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ABSTRACT User ProvidedNetwork (UPN) is a promising solution for sharing the limited network resources
by utilizing user capabilities as a part of the communication infrastructure. In UPNs, it is an important
problem to decide how to share the resources among multiple clients in decentralized manner. Motivated by
this problem, we introduce a new class of games termed distribution games that can be used to distribute
efficiently and fairly the bandwidth capacity among users. We show that every distribution game has at
least one pure strategy Nash equilibrium (NE) and any best response dynamics always converges to such an
equilibrium. We consider social welfare functions that are weighted sums of bandwidths allocated to clients.
We present tight upper bounds for the price of anarchy and price of stability of these games provided that they
satisfy some reasonable assumptions. We define two specific practical instances of distribution games that
fit these assumptions. We conduct experiments on one of these instances and demonstrate that in most of the
settings the social welfare obtained by the best response dynamics is very close to the optimum. Simulations
show that this game also leads to a fair distribution of the bandwidth.

INDEX TERMS Congestion games, distributed welfare games, user provided networks.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Due to the enormous increase in the mobile data usage,
to increase the network capacity provided by network opera-
tors in a cost-effective manner is becoming an indispensable
necessity. There are several approaches to reduce the load
of cellular base stations and to improve the user experience
without acquiring more spectrum licences or increasing the
number of base stations. One possible solution is to deploy
wireless access points and to offload part of mobile data
traffic over these access points. This approach is called
mobile data offloading and there exist numerous studies on
this subject [7]. However, nowadays it is also possible to
develop solutions by making use of the users’ modern hand-
held devices, instead of deploying network infrastructure.
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approving it for publication was Guangjie Han .

This gives rise to the concept of User Provided Networks
(UPN) that emerged as a novel technique to provide ubiq-
uitous Internet access to subscribers as well as to increase
the available bandwidth [1]. In UPNs, mobile subscribers
can share their (unused) bandwidth with others through the
capabilities of today’s devices. Thus, users who need Internet
access (due to quota exhaustion, need for higher bandwidth,
etc.) can access it by using other users’ resources. This kind
of access is grouped into two categories: operator-assisted
and autonomous. In the former, network operators enforce
policies to control subscribers’ sharing of their bandwidth,
whereas in the second, users can create their own network
connections and share their resources independently of the
network operator. See [2] for UPN definitions and variations.

UPNs have similarities with Cognitive Radio Networks
in the sense that both aim to share the existing spectrum/
bandwidth effectively and fairly. Cognitive radio is an opti-
mistic and revolutionary communication concept that tries
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to make a more efficient use of existing wireless spectrum
among primary and secondary users. Studies on Cognitive
Radio Networks often use game theory (especially potential
game theory) as a powerful tool [3], [4]. While cognitive
radio is a way to share existing wireless spectrum, the UPN
approach aims to utilize unused resources such as bandwidth,
energy, quota of other subscribers in a network. In UPNs, the
amount of shared bandwidth depends on many factors such
as the Internet access quality of the serving user, device-to-
device link quality, distance between users, demand of the
requesting user, etc.

Figure 1 illustrates a simple UPN scenario. Two suppli-
ers with capacities of κ1 and κ2 Mbps are connected to
LTE eNodeB. Four clients want to utilize these capacities
via device to device (D2D) links (such as Bluetooth, WiFi
Direct or LTE Direct) to suppliers. Client i has a demand
of di Mbps. This is the desirable demand, but not a strict
minimum requirement. Rather, the client can make use of
the obtained data rate even if it is less than di (while this
may affect the service quality as in the case of Dynamic
Adaptive Streaming over HTTP (DASH) [41]). In Figure 1,
red solid lines show that client 1 and 2 are connected to
supplier 1, and client 3 and 4 are connected to supplier 2.
Blue dashed lines show other possible D2D links. Suppli-
ers assign capacities to the connected clients according to
a distribution function. Clients may change their connected
supplier to increase the obtained service utility. Strategic
decisions of the clients determine the social welfare of the
overall UPN system. Due to the nature of the network, it is
desirable to adopt a distributed decision making mechanism
for both autonomous and operator-assistedUPNs [23]. There-
fore, game theory is a powerful tool to model strategies and
analyze the outcome of such UPN systems. During the recent
years, several game theoretical studies have been performed
for both operator-assisted and autonomous UPNs. Most of
these studies focus on designing solutions based on the total
amount of downloaded data since this quantity is the basis
for pricing. In [21] the authors designed a Nash bargaining
based solution that considers the amount of offloaded and
downloaded data for other participants to compute reimburse-
ments. Despite its theoretical merit, the proposed mechanism
necessitates to solve an optimization problem in a distributed
fashion and the scheme does not support instant node addition
or removal. In [22] an incentive mechanism for operator
assisted UPNs in which subscribers are encouraged to be
Wi-Fi hotspots for other subscribers (clients) is designed.
This scheme provides a quota-based incentive mechanism
and a hybrid pricing scheme. There are also several other
game theoretical schemes studied in this context [24], [25].
However, most of these studies define the utility as the
amount of data transferred, and they do not take the service
quality into consideration. In a recent study, Uludag et al. [23]
have designed a UPN mechanism where the utility is defined
as a function of data rate which is a metric for service quality,
but the model is studied only for a single gateway and a single
client. In this study, we consider a UPN networkwithmultiple

FIGURE 1. A simple UPN scenario.

gateways and multiple clients and we focus on accessing and
sharing bandwidth, which is the most fundamental problem
faced by today’s network operators and users.

In a UPN mechanism, the main aim is to share serving
subscribers’ resources among demanding subscribers in an
efficient and fair way both from network operators’ and
subscribers’ perspective. In other words, available resources
must be utilized as much as possible and this utiliza-
tion must be fair enough among participants. Additionally,
such a mechanism should be (i) easily implementable on
a distributed architecture, (ii) appropriate to networks with
frequent changes, i.e., node addition or removal, connec-
tion drop, reconnecting or connecting to another node, and
(iii) applicable to both operator-assisted and autonomous
networks. A two-stage study is required to achieve these
objectives. The first stage is the development of a network
protocol that enables nodes on the network to communi-
cate with the network operator, discover and communicate
with each other. The second stage is the development of a
scheme that determines how nodes will share their resources.
In this study, we focus on the second stage. In this stage, the
designed scheme should not favor some clients over others.
The best solution provided by the scheme should perform
close to the best results demonstrated. Moreover, the worst
solution should not be far from the best. Finally, the scheme
should discourage untruthful declarations. First we define
a game theoretical sharing mechanism by considering the
bandwidth provided by the gateways and data rates demanded
by clients. This sharing mechanism is used to serve as the
distribution function of our new type of game. We term these
games as distribution games. We show that every distribution
game is a potential game, and discuss its similarities and
differences with other games in the literature. Although the
distribution games model is inspired by UPNs it can be used
in any context where resource sharing is relevant. Smart
Grids [46] are new generation energy grids aiming to create
a large-scale distributed energy delivery network by using
two-way electricity and information flow. Studies on energy
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consumption scheduling [47] and energy trading [48] mainly
aim to shift heavy energy demands to off-peak hours by
providing incentives to consumers so that a more reliable
and efficient smart grid can be achieved. Distribution games
can help solve demand response problems between produc-
ers and consumers. Transportation network problems have
been investigated for a long time [49], [50] and distribution
games can be adopted to solve problems in this area as well.
Incentivizing local transportation service providers or travel-
ers across multiple regions or in multi-modal transportation
networks [51], [52], [53], [54] is a problem to be tackled.
Distribution games can be used as an mechanism for local
providers and travelers to agree on a common social welfare
as in the case of UPNs.

B. RELATED WORK
Game theory has recently become an indispensable tool to
solve decentralized optimization problems in multi-user net-
works. CongestionGames [5] are one of themost investigated
class of games in networking studies. In this type of games,
the congestion formed on a congestible element is expressed
as a function of the number of players using that network
element. A player faces a congestion equal to the sum of
the individual congestion on the congestible elements it uses.
A simple scenario for the usage of this type of game to net-
work technologies is the following: A person traveling from
one city to another faces the congestion created by others
along every road that it uses to travel between these cities.
This person will choose a route minimizing her congestion.
A congestion game is single selection if every player chooses
exactly one congestible element. In [11], a specific instance
of single selection congestion games is defined. In this type
of game, the payoff that each player gets depends only on the
number of players playing the same strategy and is expressed
as a player-specific function that decreases with the number
of those players.

Load Balancing Games are a specific instances of conges-
tion games. In this type of games, each client chooses a server
on which it executes her/his own jobs. The aim of a client is to
complete her/his job as soon as possible, so they try to choose
the server with the minimum load. The load faced by each
client is expressed as the load on the server it chooses. The
works [17], [18], and [19] present game theoretical solutions
to load balancing problems.

A potential game is one in which the increase of the
benefit of a user implies an increase in some global potential
function. Rosenthal showed that every congestion game is a
potential game. It was later shown in [7] that the converse
is also true. Namely, for every potential game there exists
a congestion game with the same potential function. The
potential games model is a key game theoretical tool with a
wide range of applications in different areas of networking.
For instance, potential games have found many applications
in Radio ResourceAllocation as explained in [8]. In one of the
recent studies onWiFi offloading the authors of [26] designed
a user satisfaction aware offloading mechanism in which the

problem is defined as a potential game. Access point selection
in wireless sensor networks (WSN) is another area of applica-
tion of potential games. In [27] a game model that is proved
to be an exact potential game is proposed for access point
(AP) selection in an energy efficient manner. Another access
point allocation algorithm for densewireless LANs backed by
software defined wireless networking (SDWN) is proposed
in [28]. This potential game based approach dynamically
reallocates APs so as to adapt to capacity changes in a WiFi
network.

Potential game theory has many other application areas.
In [30] spectrum access, power allocation and user schedul-
ing are jointly investigated and an optimization problem is
formulated for maximizing the Quality of Experience (QoE)
[29] of users in 5G networks. Then, a decentralized solution
with local information is provided based on potential game
theory. Multi-hop broadcasting is another area of application
of potential games. In [31] the authors designed a decentral-
ized, energy efficient, marginal contribution based message
broadcasting mechanism in which an optimal broadcast tree
is always a Nash equilibrium of the game. A non-cooperative
cost sharing game which is shown to be a potential game is
proposed in [32]. This game minimizes energy and social
cost for data dissemination in wireless networks. Another
work on QoE and energy aware resource allocation is [33]
in which a potential game is designed to jointly implement
power selection, load management and channel allocation for
small cell networks. In our previous work [6], we considered
a UPN topology and a bandwidth sharing scheme using a
potential game where the client utilities are aligned with the
global utility of the system. Potential games have also other
applications such as video streaming in multi-hop wireless
networks [34], caching access point selection in wireless
caching networks [35], decentralized resource coordination
in coexisting industrial wireless networks [57] and resource
allocation in mobile edge computing [55], [56].

The work [9] defined the family of Distributed Welfare
Games that are closely related to our study. This family of
games is further studied in [10]. In a distributedwelfare game,
every player chooses to contribute to a subset of the available
resources. Some welfare is created at every resource by the
set of players contributing to that resource. Every resource
has an associated welfare distribution function (protocol) that
assigns a utility to every contributing player. Distributed wel-
fare games have a wide range of applications in distributed
problems such as sensor network planning [36], content dis-
tribution [20], spectrum access in cognitive radio networks
[37], interconnection betweenmobile network operators [40],
federated learning [38], and distributed caching in vehicular
networks [39].

In this study, without loss of generality, we focus on user
provided networks as a potential and coherent application
area of our theoretical contributions. UPNs may find differ-
ent areas of application such as supplying a whole village
with internet [43], building a sharing economy in mobile
networks [45] or relay the access traffic in 5G Integrated
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Access and Backhaul Networks (IAB). During the recent
years, a considerably large amount of work has been put in
IAB networks [44] which are a type of UPN. In a recent
study [42] that is closely related to UPNs and game theory a
joint incentive and resource allocation scheme is designed so
that the user utility, the sensitivity of battery energy, the incen-
tive compensation and the limitation of network resources are
formulated in a Nash Bargaining problem as a cooperative
game.

C. OUR CONTRIBUTION
We introduce a family of games termed distribution games in
which every player chooses a single supplier from a given
set of suppliers. Every player has a demand and it gets a
portion of the chosen resource according to its demand and
a distribution function governing this supplier. As such, this
new family extends the family of single selection congestion
games. We prove that every distribution game is a potential
game. Thus, any distribution game converges to a pure NE
after a finite number of best response moves. We further
provide tight bounds on the Price of Anarchy and Price of
Stability of games from this new family.We present two prac-
tical instances of distribution games and perform a numerical
study of one of these games and also of a more general class
of distribution games that we analyze only numerically. The
numerical study reveals the efficiency of the equilibria in
terms of social welfare and fairness. Thus both theoretical
and numerical studies show that this new family of games
is very appealing for resource sharing applications such as
bandwidth distribution in UPNs.

The theoretical results presented in this paper are new,
though related to existing results. The result in [7] implies that
for every potential game (including distribution games) there
exists a congestion game with the same potential function.
However, the number of possible strategies of a player in the
congestion game implied by that result is quadratic in the
number of resources of our game. Therefore, that result does
not imply a congestion game with the same set of resources.
Distribution games constitute a sub-family of distributed wel-
fare games defined in [9] and further studied in [10]. Though
the framework defined therein is very general, most of the
positive results pertain to special cases. The results in this
work and in [9] and [10] are not comparable in the sense that
none implies the other. We elaborate on this in the last part
of Section II dedicated to comparisons with existing models
and results.

We summarize below the main contributions of this work.

• We introduce a new class of games called distribution
games which suits well for various types of resource
sharing schemes including user provided networks that
could not be properly addressed by the previous game
theoretical approaches.

• We prove that every distribution game is a potential
game, hence any best response dynamics always con-
verge to a pure strategy NE.

• We provide tight upper bounds for the price of anarchy
and the price of stability of distribution games.

• We evaluate the efficiency of equilibria in terms of social
welfare and fairness via extensive set of simulations in
various UPN setups.

• We provide a characterization of distribution games
which make them truthful, such that it is a dominant
strategy to declare the true demand for all the clients.

The rest of the paper is organized as follows. In Section II
we introduce notation, define distribution games and com-
pare them against congestion games and distributed welfare
games. In Section III we prove that every distribution game
admits a pure strategy Nash equilibrium. In the same section
we introduce two practical instances of distribution games.
In Section IV we analyze the quality of the above mentioned
Nash equilibria by studying Price of Anarchy and Price of
Stability. In Section VI we develop a simple criterion for the
truthfulness of a distribution game and apply it to the sample
games introduced in earlier sections. In Section V we present
a numerical study in a realistic setup and finally, we conclude
with some open problems in Section VII.

II. DISTRIBUTION GAMES
In this section, we define a new class of games that are
suitable for sharing bandwidth in a distributed UPN setup.
To give a basic idea, let us consider an illustrative example
based on the simple network shown in Figure 1. Let us define
the capacities of two supplier nodes as κ1 = 30 Mbps and
κ2 = 20 Mbps. These two nodes provide service to four
client nodes with demands d1 = 30 Mbps, d2 = 15 Mbps,
d3 = 10 Mbps and d4 = 40 Mbps. The distribution of
the supplier capacities among multiple connected clients can
be done in different ways. Figure 2 shows two connection
scenarios, where the capacities of the suppliers are distributed
equally among the connected clients. In both scenarios, none
of the clients can gain more utility by changing their supplier,
hence there is an equilibrium. In Figure 3, the capacities of
the suppliers are distributed to the clients using a different
function, i.e. proportional to their demands. This setting is
not in equilibrium because client 3 will have an incentive
to switch to supplier 1. We now proceed by giving some
preliminaries about game theory, and then define a general
class of distribution games to handle strategic decisions in
UPN settings using various distribution functions.

A. PRELIMINARIES
We start by giving basic definitions and notation. See Table 1
for frequently used notation. A strategic game is a triple
G = (n,A, u) where n ∈ N is the number of players, A =
×
n
i=1Ai, Ai is a finite set of possible strategies of player i,

and u : [n] × A → R is a utility function where [n] denotes
the set of positive integers less than or equal to n. A vector
−→a ∈ A is termed a strategy profile or an outcome of G. When
the outcome of the game is −→a , player i receives a utility of
ui(
−→a ) = u(i,−→a ). For an outcome −→a and b ∈ Ai, we denote
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TABLE 1. Frequently used notation.

FIGURE 2. An illustrative example for two connection scenarios in a UPN
where the supplier capacities are distributed equally among the
connected clients.

FIGURE 3. An illustrative example for a connection scenario in a UPN
where the supplier capacities are distributed proportional to the client
demands.

by (b,−→a −i) the outcome in which the strategy of player i is b
and the strategy of any other player is identical to its strategy
in−→a . In other words, (b,−→a −i) is the outcome obtained from
−→a by a move of player i that changes its strategy to b and the
strategy of every other player remains intact. A selfish player
changes its strategy only if the change will strictly increase
its utility assuming that no other player changes its strategy.

We denote by−→a
i
→
−→a ′ the fact that−→a ′ is obtained from−→a

by a move of a selfish player i. We use −→a → −→a ′ to denote

that −→a
i
→
−→a ′ for some player i.

A Nash equilibrium (NE) of G is an outcome −→a in which
no player can strictly increase its utility by making a move,
i.e., there is no outcome −→a ′ such that −→a →−→a ′.

If there exists a function 8 : A → R such that 8(−→a ) <
8(−→a ′) whenever −→a → −→a ′ then G is an ordinal potential
game and 8 is termed an ordinal potential function for G.

Whenever A is finite, it is easy to see that every ordinal
potential game has a pure strategy Nash Equilibrium [7].
Furthermore, starting from an arbitrary outcome −→a , every
finite ordinal potential game converges to a Nash Equilibrium
through a finite improvement path. In particular, any best
response dynamics, where at each step an arbitrary selfish
player plays its best-response strategy, always converges to
a Nash Equilibrium after finite number of steps [7].

If a social welfare function W : A → R is defined
on the set of outcomes of a game. We compare the social
welfare obtained by Nash equilibria to the optimum W ∗ =
max

{
W (−→a )|−→a ∈ A

}
. The price of anarchy (PoA) of such

a game is defined as the ratio of the optimum to the per-
formance of a worst NE, i.e, PoA(G) = W ∗

min{W (−→a )|−→a is a NE}
.

Similarly, the price of stability (PoS) is obtained by compar-
ing the optimum to a best NE.

In the following lemma we give a sufficient condition to
guarantee that a game is an ordinal potential game. This
condition requires a finite family of functions to be defined
on the set of outcomes of the game. Specifically, the condi-
tion requires that in every selfish move of some player, the
minimum of the function values affected by the move strictly
decreases.
Lemma 1: Let G = (n,A, u) be a strategic game, J be a

set of indices with functions hj : A→ R (j ∈ J ). If for every
two outcomes −→a ,−→a ′ of G such that −→a → −→a ′ there exists
∅ ( J̄ ⊆ J such that

1) min
{
hj(
−→a )|j ∈ J̄

}
< min

{
hj(
−→a ′)|j ∈ J̄

}
, and

2) hj(
−→a ′) = hj(

−→a ) for every j ∈ J \ J̄ ,
then G is an ordinal potential game.

Proof: Let hJ (−→a ) be the multiset
{
hj(
−→a )|j ∈ J

}
,

and let
−→
h (−→a ) be the vector containing the |J | values in

hJ (−→a ), sorted in non-decreasing order. Let also � denote
the lexicographic order onR|J |, and−→x ≺ −→y denote the fact
that −→x � −→y and −→x 6= −→y .
Let −→a and −→a ′ be two outcomes of G such that −→a

i
→

−→a ′ for some player i ∈ [n]. Then, there is a set ∅ (
J̄ ⊆ J that satisfies the premises of the lemma. Let x =
min

{
hj(
−→a )|j ∈ J̄

}
, k< (resp. k=) be the number of entries

of
−→
h (−→a ) that are strictly less than (resp. equal to) x. Then

the first k< entries of
−→
h (−→a ) and

−→
h (−→a ′) are identical. As of

the subsequent k= entries, the entries of
−→
h (−→a ′) are greater

or equal than the corresponding entries of
−→
h (−→a ) with at

least one entry being strictly greater. Therefore,
−→
h (−→a ) ≺

−→
h (−→a ′), implying that the rank of

−→
h (−→a ) in the lexicographic

order is an ordinal potential function for G. �

B. GAME MODEL
We start with an informal description of the model and then
proceed with formal definitions. In our model we refer to the
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players also as clients each of which has a demand of some
global resource. In addition, there is a set of suppliers each
of which has a limited supply of the resource. Every client
connects to a supplier in order to satisfy (possibly partially)
its demand.

The utility ui of a client i when connected to a supplier
j depends on the part if its demand satisfied by j and is
upper bounded by this demand. Note that in particular, this
models the case where the utility ui is the supply it gets from
supplier j. This amount is determined by a) supplier j’s current
capability to satisfy a clients’ demands, and b) the way client i
benefits from this capability. These two parameters are deter-
mined by two functions, one associated with supplier j, and
the other associated with client i. We assume that the capabil-
ity of a supplier to serve a specific client does not increase
when additional clients are connected. This assumption is
realistic if the capacity or other characteristics of a supplier
do not change very often, i.e., during the game. Therefore,
we associate with supplier j a non-increasing real distributing
function δj that depends solely on the set of clients currently
connected to supplier j.

The benefit of client i from the capability of j increases
with the capability of j until it reaches the demand of client
i. Therefore, we associate with client i a strictly increasing
benefit function fi that depends on the current capability of
the supplier. Client i receives more of the resource whenever
the capability of supplier j increases unless its demand is
already satisfied. Finally, we note that the theoretical model
introduced in this section does not require a fixed capacity to
be defined for every supplier, despite the fact that capacities
are used for the sake of the examples. However, starting from
Section IV, we consider special cases of the model in which
such a capacity is defined.

The social welfare function of the system is a conical
combination of the individual utilities.

We thus have the following formal definition of a distri-
bution game with strategy space A and with utility functions
ui determined by the distributing functions 1 and benefit
functions F .
Definition 1: A Distribution game is a tuple G =

(n,m, d,A,1,F) where

• n is the number of players (clients),
• m is the number of suppliers,
• d : [n] → R+ is the demand vector with di being the
demand of client i ∈ [n],

• A = ×ni=1Ai is the strategy space withAi ⊆ [m] for every
client i ∈ [n] (i.e., client i can connect to exactly one
supplier from Ai). For an outcome−→a ∈ A, we denote by
Cj(
−→a ) the set of clients that are connected to supplier j,

i.e., Cj(
−→a ) = {i ∈ [n]|ai = j}. We denote by Dj(

−→a ) =∑
i∈Cj(
−→a ) di the total demand of all clients connected

to supplier j.
• 1 =

{
δj|j ∈ [m]

}
is the set of distributing functions

with every δj : 2[n] → R+ being a monotonically
non-increasing function on sets of clients,

• F = {fi|i ∈ [n]} is the set of benefit functions where
every fi : R+ → R+ is a monotonically increasing
function.

• Moreover, δj is strictly decreasing unless all clients con-
nected to supplier j are saturated, i.e., if δj(

−→a ) = δj(
−→a ′)

and Cj(
−→a ) ( Cj(

−→a ′) then fi(δj(
−→a )) ≥ di for every

i ∈ Cj(
−→a ′) where δj(

−→a ) is a shorthand for δj(Cj(
−→a )).

• ui(
−→a ) = min

{
di, fi(δj(

−→a ))
}
, i.e., whenever client i is

connected to supplier j, its utility ui is fi(δj(
−→a )) but no

more than di.

To give an example, let us apply the defined game formulation
to the instance given in Figure 3. Using the distribution game
notation (and omitting the name (−→a ) of the outcome in the
figure) we haveC1 = {1, 2},C2 = {3, 4},D1 = d1+d2 = 45,
D2 = d3 + d4 = 50. For this instance, δj can be defined as
the ratio of the capacity of supplier j to the total demand of
the clients connected to it, hence δ1 = 30

45 =
2
3 , δ2 =

20
50 =

2
5 . Further, we define fi(x) = di · x for every client i. Then,
the utilities of the clients are u1 = min {d1, d1 · δ1} = 20,
u2 = min {d2, d2 · δ1} = 10, u3 = min {d3, d3 · δ2} = 4,
u4 = min {d4, d4 · δ2} = 16.
We note that the above formulation of distribution games

covers also the case in which the utility of a client is an
increasing function g of the resource allocated to it. Con-
sider a distribution game G = (n,m, d,A,1,F) in which
fi(δj(
−→a )) is the resource allocated to client i by the supplier

j (where j = ai) Consider the distribution game G′ =
(n,m, d ′,A,1,F ′) where d ′i = g(di) for every i ∈ [n] and
F ′ =

{
f ′i |i ∈ [n]

}
with f ′i = g◦ fi for every i ∈ [n]. Indeed, G′

is a distribution game since, g and fi being strictly increasing
functions, f ′i is so. Moreover, the utility of client i in an

outcome −→a of G′ is

u′i(
−→a ) = min

{
d ′i , f

′
i (δj(
−→a ))

}
= min

{
g(di), g(fi(δj(

−→a )))
}

= g(min
{
di, fi(δj(

−→a ))
}
) = g(ui(

−→a ))

where ui(
−→a ) is the resource allocated to client i in the same

outcome of G.

C. RELATION WITH CONGESTION GAMES AND
DISTRIBUTED WELFARE GAMES
In a congestion game the strategy of a player is to connect to
a subset of given facilities. The cost of a client is the sum of
the costs of the facilities it is connected to, and the cost of a
facility is a (non-decreasing) function of the number of clients
connected to it. In a single selection congestion game a player
can be connected to only one facility. We note that when we
set di = 1 and fi(x) = x for every client i in a distribution
game we get a single selection congestion game of which the
congestible items are the resources of our game. In the next
section we prove that every distribution game is a potential
game. A result presented in [7] states that with every potential
game there exists a congestion game with the same number of
players. However, for our case this result implies a congestion
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gamewith n·m possible strategies for every player. Therefore,
this result does not imply a congestion game where the set of
congestible items is the set of our suppliers.

In a distributed welfare game, players can contribute to any
subset of resources. The set S of players that contribute to
a resource r produces a welfare Wr (S) in resource r where
Wr is a sub-modular function. In other words, the marginal
contribution of a player is a non-increasing function of the set
of other contributors. Formally,Wr (S∪{i})−Wr (S) ≥ Wr (T∪
{i})−Wr (T ) whenever S ⊆ T . Contributor i ∈ S gets a utility
of fr (i, S) where fr is the distribution function (protocol) at
resource r . Such a protocol is termed budget-balanced if the
sum of the utilities received by the contributors is equal to
the welfare produced in this resource. A set of protocols is
scalable if whenever the welfare generation functions of two
resources are identical, then their utility distribution functions
are identical.

If we consider the total distribution of a supplier as the
welfare generated, we get that our utility functions are,
by definition, budget-balanced, and scalable. Moreover, our
requirements from f and δ imply that the welfare function
is sub-modular. Therefore, a distribution game is a single
selection distributed welfare game. Moreover, our distribu-
tion functions are separable, i.e., the utility received by player
i is max fi(δj(S)) as opposed to a distributed welfare game
in which f is not necessarily separable. In this respect the
family of distribution games is a sub-family of the family
of single selection distributed welfare games. Though, in the
next paragraph we argue that our results are incomparable
with the results in [9], i.e., none of the results implies the
other.

In [9] it is shown that a single selection distributed welfare
game admits aNE provided that the game satisfies three suffi-
cient conditions. The analysis of the price of anarchy clearly
depends on the same conditions since the very definition of
Price of Anarchy requires the existence of a NE. One of these
condition is the existence of a total order between the players.
More specifically, player i is said to be stronger than player
j if the utility that i gets from a resource r with a contributor
set S is always greater than or equal to the utility of player j
under the same circumstances, for every resource r and every
set of players S. Clearly, the ‘‘is stronger than’’ relation is
transitive. However, it is also required that for any two players
i and j, either i is stronger than j or the other way around, i.e.,
the mentioned relation is a total order. We finally note that
a distribution game does not impose this condition. Such a
total order does not necessarily exist since the functions fi are
arbitrary increasing functions, and two such functions are not
necessarily comparable.

In [10] it is shown that if a distributed welfare game uses
a budget-balanced and scalable protocol, and also guaran-
tees the existence of a Nash equilibrium, then it must be a
weighted Shapley value. This makes the implementation of
such protocols computationally prohibitive. In the same work
the authors also present ways of addressing these problems.
On the other hand, the family of distribution games, being

more restricted, can use computationally simple, scalable and
budget-balanced protocols while admitting Nash equilibria,
as we will prove in the next section.

III. EXISTENCE OF NASH EQUILIBRIA
In this section we show that every distribution game has aNE.
To this goal, we prove the following lemma that complements
Lemma 1 and states that whenever a client moves from one
supplier to another it increases the minimum of the δ values
of these suppliers.

Lemma 2: Let −→a
i
→
−→a ′ be a move of player i in a

distribution game. Then,

min
{
δai (
−→a ), δa′i (

−→a )
}
< min

{
δai (
−→a ′), δa′i (

−→a ′)
}
.

Proof: Let j = ai and j′ = a′i, i.e., client i moves from
supplier j to supplier j′. We have Cj(

−→a ′) = Cj(
−→a ) \ {i} and

Cj′ (
−→a ′) = Cj′ (

−→a )∪{i}. By themonotonicity of δ, these imply

δj′ (
−→a ′) ≤ δj′ (

−→a ) (1)

and δj(
−→a ) ≤ δj(

−→a ′). Suppose that the latter inequality
holds with equality, i.e., δj(

−→a ) = δj(
−→a ′). Then we have

fi(δj(
−→a )) ≥ di thus ui(

−→a ) = di. This contradicts the fact
that i moved from supplier j to another supplier. Therefore,

δj(
−→a ) < δj(

−→a ′). (2)

Since the utility of i increases after the move, we have

min
{
di, fi(δj(

−→a ))
}
< min

{
di, fi(δj′ (

−→a ′))
}
.

Therefore, fi(δj(
−→a )) < di and fi(δj(

−→a )) < fi(δj′ (
−→a ′)). Since

fi is an increasing function, we conclude

δj(
−→a ) < δj′ (

−→a ′). (3)

We combine (1) and (3) to get δj(
−→a ) < δj′ (

−→a ′) ≤ δj′ (
−→a ).

Thus

min
{
δj(
−→a ), δj′ (

−→a )
}
= δj(
−→a ).

We now combine (2) and (3) to get

δj(
−→a ) < min

{
δj(
−→a ′), δj′ (

−→a ′)
}

which together with the preceding equality concludes the
proof. �
By setting J̄ =

{
ai, a′i

}
, since δj(

−→a ) = δj(
−→a ′) for every j /∈{

ai, a′i
}
, using Lemma 1 and Lemma 2 we get the following

corollary.
Corollary 1: Every distribution game is an ordinal poten-

tial game.
We now present two families of distribution games by

defining the way a supplier j distributes its supply among
the set Cj(

−→a ) of its connected clients, i.e., by defining the
functions δj, j ∈ [m] and fi, i ∈ [n].
• Demand-proportional distribution (GDP): Supplier j
has a supply of κj. If Dj(

−→a ) ≤ κj then every client
i ∈ Cj(

−→a ) gets a supply of ui(
−→a ) = di. Otherwise,
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client i ∈ Cj(
−→a ) gets a supply of di

κj

Dj(
−→a )

. Summarizing,

ui(
−→a ) = min

{
di, di

κj

Dj(
−→a )

}
. GDP is a distribution game

since δj(
−→a ) = κj

Dj(
−→a )

is monotonically decreasing in

Cj(
−→a ), fi(x) = di · x is monotonically increasing in

x, and the utility of client i connected to supplier j is
min

{
di, fi(δj(

−→a ))
}
.

• Egalitarian distribution (GEG): Supplier j has a supply
of κj which is distributed among the clients in the fol-
lowing iterative procedure. The capacity is distributed
equally among the connected clients until the capacity is
completely distributed or some client becomes saturated.
The remaining capacity is distributed equally among
the non-saturated connected clients until the capacity is
completely distributed or a client becomes saturated and
so on until either the capacity is completely distributed
or all connected clients are saturated. Formally,

δj(
−→a )

=


κj if Dj(

−→a ) ≤ κj

max

x| ∑
i∈Cj(
−→a )

min {di, x} ≤ κj

 otherwise.

The utility of client i ∈ Cj(
−→a ) is min

{
di, δj(

−→a )
}
.

Having already observed that GDP is a distribution game,
we proceed to prove the relatively less obvious fact that GEG
is also a distribution game.
Theorem 1: GEG is a distribution game.
Proof: Clearly, fi(x) = x is monotonically increasing.

It remains to show that δj is monotonically non-increasing and
if δj(
−→a ) = δj(

−→a ′) and Cj(
−→a ) ( Cj(

−→a ′) then δj(
−→a ) ≥ di

for every i ∈ Cj(
−→a ′). Assume that −→a ( −→a ′. Clearly,

Dj(
−→a ) < Dj(

−→a ′). We first prove the following claim.
Claim 1: δj(

−→a ) < κj if and only if Dj(
−→a ) > κj.

Proof: If δj(
−→a ) < κj, we have Dj(

−→a ) > κj by the
definition of δj. To prove the other direction assume for a
contradiction that Dj(

−→a ) > κj and δj(
−→a ) ≥ κj. Then∑

i∈Cj(
−→a )min

{
di, δj(

−→a )
}
≤ κj, thus min

{
di, δj(

−→a )
}
≤

κj for every i ∈ Cj(
−→a ). Since δj(

−→a ) > κj, we have

min
{
di, δj(

−→a )
}
= di for every i ∈ Cj(

−→a ). Therefore,

Dj(
−→a ) =

∑
i∈Cj(
−→a ) di =

∑
i∈Cj(
−→a )min

{
di, δj(

−→a )
}
≤ κj,

a contradiction. �
We now consider three disjoint and complementing cases:

• Dj(
−→a ) < Dj(

−→a ′) ≤ κj: Then, di ≤ κj for every
i ∈ Cj(

−→a ′). Furthermore, by definition of δj, we have
δj(
−→a ) = δj(

−→a ′) = κj. We conclude that fi(δj(
−→a ′)) =

fi(κj) = κj ≥ di for every i ∈ Cj(
−→a ′).

• Dj(
−→a ) ≤ κj < Dj(

−→a ′): By Claim 1, we have δj(
−→a ′) <

κj = δj(
−→a ).

• κj < Dj(
−→a ) < Dj(

−→a ′): In this case we will show that
δj(
−→a ′) < δj(

−→a ). Assume for a contradiction that

δj(
−→a ) ≤ δj(

−→a ′). We have∑
i∈Cj(
−→a )

min
{
di, δj(

−→a )
}
≤

∑
i∈Cj(
−→a )

min
{
di, δj(

−→a ′)
}

<
∑

i∈Cj(
−→a ′)

min
{
di, δj(

−→a ′)
}

≤ κj

where the last inequality follows from the definition of
δj. Since the left hand side is continuous in δj(

−→a ), there
exists ε > 0 such that

∑
i∈Cj(
−→a )min

{
di, δj(

−→a )+ ε
}
<

κj. This contradicts the definition of δj.

�
The theoretical results presented in this section suggest

that in the UPN scenarios where the capacity of suppliers are
distributed equally as in Figure 2 or distributed proportional
to the client demands as in Figure 3, convergence to a NE
is guaranteed by best response dynamics, where the clients
update their decisions (onwhich supplier to connect) via local
search. Note that, this result can be extended for other scenar-
ios where the supplier capacity is distributed using a different
function, as long as the resulting game is a distribution game.

IV. PRICE OF ANARCHY AND PRICE OF STABILITY
In this section we analyze the efficiency of the equilibria
whose existence is proven in the previous section, under some
plausible assumptions. We start with definitions regarding
these assumptions.
Definition 2: A distribution game G = (n,m, d,A,1,F)

is identity-independent if the function δj does not depend
on the set of players in Cj(

−→a ) but only on their demands,
and the function fi does not depend on i but only on di. We use
the term identity-independent to distinguish it from the term
anonymous used in [9] for set functions that depend only on
the number of players in the set.

The game G is non-keeper if every supplier j has a supply
of κj such that

∑
i∈Cj(
−→a ) ui(

−→a ) = min
{
Dj(
−→a ), κj

}
.

Clearly, GEG and GDP are non-keeper and
identity-independent.

We consider social welfare functions that are conical com-
binations (weighted sums) of the utilities of the players, i.e.
W (−→a ) =

∑n
i=1 λiui(

−→a ) where λi ≥ 0 for every i ∈ [n]. Such
a function is relevant, for instance, in the case where clients
pay different prices per unit demand. We assume without loss
of generality λ1 ≥ · · · ≥ λn = 1. Otherwise we can rename
the clients such that the coefficients λ are sorted and then
scale them such that the smallest coefficient becomes one.
This changes the social welfare function by a constant factor
and thus does not affect the price of anarchy and price of
stability which are defined as ratios of this function. For a
subset C ⊆ [n] of clients we define the social welfare due to
C as WC (

−→a ) =
∑

i∈C λiui(
−→a ).

In order to analyze price of anarchy and price of stability,
we have first to provide an upper bound the social welfare.
This is done in the following observation.
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Observation 1: Let C = {i1, . . . , ik} be a set of k < n
clients, with i1 > . . . > ik . Then, the total utility of C is
• at most dC , and
• at most κ[min{k,m}] (i.e. the sum of the largest min {k,m}
capacities). This bound is attained when the clients are
matched to the first k suppliers, and the utility of each
client is equal to the capacity of its supplier.

• Moreover, the social welfare due to C is at most λi1κ1+
. . .+ λimin{k,m}κmin{k,m}.

We have now to provide a way to compare any NE against
the bounds just introduced. For this purpose we prove that
in every NE, the excess capacity of every supplier is at most
the utility of any non-saturated player. Specifically, denoting

by exj(
−→a )

def
= max

{
0, κj − Dj(

−→a )
}
the excess capacity of

supplier j in an outcome −→a we prove:
Claim 2: Let G be an identity-independent, non-keeper

distribution game, and let −→a be a NE of G. Then exj(−→a ) ≤

ui(
−→a ) for every client i not saturated in −→a (i.e.,ui(

−→a ) < di)
and every supplier j.
Proof: Let i be a client that is not saturated in −→a and ai

be its strategy. Since G is non-keeper, we have exai (
−→a ) =

0 ≤ ui(
−→a ). Assume for a contradiction that there is a supplier

j 6= ai such that exj(
−→a ) > ui(

−→a ). Let −→a ′ be the outcome
obtained from −→a by i changing its strategy to j. If ui(

−→a ′) =
di we have ui(

−→a ′) > ui(
−→a ) since i is not saturated in−→a . This

contradicts the fact that−→a is a NE, thus ui(−→a
′) < di. Since G

is non-keeper, we have exj(
−→a ′) = 0. SinceCj(

−→a ) ( Cj(
−→a ′),

δj is non-increasing, and fi is increasing, we have ui′ (
−→a ′) ≤

ui′ (
−→a ) for every i′ ∈ Cj(

−→a ). Then

ui(
−→a ′) = κj −

∑
i′∈Cj(

−→a )

ui′ (
−→a ′)

≥ κj −
∑

i′∈Cj(
−→a )

ui′ (
−→a )

= exj(
−→a ) > ui(

−→a ) (4)

contradicting the fact that −→a is a NE. �
In the next Lemma we provide an upper bound to the price

of anarchy, by partitioning the clients into two sets, namely
the saturated ones and the rest. In this way we can bound
the social welfare of the saturated and unsaturated clients
separately using different bounds from Observation 1 and
then combine the bounds.
Lemma 3: The price of anarchy of every identity-

independent non-keeper distribution game is at most 1+ λ1.
Proof: Let G be an identity-independent, non-keeper

distribution game, and let−→a be a NE of G. We first introduce

some notation. Denote by S
def
=
{
i ∈ [n]|ui(

−→a ) = di
}
be the

set of clients that are saturated in −→a . Let F be the set of
suppliers to which the rest of the clients are connected, i.e.

F
def
= ∪i/∈S {ai}. For a set C of clients denote by dC

def
=∑

i∈C dj their total demand. Similarly, for a set P of suppliers,

we denote by κP
def
=

∑
j∈P κj their total capacity, and by

DP(
−→a ) =

∑
j∈P Dj(

−→a ) the total demand of their clients.

Without loss of generality we assume κ1 ≥ . . . ≥ κm. Note
that, since G is non-keeper, we have∑

i/∈S

ui(
−→a ) ≤ κF , (5)

i.e., the total utility of the non-saturated clients is less than or
equal to the total capacity of their suppliers. We now show an
important property of a NE that we will use to conclude our
proof.

Consider an optimal outcome −→a ∗ of G. Clearly, for every
client i ∈ S we have ui(

−→a ∗) ≤ di = ui(
−→a ). Therefore,

WS (
−→a ∗) =

∑
i∈S

λiui(
−→a ∗) ≤

∑
i∈S

λiui(
−→a ) = WS (

−→a ). (6)

In the sequel we consider the utilities of the unsaturated
clients, i.e., those clients i /∈ S. Let S̄ = [n] \ S ={
i1, . . . , in−|S|

}
with i1 < · · · < in−|S|. Let also n′ =

min {m, n− |S|} be the smaller among the number of clients
that are not saturated in −→a and the number of suppliers.
By Observation 1 we have

WS̄ (
−→a ∗) ≤

n′∑
j=1

λijκj

=

∑
j∈[n′]\F

λijκj +
∑

j∈[n′]∩F

λijκj

=

∑
j∈[n′]\F

λij (Dj(
−→a )+ exj(

−→a ))+
∑

j∈[n′]∩F

λijκj

≤ λ1D[n′]\F (
−→a )+

∑
j∈[n′]\F

λijexj(
−→a )+ λ1κ[n′]∩F

= λ1
(
D[n′]\F (

−→a )+ κ[n′]∩F
)
+

∑
j∈[n′]\F

λijexj(
−→a )

≤ λ1

n∑
i=1

ui(
−→a )+

∑
j∈[n′]\F

λijuij (
−→a ) (7)

≤ λ1W (−→a )+WS̄ (
−→a ) (8)

where (7) is obtained by observing that the second term is the
total utilization of the suppliers in F , the first term is the total
utilization of other suppliers, and using Claim 2 for the third
term. Combining inequalities (6) and (8) we obtain

W (−→a ∗) ≤ (1+ λ1)W (−→a ) (9)

as claimed. �
Note that the game is identity-independent but the social

welfare is identity-dependent. In other words, the game is
played without identities, thus regardless of the coefficients
λi, whereas the social welfare is measured using these coef-
ficients. For this reason, a PoA of λ1 seems inevitable. In the
rest of this section we show that the above bounds are tight in
the sense that there exist distribution games that attain these
bounds.
Lemma 4: For every ε > 0 there exist a coefficient vec-

tor
−→
λ and an identity-independent, non-keeper distribution

game G with PoA(G) ≥ PoS(G) > 1+ λ1 − ε.
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Proof: Let n > 2/ε, ε′ = ε/2−1/n
n−1 > 0 and let G =

(n,m, d,A,1,F) be an identity-independent non-keeper dis-
tribution game where every client i has a demand of di = 1,
κ1 = 1 and κj = 1/n − ε′ for every j ∈ [2, n]. The social
welfare is

∑n
i=1 ui(

−→a ), i.e., λi = 1 for every i ∈ [n]. We first
prove that the strategy of every player is 1 in every NE,
implying that G has a unique NE. Suppose that the strategy
of some player i is ai 6= 1. Then ui(

−→a ) ≤ 1/n − ε′ <
1/n. On the other hand for the outcome −→a ′ obtained from
−→a by i changing its strategy to 1, we have D1(

−→a ′) ≤ n.
Since G is identity-independent and non-keeper, we have
ui(
−→a ′) ≥ 1/n > ui(

−→a ), contradicting the fact that−→a is aNE.
Therefore, the utility of every player is 1/n in the unique NE,
for a social welfare of 1. An optimal outcome−→a ∗ is obtained
when the strategy of client i is i. In this case u1(

−→a ∗) = 1 and
ui(
−→a ∗) = 1/n− ε′ for every client i ∈ [2, n]. We have

W (−→a ∗) = 1+ (n− 1)
(
1
n
− ε′

)
= 2−

1
n
− (n− 1)ε′ = 2−

ε

2
> 2− ε.

�
For a UPN where the client utilities are aligned directly

with the obtained data rates, the theoretical results presented
in this section suggest that the aggregate data rate obtained by
the clients in any equilibrium is at least the half of the optimal
value. In practice, usually this gap is much lower as will be
shown in the next section. Valuation per unit bandwidth may
be different for different clients. In this case, the ratio of the
optimal social welfare to the attained one does not exceed one
plus the ratio of the largest valuation to the smallest one.

V. APPLICATION TO UPN AND NUMERICAL STUDY
In this section we first describe implementation of the pro-
posed scheme in UPN systems. Then we present a numerical
study involving simulations in the UPN context that is carried
out in order to examine the outcome of the proposed distribu-
tion game and also a generalization of it in which the demand
of a client may vary from supplier to supplier.

A. UPN IMPLEMENTATION
In order to realize the proposed scheme in a UPN setting,
some moderate assumptions should be made. Although the
proposed study can be adopted to inband D2D communica-
tions where both cellular and D2D links use same licensed
spectrum, we assume outband D2D communication such
that the suppliers and the clients communicate via unli-
censed spectrum such as WiFi or Bluetooth. This approach
is used by already deployed UPN implementations such as
Karma [59] and Fon [60] which are all based either on a spe-
cially designed hardware (WiFi router) or a special firmware
(enables the device to emulate a WiFi router) equipped with
some capacity sharing features. In such a setting aWiFi router
may associate amaximum capacity with each of its connected
clients so that a supplier can share its capacity among its con-
nected clients according to our scheme. A full-stack software

solution as in the case of M-87 networks [58] is also possible,
which leverages smartphones for routing and bridging the
data paths, by efficiently and fairly utilizing the outband D2D
links.

In a distribution games, every client needs to know the
demands of all other users that are connected to its poten-
tial suppliers. In an operator-controlled UPN setup, all the
clients advertise their demands to the operator via a supplier.
Then, demands of the other users could be obtained from the
operator. In an autonomous UPN setup, an additional two-
step communication protocol has to be implemented between
the users. We may describe a node and strategy discovery
protocol as follows. In the first step each client advertises its
demand to the suppliers in its range. In the second step, i.e.,
upon collecting all demand declarations, the suppliers share
this information with their possible clients in their range.
At this point, each client knows others’ demands and strate-
gies. Also during the game play whenever a client connects
to or drops from a supplier, the relevant supplier informs
other possible clients so that clients may try to change their
suppliers accordingly. Node discovery and communication
between clients and suppliers can be handled via Bluetooth,
WiFi direct, or any device-to-device communication
technology.

In the rest of this section, we describe the simulation setup
details and the performance results obtained by this numerical
study. We simulate clients playing best response dynamics
and examine the social welfare attained by the resulting
equilibria in different network setups.We considered only the
unbiased social welfare case, i.e., the case of λ1 = 1.

B. SIMULATION SETUP
1) NETWORK AND DEMAND GENERATION
The network generation routine that generates the sample
networks is passed the following parameters: a) number of
gateways, b) number of clients, c) lower and upper bounds
on the bandwidths offered by the gateways, and d) lower
and upper bounds on the clients’ demands. As for the first
two of these parameters, we generate 5 networks comprising
of 3 gateways and 6 clients, 5 gateways and 12 clients,
10 gateways and 24 clients, 15 gateways and 36 clients and
20 gateways and 48 clients. These networks are referred
as small, medium, large, very large, and huge respectively,
in Table 3.

The demands of the clients and gateways are chosen uni-
formly at random between the respective lower and upper
bounds. In the first scenario which is referred as high demand
variance in Table 3, clients’ demands (di) are picked from
a wide range (1 Mbps to 65 Mpbs). In the other scenario,
referred as low demand variance clients’ demands are picked
from a narrower range (56 Mbps to 65 Mbps). In both scenar-
ios the capacities (κj) of the gateways are chosen uniformly
at random from the range 56 Mbps to 65 Mbps. In this way
we simulate both random scenarios and scenarios in which
the clients have demands close to the gateways’ capacities.
These data rates reflect the supported capacities and expected

VOLUME 10, 2022 122805



S. E. Taşçi et al.: Distribution Games: A New Class of Games With Application to User Provided Networks

TABLE 2. RSSI and link speed relation in 802.11n [16].

demands of modern handheld devices, smart phones, video
streaming applications, etc.

We consider two cases in our simulations. In Case 1, the
demand of every client is fixed. In this case, all the clients
play best response dynamics. In Case 2, we consider a gener-
alization of distribution games inwhich the demand of a client
depends on the gateway to which it is connected. In other
words, client i may not be able to get its demand di at any
gateway j even if that gateway’s capacity exceeds di. This can
be due to distance, obstacles and disruptions in the network.
If themaximumdata rate that can be transferred from gateway
j to client i is Rij, then the maximum satisfiable demand of
client i from gateway j is defined as

dij = min (di,Rij). (10)

We relate Rij to the distance between client i and gateway
j as follows. First we compute received signal strength indi-
cator between client i and gateway j (RSSIij) in dBm by the
following formula [15]:

RSSIij(dBm) = Pij − 10α log10(dij)− OAF (11)

where Pij is the power level to send data from client i to
gateway j, dij is the distance in meters between the client
and the gateway, α is the channel attenuation factor and OAF
is the obstacle attenuation factor. We used Pij = −37dBm,
α = 2 and OAF = 1.5 in all simulations. RSSI levels are
then converted to link speed (Rij) according to Table 2.

Throughout all simulations an area of 150 × 150 meters
is assumed and all nodes are scattered over that area in a
uniformly random fashion. 5 different samples were created
from each type of network in Table 3.

The network topologies generated for simulations are sum-
marized in Table 3. Topologies are created for distribution
games and generalized distribution games, for networks with
different numbers of nodes, and finally for situations where
the variance between clients’ demands is low and high.

2) SIMULATION
Finding a Nash equilibrium is a hard problem in general
[13], [14]. However we do not know the hardness of the
problemwhen restricted to distribution games. Our numerical
study aims to determine best and worst Nash equilibria of the
proposed scheme for practical instances. For this reason we
take two different approaches:

TABLE 3. Simulation scenarios.

For networks with a small number of nodes, Nash equilib-
ria are sought in the entire strategy space. This method gives
precise results for small networks but its use for networks
with a large number of nodes is impractical due to the size
of the strategy space.

For large networks, initially clients are connected to gate-
ways randomly and then a best response strategy is played
in random order until a Nash equilibrium is reached. This
process is repeated 20 times for each network. The best
and the worst (in terms of total bandwidth) Nash equilibria
among the results of these 20 runs are used for compari-
son. We computed the averages of the first 5, 10, 15 and
20 runs and observed that the results do not exhibit significant
changes. We therefore used the results of 20 runs as a good
approximation to the true minimum and maximum.

Optimal solutions are needed as a basis for comparison.
In order to find an optimal solution, the integer linear program
(12) - (16) is generated for each sample network.

maximize
∑

uij (12)

s.t. uij ≤ dijxij, ∀i, j (13)∑
i

uij ≤ κj, ∀j (14)∑
j

xij = 1 ∀i (15)

xij ∈ {0, 1} (16)

where uij is the utility of client i obtained from gateway j,
xij is an indicator variable that indicates whether client i is
connected to gateway j, κj is the capacity of gateway j, dij is
the demand of client i from gateway j.
We used the Egalitarian Distribution (GEG) throughout

all simulations. This is because the Egalitarian distribu-
tion aims to make use of the whole capacity of gateways
and assigns this capacity to the clients fairly, whereas the
Demand-proportional distribution (GDP) favors the clients
with higher declared demands.

3) EVALUATION
The performance evaluation is based on two different criteria:
a) the total utility, and b) the Jain index [12]. The total utility
is the bandwidth made available for use by the clients. Data
rates of each client and the total utility of the sample network
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FIGURE 4. Simulation scenario vs total network payoffs (Mbps).

TABLE 4. Simulation scenarios compared.

obtained as the result of the linear program are compared
against the results of the proposed scheme. The Jain index
is a metric that measures the fairness of the distribution of the
available bandwidth among the clients. Specifically,

J (u1, u2, . . . , un) =

(∑n
i=1 ui

)2
n
∑n

i=1 u
2
i

(17)

where ui is the bandwidth allocated to client i.
Two types of Jain indices are computed for each of the

optimal solution and two Nash equilibria. The first Jain index
is based on the bandwidth obtained by each client. The second
Jain index is based on the ratio of the obtained bandwidth to
the demand (of that client). The first Jain index measures the
fairness of the bandwidth distribution from the perspective of
a network operator, while the second measures the fairness
from the clients’ perspective.

C. RESULTS
In this section we present the results obtained by the experi-
ments presented in Section V-B.

Price of Anarchy (PoA) and Price of Stability (PoS) are
important criteria for the evaluation of the performance of
our schemes. For this purpose, an optimal, a best Nash equi-
librium and a worst Nash equilibrium (all in terms of total
network payoff) are needed. Figure 4 shows total network
payoffs of all simulation scenarios (according to the classifi-
cation in Table 3).

At first glance both distribution games and their general-
ized version perform almost as good as optimal solutions.
In order to better examine the results some metrics need to

FIGURE 5. Jain index - Network practitioners’ perspective.

FIGURE 6. Jain index - Subscribers’ perspective.

be considered. Two of them are obviously the PoA and the
PoS of the simulation scenarios.
In Table 4 the estimated PoA and PoS of first two sce-

narios are listed. For larger networks, ILP based solutions
take too much time to run and thus do not lead to optimal
solutions in reasonable time. For this reason, our solutions
could not be compared to optimal ones in large networks.
In all scenarios the PoA is close to 1 except one scenario
(S-V-2) in which the PoA is 1.26. The PoS is very close
to 1 in all scenarios. This indicates that both distribution
games and their generalized version introduced in this study
converge to near-optimal Nash equilibria despite the lack of
centralized control. In other words, when the nodes in the
network play selfish best response strategies, the resulting
connection graph will yield a good performance and will not
cause severe degradation in the network payoff. Simulation
results show that the PoA and PoS are much lower than
the tight theoretical upper bounds (given in Section IV) in
real world UPN deployments. We exclude results for larger
networks since problem space for lp solvers are huge and
in most of the experiments best Nash equilibria yield better
results from the lp solver.

The obtained fairness values, i.e. one from network oper-
ators’ perspective and another from subscribers’ perspective
are shown in Figure 5 and Figure 6, respectively, in terms
of the Jain index. These indices show that, in this aspect, our
scheme outperforms the ILP based optimal solution (that does
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FIGURE 7. Steps to converge - given network size & scenario.

not consider fairness as an optimization criterion) while still
maintaining near-optimality.

Since the Egalitarian distribution rule aims both to dis-
tribute all available bandwidth and to make it fair among
users, the reached Nash equilibria resulted in near-optimal
solutions in terms of both fairness and network payoff. When
deployed to UPNs, distribution games allow easy adaption
to connection changes. Whenever a node (gateway or client)
joins the network other nodesmay discover the newcomer and
clients may change their connections according to the new
situation. Thus the connection graph may start to evolve auto-
matically until it reaches an equilibrium after some best/better
response steps. The above holds also for the removal of a
node from the network. The distribution function included in
distribution games prioritizes fair bandwidth sharing since it
distributes the bandwidth considering bare minimum values
according to clients’ demands. While prioritizing fair band-
width sharing, the distribution function also tries to distribute
all available bandwidth, thus trying to maximize the band-
width usage. Based on the preceding discussion, it can be
said that distribution games can be used to establish simple,
and self-adapting UPN mechanisms that are efficient and fair
from both clients’ and operator’s perspective. An important
metric to consider when using best response dynamics is the
time of convergence, i.e., the number of steps it takes the
network to converge to an equilibrium. In Figure 7 network
sizes versus the number of steps to converge is depicted for
different scenarios. V-1 and D-1 represent networks with high
and low demand variance clients, respectively, for Case-1.
Similarly V-2 and D-2 represent networks with high and low
demand variance clients for Case-2. For all scenarios, the
number of steps to converge increases almost linearly with
the network size, and the maximum number of moves per
client is less than 10 in all scenarios, thus demonstrating
the effectiveness of our scheme. Our simulations aims to
be compatible with real UPNs and cover a wide range of
parameters. The data rates used in the numerical results are
generated with respect to RSSI which is based on the distance
between the gateways and clients. This technique follows a
common practice in the literature thus the chosen distances
between nodes and the dimensions of the simulation area are
not arbitrary. The demands of the clients are picked from

data rate ranges that are encountered in daily applications.
The 1-65 Mbps range is quite acceptable considering the
need for flawless operation of contemporary applications.
Also, contemporary devices support these data rates. In the
networking context UPNs may consist of various numbers of
nodes thus we started from small networks and increased the
number of nodes in the simulations in order to cover networks
with different sizes to demonstrate the effectiveness of our
scheme.

VI. TRUTHFUL DISTRIBUTION GAMES
We note that the game GDP does not provide a truthful
mechanism. Whenever the utility of a client is less than
its demand, i.e., when the overall demand of its connected
supplier exceeds its capacity, it can get a bigger share of this
capacity by declaring a demand that is higher than the true
one. On the other hand, GEG is truthful, since a client cannot
increase its share of the capacity by untruthfully declaring a
different demand.

In this section we formalize this notion, characterize the
functions δj and fj that lead to a truthful distribution games
and verify this characterization on these two game families.
For this purpose we define a variant of the model in which the
demand di is not a constant, but part of the strategy of player
i. Specifically, the strategy of player i is a supplier j and a
demand di.

We denote by d̄i the true demand of player i and by
−→
d

the vector of demands declared by the clients. The utility of
player i is

ui(
−→a ,
−→
d ) = min

{
d̄i, fi(di, δj(

−→a ,
−→
d ))

}
. (18)

Note that this requires
• the functions fi to possibly depend on di, and
• the functions δj to possibly depend on

−→
d .

Note also that the utility of a player is bounded by its true
demand as one would expect.

In this discussion we consider Smooth Distribution Games
in which the functions f and δ above are continuous and
differentiable with respect to every di. We assume that δj is
monotonically non-increasing in di for every i ∈ [n], i.e.,
if a client connected to supplier j increases its demand then δj
does not increase. Note that this behaviour is consistent with
the case of a connection of an additional client. Thus we have
∂δj
∂di
≤ 0 for every i ∈ [n], j ∈ [m].

We say that a smooth distribution game is truthful if the
utility of a client does not increase by playing a value di > d̄i.
A family of functions fi and δj is truthful if every smooth
distribution game using these functions is truthful. When-
ever values of the other parameters are fixed, we refer to
fi(di, δj(

−→a ,
−→
d )) as a function of di only. We now give a

necessary and sufficient condition for the truthfulness of a
family of functions.
Lemma 5: A smooth distribution game is truthful if and

only if f ′i (di) ≤ 0 or fi(di) ≥ di for every outcome (−→a ,
−→
d )

and i ∈ [n], j ∈ [m].
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Proof: Suppose that there exists an outcome (−→a ,
−→
d ),

a player i ∈ [n] and a supplier j ∈ [m] such that f ′i (di) > 0 and
fi(di) < di. Suppose also that d̄i = di. Then player i can
increase its utility by setting di to d̄i + ε for a sufficiently
small ε > 0. The game is thus not truthful.

Conversely, suppose that the the game is not truthful. Then
there exist two outcomes (−→a ,

−→
d ) and (−→a ,

−→
d
′

) in both of
which some client i is connected to the same supplier j, and
the vectors

−→
d and

−→
d
′

differ only at the i-th entry with di = d̄i
and d ′i > d̄i such that

min
{
d̄i, fi(d̄i)

}
< min

{
d̄i, fi(d ′i )

}
.

Then

fi(d̄i) < fi(d ′i )

fi(d̄i) < d̄i. (19)

By the mean-value theorem, there exists d ′′ ∈ (d̄i, d ′i )
such that f ′i (d

′′) > 0. If fi(d ′′) < d ′′ then the
claimed condition holds for d ′′. Otherwise, let d ′′′ =
inf
{
d ∈ [d̄i, d ′]|fi(d) = d

}
. Since fi is continuous, fi(d ′′) =

d ′′ > d̄i. By the mean value theorem, there exists d ′′′ ∈
(d̄i, d ′′) with f ′i (d

′′′) > 0. By the choice of d ′′ and the
continuity of fi we have fi(d ′′′) < d ′′′. Thus the claimed
condition holds for d ′′′. �

We now apply Lemma 5 to the smooth variants of GDP
and GEG.
Consider an outcome of GDP such that at least two clients,

one of them being i, are connected to supplier j. Let also

choose κj < di = d̄i.

dfi
ddi
=
∂fi
∂di
+
∂fi
∂δj

∂δj

∂di

= δj(
−→a ,
−→
d )+ di

∂δj

∂di
= δj(
−→a ,
−→
d )− di

δj(
−→a ,
−→
d )

Dj(
−→a ,
−→
d )

= δj(
−→a ,
−→
d )

(
1−

di

Dj(
−→a ,
−→
d )

)
> 0

where the last inequality uses the fact that there are at least
two clients connected to j, thus di < Dj(

−→a ,
−→
d ). Since κj <

di = d̄j we have fi(di) < di. We conclude that GDP is not
truthful.

For GEG we have

dfi
ddi
=
∂fi
∂di
+
∂fi
∂δj

∂δj

∂di

= 0+ 1
∂δj

∂di
≤ 0. (20)

for every outcome (−→a ,
−→
d ). Therefore, GEG is truthful.

VII. CONCLUSION AND OPEN PROBLEMS
In this study we introduced a game theoretical model both
keeping total network payoff and fairness in mind. These
two concepts are important from both network operators’ and
subscribers’ point of view. Seeking for a Nash equilibrium is

conceptually a distributed greedy solutionmethod whichmay
result in non-optimal solutions but this turns out not to be the
case in this study.

We now discuss how our model achieves the goals stated
in Section I. Since our games do not require any coordination
between clients (such as coalitions), they are easily imple-
mentable in a distributed environment. We introduced two
games that fit into this model, namely the Egalitarian and
Demand-proportional distribution games. We note that the
Demand-proportional distribution is simpler to implement,
since in this case it is sufficient that every supplier advertises
its (fixed) capacity and the currently used capacity. On the
other hand, Egalitarian distribution requires every supplier to
advertise the demands of all its connected clients. The defini-
tion of distribution games allows for the restriction of the set
of suppliers a client can be connected, thus making our games
a good fit to a dynamic environment in which the poten-
tial connections between clients and suppliers vary in time,
or alternatively when such connections may be restricted
by the operator according to various policies. Simple best
response dynamics can be played in both operator-assisted
and autonomous UPNs in distributed setups. Other solutions
such as solving the connection graph either in a distributed
or central manner are more costly such that they involve
exploring the whole connection graph with all capacities
and demands, sharing the connection graph to solve in a
distributed or central manner, and assigning the data rates
of each client. Also node addition and removal requires
re-computation of above steps which is not the case in our
scheme.

We conclude with further research directions related to our
work. The upper-bound to the number of steps to convergence
implied by Lemma 1 is 2mn. This bound is apparently tight for
both our distribution schemes, i.e. Egalitarian and Demand-
proportional. However, if the set of possible demand values
is small, say a constant c, we can lower the number of steps
to as low as (m2c]. In this work, we did not consider the time-
to-convergence of these games.

We provided a simple characterization of the smooth (con-
tinuous and differentiable) functions δj and fj that always lead
to truthful distribution games. Using this characterization we
have shown that the Egalitarian family of games is truthful
whereas Demand-proportional is not. The characterization
of non-smooth functions is an open problem. Our functions
do not use a payment mechanism. The introduction of such
a mechanism will possibly lead to a richer set of truthful
functions.

We now mention a few possible generalizations of dis-
tribution games: First is the case where the demand of a
client depends on the supplier. In this work we studied this
generalization only numerically. Our simulations reached
a Nash equilibrium in all simulations, by playing random
best response. An interesting open problem is to determine
whether or not this is always the case. Second, one can study
the Bayesian game family by considering the scenarios where
users may have incomplete information about other players’
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demands and only have a prior belief on their types. Another
extension is the case when a client is allowed to be connected
to more than one supplier and divide its demand among these
suppliers. At the first glance, a strategy of this variant seems
to be a mixed strategy of the original game. However, this
is not the case since the dependence of the utility on the
demand is not necessarily linear, as opposed to the expected
utility of a mixed strategy whose dependence is linear in the
probabilities.
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