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Vaginal microbiota in women 
with spontaneous preterm labor versus those 
with term labor in Kenya: a case control study
Edgar Gulavi1, Fridah Mwendwa2, David O. Atandi2, Patricia O. Okiro2, Michael Hall3, Robert G. Beiko3 and 
Rodney D. Adam2,4*   

Abstract 

Background: Preterm birth is a global problem with about 12% of births in sub-Saharan Africa occurring before 
37 weeks of gestation. Several studies have explored a potential association between vaginal microbiota and preterm 
birth, and some have found an association while others have not. We performed a study designed to determine 
whether there is an association with vaginal microbiota and/or placental microbiota and preterm birth in an African 
setting.

Methods: Women presenting to the study hospital in labor with a gestational age of 26 to 36 weeks plus six days 
were prospectively enrolled in a study of the microbiota in preterm labor along with controls matched for age and 
parity. A vaginal sample was collected at the time of presentation to the hospital in active labor. In addition, a pla-
cental sample was collected when available. Libraries were constructed using PCR primers to amplify the V6/V7/V8 
variable regions of the 16S rRNA gene, followed by sequencing with an Illumina MiSeq machine and analysis using 
QIIME2 2022.2.

Results: Forty-nine women presenting with preterm labor and their controls were enrolled in the study of which 23 
matched case–control pairs had sufficient sequence data for comparison. Lactobacillus was identified in all subjects, 
ranging in abundance from < 1% to > 99%, with Lactobacillus iners and Lactobacillus crispatus the most common 
species. Over half of the vaginal samples contained Gardnerella and/or Prevotella; both species were associated with 
preterm birth in previous studies. However, we found no significant difference in composition between mothers 
with preterm and those with full-term deliveries, with both groups showing roughly equal representation of different 
Lactobacillus species and dysbiosis-associated genera. Placental samples generally had poor DNA recovery, with a 
mix of probable sequencing artifacts, contamination, and bacteria acquired during passage through the birth canal. 
However, several placental samples showed strong evidence for the presence of Streptococcus species, which are 
known to infect the placenta.

Conclusions: The current study showed no association of preterm birth with composition of the vaginal community. 
It does provide important information on the range of sequence types in African women and supports other data 
suggesting that women of African ancestry have an increased frequency of non-Lactobacillus types, but without 
evidence of associated adverse outcomes.
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Background
Preterm birth (PTB) is defined as birth before 37 com-
pleted weeks of gestation [1]. It is one of the leading 
causes of perinatal morbidity and mortality worldwide 
and about 15 million PTBs occur every year [2]. PTB is 
a global challenge affecting up to 12% of births in low-
income countries and 9% of births in Western countries 
[3]. The majority of PTBs occur in sub-Saharan Africa 
and South Asia [4] with an estimate of a 12% PTB rate in 
sub-Saharan Africa [5]. Kenya has a 12% PTB rate with 
an estimated 190,000 babies born preterm every year [6].

Maternal–fetal factors and gene–environment interac-
tions play roles in determining the length of gestation. 
Some of these factors include African ancestry (in the US 
and the UK), time of less than six months after a previ-
ous pregnancy, low prepartum maternal weight, previ-
ous preterm birth, multiplex pregnancy, and maternal 
infection or vaginal dysbiosis, as well as numerous other 
known or suspected risk factors [7, 8]. The vaginal micro-
biota is thought to play a role in pregnancy outcomes. 
In addition, vaginal dysbiosis has been associated with 
preterm labor [9]. Since African American women are 
at greater risk for vaginal dysbiosis and PTB than white 
women [9], it is important to understand any difference 
in vaginal microbiota of women of African vs. European 
ancestry. Ravel et al. [10] used 16S rRNA gene sequenc-
ing to analyze 98 vaginal swabs from European women 
and 104 vaginal swabs from African American women 
and classified the corresponding samples into five major 
groups termed Community State Types (CST). Four CSTs 
have predominantly Lactobacillus, including CST I (Lac-
tobacillus crispatus), CST II (Lactobacillus gasseri), CST 
III (Lactobacillus iners), and CST V (Lactobacillus jense-
nii). CST IV comprises strict anaerobes that are often 
associated with bacterial vaginosis (BV) such as Prevo-
tella, Gardnerella, Sneathia and Atopobium species. In 
that study, CST I was the most common CST among 
European women while CST IV was the most common 
in African American women [10]. Other studies have 
also shown that CST IV is more common in women of 
African descent than those of European descent [11, 12]. 
However, one study showed that the difference between 
white and black women disappeared when women with 
evidence of BV by Nugent’s criteria were excluded [13].

Attempts to determine associations between PTB 
and specific CST types or other designations of vaginal 
microbiota have also produced differing results. These 
studies of women with PTB have shown an association 
of PTB for Caucasian women with an increased Shannon 

Diversity Index [14], no correlation between CST and 
PTB in African American women [2], or an association 
of CST IV (Lactobacillus-poor) with PTB that was more 
pronounced with the presence of Gardnerella or Urea-
plasma [15]. A recently reported meta-analysis using 
sequence data from five studies [2, 14–17] found that the 
vaginal microbiota from women with preterm delivery 
showed greater within-sample variation than those with 
term delivery and was found across racial groups [8]. 
They also found that three genera; Gardnerella, Lactoba-
cillus, and Aerococcus were associated with third trimes-
ter preterm birth.

Data available at the time of initiating the study sug-
gested the presence of a distinct placental microbiota 
[18], and also raised the question of whether there was an 
association between placental microbiota and the occur-
rence of PTB.

A better comprehension of the changes in vaginal 
microbiota during pregnancy could pave the way to 
predictive diagnostics and focused treatments of the 
complications associated with the intricate process of 
pregnancy, labor and birth. In the current study, we 
used a cohort study to determine whether there was a 
difference in the microbiota of women presenting with 
preterm labor compared to full term. In addition, we ana-
lyzed the placental microbiota to investigate any poten-
tial associations with preterm labor.

Methods
Study site
Aga Khan University Hospital (AKUH) is a 280-bed 
teaching hospital in Nairobi, Kenya that is accredited by 
the US-based Joint Commission International and has 
a full range of obstetric and neonatal services. Approxi-
mately 3600 deliveries per year are performed.

Participant recruitment
Pregnant women over the age of 18 years presenting in 
active labor or with preterm pre-labor rupture of mem-
branes (PPROM) between 26 and 36 6/7 weeks gesta-
tion were recruited into the study from March 2018 to 
March 2019. Patients were excluded if they had medically 
indicated preterm delivery (for example preeclampsia, 
intrauterine growth restriction or congenital anomalies), 
antibiotics given more than 24 h prior to enrollment or 
within the last 4 weeks, cervical cerclage, progesterone 
supplementation, or HIV infection.

A control group of mothers matching the study group 
as closely as possible for age and parity but presenting 

Keywords: Preterm birth, Sub-Saharan Africa, Vaginal microbiota
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in labor at term (37 completed weeks) were enrolled in 
a 1:1 ratio. We considered a pregnancy to be normal if 
there were no obstetric or medical complications. Com-
parisons between the cases (preterm) and controls (term) 
were made using the Chi-square test and for nonpara-
metric data, the Mann–Whitney test was used.

Sample collection and analysis
A physician or midwife collected the vaginal samples 
under direct visualization by swabbing the posterior 
vaginal fornix 3 to 5 times using sterile Snappable Poly-
styrene & Viscose Amies Swabs (Deltalab, Barcelona, 
Spain). Samples were stored at -80 ˚C until testing. 
Genomic DNA extraction was carried out using QIAamp 
DNA Mini Kit (Qiagen, Germany) as per manufacturer’s 
protocol.

The placenta was collected into a clean ziplock bag 
after delivery and immediately transferred to a dedicated 
4 °C refrigerator. Aseptically, a placental sample was cut 
from both fetal and maternal internal structures to mini-
mize the risk of surface contamination. The samples were 
transferred to a -80  °C freezer for storage until DNA 
extraction. DNA extraction was carried out using Dneasy 
Blood & Tissue Kit (Qiagen, Germany) as per manufac-
turer’s protocol.

Extracted DNA samples were shipped to the Dalhou-
sie Integrated Microbiome Resource (IMR, Halifax, 
Nova Scotia, Canada) for sequencing. The protocol for 
sequencing is described at https:// imr. bio/ proto cols. 
html# libra ry; in brief, extracted DNA was amplified 
using PCR, targeting the conserved 16S ribosomal RNA 
gene. PCR primers amplified the V6/V7/V8 variable 
regions of the gene, providing over 400 nucleotides to use 
for species identification. Amplified DNA libraries were 
sequenced using an Illumina MiSeq machine. Sequenc-
ing runs were stored as FASTQ files; vaginal files with at 
least 2,000 associated reads were retained for subsequent 
analysis, while the minimum threshold for inclusion of 
placental samples was 100 reads.

Microbial CST analysis
Downstream analysis of DNA sequence data was per-
formed using QIIME2 2022.2 [19]. Sequences were 
denoised using DADA2 [16] version 2022.2.0, with left 
and right truncation lengths of 280 and 270 nt, respec-
tively. Primers were trimmed in both directions. Taxo-
nomic assignment was performed as follows: reads were 
classified with the Naïve Bayes classifier using the SILVA 
version 138 reference database, with a minimum con-
fidence score of 0.7 required to make a classification at 
a given taxonomic level. Taxonomic distributions were 
visualized using the “barplot” command of the “taxa” 
plugin. Community state assignments were based on the 

dominant Lactobacillus species for CST I (L. crispatus), II 
(L. gasseri), III (L. iners), and V (L. jensenii); samples that 
were dominated BV-associated taxa such as Prevotella, 
Gardnerella, Sneathia and Atopobium were assigned 
to CST IV. Tests for significant differences for the con-
trol vs. pre-term cohorts were performed using ALDEx2 
[20], which addresses the issue of compositionality using 
the centered log-ratio transformation. Effect sizes and 
p-values were calculated using the QIIME2 “q2-aldex2” 
plugin’s “effect_plot” command, which computes both 
the Welch’s t-test and Wilcoxon test with Benjamini–
Hochberg correction for multiple hypotheses. Alpha 
diversity values were computed for all samples using the 
Faith’s phylogenetic diversity and Shannon entropy meas-
ures, rarefaction curves were generated, and group differ-
ences between case and control samples were tested by 
the nonparametric Kruskal–Wallis test.

Ethical considerations
Ethics approval was obtained from the AKUH Ethics 
Review committee (2017/REC-86). Samples were col-
lected only once during routine evaluation of women 
presenting with labor. For women in early labor, a written 
consent was followed by sample collection. For those in 
active labor, verbal assent was sought during labor for the 
sample collection; then written consent was sought after 
delivery. If the written consent was denied, the samples 
were discarded.

Results
Baseline characteristics
A total of 98 patients were recruited for the study 
between March 2018 and March 2019. Of these, 49 were 
patients with preterm labor who met the criteria and 49 
were matched term controls (Fig. 1). The mean age of the 
participants was 32.2 with 24 years being the minimum 
age and 44 years as the maximum with no significant dif-
ferences between the case and control groups (Table 1). 
There were 44 (89.8%) Africans, three (6.1%) Caucasians 
and two (4.1%) East Asians in the preterm group, and 48 
(98%) Africans and one Caucasian in the control group. 
Most patients were nonvegetarian (n = 94, 95.9%) and 
did not have a history of prior PTB (n = 86, 87.7%). The 
majority of the controls (n = 45, 91.8%) were delivered 
vaginally, in comparison with only 18 (36.7%) in the pre-
term group. In addition, there was a significant difference 
in the gestational age by days between the two groups. 
The preterm group had a mean gestational age of 224.6 
while the term group had a mean of 276.9 (Table 1).

DNA sequence analysis
A total of 100 vaginal and 71 placental samples were 
sequenced from the mothers in the case and control 

https://imr.bio/protocols.html#library
https://imr.bio/protocols.html#library
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groups. The average read count was 181 and 26,798 per 
sample for placental and vaginal samples, respectively, 
after primer trimming, quality filtering, overlap assembly, 
and chimera removal. Vaginal samples with fewer than 
2,000 reads were excluded from downstream analysis, 
leaving 74 vaginal samples (average of 35,932 reads per 
sample, total of 2,658,997 reads). Rarefaction curves of 
the vaginal samples suggest sequencing depth was suffi-
cient to capture the majority of abundant taxa (data not 
shown), and a test of group differences revealed no sig-
nificant difference in alpha diversity between case and 
control vaginal samples (Fig.  2). A total of 13 placental 
samples had read counts > 100 and were retained in the 
final data set.

Composition of the vaginal microbiota
Based on the SILVA taxonomic classification we observed 
three distinct species of Lactobacillus with an average 
abundance > 0.1% across all 74 high recovery vaginal sam-
ples: L. iners (43 individuals, 22.3% relative abundance), 
L. crispatus (50 individuals, 37.5% relative abundance), 
and L. jensenii (20 individuals, 0.3% relative abundance). 
An additional six named species were observed in lower 
abundance, most notably L. vaginalis which was found 
in 34 individuals but with an average abundance of only 
0.16% (Fig. 3a and 4). Vaginal samples with L. crispatus 
tended to contain no other named species of Lactobacil-
lus, while L. iners was found either alone or in associa-
tion with L. jensenii as a minor component of the sample 

(Fig.  4). No amplicon sequence variants (ASVs) had a 
differential abundance that was significant between pre-
term and term birth according to ALDEx2; the smallest 
Benjamini–Hochberg corrected p-value was 0.843.

At the genus level, 73 out of 74 vaginal samples 
contained at least a small number of reads that were 
assigned to Lactobacillus, with a mean of 64.4% across 
all samples (Fig. 3b-c). Vaginal samples not dominated 
by Lactobacillus (such as subject 1036 with zero Lac-
tobacillus reads; Fig.  4b) were generally dominated by 
genera commonly associated with BV (Fig.  4). Gard-
nerella and Prevotella were each found in 39 and 50 
samples, respectively, with an average abundance of 
11.1% and 8.8%. Other genera were found in relatively 
few samples, although often with high abundance: 
for example, Sneathia had a maximum abundance of 
53.05% across 15 samples, while Pseudorhodobacter 
was present in only two samples but with an abun-
dance of 65.49% in one sample. Conversely, several 
genera were found in many samples but at consist-
ently low levels, including Dialister (33 samples; max 
abundance = 6.24%), Corynebacterium (25 samples, 
max abundance = 2.64%), and Atopobium (22 samples, 
max abundance = 8.77%). Streptococcus was found in 
21 samples (10 case, 11 control) with an average abun-
dance of 1.9% and a maximum of 82.75%.

Of the 23 case–control pairs, all fell into three of 
the originally described CSTs [10], types I, III and IV 
(Table 2). There was no clear difference between the case 

Fig. 1 Study flow chart showing recruitment of participants
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and control groups in their CST assignment. When all 
73 of the sequenced specimens were included (43 pre-
term and 30 term) whether or not they were matched, 
the results were similar with the same three CSTs domi-
nating (Table 2). In this larger group, there were 28 indi-
viduals that could be considered as a part of CST I (L. 
crispatus), 18 pre-term birth cases and 10 controls; 17 
individuals associated with CST III (L. iners), 12 pre-term 
birth cases and 5 controls; 1 individual associated with 
CST V (L. jensenii), a control; and 27 individuals associ-
ated with CST IV, 13 pre-term birth cases and 14 con-
trols (Fig. 3). In this study’s cohort, L. crispatus was not 
associated with term birth and, conversely, a significant 
number of the cases and controls had a predominance of 

Gardnerella and/or Prevotella, but no association with 
preterm labor (demonstrated by the lack of significantly 
differentially abundant ASVs and the mixture of cases 
and controls in each.

Placental samples
Of the 71 placental samples (Fig. 5), only 13 (17.6%) had 
more than 100 reads that passed the quality threshold, 
and only two had more than 2,000. The 13 samples split 
nearly evenly between cases (5/13) and controls (8/13). 
Many samples with fewer than 100 sequences were 
dominated either by poorly classified reads that mapped 
only to “Bacteria” or “Phylum OD1”. Forty-four samples 
had at least one sequence that was classified at a lower 

Table 1 Social and demographic characteristics of the preterm and term groups

a Mann-Whitney test for nonparametric data
b Chi-square test
c Women who transferred out before delivery grouping of vaginal samples in Fig. 4)

CHARACTERISTIC CASES (Preterm) N = 49 (%) CONTROLS (Term) N = 49 (%) P VALUE

Maternal Age (Mean) 32.7 31.5 0.285 z-score = -1.0664

32.7 ± 5.10 31.5 ± 4.50 0.25a

Ethnicity
 African 44(89.8%) 48 (98%) 0.52b

 Caucasian 3 (6.1%) 1 (2%)

 East Asian 2 (4.1%) 0 (0%)

Marital Status
 Married 41 (83.7%) 39 (79.6%) 0.60b

 Single 8 (16.3%) 10 (20.4%)

Highest education attained
 Tertiary 40 (81.6%) 43 (87.5%) 0.54b

 Secondary 8 (16.3%) 6 (12.8%)

 Primary 1 (2%) 0 (0%)

Diet
 Nonvegetarian 46 (93.9%) 48 (98%) 0.30b

 Vegetarian 3 (6.1%) 1 (2%)

Parity
 Primigravida 12 (24.5%) 32 (65.3%) 0.0007b

 1 -2 23 (47%) 12 (24.5%)

 3–4 12 (24.5%) 4 (8.2%)

 5 or More 2 (4.1%) 1 (2%)

Previous Preterm Delivery
 Present 10 (20.4%) 2 (4.1%) 0.01b

 Absent 39 (79.6%) 47 (95.9%)

Mode of delivery
 Elective Caesarean Section 4 (8.2%) 1 (2%)  < 0.00001 b

 Emergency Caesarean Section 13 (26.5%) 3 (6.1%)

 Spontaneous Vaginal Delivery 18 (36.7%) 45 (91.8%)

  Unknownc 14 (28.6%) 0 (0%)

Mean ± SD

Gestational age (Mean days) 224.6 276.9  < 0.00001 a z-score = 8.657
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Fig. 2 Relative abundance of 16S reads assigned to a the 15 most abundant species-level designations and b the 15 most common genera of 
the 23 matched case–control vaginal samples. c Case (pre-term) and control (full term, designated with C) samples sorted in decreasing order of 
Lactobacillus abundance. Assigned taxa not in the top 15 for each rank were assigned to a uniform “Other” category and have no assigned color

Fig. 3 Comparison of alpha diversity measurements of cases with PTB and controls with term delivery. Boxplot shows the quartiles and whiskers 
extend to 1.5 times the inter-quartile range
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taxonomic rank; twelve of these had classified reads that 
mapped only to Lactobacillus. Lactobacillus was not 
identified in an additional twelve samples.

However, five placental samples showed evidence of 
Streptococcus with abundance between 4.4% and 80.5%; 
Streptococcus agalactiae was identified in a previous study 
as the only species that could be confidently recovered 
[21]. The sample with the highest percentage of Streptococ-
cus (Case 1003) had a corresponding vaginal abundance of 

0.78%; a rectal swab taken from the neonate immediately 
after birth yielded 99.6% Streptococcus, with the remaining 
sequence reads assigned to Enterobacteriaceae.

Discussion
The present study is the first gene sequencing‐based vagi-
nal microbiota study to date in Kenya with a case–con-
trol design comparing the vaginal microbiota of between 

Fig. 4 Heatmaps of A) the proportion of reads from the top 25 taxonomic classifications across all vaginal samples and B) the proportion of reads 
from the top 5 species across all vaginal samples belonging to the Lactobacillus genus. Genus names indicate reads that are classified at the genus 
level but without a confident classification at species level. Hierarchical clustering dendrograms for samples were computed using complete 
linkage. “C” indicates full term control sample
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women with spontaneous preterm labor with those who 
went to full term. The major objective was to identify 
whether there were any vaginal microbiota patterns asso-
ciated with preterm labor in the Kenya population. We 
found no difference in CSTs between cases with preterm 
labor and controls with term labor.

Similar to other studies of the vaginal microbiota, we 
observed vaginal microbial communities with a high inci-
dence of species within the genus Lactobacillus; however, 
the number of distinct species groupings according to 
our ASV analysis was small, with the predominant spe-
cies identified being L. iners and L. crispatus (Fig. 5). The 
ecological significance of these associations is unclear, 
and future metagenomic analysis may yield insights into 
the patterns we describe here. Although Lactobacil-
lus was widely distributed across subjects as expected, 
a substantial number of both case and control samples 
had substantial counts of other genera, with 20/46 paired 
samples having a Lactobacillus relative abundance < 50%. 
These samples were dominated by bacteria such as Prevo-
tella and Gardnerella that are frequently associated with 
BV. BV has long been associated with PTB and treatment 
with metronidazole has been used to prevent PTB [22]. 
However, treatment of asymptomatic BV did not reduce 
PTBs [23]. Thus, it is of interest to determine whether any 
of the five CSTs or individual organisms are associated 
with PTB, especially for CST IV or Gardnerella. Indeed, 
distinct taxa have been associated with PTB in a number 
of studies. In support of this possibility, a study of Indian 
women showed that L. iners, Megasphaera, G. vaginalis, 
and Sneathia sanguinegens were higher in women pre-
senting in preterm labor, while L. gasseri was higher in 
those presenting at term [24]. In addition, L. crispatus has 
been protective in other studies [25] and the suggestion 
that L. crispatus is incompatible with G. vaginalis has 
supported the idea of a protective effect of L. crispatus 
[26]. A study of vaginal metabolites and preterm labor in 
the setting of a mostly white population of British women 

Table 2 Community Sequence Types (CST)

The designation of Ravel et al. is used [10]
1 Two of the control participants designated as CST IV had co-existence of G. vaginalis and L. iners

CST Number Description Cases with sequences from matched controls (23 in 
each group)

All cases and controls with 
sequences (43 and 30)

Case (Preterm) Control (Term) Case (Preterm) Control 
(Term)

I L. crispatus 7 8 18 10

II L. gasseri 0 0 0 0

III L. iners 8 4 12 5

IV Diverse 8 111 13 14

V L. jensenii 0 0 0 1

Fig. 5 Raw read counts (top) and relative abundance (bottom) 
of reads assigned to the most-common taxonomic groups of 
genus-level designations in 13 placental samples with passed read 
count > 100
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also suggested a protective effect of L. crispatus and an 
association of preterm labor with L. jensenii [27], while 
the Peruvian study noted above showed no association 
[28]. Some studies of women of African ancestry have 
found an association of PTB with certain taxa [29], while 
others have not [2, 17]. In addition, there is evidence for 
an increased frequency of non-Lactobacillus-related 
CSTs in women of African ancestry, but not necessarily 
associated with adverse outcomes [30]. Other microbial 
associations have also been described, including a study 
of Korean women that showed an association of Kleb-
siella in the vaginal microbiota and preterm labor [31]. 
Klebsiella is part of the Enterobacteriaceae class, which 
was not associated with preterm labor in our study. In the 
current study, nearly all the women fell into CST I, III, 
or IV, but the proportions of preterm and term did not 
show major differences for these three types. Our study 
also found no trend for an association with the presence 
of sequences from the genera Lactobacillus, Gardnerella, 
and Aerococcus that were associated with third semester 
PTB in a meta-analysis [8]. However, it is possible that 
certain relevant associations were missed in the current 
study in view of the relatively small number of matched 
cases and controls. In addition to the lack of difference 
of CST for preterm vs. term delivery, there was also no 
difference between the two groups for measures of alpha 
diversity.

Our study also addressed the question of whether a 
placental microbiome is associated with PTB. This is 
especially important since some studies have suggested 
a placental microbiome or an association with certain 
outcomes [18], while other studies have found no evi-
dence of a specific placental microbiome [32, 33]. In our 
study, the read counts and taxonomic affiliations of our 
placental samples were largely consistent with very low 
bacterial loads that have been reported elsewhere in the 
literature [34]. Many samples either returned no reads 
or were dominated by common vaginal flora (most nota-
bly Lactobacillus), unclassified sequences, or eukaryotic 
sequences and the Bradyrhizobium group that are likely 
contaminants. The very low read recovery in many pla-
cental samples may reflect difficulty in recovering viable 
DNA samples from placental matter. However, the pres-
ence of organisms including Lactobacillus and Veil-
lonella suggests the more likely explanation that many 
“placental” samples are dominated by bacteria acquired 
during passage through the birth canal. These observa-
tions are consistent with reports that suggest placentally 
derived bacteria (i.e., a “placental microbiome”) are rare 
[32–36]. Thus, our observations are consistent with the 
evidence that there is not normally a separate placental 
microbiota. However, the few placental samples with 
the highest sequence recovery were often dominated by 

Streptococcus, which is interesting in light of the common 
association of S. agalactiae (Group B streptococci) with 
adverse maternal and neonatal outcomes [37].

Conclusion
In summary, these results contribute to the increasing 
data that shows that there is a spectrum of diversity in 
the vaginal microbiota without clear evidence of spe-
cific microbiota types that have a correlation with pre-
term labor. Therefore, an understanding of the variables 
associated with African ethnicity that contribute to this 
diverse microbiota has important implications regarding 
reproductive health outcomes.

This study is a fundamental step towards gathering 
more information on the relationship of vaginal micro-
biota and PTB which would help us to establish a greater 
degree of accuracy on future implications of this porten-
tous relationship.
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