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CrysXPP: An explainable property predictor for crystalline
materials
Kishalay Das1, Bidisha Samanta1, Pawan Goyal1, Seung-Cheol Lee 2✉, Satadeep Bhattacharjee2✉ and Niloy Ganguly 1,3✉

We present a deep-learning framework, CrysXPP, to allow rapid and accurate prediction of electronic, magnetic, and elastic
properties of a wide range of materials. CrysXPP lowers the need for large property tagged datasets by intelligently designing an
autoencoder, CrysAE. The important structural and chemical properties captured by CrysAE from a large amount of available crystal
graphs data helped in achieving low prediction errors. Moreover, we design a feature selector that helps to interpret the model’s
prediction. Most notably, when given a small amount of experimental data, CrysXPP is consistently able to outperform conventional
DFT. A detailed ablation study establishes the importance of different design steps. We release the large pre-trained model CrysAE.
We believe by fine-tuning the model with a small amount of property-tagged data, researchers can achieve superior performance
on various applications with a restricted data source.
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INTRODUCTION
In recent times several machine learning techniques1–8 have been
proposed to enable fast and accurate prediction of different
properties for crystalline materials, thus facilitating the rapid
screening of large material search spaces9–11. The existing
techniques either use handcrafted feature-based descriptors1–5

or deep graph neural network (GNN)6–8,12–17 to generate a
representation from the 3d conformation of crystal structures.
Generating handcrafted features requires specific domain knowl-
edge and human intervention, which makes the methods
inherently restricted. Deep learning methods, on the other hand,
do not depend on careful feature curation and can automatically
learn the structure-property relationships of materials; thus
making it an attractive candidate.
Graph neural network-based approaches are getting popular

recently for their ability to encode graph information in enriched
representation space. Orbital-based GNNs16,17 use symmetry-
adapted atomic orbital features to predict different molecular
properties. Though orbital-based GNNs predict molecular proper-
ties well, they are not an excellent choice for capturing
complicated periodic structures such as crystals since they
describe the nature of the electron distribution particularly close
to atoms. On the other hand, motif-centric GNNs14,15 convert
motif sub-structures of a crystal as a node and encode their
interconnections for a large set of crystalline compounds using an
unsupervised learning algorithm. Though they show improve-
ments on property prediction tasks for metal oxides, their
applicability is restricted as they ignore the atomic configuration
inside the motif substructure which is also very important.
On a different departure, CGCNN6, MTCGCNN7 build a

convolution neural network directly on a 2d crystal graph derived
from a 3d crystal structure. GATGNN12 incorporates the idea of
graph attention network on crystal graphs to learn the
importance of different bonds between the atoms whereas
MEGNet8 introduces global state attributes for quantitative
structure-state property relationship prediction in materials. As
this class of methods aims to capture the information of any

crystal graph just from the connectivity and atomic features, we
contribute in this promising direction.
Like any large deep neural network-based model, GNN based

architectures also introduce a large number of trainable
parameters. Hence, to estimate these parameters correctly for
better accuracy, a huge amount of tagged training data is
required which is not always available for all the crystal
properties. Hence developing a deep learning-based model
which can be trained on a small amount of tagged data would
be extremely useful to infer varied properties of crystal materials.
Also as available experimental data for the various properties are
small and less diverse18–20, these models are trained using data
gathered from the DFT calculations21–23. As DFT data often differ
from experimental ground truth due to its inefficiency in
describing the many-body ground state, especially for properties
such as band gap24 or treatment of van der Waals interactions25,
training with DFT only method may incorporate the inaccuracies
of DFT in the prediction. Moreover, in most cases, the existing
property predictors are trained to predict a specific property.
Hence, the generated descriptor or embeddings of any crystal are
specific to a given property. It prevents them from sharing
common structural information relevant to multiple properties.
Though a multi-task learning setup achieves information sharing
across properties7, it works well only for properties that are
correlated with each other. Last but not least, the existing neural
network-based methods6–10,12–17,26,27 hardly provide any expla-
nation for their results. The lack of interpretability and algorithmic
transparency allows little use of them in the field of material
science. Therefore it is necessary to explore and provide the
reasons behind a prediction for any given property.
In this paper, we propose an explainable deep property predictor

CrysXPP. It is built upon CrysAE, an auto-encoder-based architecture
that is trained with a large amount of easily available crystal data,
that is, the property agnostic structural information of the
corresponding crystal graphs. This leads to the deep encoding
module capturing all the important structural and basic chemical
information of the constituent atoms (nodes) of the crystal graph.
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The learned information is leveraged to build the property
predictor, CrysXPP, where the knowledgeable encoder helps to
produce high quality representation of a candidate crystal.
Consequently, the property predictor provides superior perfor-
mance (better than all the competing baselines) even when trained
with a small amount of property-tagged data, thus largely
mitigating the need for having a huge amount of dataset tagged
with a specific property. The structural information learned in the
encoding module of an auto-encoder is robust and can remove the
error bias introduced by DFT by fine tuning the system with a small
amount of experimental data, whenever available. Further, we
introduce a feature selector that helps to provide an explanation by
highlighting the subset of the atomic features responsible for the
manifestation of a chemical property of the given crystal.
Through extensive analysis of inorganic crystal data set across

seven properties, we show that our method can achieve the
lowest error compared to other alternative baselines; the
improvement is particularly significant when only a small amount
of tagged data is available for training. We have further shown
that CrysXPP is effective in removing error bias due to DFT tagged
data by incorporating a small amount of experimental data in the
training set for both formation energy and bandgap. Finally, with
appropriate case studies, we show that the feature selection
module can effectively provide explanations of the importance of
different features towards prediction, which are in sync with the
domain knowledge.

RESULTS AND DISCUSSIONS
Model architecture
In this section, we discuss in more detail the key technical
contributions towards this goal followed by the training process
and implementation details.

Overview. We propose Crystal eXplainable Property Predictor
(CrysXPP), which realizes a crystalline material as a graph structure
(say G) and predicts the value of a property (eg. formation energy)
given the crystal graph structure. As depicted in Fig. 1, CrysXPP
comprises two building blocks. (a) A property prediction module
and (b) a graph embedding module. In the graph embedding
module we have a crystal graph encoder based on graph
convolution neural network (GCNN)6, which takes a crystal graph
structure along with node and edge feature information as input
and returns an embedding corresponding to each node as output.
The weights of the node features (check Table 1) are determined
by a feature selector layer. We consider nine different atomic
properties (Table 1) as node features and the weights of those

node features are determined by the feature selector layer.
Moreover, the graph embedding module needs to capture the
structural and chemical properties of the underlying crystal, hence
one can use the huge amount of available crystal information
(irrespective of the property) to train the graph convolution
network. For this at first, we separately train the GCNN as a part
(the encoder) of CrysAE (Fig. 2); and the weights thereby obtained
are used as an initialization of the GCNN of CrysXPP. The structural
information learned in the encoding module of CrysAE and duly
transferred to the GCNN of CrysXPP makes CrysXPP more robust.
Our overall model architecture is essentially composed of the

following two modules:

● Auto encoder (CrysAE):qθ : ðV; E;X ;FÞ ! Z; pϕ : Z !
ðV; E;X ;FÞ

● Property predictor (CrysXPP):pζ;θ0;ψ : X!ζX0; ðV; E;X0;FÞ!θ0

Z;Z!ψP
In the above characterization, θ;ϕ; ζ; θ0, and ψ are the trainable
parameters of the respective modules. Here θ and ϕ are the
parameters for the encoder and decoder respectively of
the CrysAE. ζ is the trainable parameter of feature selector S, θ0
is the parameter of the encoder, and ψ is the parameter of the
multi layer perceptron of CrysXPP model. We initialize θ0 :¼ θ i.e.,
we first train the autoencoder and then the parameters of the
encoder of CrysAE are transferred to the CrysXPP.

Crystal representation. Our model realizes crystalline materials as
crystal graph structures D ¼ fGi ¼ ðV i ; E i ;X i ;F iÞg as proposed
in6. Crystals have a repeating structure as depicted in Fig. 2 where

Fig. 1 Architecture of Crystal eXplainable Property Predictor (CrysXPP). It comprises two building blocks. Graph embedding module and
Property prediction module. Given graph structure and node feature information, graph embedding module produces an embedding
corresponding to each graph. Property predictor is a deep regressor module, which takes graph embedding as input and predicts the
property value.

Table 1. Description of different atomic properties used as node
features and their dimensions.

Features Feature dimension

Group number 18

Period number 9

Electronegativity 10

Covalent radius 10

Valence electrons 12

First ionization energy 10

Electron affinity 10

Block 4

Atomic volume 10
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a unit cell gets repeated across all the three dimensions. Hence,
unlike simple graphs, the Gi is an undirected weighted multi-
graph where V i denotes a set of nodes (atoms) present in a unit
cell of the crystal structure and E i ¼ fðu; v; kuvÞg denotes a multi-
set of node pairs and the number of edges between them. kuv
edges between a pair of nodes (u, v) indicate that v is present in
kuv repeating cells within r radius from u (r is a hyper-parameter).
X i represents node features i.e., features that uniquely identify the
chemical properties such as atomic volume, electron affinity, etc.
of an atom as described in Table 1. Lastly, F i corresponds to a
muti-set of edge weights. We denote F i ¼ ffskgðu;vÞjðu; vÞ 2 E ig
where sk denotes the kth bond length between the node pair (u,
v). Between any pair of nodes, a maximum of K edges are possible
where K is empirically determined. The bond length helps to
specify the relative distance of an atom from its neighboring
atoms. We use this graphical abstraction of a crystal as this can
effectively embed the periodicity (indicated by the number of
bonds) along with the relative positioning for each atom in a
simpler way, which otherwise was difficult to capture. For easy
reference, we drop the index of the notations. Next, we formally
define the auto encoder (CrysAE) and property predictor
(CrysXPP).

Auto encoder (CrysAE). We build Crystal Auto Encoder (CrysAE)
which composes of a simple encoder followed by an appropriate
decoder to facilitate the overall training in order to learn necessary
information in the encoding mechanism.

Encoder. We extend the crystal graph encoder proposed by Xie
et al.6 to encode the chemical and structural information of a
crystal graph G. Specifically, we encode L-hop neighboring
information of each node as:

hl
ðu;vÞk ¼ zlu � zlv � skðu;vÞ

zlþ1
u ¼ zlu þ

P

v;k
σðhl

ðu;vÞkW
ðlÞ
c þ bðlÞc Þ � gðhlðu;vÞkW

ðlÞ
s þ bðlÞs Þ (1)

where zlu denotes the embedding of node u after l hop neighbor
information aggregation. The embedding of a node u is initialized
to a transformed node feature vector, i.e., it is a function of the
atom u’s chemical features as z0u :¼ xuWx where Wx is the
trainable parameter of the transformation network and xu is
the input node feature vector. skðu;vÞ 2 F u represents the length of
the kth edge between nodes u and v. The⊕ operator denotes
concatenation and⊙ denotes element-wise multiplication.
W ðlÞ

c ;W ðlÞ
s ; bðlÞc ; bðlÞs are the convolution weight matrix, self weight

matrix, convolution bias, self bias of lth hop convolution,
respectively. σ is a non-linear transformation function and it is
used to generate a squeezed real value in [0, 1] indicating the
edge importance and g is a feed forward network. After
neighborhood aggregation we accumulate local information at
each node which can be represented as zu :¼ zLu . Subsequently we
generate a graph level global information Z ¼ fz1; :::; zjVjg. We do

not aggregate the node embeddings further to prevent informa-
tion loss in the autoencoder. We denote the set of trainable
parameters for this encoder as θ for future reference.

Decoder. We design an effective decoder that helps the
encoder to transform the desired information in the representa-
tion vector space of Z. The decoder plays an inevitable role in
learning the local and global structure as well as chemical
features which are extremely useful. As mentioned earlier the
global chemical features i.e., the crystal properties are a function
of the local chemical environment and the overall conformation
of the repeating crystal cell structure; hence, we carefully design
the decoder which can reconstruct two important features that
induce the local chemical environment. They are (a) the node
features i.e chemical properties of individual atoms and (b) local
connectivity i.e the relative position of the nodes with respect to
their neighbors. Precisely we reconstruct this information as
below:

zuv ¼ zTuW f zv þ bf (2)

^skðu;vÞ ¼
γsðzuv � kÞ if γsð:Þ> 0

0 otherwise

�
(3)

X̂u ¼ WT
x zu þ bx (4)

Equations 3 and 4 correspond to reconstructing the node property
or atom’s chemical property and a node’s position relative to it’s
neighbors as we intend to achieve in (a) and (b) respectively. zuv is
a combined transformed embedding of nodes u and v and γs is a
feed forward network that generates a real number corresponding
to the length of the bonds.
Further, we reconstruct the global structure i.e. (c) the

connectivity and periodicity of the crystal structures as below

ðu; vÞ � pðe ¼ ðu; vÞÞ ¼ σðzTuWezv þ beÞ (5)

kðu;vÞ ¼ argmax
k

eγkðzuv ;kÞ
P

ke
γkðzuv ;kÞ

(6)

Here, We, be are trainable weight and bias associated with the
bilinear edge reconstruction module, respectively. σ is a squashing
factor that provides a value between [0, 1] denoting the edge
probability. Similarly Wf and bf are the trainable weight and bias
parameters associated with the intermediate bi-linear transforma-
tion module, respectively. γk represents a feed-forward neural
network that generates a K length logit vector. We use a softmax
to determine the exact number of edges present. Please note that
though Eqs. 6, 3 correspond to global and local information
respectively, they are heavily dependent upon each other, i.e the
number of bonds and bond length both depend on the two end
nodes information. Hence, we design a coupled embedding zuv
that is shared by both the modules. We denote the set of
parameters in the decoder as ϕ.

Fig. 2 Architecture of the Crystal Auto Encoder (CrysAE) module. It comprises a multilayer graph convolution network as the encoder and a
corresponding decoder module for reconstructing different local and global features.
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Training of auto-encoder. We learn the trainable parameters of
both encoder and decoder by minimizing the reconstruction loss of
different global and local structural and chemical features defined in
Eqs. 3–6. We minimize the cross-entropy loss of the predicted global
features and node features along with mean squared loss of the
edge weight or bond length in the following objective:

EG�D � P

ðu;vÞ2E
log pðe ¼ ðu; vÞÞ þ log pðkðu;vÞÞ
� �

� P

u2V
log pðX̂uÞ þ

P

ðu;vÞ2E

P

k2½1;¼ ;K �
ðskðu;vÞ � ^skðu;vÞÞ

2 (7)

where p(.) denotes the probability of any event. Thus by
minimizing the reconstruction loss we not only fine tune
parameters of decoder but efficiently train the encoder to
generate a rich Z which facilitates decoder operations.

Property predictor (CrysXPP). Next, we design a property predictor
specific to a property that can take advantage of the structural
information learned by the encoder as described above. We
generate a graph level representation using the same graph
encoder module as described in Eq. 1, thus in a way transferring
the rich encoded knowledge to the property predictor. Next, we
use a symmetric aggregation function to generate a single vector
as graph representation Zg. Thus the obtained representation of
the graph is invariant to the node orderings. Then the obtained
representation is fed to a multilayer perceptron which predicts the
value of the properties. More formally the property predictor can
be characterized as:

Zg ¼ Λðz1 ¼ ; zjVjÞ (8)

P ¼ MψðZgÞ (9)

Here, Λ is the aggregation function which is symmetric.
M denotes a multilayer perceptron that has a trainable

parameter set ψ.

Feature selection. The node features are first passed through a
feature selector which is a trainable weight vector that selects a
weighted subset of important node level features X0 for a given
property of interest P. X0 forms input to the encoder.

X0 ¼ SζðXÞ;Zg ¼ ΛðEncoderθ0 ðV; E;X0;FÞÞ
In the above set of characteristic equations, S is the feature
selector and ζ is its trainable weight. We will show how the
weights chosen by the feature selection layer help us to explain
the role of a node feature in the manifestation of a particular
property (viz. formation energy) of a crystal.

Training of CrysXPP. We train the property predictor after the
autoencoder. We initialize the trainable parameter θ0 :¼ θ where θ
is trained in the autoencoding module. Thus we first transfer the
trained information such that the property predictor benefits from
the inductive bias already learned by training the autoencoder.
We use a LASSO28 regression to impose sparsity on the feature

selector layer. Intuitively, if some atomic features (X0) are crucial
to predict a chemical property of the crystal, the corresponding
feature selector value will be high and conversely, if some
feature is not so important, the corresponding feature selector
value will be negligible. Hence, along with property prediction
loss we also consider the LASSO regression loss as formally
represented below:

min
ζ;θ0;ψ

ðP̂ � PÞ2 þ λ1 � jζjL1 (10)

where ζ denotes the trainable parameters of feature selector S
and λ1 is a hyper parameter that controls the degree of the
regularization imposed.

Before reporting the results, we briefly discuss about the
dataset and the baselines used for comparison.

Dataset
We have used the Materials Project database for our experiments
which consists of ~36,835 crystalline materials and is diverse in the
structure having materials with 87 different types of atoms, seven
different lattice systems, and 216 space groups. The unit cell of
any crystal can have a maximum of 200 atoms. We consider nine
properties for each atom which were used to construct the feature
vector of each node6. The details of the properties are given in
Table 1. We convert them to categorical values if they are already
not in that form. The dataset also provides DFT calculated target
property values for the crystal structures. Experiments were done
on a smaller training set than the original baseline papers.

Comparison with similar baseline algorithms
We compare the performance of CrysXPP with four state-of-the-art
algorithms for crystal property prediction. These selected compet-
ing methods are varied in terms of input data processing and
working paradigms as described below:

(a) CGCNN6: This method generates crystal graphs from
inorganic crystal materials and builds a graph convolution-
based supervised model for predicting various properties of
the crystals.

(b) MT-CGCNN7: This model uses the graph convolution-based
encoding as proposed in the previous model. Moreover, it
incorporates multitask learning to jointly predict multiple
properties of a single material.

(c) MEGNET8: Here authors improved the CGCNN model further
by introducing global state attributes including temperature,
pressure, entropy, etc. for quantitative structure-state-
property relationship prediction in materials. Doing so they
found that the crystal embeddings in MEGNet model encode
periodic chemical trends. Further to address the issue of data
limitation the embeddings from a MEGNet model trained on
formation energies are transferred and used to improve the
accuracy of ML models for the bandgap and elastic moduli.

(d) ELEMNET29: This work does not specifically consider any
structural properties of the crystal graph, rather it considers
only the compositional atoms. It uses deep feed-forward
networks to implicitly capture the effect of atoms on each
other. It uses transfer learning to mitigate the error bias of
DFT tagged data.

(e) GATGNN12: In this work, authors have incorporated a graph
neural network with multiple graph-attention layers (GAT)
and a global attention layer, which can learn efficiently the
importance of different complex bonds shared among the
atoms within each atom’s local neighborhood.

For all the baselines we have used the hyper parameters as
mentioned in the original papers.

Evaluation criteria
We predict seven different properties of crystals in our experi-
ments. Out of these, four are crystal state properties, namely, (a)
Formation Energy, (b) Band Gap, (c) Fermi Energy, (d) Magnetic
Moment, and three are elastic properties, namely, (e) Bulk Moduli,
(f) Shear Moduli, and (g) Poisson Ratio. All of these properties
significantly depend on the details of the crystal structure except
Magnetic Moment which is more dependent on the atomic/node
specifications as the magnetic moment arises from the unpaired d
or f electrons in an atom. Also, the size of the moment depends on
the local environments30,31. Moreover, we have very little DFT
tagged data for Magnetic Moment and Band Gap.
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We focus on three different evaluation criteria as described
below:

1. How effective is the property predictor? Here we inspect the
performance of the property predictor especially when it
functions with a small amount of DFT tagged data.

2. How robust is the structural encoding? Here we investigate
whether the structural encoding helps us to mitigate the
noise introduced by DFT calculated properties.

3. How effective is the explanation? We cross-validate the
obtained explanation with domain knowledge.

Effectiveness of property predictor
We first train the autoencoder with all untagged crystal graph
present in the dataset, which captures all the structural informa-
tion of the crystal graphs. Next for a given property of interest, we
train the property predictor with 20% of the available DFT tagged
data and test on the rest. We report the 10 fold cross-validation
results.

Metric. We report mean absolute error (MAE) to compare the
performance of the participating methods. MAE is defined as
1
jDj

P
G2DjPG � P̂Gj, where PG is the property value calculated by

DFT and P̂G is the predicted value of a graph G.

RESULTS
In Table 2 we report the MAE for CrysXPP as well as other
alternatives on seven property values. We observe that CrysXPP
outperforms every baseline across all the properties except
magnetic moment. For MTCGCNN we report two values: the
MAE obtained while jointly predicting the most correlated
property, and the average MAE across all possible combinations
(in bracket). It is interesting to note that its performance
significantly degrades if the other property is not correlated with
the current property of interest. A careful inspection reveals that
for elastic properties, graph neural network-based methods
perform better than that of ElemNet. ElemNet only considers
the composition of the crystal and ignores the global structural
information, whereas these properties heavily depend on the
crystal structure. In contrast, for Magnetic Moment the local
information is important and hence, ElemNet performs the best
and CrysXPP is the second-best method. For the rest of the crystal
state-based properties, there is no consistent second best method.
However, CrysXPP is a clear winner with a considerable margin
which is due to the fact that the property predictor benefits from
the structural knowledge transferred from the autoencoder.

Behavior with increase in tagged data
Further, we check the robustness of CrysXPP, by increasing the
percentage of tagged training data for property prediction. We
report the behavior of CrysXPP as well as other baselines in Fig. 3 for
all the properties. We observe a monotonic decrease of MAE
between predicted and DFT calculated values for most of the models
where CrysXPP yields consistently smaller MAE and maintains the
leadership position for all the properties except Magnetic Moment.
This shows the robustness of our model to be able to perform
consistently across a diverse set of properties with varied training
instances. The MAE margin between CrysXPP and closest competitor
(which is variable across properties), however, reduces as training
size increases. For Magnetic Moment, the local chemical information
is more vital, hence ElemNet, which concentrates more on local
chemical information, shows the best performance.

Removal of DFT error bias
An important aspect of the prediction is that since we rely only on
DFT data for training, we would be limited by the inaccuracies of
DFT. In this section, we investigate with a system where we further
fine tune the model with a small amount of available experimental
data and check whether the system can remove the error
propagated due to DFT.

Calculation setup. We consider a property predictor (as explained
before) which has been trained with crystals whose particular
property (e.g., Band Gap) values have been theoretically derived
using DFT. We then fine tune the parameters with limited amount
of experimental data; we perform it for two different properties,
namely, Band Gap and Formation Energy. For Formation Energy,
we use 1500 instances available at22 and use different percentages
of the data to fine-tune the model parameters. For Band Gap, we
collect 20 experimental instances out of which we randomly pick
10 instances to fine-tune the parameters and report the prediction
value for the rest (http://matprop.ru).

Results (Formation Energy). We report the MAE of Formation
Energy in Table 3 achieved by different methods. The DFT
prediction of the Formation Energy on the 1500 crystals has an
MAE of 0.21 with respect to experimental data and by training our
model with DFT data we are performing close to the performance
achieved by DFT. The results have a consistent trend for all the
methods, whereby we observe that increasing the amount of
training data, even if that is error-prone DFT data, helps in
minimizing MAE. CrysXPP performs consistently better by a large
margin than CGCNN and MTCGCNN, which takes the graph
structure as an explicit input. However, it is interesting to observe
that ElemNet performs very close to CrysXPP as Formation Energy
depends more on the composition than that on the explicit
connection of atoms. Further, we conduct an experiment where
we replace the experimental data with the same amount of DFT

Table 2. Summary of the prediction performance (MAE) of different properties trained on 20% data and evaluated on 80% of the data. The best
performance is highlighted in bold and second-best with *. We report MAE jointly training most correlated property (average on all property pairs)
for MTCGCNN.

Property Unit CGCNN MTCGCNN MEGNet GATGNN ElemNet CrysXPP

State properties Formation energy eV/atom 0.127 0.112 (0.147) 0.142 0.164 0.098* 0.086

Band gap eV 0.503 0.497 (0.518) 0.498 0.489* 0.491 0.467

Fermi energy eV 0.528 0.503* (0.601) 0.533 0.533 0.588 0.471

Magnetic moment μB 1.21 1.16 (1.22) 1.19 1.09 0.96 1.03*

Elastic properties Bulk moduli log(GPa) 0.09 0.09 (0.09) 0.105 0.088* 0.1057 0.08

Shear moduli log(GPa) 0.125* 0.120 (0.078) 0.187 0.123 0.148 0.105

Poisson ratio – 0.04 0.037* (0.039) 0.041 0.039 0.039 0.035
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data to train our model. We then evaluate the performance of the
model using experimental data as test data and find an inferior
performance. We report the results in Table 3 (last column (in
bracket)).

Results (Band Gap). In Table 4 we report the experimental value
of Band Gap for 10 test instances along with the predicted
values by DFT and other machine learning methods. The error
margin of DFT with the actual experimental values is quite high.

Table 3. MAE of predicting experimental values after fine tuning different methods with different percentages of experimental data for Formation
Energy. MAE of the experiment where we replace the experimental data with the same amount of DFT data to train CrysXPP, is provided in the
bracket. The closest prediction is marked in bold and second-best with *.

Experiment settings CGCNN MTCGCNN GATGNN MEGNet ElemNet CrysXPP

Train on 20% DFT test on full experimental data 0.24 0.74 0.30 0.28 0.215 0.22

Train on 20% DFT, 20% experimental data test on 80% experimental data 0.21 0.24 0.23 0.23 0.16* 0.15 (0.206)

Train on 80% DFT, 20% experimental data test on 80% experimental data 0.16 0.22 0.19 0.18 0.1344* 0.1319 (0.195)

Train on 80% DFT, 80% experimental data test on 20% experimental Data 0.12 0.15 0.13 0.125 0.0905* 0.0892 (0.174)

Fig. 3 Variation of MAE with the increase in training instances from 20 to 80%. CrysXPP outperforms all the baselines consistently. a
Formation energy. b Band Gap. c Fermi Energy. d Magnetic Moment. e Shear Moduli. f Bulk Moduli. g Poisson Ratio.

K. Das et al.

6

npj Computational Materials (2022)    43 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



It is interesting to see that other than a few, DFT prediction is
far from experimental data and in most cases, it is under-
estimating the experimental values. After fine-tuning DFT-
trained machine learning models with experimental data, the
prediction becomes closer to the experimental value. However,
CrysXPP performs closest to the experimental result in almost
all the cases in comparison to other alternatives. ElemNet,
although second on the average when trained only on DFT (row
2 of Table 2), cannot consistently maintain that position,
whereas CGCNN performs better. We have also provided
results (in bracket) when we do not do any fine-tuning. It can
be seen even in such a scenario in many of the cases the
performance is better than DFT. Further, the power of CrysXPP
in quickly mitigating the bias of DFT when fine-tuned on
minuscule data shows the usefulness of modeling explicit
structural information.

Ablation studies
We demonstrate the effectiveness of architectural choices and
training strategies for CrysXPP, by designing the following set of
ablation studies:

1. The importance of explicitly capturing global and local
features and understanding their effect on property
prediction

2. The impact of sparse feature selection on property
prediction, and

3. The choice of GNN models in the autoencoder CrysAE

In the following subsections, we will thoroughly discuss these.

Importance of local and global feature understanding. Here we
investigate the importance of different reconstruction loss
components on CrysAE training and eventually its effect on
property prediction. (a) Without Global + Local effect: In this
scenario, we do not train CrysAE and only train CrysXPP. (b)
Global effect: We train CrysAE by minimizing the reconstruction
loss of only global features and ignoring local feature losses. (c)
Local effect: Here we focus only on minimizing local feature
losses. We report the performance of the model (MAE) in Table 5
on different train test splits across different properties. We
observe that the performance of the model in the setting
Without Global + Local effect, is the worst. We also notice that
for all the properties, Local effect individually leads to better
performance than Global effect, except for the Poisson ratio
where the effect is similar for both cases. However, it is found
that the impact of local and global effect are somewhat
complementary, hence simultaneous reconstruction of global
and local features (CrysXPP) results in the best performance.

The only exception is formation energy where the addition of
global feature leads to performance deterioration.

Impact of sparse feature selection. We perform an ablation study
to analyze the impact of sparse feature selection on property
prediction. This is done by removing the L1 regularizer term from
CrysXPP loss function in Eq. 10. We evaluate the performance of
the model and report the results (MAE) in Table 6. We observe
discernible improvement due to the introduction of sparse feature
selection using L1 regularizer.

Effect of other GNN variants as graph encoder. To explore the
effectiveness of other GNN variants as graph encoders, we
conduct an experiment where we replace the CGCNN encoder
with one of the popular GNN variants: GCN32 encoder, and
evaluate the performance of the model. GCN only considers the
graph structural information and atom features to learn the graph
representation and unlike CGCNN, it does not consider the
individual edges’ weights in the multi-graph representing a
crystal. We report the results of the model performance (MAE) in
Table 7. We observe that the model performance degrades when
trained with GCN. The edge weight calculation, which is a major
contribution of CGCNN, is extremely helpful to capture the local
structure of the crystal.

Explanation through feature selection
We have introduced a feature selector that is trained along with
the property prediction parameters with available tagged data.
The feature selector helps to select the subset of the atomic
features contributing to the chemical properties of the crystal
which makes the model explainable by design. To demonstrate
the effectiveness of the feature selector, we have selected a few
case studies and provided the feature explanation for formation
energy, band gap, and magnetic moment.

Formation energy. We here report case studies corresponding to
two crystals BaEr2F8 and AuC, illustrating the important role of
feature selector in providing an explanation. We report the feature
selector values corresponding to categorical atomic properties after
being trained on Formation Energy tagged data in Fig. 4. The bars
represent the weights assigned by the feature selector on
the categorical values of atomic features and different colors
indicate different atoms. A higher category denotes a higher value of
the feature. Figure 4 depicts the importance of the atomic features in
two extreme cases. One is BaEr2F8, whose Formation Energy is
predicted as −4.41 eV/atom indicating its stability while the other is
AuC with predicted Formation Energy 2.2 eV/atom denoting the
material is quite unstable. In both cases, we see that Period Number

Table 4. Experiment (Exp) and predicted value for Band Gap for 10 crystals calculated by DFT and other machine learning models after fine-tuned by
experimental data. The predicted value without fine tuning by experimental data is provided in the bracket. The closest prediction is marked in bold
and the second-best with *. CrysXPP predicts closest to the ground truth after fine tuning with experimental data.

Materials Exp DFT CrysXPP CGCNN MTCGCNN GATGNN MEGNet ElemNet

GaSb 0.72 0.36 0.77 (0.9*) 1.01 (4.27) 0.26 (0.06) 3.78(1.58) 2.26(1.31) 1.09 (0.33)

GaP 2.26 1.69 2.10 (1.86) 1.95* (1.49) 0.73 (0.64) 2.77(0.08) 1.21(2.51) 2.80 (1.29)

GaAs 1.42 0.18 1.54* (1.56) 2.51 (1.42) 1.83 (1.90) 2.73(3.50) 0.77(0.98) 0.83 (0.76)

InN 1.97 0.47 1.92 (1.85*) 1.30 (2.90) 1.77 (2.30) 2.79(0.08) 1.33(2.16) 1.64 (1.43)

GaN 3.2 1.73 2.11 (1.47) 3.51* (1.55) 0.28 (0.16) 2.27(0.56) 1.59(2.66) 3.69 (1.44)

NiO 4.3 2.214 2.45 (2.08) 0.96 (1.12) 0.08 (0.05) 2.12(1.36) 2.01(2.71) 2.31* (1.88)

Si 1.12 0.85 1.08 (0.95*) 1.56 (1.64) 0.39 (0.22) 3.60(0.31) 1.86(1.69) 0.33 (0.17)

ZnO 3.37 1.05 3.42* (2.1) 3.32 (1.45) 0.83 (0.56) 2.74(1.36) 2.09(2.53) 2.55 (2.01)

FeO 2.4 0 2.25 (1.72) 2.16* (2.85) 1.12 (0.96) 1.92(1.02) 2.93(2.81) 1.44 (1.27)

MnO 4 0.20 2.31 (1.81) 1.51 (1.22) 1.04 (0.77) 2.44(2.35) 1.73(2.11) 1.98* (1.44)
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Table 5. Summary of experiments of ablation study on the importance of different reconstruction loss components on CrysAE training and
eventually its effect on CrysXPP (MAE for property prediction).

Property name Ablation settings Train-test split

20–80% 40–60% 60–40% 80–20%

Formation energy Without Global + Local effect 0.124 0.113 0.092 0.086

Global effect 0.112 0.092 0.085 0.077

Local effect 0.079 0.067 0.063 0.061

CrysXPP 0.086 0.082 0.076 0.067

Band gap Without Global + Local effect 0.502 0.482 0.452 0.408

Global effect 0.479 0.425 0.393 0.382

Local effect 0.471 0.419 0.387 0.375

CrysXPP 0.467 0.402 0.383 0.366

Fermi energy Without Global + Local effect 0.513 0.481 0.477 0.443

Global effect 0.495 0.476 0.441 0.437

Local effect 0.488 0.472 0.436 0.428

CrysXPP 0.471 0.409 0.389 0.374

Magnetic moment Without Global + Local effect 1.082 1.038 1.023 1.027

Global effect 1.072 1.066 1.027 1.019

Local effect 1.068 1.052 1.022 1.013

CrysXPP 1.033 1.024 0.997 0.943

Bulk moduli Without Global + Local effect 0.091 0.088 0.081 0.075

Global effect 0.088 0.081 0.075 0.068

Local effect 0.087 0.077 0.072 0.063

CrysXPP 0.080 0.072 0.063 0.052

Shear moduli Without Global + Local effect 0.122 0.119 0.106 0.098

Global effect 0.119 0.108 0.099 0.093

Local effect 0.117 0.102 0.097 0.091

CrysXPP 0.105 0.098 0.091 0.089

Poisson ratio Without Global + Local effect 0.039 0.035 0.033 0.032

Global effect 0.037 0.034 0.032 0.031

Local effect 0.037 0.033 0.031 0.031

CrysXPP 0.035 0.032 0.031 0.030

The best performance among different ablation settings for each property is highlighted in bold.

Table 6. Summary of experiments of ablation study on sparse feature selection using L1 regularizer, performed on different train test splits across
different properties (MAE).

Property name Ablation settings Train-test split

20–80% 40–60% 60–40% 80–20%

Formation energy Without L1 regularizer 0.092 0.089 0.083 0.073

With L1 regularizer 0.086 0.082 0.076 0.067

Band gap Without L1 regularizer 0.476 0.417 0.391 0.374

With L1 regularizer 0.467 0.402 0.383 0.366

Fermi energy Without L1 regularizer 0.502 0.441 0.415 0.394

With L1 regularizer 0.471 0.409 0.389 0.374

Magnetic moment Without L1 regularizer 1.094 1.046 1.028 1.013

With L1 regularizer 1.033 1.024 0.997 0.943

Bulk moduli Without L1 regularizer 0.093 0.082 0.067 0.061

With L1 regularizer 0.080 0.072 0.063 0.052

Shear moduli Without L1 regularizer 0.128 0.115 0.099 0.095

With L1 regularizer 0.105 0.098 0.091 0.089

Poisson ratio Without L1 regularizer 0.038 0.033 0.033 0.032

With L1 regularizer 0.035 0.032 0.031 0.030

The best performance among different ablation settings for each property is highlighted in bold.
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is the most important atomic feature as it has maximum weight.
Period and Group Numbers provide the information to distinguish
each element. As the Group Numbers and the number of Valence
Electrons are closely related, we see that the feature selector only
selected the former thus avoiding duplicity. Electronegativity and
Covalent Radius both are another two important features (with non-
zero weight) are evident from the figure. Non-zero difference in
Electronegativity of atoms indicates stability in structure. Both Au
and C have the same Electronegativity (category value 5), and the
feature selector gives the same weight to it, as a result, the
difference of Electronegativity is zero in the case of unstable AuC.
While for the case of stable BaEr2F8, the feature selector provides
different non-zero weights to smaller Electronegative elements and
zero weight to the largest Electronegative atom F. The Covalent
Radius determines the extent of overlap of electron densities of
constituents, therefore, it appeared as another important feature.
Higher the radius means weaker the bond. It is interesting to note
here the trend of weights is the reverse of that of radius itself (Ba has
the largest radius 215 pm and has the smallest weight) for stable

BaEr2F8. The scenario is reverse for unstable AuC. Ionization Energy
plays a similar role as Electronegativity and we observe the same
behavior of the feature selector. As can be seen from the example,
the feature selector provides elaborate cues for domain experts to
reason out the results.

Band gap. In Fig. 5, we show the important features that appear in
the case of band gap. It is interesting to see that the Electron Affinity
came out to be the most important atomic feature for the band gap
as it determines the location of conduction band minimum with
respect to the vacuum. Again, as the number of Valence Electrons
and the group number are collinear properties, only one (valence
electrons) is found to be having a significant weight. The
Conduction Band is composed of Ga-states while the valence band
is composed of P states with a small admixture of Ga-states, which
gives Ga-valence electrons more weight. The situation is reversed for
the Ionization Energy, which determines the location of the valence
band with respect to a vacuum, and as the valence band is mostly
formed by the P atom, we see P has more weight.

Table 7. Summary of experiments (MAE) of ablation study on the effect of GCN as graph encoder in CrysAE and CrysXPP.

Property name Ablation settings Train-test split

20–80% 40–60% 60–40% 80–20%

Formation energy GCN Encoder 0.187 0.162 0.138 0.125

CGCNN Encoder 0.086 0.082 0.076 0.067

Band gap GCN Encoder 0.613 0.515 0.493 0.476

CGCNN Encoder 0.467 0.402 0.383 0.366

Fermi energy GCN Encoder 0.513 0.489 0.450 0.436

CGCNN Encoder 0.471 0.409 0.389 0.374

Magnetic moment GCN Encoder 1.204 1.113 1.080 1.041

CGCNN Encoder 1.033 1.024 0.997 0.943

Bulk moduli GCN Encoder 0.171 0.133 0.114 0.101

CGCNN Encoder 0.080 0.072 0.063 0.052

Shear moduli GCN Encoder 0.183 0.172 0.168 0.141

CGCNN Encoder 0.105 0.098 0.091 0.089

Poisson ratio GCN Encoder 0.041 0.037 0.036 0.034

CGCNN Encoder 0.035 0.032 0.031 0.030

The best performance among different ablation settings for each property is highlighted in bold.

Fig. 4 Feature selector values corresponding to atom features after trained on Formation Energy tagged data. The top bar chart
represents the feature weights of BaEr2F8 and the one below represents the feature weights of AuC.
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Magnetic moment. In order to understand the feature impor-
tance in the case of magnetic moment, we compare the results
obtained for two Co-based alloys, namely, CoPt and CoNi (Fig. 6).
In both cases, the Atomic Volume, Period Number, and Electro-
negativity appear to be the three most important features. While
in the case of CoNi, Electron Affinity of Ni also appeared to be as
additional important feature. It can be seen that in the case of
CoPt, the Atomic Volume of Co has higher weight, while for CoNi,
the atomic volume for both the species have the same weight.
This is quite intuitive, as for CoPt, the magnetic moment is mostly
carried by Co atom, while in the case of CoNi, both the atoms have
a significant contribution. Electronegativity plays an important
role in the context of the magnetic moment. For example, the
magnetic moment of Co in CoPt is slightly higher than its
corresponding value in pure Co. The electronegativity difference
between Co and Pt causes the electron transfer from Co minority
spin band to Pt which in turn enhances its magnetic moment31,33.
In the case of Period Number again we see that for CoPt, it is only
the period number of the magnetic atom, i.e, the Co atom that is
given visible weight while in the case of NiCo, the period number
of the two atoms appears to be important.
It is evident from the above analysis that CrysXPP is effectively

constructing models where the important node features are
physically intuitive.
In conclusion, we propose an explainable property predictor for

crystalline materials, CrysXPP to predict different crystal states and
elastic properties with accurate precision using a small amount of

property-tagged data. We address the issue of limited crystal data
where the value of a particular property is known, using transfer
learning from an encoding module CrysAE; which we train in a
property agnostic way with a large amount of untagged crystal
data to capture all the important structural and chemical
information useful to a specific property predictor. We further
find the encoder knowledge is extremely useful in de-biasing DFT
error using meagre instances of experimental results. CrysXPP
outperforms all the baselines across seven diverse sets of
properties. With appropriate case studies, we show that the
explanations provided by the feature selection module are in sync
with the domain knowledge. We release the large pretrained
model CrysAE so that it could be fine-tuned using a small amount
of tagged data by the research community on various applications
with a restricted data source.

METHODS
Hyperparameters
We have trained our model with varying convolution layers of the
encoder module and obtained the best results with three convolution
layers in the encoder module. We kept the embedding dimension for
each node as 64, batch size of data as 512, and used average pooling to
obtain Zg . We selected λ= 0.01 for property selection. We varied the
learning rate in logarithmic scale and selected 0.03 which yields faster
convergence. We trained the auto-encoder for 200 epochs and property
predictor for 200 epochs.

Fig. 5 Feature selector values corresponding to atom features after trained on Band Gap tagged data. The bar chart represents the feature
weights of GaP (Band Gap 2.26 eV).

Fig. 6 Feature selector values corresponding to atom features after trained on Magnetic Moment tagged data. The top bar chart
represents the feature weights of CoPt and the bottom chart represents the feature weights of CoNi.
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