.

2.1 Low-dimensional invariance-preserving models

One crucial element in the design of efficient and effective reconstruction methods is the
identification of “low-dimensional” models accurately describing the signals of interest. From
an “effectiveness” point of view, this assertion has for example been mathematically quan-
tified in the field of machine learning (e.g., the celebrated “no-free-lunch theorem” [90]) or
in the context of generic reconstruction problems [12]. From an “efficiency” point of view,
the choice of an appropriate low-dimensional model generally enables to derive resource-
saving reconstruction methods (e.g., computation time/memory space). The “low rank”
linear model, ubiquitous in all fields of Sciences, is probably the most basic example of low-
dimensional model but other, more refined, options (e.g., kernel methods, sparse models,
tensor decompositions, neural networks) have also been successfully considered during the
last decades, see [11,91–93].

In practice, the choice of an appropriate model generally requires answering the following
questions:1

i) Which family of models should I consider? In particular, what is the type of models
(linear, sparse, tensorial, etc.) and the dimensionality best suited to the reconstruc-

1Although closely related, these questions are often addressed separately in the literature.
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tion task at hand?

ii) In a given family of models, how to select the “best” model according to some accuracy
criterion?

The search for relevant answers to these questions has led to the publication of thousands
of articles in many scientific fields.

It should be noted that the inclusion of any information about the target set of signals in
the selection process generally improves the accuracy of both the model and the resulting
reconstruction procedure. In particular, many signals of interest verify some invariance or
symmetry properties (i.e., some features of the signals remain unchanged under specific
transformations). The exploitation of such invariances is for example omnipresent in sta-
tistical learning or artificial intelligence where classification methods are often required be
robust to translations, rotations or changes of scale. The existence of symmetries and in-
variances is also a central element in many fields of Sciences (e.g., physics or chemistry)
and it can be crucial to exploit them when designing reconstruction methods, see for ex-
ample [94].

In the line of the work I recently initiated with Frédéric Champagnat (see e.g., [95]), a
research direction that I will pursue in the next few years is the exploitation of these in-
variances (in particular their preservation) in the construction of low-dimensional models.
The objects under study are here manifolds (embedded in some Hilbert space) whose ele-
ments are continuously indexed by a small number of parameters. We consider the following
paradigm: the inner product between two elements of the considered manifold is invariant
to some transformations of the parameter space. For example, the set of solutions of some
parametric differential equations [74] or some “continuous” dictionaries appearing in sparse
representation problems [96–98] are instances of such objects. Our goal is to approach these
manifolds by “simple” low-dimensional models while preserving the invariances of the inner
product. In our current work and short-term prospects, we will focus on approximations
of the manifold in low-dimensional linear subspaces preserving the invariance of the inner
product with respect to translation of the parameter space. In the longer term, our goal
is to extend this topic of research to other approximation models and different forms of
invariances (rotation, change of scale, etc).

2.2 Generalized screening tests for frugal methods

In the last decades, the increase of both the volume of available data and the size of the
problems to be addressed has stressed the need for low-complexity reconstruction methods.
The importance of this problem has for example been highlighted in recent years in the field
of artificial intelligence, where researchers have been working on the development of so-called
“frugal” methods, i.e., procedures requiring less data and computing power [99].
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It should be noted that many reconstruction methods of the literature are based on solving
optimization problems. A natural way to improve their complexity is therefore to look for
numerical procedures achieving the desired solving accuracy at the lowest possible compu-
tational cost. Since most standard optimization techniques are iterative, this complexity
reduction is generally based on the following two axes:

i) the increase of the speed of convergence,

ii) the decrease of the computational cost per iteration.

The first axis has been widely explored in the optimization community. Precise bounds on
the achievable (worst-case) convergence speeds are known for many families of problems and
numerical methods attaining these bounds have been proposed, see e.g., [100]. It should be
noted that these convergence rates depend on the regularity of the considered problem, a
greater regularity generally leading to better speeds of convergence.

A rather recent technique focusing on the second axis, i.e., the reduction of the complexity
per iteration, is the so-called “safe screening” method presented in Chapter 1 of my research
summary. In its original version, screening takes place in the context of sparse representa-
tions and aims to identify the zero elements in the minimizers of the target optimization
problem. Other fields of application were subsequently proposed such as the identification
of saturated components in a regularized problem involving an `∞ penalty [60, 61] or the
pruning of the data set in some machine learning problems [101].

It should be noted that, although state-of-the-art techniques as “GAP screening” [46] lead
to impressive computational gains, these methods can only be applied to certain families of
problems, namely convex problems whose dual obeys some strong-convexity property. In
the coming years, another axis of my research will therefore focus on the extension of the
principles of screening to more general families of optimization problems. Several directions
of research are envisioned here.

First, following the work by Dantas et al. [102, 103], a short-term objective will consist
in deriving GAP-like2 screening procedures that are applicable when the strong-convexity
constraint on the dual problem is not respected. I recently made (with Clément Elvira
and Phuong Dang) a first contribution [104] towards this goal. In this work, we proposed a
novel “dual” perspective on GAP procedures which offers a new paradigm for the conception
of screening methods. A short-term objective of my future work will therefore consist in
pushing forward these developments to derive new GAP-like screening methods applicable
to generic convex optimization problems.

Another short-term research axis will focus on the extension of existing screening techniques
to “semi-infinite programming” problems [105], in which there is an infinite uncountable
number of constraints. The main focus will be here on the field of sparse representations

2That is procedures provably screening all the zeros of the solution in non-degenerated cases.
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in continuous dictionaries [96,97] where the dual of the “Beurling Lasso” problem [58,59] is
known to be a semi-infinite program.

In the line of [106], one of my medium-term research axes will target the extension of
screening principles to non-convex optimization problems. The goal will be here twofold:
on top of the complexity reduction allowed by screening methods, the proposed method will
also be used to certify (from a global-optimality perspective) some of the decisions made
by the optimization procedures. In other words, one expected output of this line of search
will be the quantification (to some extent) of the uncertainty on the value of the problem’s
minimizers.

Yet another direction of research aiming at speeding up the resolution of optimization
problems is the identification (or the tightening) of some inactive constraints. We note
that this approach is in contrast with standard screening procedures which rather aim to
identify active constraints of the problem to reduce the dimensions of the optimization
domain. As a motivating example for this “dual” approach, I mention one of my recent
contribution [107] with Théo Guyard and Clément Elvira. In this work, we investigate how
the identification of inactive constraints can be exploited to improve the “regularity” of the
target problem (and therefore the speed of convergence of the solving procedures). More
generally, in my future work I intend to investigate how the dynamic3 refinement of the
problem’s feasible set can decrease the computational cost needed to attain some prescribed
solving accuracy.

Finally, one of my medium-to-longer-term perspective is to extend the principles of screen-
ing methods beyond the scope of optimization problems. One target application is the
estimation of rare-event probabilities where one wishes to identify the values of some ran-
dom variable for which some score function exceeds a given threshold. The central question
will be here as follows: can we benefit from screening techniques to identify subsets of val-
ues provably not exceeding the target threshold and leverage this knowledge to improve the
complexity of the sampling procedures used to estimate the rare-event probability?

2.3 Theoretical guarantees for reconstruction problems

A last direction of research that I will pursue in the coming years is the theoretical analysis
of the performance achievable by reconstruction methods. This type of studies enable to
provide clear answers to the question of the fundamental performance limits attainable
in certain application contexts. At a more operational level, they also make it possible
to certify the quality of the estimates produced by practical reconstruction methods and
characterize their inherent uncertainty.

In line with my recent works in this area [70,80,81], I intend to address the following ques-
3For example, through the iterations of a solving procedure.
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tions over the next few years. A first question of interest will be the “complexity-accuracy”
trade-off that can be attained in some reconstruction problems. While the majority of con-
tributions in the literature address the characterization of the achievable accuracy as a
function of the number of observations (see e.g., [11] in the field of sparse representations),
several recent contributions focus on the integration of complexity constraints in the char-
acterization of the performance achievable by some reconstruction method, [108–110]. The
field of model-order reduction, in which complexity constraints play a predominant role,
will be of particular interest to me. The questions addressed here will be at the interface of
“standard” reconstruction guarantees (for which the underlying question is of the form “Un-
der which conditions can we recover some quantities of interest up to some precision?”) and
optimization techniques (the relevant question being here: “How does the solving accuracy
of an optimization procedure evolve with the number of iterations performed?” [100]).

A second research theme will be to study how the uncertainty inherent to certain recon-
struction methods can impact some other higher-level tasks. An example of interest, in line
with the research field of the SIMSMART team, will be the estimation of the probability
of rare events involving certain physical, chemical or biological phenomena. In this partic-
ular context, the implementation of Monte-Carlo methods generally requires to access the
solution of a system of differential equations at each iteration of the process. The evalua-
tion of this solution is often numerically expensive and the implementation of Monte-Carlo
methods is then compromised. A family of approaches recently proposed in the literature
(see e.g., [111, 112]) consists in approximating the solution of the system of differential
equations by the output of a reduced model during certain steps of the process. In the
line if these works, part of my research activity will consist in the implementation and the
study of reduced models for rare-event simulation. In particular, a special attention will be
paid to the following topics: i) the design of error bounds on the estimates of the reduced
model that can be efficiently computed during the Monte-Carlo process; ii) the study of
the impact of the error induced by the reduced model on the quality of the final estimate
of the probability of the rare event.
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Chapter 3

Curriculum vitae

Professional Background

2007- 2022 Researcher at INRIA, Rennes, France.
My research focuses on several aspects of signal processing and statis-
tics including variational inference techniques, optimization techniques,
sparse and non-negative representations in redundant dictionaries,
model-order reduction.

2016- 2018 Invited Researcher at IMT Atlantique, Brest, France.
During my stay at IMT Atlantique, I focused on the identification, the
analysis and the interpretation of oceanic phenomena by using multi-
sensors satellite images.

2006-2007 Fulbright Postdoctoral Stay at UC Berkeley, USA.
I focused on the design of efficient message-passing algorithms for joint
source-channel decoding.

2006 Research Assistant at ENS Cachan, Paris, France.
I focused on the computation of estimation lower bounds for time-
varying parameters.

2002-2006 Research Assistant at UCLouvain, Louvain-la-Neuve, Belgium.
I worked in the Communications and Remote Sensing Laboratory in
collaboration with Professor Luc Vandendorpe. I gave lectures in Elec-
tromagnetic and Digital Communications to engineering students.

2001 Research Engineer at UCLouvain, Louvain-la-Neuve, Belgium.
I designed VDSL systems in collaboration with Alcatell Bell (Antwerpen
Belgium).
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Educational Background

2002-2006 PhD. in Applied Sciences, UCLouvain, Louvain-la-Neuve, Belgium.
Thesis supervised by Pr. Luc Vandendorpe: Turbo Synchronization for
Digital Burst Communications.

2001-2003 DEA in Applied Sciences, UCLouvain, Louvain-la-Neuve, Belgium.
Final grade: summa cum laude

1996-2001 Electrical Engineer, UCLouvain, Louvain-la-Neuve, Belgium.
Final grade: magna cum laude

Teaching

I describe below the different classes I have taught during my professional career. The
number of hours mentioned for each course represents my contribution to the class per year.

2021-2022 Signal Processing, Master 1, ENS Rennes (15h).
The goal of this course (given in collaboration with C. Elvira and
H. P. Dang) is to introduce the main concepts of signal processing.
This course is given to approximately 10 students.

2020-2022 Methodological Project, Master 2, ENSAI (15h).
I follow up methodological projects of ENSAI students in their final
year.

2019-2021 Regularization and Model Selection, Master 2, ENSAI (20h).
The goal of this course (given in collaboration with C. Elvira) is to in-
troduce the basic theory of regularization and model selection in inverse
problems. This course is given to approximately 50-100 students.

2014-2021 Sparse Representations & Smart Sensing, Master 2, ENSAI (15h).
The goal of this course (given in collaboration with J. Cohen, C. Elvira
and A. Roumy) is to introduce the basic theory of sparse representa-
tions and compressive sensing. This course is given to approximately
10 students.
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2014-2021 Sparse Representations & Smart Sensing, Master 2, INSA (15h).
The goal of this course (given in collaboration with N. Bertin, J. Cohen,
C. Elvira, R. Gribonval and A. Roumy) is to introduce the basic theory
of sparse representations and compressive sensing. This course is given
to approximately 15 students. I am responsible for the organization of
the “Sparse Representations and Smart Sensing” module at the INSA
since 2019.

2012-2013 Statistics for Data Analysis, Master 1, Université de Rennes (15h).
The goal of this course, coordinated by Valérie Monbet, was to teach
the students the basic notions of statistics and their use to analyze
high-dimensional data sets. This course was given to approximately 30
students.

2009-2011 Optimization, Master 1, Université de Rennes (15h).
The goal of this course, coordinated by Jean-Jacques Fuchs, was to teach
the students the basic notions of optimization: first and second-order
optimality conditions, main descent algorithms, etc. This course was
given to approximately 20 students.

Miscellaneous

As described below, I have been involved in different scientific projects and events as a
participant or a leader. The funding of the projects are indicated when I was the leader.

2021 Steering Committee, iTwist’23.
iTwist is an international conference which takes place every two years
and gathers around 100 international researchers and PhD students of
the signal processing and optimization communities.

2020-2024 Project Partner, ANR Project MELODY.
Title: Bridging Geophysics and Machine Learning for the Modeling,
Simulation and Reconstruction of Ocean Dynamics.

2020 Organizing Committee, iTwist’20 (https://itwist20.ls2n.fr/).
iTwist is an international conference which takes place every two years
and gathers around 100 international researchers and PhD students of
the signal processing and optimization communities.

2016-2020 Workpackage Leader, ANR Project BECOSE.
Title: Au delà de l’échantillonnage compressé : algorithmes
d’approximation parcimonieuse pour les problèmes inverses mal condi-
tionnés.

47

https://itwist20.ls2n.fr/


2018-2019 Project Leader, action exploratoire du Labex CominLabs.
Title: Reconciling Sparsity and Parametric Models: Sparse Representa-
tions in Continuous Dictionaries.
Funding : ∼ 20 keuros

2014-2018 Project Partner, CominLabs Project SEACS.
Title: Stochastic Model-Data-Coupled Representations for the analysis,
simulation and reconstruction of upper ocean dynamics.

2014-2018 Project Leader, ANR Project JCJC GERONIMO.
Title: Advanced Geophysical Reduced-Order Model Construction from
Image Observations.
Funding : ∼ 140 keuros

2013-2014 Project Leader, INSU-LEFE Project.
Title: Vers de nouvelles méthodes d’estimation de la sous-mésoéchelle
océanique.
Funding : ∼ 20 keuros

2012 Organizing Committee, Journées thématiques Apprentissage et Parci-
monie.

Supervision: Master Theses, PhD’s and Postdocs

2020-2021 Master thesis, Théo Guyard, 50%.
Title: Screening Methods for `0 Sparse Representations in Continuous
Dictionaries, Co-supervisor: Clément Elvira.

2019-2020 Master thesis, Le Thu Tran, 50%.
Title: Sparse Representation of Curves, Co-supervisor: Valérie Monbet.
Le is currently doing a PhD under our supervision.

2016-2017 Master thesis, Said Ouala, 50%.
Title: Deep learning and data assimilation, Co-supervisor: Ronan Fa-
blet.
Following his internship, Said completed a PhD under Ronan Fablet’s
supervision (IMT Atlantique).

2016-2017 Master thesis, Soufiane Ait Tilat, 50%.
Title: Détection/localisation des sources par méthodes parcimonieuses
et dictionnaires continus, Co-supervisor: Frédéric Champagnat.
Following his internship, Soufiane completed a PhD under our supervi-
sion.
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2021-2024 PhD. thesis, Théo Guyard, 25%.
Tentative title: Représentations parcimonieuses dans dictionnaires con-
tinus pour le diagnostic automatique de maladies du foie, HdR supervi-
sor: James Ledoux.

2020-2023 PhD. thesis, Le Tran Thu, 25%.
Tentative title: Sparse representations in continuous dictionaries. Ap-
plication to spectrometry data, co-HdR supervisor: Valérie Monbet.

2018-2021 PhD. thesis, Milan Courcoux-Carro, 25%.
Title: Conception optimisée d’antenne pour la localisation passive de
sources acoustiques, HdR supervisor: Alexandre Baussard.

2017-2020 PhD. thesis, Soufiane Ait Tilat, 50%.
Title: Détection et localisation de particules dans des images PIV via des
approches parcimonieuses avec grille, HdR supervisor: Frédéric Cham-
pagnat.
Soufiane is currently working as a statistician in a start-up.

2010-2014 PhD. thesis, Ioana Barbu, 75%.
Title: Estimation tridimensionnelle de vitesse de fluides turbulents,
HdR supervisor: Etienne Mémin.
Ioana is currently “Innovation Project Officer” at Inria.

2016-2017 Postdoctoral fellow, Hassan Maatouk.
Funding: ANR project GERONIMO.

2016-2017 Postdoctoral fellow, Mamadou Lamarana Diallo.
Funding: ANR project GERONIMO.

2017-2019 Postdoctoral fellow, Clément Dorffer.
Funding: DGA project.

2017-2019 Postdoctoral fellow, Clément Elvira.
Funding: ANR project BECOSE.

Publications

During my career I have published scientific contributions in national and international
journals and conferences. My list of publications is as follows: 1 book chapter, 26 articles
in international journals, 77 publications in the proceedings of international conferences, 7
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publications in the proceedings of national conferences. The bibliographical references of
my work are detailed below.

The full text of most of my contributions is available on my personal webpage at:

http://people.rennes.inria.fr/Cedric.Herzet/

Book Chapter

1. Harold Sneessens, Luc Vandendorpe, Cédric Herzet, Xavier Wautelet, Onur Oguz,
“MIMO: from Theory to Implementation”, Elsevier, 2011.

International Journals

1. Milan Courcoux-Caro, Charles Vanwynsberghe, Cédric Herzet, Alexandre Baussard,
“Sequential sensor selection for the localization of acoustic sources by sparse Bayesian
learning”, Journal of the Acoustical Society of America, Acoustical Society of America,
2022, 152 (3), pp.1695-1708

2. Patrick Héas and Cédric Herzet, “Low-rank dynamic mode decomposition: An exact
and tractable solution”, in Journal of Nonlinear Science, 32(1):8, 2021.

3. Clément Elvira, Rémi Gribonval, Charles Soussen, Cédric Herzet, “When does OMP
achieve exact recovery with continuous dictionaries?”, Applied and Computational
Harmonic Analysis, Volume 51, 2021.

4. Clément Elvira and Cédric Herzet, “Safe Squeezing for Antisparse Coding”, IEEE
Transactions on Signal Processing, vol. 68, pp. 3252-3265, 2020.

5. Cédric Herzet, Mammadou Diallo, “Performance guarantees for a variational “multi-
space” decoder”, Advances in Computational Mathematics 46, 10, 2020.

6. Cédric Herzet, Clément Dorffer, Angélique Drémeau, “Gather and Conquer: Region-
Based Strategies to Accelerate Safe Screening Tests”, in IEEE Transactions on Signal
Processing, vol. 67, no. 12, pp. 3300-3315, 15 June 15, 2019.

7. Said Ouala, Ronan Fablet, Cédric Herzet et al., “Neural Network Based Kalman
Filters for the Spatio-Temporal Interpolation of Satellite-Derived Sea Surface Tem-
perature”, Remote Sens., MDPI, 2018.

8. Cédric Herzet, Patrick Héas, Angélique Drémeau, “Model Reduction from Partial
Observations”, Int. J. Numer. Meth. Engng, 2018.

9. Patrick Héas, Cédric Herzet, “Reduced Modeling of Unknown Trajectories”, Archives
of Computational Methods in Engineering, pp 1 - 15, 2018.
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10. Ioana Barbu, Cédric Herzet, “A New Approach for Volume Reconstruction in To-
moPIV with the Alternating Direction Method of Multipliers”, IOP Measurement
Science and Technology, vol. 27, nr 19, pp 104002, 2016.

11. Patrick Héas, Angélique Drémeau, Cédric Herzet, “An Efficient Algorithm for Video
Superresolution Based on a Sequential Model”, SIAM J. Imaging Sci. 9-2 (2016), pp.
537-572.

12. Cédric Herzet, Angélique Drémeau, Charles Soussens, “Relaxed Recovery Conditions
for OMP/OLS by Exploiting Both Coherence and Decay”, IEEE Trans. on Informa-
tion Theory, vol. 62, pp. 459 - 470, January 2016.

13. Cédric Herzet, Charles Soussens, Jérome Idier, Rémi Gribonval, “Exact Recovery Con-
ditions for Sparse Representations With Partial Support Information”, IEEE Trans.
on Information Theory, vol. 59, pp. 7509 - 7524, November 2013.

14. Patrick Héas, Cédric Herzet, Etienne Mémin, Dominique Heitz, Pablo D. Mininni,
“Bayesian estimation of turbulent motion”, IEEE Trans. on Pattern Analysis And
Machine Learning, vol. 35, pp. 1343-1356, June 2013.

15. Charles Soussens, Rémi Gribonval, Jérome Idier, Cédric Herzet, “Joint K-Step Analy-
sis of Orthogonal Matching Pursuit and Orthogonal Least Squares”, IEEE Trans. on
Information Theory, vol. 59, pp. 3158-3174, May 2013.

16. Pierre Dérian, Patrick Héas, Cédric Herzet and Etienne Mémin, “Wavelets and optic
flow motion estimation”, Numerical Mathematics: Theory, Methods and Applications,
vol. 6, pp. 116-137, 2013.

17. Patrick Héas, Cédric Herzet, Etienne Mémin, “Bayesian inference of models and hyper-
parameters for robust optic-flow estimation”, IEEE Trans. on Image Processing, vol
21, pp. 1437-1451, April 2012.

18. Angélique Drémeau, Cédric Herzet and Laurent Daudet, “Boltzmann machine and
mean-field approximation for structured sparse decompositions”, IEEE Trans. on
Signal Processing, vol 60, pp. 3425-3438, July 2012.

19. Cédric Herzet, Kampol Woradit, HenkWymeersch, Luc Vandendorpe, “Low-complexity
MAP Hypothesis Testing by Bethe Free Energy Minimization”, IEEE Trans. on Signal
Processing, vol. 58, pp. 6238-6250, Dec 2010. (Best paper award of the Newcom++
European network of excellence)

20. Cédric Herzet, Henk Wymeersch, Frederik Simoens, Marc Moeneclaey and Luc Van-
dendorpe, “MAP-Based Code-Aided Hypothesis Testing" , IEEE Transactions on
Wireless Communications, vol. 7, pp. 2856-2860, August 2008.
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21. Cédric Herzet, Valéry Ramon, Alexandre Renaux and Luc Vandendorpe, “A Cramer-
Rao Bound Characterization of the EM-Algorithm Mean Speed of Convergence”,
IEEE Transactions on Signal Processing, vol. 56, pp. 2218-2228, June 2008.

22. Stéphanie Bay, Cédric Herzet, Jean-Marc Brossier, Jean-Pierre Barbot and Benoit
Geller, “Analytic and Asymptotic Analysis of the Bayesian Cramer-Rao Bound for
Dynamical Phase Offset Estimation”, IEEE Transactions on Signal Processing, vol.
56, pp. 61-70, Jan. 2008.

23. Cédric Herzet, HenkWymeersch, Marc Moeneclaey and Luc Vandendorpe, “On Maximum-
Likelihood Timing Estimation”, IEEE Transactions on Communications, vol. 55, pp.
1116-1119, June 2007.

24. Cédric Herzet, Henk Wymeersch, Vincenzo Lottici, Nele Noels, Marco Luise, Marc
Moeneclaey and Luc Vandendorpe, “Code-aided Turbo Synchronization”, The Pro-
ceedings of the IEEE, vol. 95, pp. 1255-1271, June 2007.

25. Cédric Herzet, Valéry Ramon and Luc Vandendorpe, “A Theoretical Framework for It-
erative Synchronization based on the Sum-Product and the Expectation-Maximization
Algorithms”, IEEE Transactions on Signal Processing, vol. 55, pp. 1644-1658, May
2007.

26. Xavier Wautelet, Cédric Herzet, Antoine Dejonghe, Jérome Louveaux and Luc Van-
dendorpe, “Comparison of EM-based algorithms for MIMO channel estimation”, IEEE
Transactions on Communications, vol. 55, pp. 216-226, Jan. 2007.

27. Valéry Ramon, Cédric Herzet and Luc Vandendorpe, “A Semi-analytical Prediction
Method of Performance and Convergence Behavior of Multiuser Turbo-equalization /
Demapping Scheme”, IEEE Transactions on Signal Processing, vol. 55, pp. 1104-1117,
March 2007.

International Conferences

1. Cédric Herzet, Clément Elvira, and Hong-Phuong Dang, “Region-free safe screening
tests for l1-penalized convex problems”, in EURASIP European Signal Processing
Conference, EUSIPCO’22, 2022.

2. Thu-Le Tran, Clément Elvira, Hong-Phuong Dang, and Cédric Herzet, “Beyond GAP
screening for Lasso by exploiting new dual cutting half-spaces”, in EURASIP Euro-
pean Signal Processing Conference, EUSIPCO’22, 2022.

3. Julyan Arbel, Hong-Phuong Dang, Clément Elvira, Cédric Herzet, Zacharie Naulet
and Mariia Vladimirova, “Bayes in action in deep learning and dictionary learning”,
ESAIM: Proc. and Surveys, 2022.
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4. Théo Guyard, Cédric Herzet, Clément Elvira, “Node-Screening Tests For The `0-
Penalized Least-Squares Problem”, ICASSP’2022, IEEE International Conference on
Acoustics, Speech, and Signal Processing, Singapur, May 2022.

5. Théo Guyard, Cédric Herzet, Clément Elvira, “Screen & Relax: Accelerating the Res-
olution of Elastic-Net by Safe Identification of the Solution Support”, ICASSP’2022,
IEEE International Conference on Acoustics, Speech, and Signal Processing, Singa-
pur, May 2022.

6. Clément Elvira, Jérémy Cohen, Cédric Herzet, Rémi Gribonval, “Continuous dictio-
naries meet low-rank tensor approximations”, iTwist 2020, International Traveling
Workshop on Interactions between low-complexity data models and Sensing Tech-
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imations of parametric dictionaries”, EUSIPCO’2020, European Signal Processing
Conference, Amsterdam, The Nederlands, August 2020.
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“Sequential sensor placement using Bayesian compressed sensing for direction of ar-
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“Learning ocean dynamical priors from noisy data using assimilation-derived neu-
ral nets”, IGARSS 2019 - International Geoscience and remote Sensing Symposium,
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