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Abstract

With the frenetic growth of high-dimensional datasets in different biomedical domains, there

is an urgent need to develop predictive methods able to deal with this complexity. Feature

selection is a relevant strategy in machine learning to address this challenge. We introduce

a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization

Selector Operator). We conducted a benchmark of BOSO with key algorithms in the litera-

ture, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-

of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis

is carried out for methotrexate, a well-studied drug targeting cancer metabolism.

Author summary

We present BOSO (Bilevel Optimization Selector Operator), a novel method to conduct

feature selection in linear regression models. In machine learning, feature selection con-

sists of identifying the subset of input variables (features) that are correctly associated with

the response variable that is aimed to be predicted. An adequate feature selection is partic-

ularly relevant for high-dimensional datasets, commonly encountered in biomedical

research questions that rely on -omics data, e.g. predictive models of drug sensitivity, resis-

tance or toxicity, construction of gene regulatory networks, biomarker selection or associ-

ation studies. The need of feature selection is emphasized in many of these complex

problems, since the number of features is greater than the number of samples, which

makes it harder to obtain accurate and general predictive models. In this context, we show

that the models derived by BOSO make a better combination of accuracy and simplicity

than competing approaches in the literature. The relevance of BOSO is illustrated in the

prediction of drug sensitivity of cancer cell lines, using RNA-seq data and drug screenings

from GDSC (Genomics of Drug Sensitivity in Cancer) database. BOSO obtains linear

regression models with a similar level of accuracy but involving a substantially lower num-

ber of features, which simplifies the interpretation and validation of predictive models.
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Introduction

High-dimensional datasets are currently an essential part of biomedical research [1–3]. Much

effort has been devoted to developing statistical and machine learning methods able to deal

with this complexity and avoid overfitting in problems with a limited sample size [4–8].

Dimensionality reduction and feature selection are the most commonly used strategies to

address this issue [9,10]. Feature selection, which consists of identifying the true explanatory

variables over the entire set of variables, have been extensively applied to both supervised and

unsupervised learning problems [11].

Different feature selection approaches can be found for linear regression models, aimed to

explain a response (dependent) variable as a linear combination of a set of input (independent)

variables. The most popular feature selection algorithm is the Lasso regression [12], which is

implemented in different machine learning software packages and integrated in dozens of

algorithms for a varied range of biological questions [13–16]. However, as recently shown in

Hastie et al. 2017 [17], the Lasso regression still has substantial room for improvement in high-

dimensional datasets. In that work, using synthetic data in a number of conditions, the capac-

ity of several approaches to elucidate the subset of variables that were used to generate the

response variable was compared. In particular, they compared Lasso with a recent formulation

of the best subset selection approach [18], which directly addresses the combinatorial problem

of identifying the subset of features that more accurately fits the response variable through lin-

ear regression. They found that neither approach was significantly better than the other. Inter-

estingly, they concluded that Relaxed Lasso [19], which combines the solution of Lasso and

ordinary linear regression, incorporates the best of both approaches and is, therefore, the most

accurate strategy in the literature.

Here, we propose a novel feature selection approach for linear regression called BOSO

(Bilevel Optimization Selector Operator). We show that our approach is more accurate than

Relaxed Lasso in many cases, particularly in high-dimensional datasets. Proof-of-concept of

our approach is applied to predict drug sensitivity in cancer based on RNA-seq data. In partic-

ular, a detailed computational and in-vitro experimental analysis is presented for methotrexate,

a well-studied drug targeting cancer metabolism [20].

Results

The BOSO algorithm

In linear regression, the best subset selection problem addresses the identification of variables

correctly related with the response variable. This problem is presented here as a bilevel optimi-

zation problem and, for this reason, we call our approach Bilevel Optimization Selector Opera-

tor (BOSO). In particular, starting from a total set of p features, BOSO searches for the best

combination of features of length K by solving a bilevel optimization problem, where the outer

layer minimizes the validation error and the inner layer uses training data to minimize the loss

function of the linear regression approach considered. Here, we chose Ridge regression for the

training problem in order to account for multicollinearity in a simpler manner than Lasso;

however, the formulation is also presented for ordinary linear regression (see Methods section

for details).

In particular, BOSO relies on the observation that the optimal solution of the inner problem

can be written as a set of linear equations that depends on the selected features. This observa-

tion makes it possible to solve a complex bilevel optimization problem via Mixed-Integer Qua-

dratic Programming (MIQP) (see Methods section). This process is repeated for different K
values until an information criterion is not further improved. Here, we considered the Akaike
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Information Criterion (AIC) [21], the Bayesian Information Criterion (BIC) [22] and the

extended BIC (eBIC) [23], which generalizes BIC when p> n, a common scenario in biomedi-

cal applications [24]. These were adjusted to take into account the use of Ridge regression

instead of ordinary linear regression (see Methods section). Note here that other approaches

use validation data to select the optimal K; instead, BOSO uses validation data to select the best

subset of features of length K, and it uses the information criterion to select the optimal K. A

conceptual scheme of BOSO for 7 variables can be found in Fig 1.

The core MIQP of BOSO addresses a hard-combinatorial optimization problem, whose

complexity exponentially grows as p increases. Current MIQP solvers have been widely devel-

oped in the last decade [25]; however, in the case of BOSO, for large problems, they could take

long computation times to guarantee optimality. This is also the case for the MIQP approach

presented in Bertsimas et al, 2016 [18], referred to here as Best Subset. Here, we alleviated this

issue by iteratively applying BOSO to random blocks of features of length L until convergence

(see Methods section and S1 Fig). With this strategy, we substantially reduced the computation

time of our approach and managed to apply BOSO to complex problems.

Benchmarking of feature selection approaches

In order to assess the performance of BOSO, we replicated the same analysis presented in Has-

tie et al. 2017 [17], where relevant feature selection strategies, including Best Subset [18], For-

ward Stepwise [26,27], Lasso [12] and Relaxed Lasso [19], were compared. In that work, they

generated synthetic data from a multivariate normal distribution in different settings, which

depends on the number of instances, n; number of total available features, p; actual number of

features contributing to the outcome, defined by the sparsity level s and their value (beta-type);

covariance matrix between features ∑ij = ρ|i−j|, where ρ is the autocorrelation level; and signal-

Fig 1. Summary of the BOSO algorithm. An example dataset with 7 features is split into training and validation sets.

For any given subset of features of length K, a linear model is constructed with training data and assessed with

validation data. The optimal selected features for a specific K value (green boxes) are obtained from the model that

minimizes the validation error. For example, for K = 2, the linear model trained with the subset of features {X3, X6} is

the one that minimizes the validation error. The problem of selecting the best subset of features of length K is

formulated via mixed-integer quadratic programming (MIQP) (see Methods section) and solved using standard MIQP

tools. With our MIQP approach, we directly assess all different combinations of linear models that involve K features

and select the one with least validation error. This process is repeated for each K value until an information criterion,

in this case the extended Bayesian Information Criterion (eBIC), is not further improved. Minimal eBIC is found in

this example for K = 2. The final model is derived from Ridge regression with only these two selected variables.

https://doi.org/10.1371/journal.pcbi.1010180.g001
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to-noise ratio (SNR level) (see S1 Appendix for further details). In particular, they considered

4 problem settings: low (n = 100, p = 10, s = 5), medium (n = 500, p = 100, s = 5), high-5

(n = 50, p = 1000, s = 5) and high-10 (n = 100, p = 1000, s = 10). These four problem settings

were analyzed for different beta-types, autocorrelation level and signal-to-noise ratio.

In particular, we present here the results for one of the scenarios considered: beta-type 1,

where the s contributing features occur at (approximately) equally-spaced indices between 1

and p with value 1, the remaining features being equal to 0; and an autocorrelation level

between features of 0.35. In this beta-type, actual features contributing to the outcome show

little correlation between each other. We tested the same levels of SNR analyzed in Hastie et al.

2017 [17], namely ten values of SNR from 0.05 to 6.00, equally distributed in logarithmic scale.

In order to compare the capacity of different methods to extract the actual features contribut-

ing to the outcome, we used the F1-score, which is the harmonic mean of the precision and

recall, the number of estimated non-zeros coefficients and the number of false positives and

false negatives, metrics previously used in Hastie et al, 2017 [17] (see Methods section). We

also included details as to other cases and evaluation metrics in S2–S21 Figs.

F1-scores obtained with BOSO, Lasso, Relaxed Lasso, Best Subset and Forward Stepwise in

different cases are shown in Fig 2. For the Low setting (p = 10), BOSO performed slightly better

Fig 2. Performance comparison of BOSO with different feature selection algorithms using F1-score. a) Low

setting; b) Medium setting; c) High-5 setting; d) High-10 setting. Dots and bars represent, respectively, the mean and

standard deviation of F1-scores across 10 random samples for the different SNR values.

https://doi.org/10.1371/journal.pcbi.1010180.g002
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than Best Subset and Forward Stepwise, and it had mixed outcomes when compared to Lasso

and Relaxed Lasso (Fig 2A). For the Medium setting (p = 100, Fig 2B), BOSO and Relaxed

Lasso compete to be the most accurate approach, namely BOSO in low SNR values and

Relaxed Lasso in high SNR values. Importantly, BOSO achieved the best performance in the

High-5 setting (p = 1000, Fig 2C), obtaining more accurate results than the rest of approaches

for all the cases. Finally, a similar behavior is observed in the High-10 setting (p = 1000, Fig

2D). According to these results, BOSO is overall more accurate than Best Subset, Forward

Stepwise and Lasso and competes with Relaxed Lasso, finding comparable accuracy in low-to-

medium-dimensional problems and superior results in high-dimensional scenarios.

In order to gain insights into the type of model obtained from BOSO, in Fig 3 we plotted

the number of non-zeros obtained with each method in the simulation presented in Fig 2. It can

be seen that BOSO generates a more parsimonious model than Relaxed Lasso and Lasso. This is

partially derived from our choice of an information criterion to select the size of the model (in

this case eBIC). As a result, BOSO outputs regression models with a significantly lower number

of false positives than Lasso and Relaxed Lasso and comparable false negatives (see Figs 4 and 5,

Fig 3. Performance comparison of BOSO with different feature selection algorithms using Number of non-zeros

in the 4 considered problem settings. a) Low setting; b) Medium setting; c) High-5 setting; d) High-10 setting. Dots

and bars represent, respectively, the mean and standard deviation of Number of non-zeros across 10 random samples

for different SNR values. The dotted line is the actual value of non-zeros (s) for each SNR value.

https://doi.org/10.1371/journal.pcbi.1010180.g003
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respectively). On the other hand, BOSO, Best Subset and Forward Stepwise have similar com-

plexity (Fig 3), but, according to results in Fig 2, Best Subset and Forward Stepwise are less accu-

rate, since they present a higher number of false negatives than BOSO (Fig 5).

A similar behavior is found for beta-type 2 (see S2–S21 Figs), which defines a more complex

situation where actual variables contributing to the outcome are correlated with each other.

However, we found that BOSO performs worse than Relaxed Lasso for higher correlations in

this setting (autocorrelation level 0.70). This is possibly due to the fact that information criteri-

ons assume that variables are independent and they are not prepared for cases in which vari-

ables present high correlations. This effect is less relevant for more sparse problems, for

example, High-5 and Medium.

Results in Figs 2–5 were calculated using eBIC as the information criterion. Fig 6 shows the

results presented in Fig 2 for AIC, BIC and eBIC. It can be observed that eBIC and BIC have

similar results; in fact, when p< n, as in the Low and Medium cases, eBIC is equal to BIC (see

Methods section). Differences arise in the case of High-5 and High-10, where eBIC is more

Fig 4. Performance comparison of BOSO with different feature selection algorithms using False Positives in the 4

considered problem settings. a) Low setting; b) Medium setting; c) High-5 setting; d) High-10 setting. Dots and bars

represent, respectively, the mean and standard deviation of Number of non-zeros across 10 random samples for

different SNR values.

https://doi.org/10.1371/journal.pcbi.1010180.g004
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restrictive than BIC, decreasing the number of both false and true positives. This situation is

much more extreme in the case of AIC, where the number of false positives is substantially

increased with respect to BIC, but it is the one with lowest number of false negatives (see S22–-

S41 Figs for further details). Although BIC and eBIC present more accurate results than AIC,

we considered the 3 information criteria for further analysis.

With respect to computational effort, even using the random block strategy mentioned

above, BOSO requires more time than Forward Stepwise, Lasso and Relaxed Lasso. However,

BOSO is more efficient than Best Subset and can be run in standard computers, e.g. each run

in the High-10 setting took us on average 104.6 seconds on a 64 bit Intel(R) Xeon(R) CPU E5-

2630 v4 @ 2.20GHz running Linux, setting a maximum of 4 cores and 4 GB of RAM. Further

details can be found in S1 Table.

In summary, for feature selection: 1) BOSO shows higher sensitivity than Best Subset and

Forward Stepwise; 2) BOSO presents higher specificity than Lasso and Relaxed Lasso; 3)

BOSO is a computationally feasible approach in large-sized problems encountered in biomedi-

cal research.

Fig 5. Performance comparison of BOSO with different feature selection algorithms using False Negatives in the

4 considered problem settings. a) Low setting; b) Medium setting; c) High-5 setting; d) High-10 setting. Dots and bars

represent, respectively, the mean and standard deviation of Number of non-zeros across 10 random samples for

different SNR values.

https://doi.org/10.1371/journal.pcbi.1010180.g005
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BOSO and drug sensitivity in cancer

We applied BOSO to construct a predictive model of Methotrexate (MTX) cytotoxicity in can-

cer cell lines. To that end, we used 662 cancer cell lines with the IC50 values of MTX available

from the screenings of the GDSC (Genomics of Drug Sensitivity in Cancer) database [28] and

RNA-seq data from CCLE (Cancer Cell Line Enyclopedia) [29]. After filtering genes with low

mean and variance expression out (see Methods section), we kept 5364 genes (features) as possi-

ble predictors of MTX IC50 (p = 5364). In order to guide the learning process, cell lines were

randomly grouped into training (40%), validation (40%) and test (20%) sets using the R package

caret (http://topepo.github.io/caret/index.html) for a homogenous distribution of IC50 values.

BOSO was applied to training and validation sets and evaluated with test data in 100 different

runs (S2–S4 Tables). We conducted the same analysis with Forward Stepwise, Lasso and

Relaxed Lasso (S5–S7 Tables). We excluded Best Subset due to its high computational cost.

From Fig 7A it can be seen that: 1) among different information criteria, the best perfor-

mance of BOSO in test data was obtained with BIC: mean correlation of 0.612; 2) the models

Fig 6. Performance comparison of BOSO under different information criterions using the F1-score in the 4

considered problem settings. a) Low setting; b) Medium setting; c) High-5 setting; d) High-10 setting. Dots and bars

represent, respectively, the mean and standard deviation of F1-score across 10 random samples for different SNR

values. Note here that BOSO-BIC and BOSO-eBIC obtained the same result in the low setting and, for this reason, the

blue and green lines overlap in panel a.

https://doi.org/10.1371/journal.pcbi.1010180.g006
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derived from Lasso and Relaxed Lasso have similar mean correlation in test data: 0.623 and 0.619,

respectively; 3) Forward Stepwise is the least accurate approach (mean correlation of 0.575). On

the other hand, there is a striking difference in the number of features: while BOSO and Forward

Stepwise predicted on average 10.29 and 2.83, respectively, Lasso and Relaxed Lasso involved

more than 56 features (Fig 7B). These results reinforce the conclusions that BOSO generates a

more parsimonious model than Lasso and Relaxed Lasso and more accurate model than Forward

Stepwise. We repeated the same analysis with 50 drugs available in the GDSC database (S8 Table),

finding similar conclusions as the ones obtained for MTX analysis (S42 Fig).

Using the regression models derived by BOSO for the 100 random partitions of training, vali-

dation and test data, we predicted the MTX IC50 value for 708 cell lines not included in the

GDSC database but with RNA-seq data available in CCLE (S9–S11 Tables). BOSO found clear dif-

ferences among the distinct cell lines that were considered, with IC50 values ranging from 31.6

nM to 3401 nM. In addition, BOSO predicted a significant difference in the MTX IC50 values for

Fig 7. Prediction of Methotrexate cytotoxicity in cancer. Using 100 random partitions of data into training, validation and test sets: a) Pearson correlation obtained

with BOSO, Forward Stepwise, Lasso and Relaxed in the Test partition; b) Number of active features selected in the approaches included in Fig 7A; c) Experimental

validation of IC50 values predicted by the BOSO-BIC algorithm for 5 MTX-sensitive (PF-382, P12-ICHIKAWA, JVM-2, PEER, SEM) and 5 MTX-resistant (U87MG,

A498, LOUNH91, UMUC1, UMUC7). The cell lines with available GDSC IC50 values (PF-382, P12-ICHIKAWA, JVM-2, U87MG, A498, LOUNH91) were excluded

from the model construction process.

https://doi.org/10.1371/journal.pcbi.1010180.g007
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the top 25% most sensitive and resistant cell lines (Student’s t-test p-value = 1.15e-94, S43 Fig

for details).

In addition, we conducted in-vitro experiments in order to validate our predictive model

(see Methods section). First, the IC50 values provided by the GDSC database in 3 MTX-sensitive

(PF-382, P12-ICHIKAWA, JVM-2) and 3 MTX-resistant (U87MG, A498, LOUNH91) cell lines

(Fig 7C) were validated. This was done because the IC50 values provided by the GDSC database

are predicted based on a limited range of experimental screening concentrations[28]. Note here

that these 6 cell lines were not used in the model construction process, i.e. they were not part of

the 662 cell lines used to build the predictive models summarized in Fig 7A and 7B. Second, the

IC50 values predicted by BOSO in 2 MTX-sensitive (PEER, SEM) and 2 MTX-resistant

(UMUC1, UMUC7) cell lines that were not available in the GDSC database (Fig 7C) were assessed

in-vitro. Predictions with the rest of methods considered in Fig 7A and 7B can be found in S44

Fig. First, the results predicted from BOSO and GDSC did not present statistically significant dif-

ferences in the 6 matching cell lines (Student’s paired t-test p-value: 0.26). Second, our approach

could distinguish between in-vitro validated MTX-resistant (n = 5) and MTX-sensitive (n = 5) cell

lines (Student’s t-test p-value: 4.21e-5). All together indicates that the linear regression model

derived by BOSO can be applied to complete the data provided by the GDSC database.

Surprisingly, the most relevant features in BOSO, according to their recurrence in different

runs (see S3 Table), are not typically annotated to MTX in drug databases. In particular, the

top-5 genes are: LRRC8C, MFNG, RNLS, KBTBD11 and CUEDC1. The individual expression

of each gene exhibits a high and significant correlation with MTX IC50 (S45A Fig). Impor-

tantly, a linear model with these 5 genes substantially overperforms a model including the 30

genes annotated to MTX in DrugBank (S45B Fig and S12 Table), which shows the relevance of

the novel predictors identified.

The importance of these 5 genes in MTX resistance deserves further study and experimen-

tation. However, existing literature provides promising insights about their potential mecha-

nism of action. LRRC8C is a component of the volume-regulated anion channel (VRAC) that

has been recently linked to multidrug resistance in cancer in compounds such as cisplatin

[30]. MFNG is a manic fringe protein that regulates Notch signaling [31], a pathway previously

associated with MTX resistance [32]. KBTBD11 is a tumor suppressor gene that has been iden-

tified as differentially expressed in MTX-resistant colon cancer cell lines [33]. CUEDC1 is cor-

related with estrogen receptor alpha (ERα) [34], which has been found to confer MTX

resistance in osteosarcoma cells [35].

Discussion

The feature selection problem is old in machine learning, but still of high interest to this day.

High-dimensional datasets are proliferating in different domains of science and industry, par-

ticularly in biomedical research, where high-throughput–omics technologies, mainly DNA-

seq and RNA-seq data, are essential tools for biomarker development in the field of personal-

ized medicine and nutrition. In this context, feature selection is a crucial strategy to develop

robust machine learning models in problems with limited sample size.

Here, we present BOSO (Bilevel Optimization Selector Operator), a novel feature selection

approach for linear regression approaches. BOSO overcomes a complex bilevel optimization

problem, linked to the best subset selection problem, based on Mixed-Integer Quadratic Pro-

gramming. This elegant mathematical transformation is surprisingly novel in the literature.

Certainly, existing approaches in the literature address the best subset selection using brute

force if possible or heuristic methods for more complex problems [36]. Others do not make

use of validation data for feature selection but to select the optimal length, as done in Forward
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Stepwise. Our strategy is conceptually different and opens new avenues for developing feature

selection algorithms in other relevant machine learning tools, such as support vector machines

or survival models.

Following the interesting discussion held in the literature [17,18], BOSO was benchmarked

with key feature selection algorithms for linear regression models. BOSO falls between Forward

Stepwise and Lasso or Relaxed Lasso. Importantly, BOSO shows higher sensitivity than Forward

Stepwise and higher specificity than Lasso and Relaxed Lasso in multidimensional problems,

which entails a clear advance in machine learning. This improvement is a mixed result of our

proposed MIQP and the choice of our information criterion based on BIC. However, we think

BOSO could be improved further with information criteria that take into account the correla-

tion between the true variables in the model, as they are currently not prepared for this task.

Proof-of-concept of BOSO was accomplished to predict drug sensitivity in cancer. A

detailed analysis was presented for methotrexate (MTX), a well-studied drug targeting cancer

metabolism. BOSO showed higher accuracy than Forward Stepwise and derived a more parsi-

monious model than Lasso and Relaxed Lasso, which reinforces our ability to rule out false

positives. This advantage of BOSO is particularly relevant for biomedical applications, since it

simplifies the interpretation, validation and posterior exploitation of results (e.g. for the devel-

opment of combinatorial biomarkers). This was illustrated with the 5 most relevant features

predicted by BOSO, which exhibits a high predictive power and open new avenues to under-

stand MTX resistance. Finally, we were able to extend the MTX IC50 values provided by the

GDSC database to the remaining 708 CCLE cell lines, providing successful experimental vali-

dation for 5 MTX-resistant and 5 MTX-sensitive.

In summary, the results here presented illustrate the value of BOSO for the machine learn-

ing community and, in particular, for biomedical research, a field where the number of high-

dimensional datasets grows at a frenetic pace. We expect to see the application of BOSO to the

great variety of methods where Lasso is currently being applied: predictive models of drug sen-

sitivity, resistance or toxicity, construction of gene regulatory networks, biomarker selection,

association studies and other relevant questions.

Methods

Bilevel optimization in ordinary linear regression

Assume a linear regression model with response vector y2Rn and design matrix X2Rnx(p+1),

where p is the number of predictor variables. The problem of feature selection consists of iden-

tifying the subset of predictor variables Q that more accurately predicts the response variable y.

To address this problem with ordinary linear regression, we split the data into training and val-

idation sets, namely y = [ytrain, yval] and X = [Xtrain, Xval], and construct a standard bilevel qua-

dratic optimization model (Eqs (1)–(4)):

minQ evalTQ � evalQ

s:t:
Eq ð1Þ

yval ¼ Xval
Q � bQ þ evalQ Eq ð2Þ

min etrainTQ � etrainQ

s:t:
Eq ð3Þ

ytrain ¼ Xtrain
Q � bQ þ etrainQ Eq ð4Þ
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, where the inner problem (Eqs (3) and (4)) makes use of the training data for a particular sub-

set of features Q (ytrain;Xtrain
Q ) in order to infer its associated optimal parameters βQ and the

outer problem selects the combination of the features Q with the lowest validation (generaliza-

tion) error. Note here that, in bilevel optimization models, the optimal space of the inner prob-

lem is a constraint of the outer problem.

The identification of Q is a combinatorial problem and approaches in the literature follow a

heuristic strategy, such as genetic algorithms [37]. We show below that this bilevel quadratic

optimization problem can be reformulated as a mixed-integer quadratic programming model,

which can be globally solved with standard optimizers such as IBM ILOG CPLEX. Our

approach relies on the observation that the optimal solution of the inner problem can be

expressed as a set of linear equations that depends on the selected features. Below we detail this

transformation step-by-step.

First, let us consider the optimal solutions for the inner problem by assuming that all vari-

ables are selected. In that case, following the optimality conditions of ordinary linear regres-

sion models (derived from the method of Lagrange multipliers), the inner problem (Eqs (5)

and (6)) can be simplified to a linear set of equations (Eq (7)):

min etrainT � etrain

s:t:
Eq ð5Þ

ytrain ¼ Xtrain � bþ etrain Eq ð6Þ

XtrainT � ytrain ¼ XtrainT � Xtrain � b̂ Eq ð7Þ

In Eq (7), we have one equation for each of the considered features plus the intercept (p+1

equations). For the sake of simplicity, by making a ¼ XtrainT � ytrain and C ¼ XtrainT � Xtrain,

where a2Rp+1 and C2R(p+1)x(p+1), we can rewrite the equations algebraically in Eq (8) and

uncoupled in Eq (9).

a ¼ C � b̂ Eq ð8Þ

ai ¼
Xpþ1

j¼1

Cij: b̂ j; i ¼ 1; . . . ; ðpþ 1Þ Eq ð9Þ

Importantly, coming back to our initial bilevel quadratic optimization problem, the opti-

mality constraints in Eq (9) only need to be satisfied for the active subset of features Q in the

inner problem. In other words, if a feature is not considered in the inner problem, then b̂j ¼ 0

but, additionally, its associated constraint in Eq (9) must be neglected. These optimality condi-

tions of the inner problem, which depend on the subset of active variables, can be written as a

set of linear equations using binary variables zi, where zi = 0 if a particular feature i is not con-

sidered as part of the optimal selection, zi = 1 otherwise. These equations are written in Eqs

(10)–(13). Note here that M is a large positive constant.

ai �
Ppþ1

j¼1
Cij: b̂ j � M � ð1 � ziÞ; i ¼ 1; . . . ; ðpþ 1Þ Eq ð10Þ

ai �
Xpþ1

j¼1

Cij � b̂ j þM � ð1 � ziÞ; i ¼ 1; . . . ; ðpþ 1Þ Eq ð11Þ
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� M � zi � b̂i � M � zi; i ¼ 1; . . . ; ðpþ 1Þ Eq ð12Þ

zi ¼ f0; 1g; i ¼ 1; . . . ; ðpþ 1Þ Eq ð13Þ

Now we can re-write the bilevel optimization problem as a single mixed-integer quadratic

programming problem (MIQP). Our proposed MIQP directly identifies the subset of features

that minimizes the validation error given that their associated parameters β are optimal in the

training problem. Full details of our MIQP are detailed in Eqs (14)–(19).

min evalT � eval

s:t:
Eq ð14Þ

yval ¼ Xval � bþ eval Eq ð15Þ

XtrainT � ytrain � XtrainT � Xtrain � b � M � ð1 � zÞ Eq ð16Þ

XtrainT � ytrain � XtrainT � Xtrain � bþM � ð1 � zÞ Eq ð17Þ

� M � z � b � M � z Eq ð18Þ

zi ¼ f0; 1g; i ¼ 1; . . . ; ðpþ 1Þ Eq ð19Þ

If this MIQP is applied directly, the resulting solution may suffer from overfitting, particu-

larly in cases where the number of features (p) is comparable (or higher) to the number of

instances (n). To avoid this issue, we iteratively apply this MIQP forcing a specific number of

features K (K = 1,..,p), as shown in Eq (20), until a specific information criterion (such as AIC,

BIC or eBIC) is not further improved.

Xpþ1

j¼1

zj ¼ K Eq ð20Þ

Bilevel optimization in ridge regression

Similar to ordinary linear regression, the bilevel optimization model associated with Ridge

regression is the following:

minQ evalTQ � evalQ

s:t:
Eq ð21Þ

yval ¼ Xval
Q � bQ þ evalQ Eq ð22Þ

min etrainTQ � etrainQ þ d � b
T
Q � bQ

s:t:
Eq ð23Þ

ytrain ¼ Xtrain
Q � bQ þ etrainQ Eq ð24Þ

, where δ is the regularization parameter.
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In this case, when all variables are selected, the optimal solution of the inner problem satis-

fies the following equation (derived from the method of Lagrange multipliers):

XtrainT � ytrain ¼ XtrainT � Xtrain � b̂ þ d � b̂ Eq ð25Þ

With respect to Eq (7) in ordinary linear regression, we added the non-linear term d � b̂.

However, for a finite number of δ values (δ1,. . .,δm), as typically used in regularization tech-

niques, we can make it linear through binary variables:

XtrainT � ytrain ¼ XtrainT � Xtrain � b̂ þ v Eq ð26Þ

v � dt � b̂ � M � ð1 � ytÞ; t ¼ 1; :::;m Eq ð27Þ

v � dt � b̂ þM � ð1 � ytÞ; t ¼ 1; :::;m Eq ð28Þ

Pm
t¼1
yt ¼ 1 Eq ð29Þ

Using y variables, we can select the value of δ and v; in particular, when yt = 1, then

v ¼ dt � b̂; when yt = 0, the value of v is not restricted. As shown in Eq (29), we can only have

one y variable as active.

Finally, we can amend Eq (26) to take into account feature selection. In a similar way as

done above for ordinary linear regression, we obtain again a mixed-integer quadratic pro-

gramming problem that is summarized below:

min evalT � eval

s:t:
Eq ð30Þ

yval ¼ Xval � bþ eval Eq ð31Þ

XtrainT � ytrain � XtrainT � Xtrain � bþ v � M � ð1 � zÞ Eq ð32Þ

XtrainT � ytrain � XtrainT � Xtrain � bþ vþM � ð1 � zÞ Eq ð33Þ

� M � z � b � M � z Eq ð34Þ

v � dt � b � M � ð1 � ytÞ; t ¼ 1; :::;m Eq ð35Þ

v � dt � bþM � ð1 � ytÞ; t ¼ 1; :::;m Eq ð36Þ

Xm

t¼1

yt ¼ 1 Eq ð37Þ

Xpþ1

j¼1

zj ¼ K Eq ð38Þ

zi ¼ f0; 1g; i ¼ 1; . . . ; ðpþ 1Þ Eq ð39Þ

yt ¼ f0; 1g; t ¼ 1; . . . ;m Eq ð40Þ
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As noted above, we iteratively apply this MIQP, Eqs (30)–(40), forcing a specific number of fea-

tures K (K = 1,..,p) until an information criterion is not further improved (see next sub-section).

With this approach, we obtain the optimal subset of features Q and the optimal value of the reg-

ularization parameter δ. This was the approach used in the Results section. The choice of Ridge

regression in the inner layer over ordinary linear regression was done to reduce the variance of

the derived model in the event of multicollinearity (high correlation between input variables).

Extended Bayesian information criterion

eBIC is an extension of BIC (Bayesian Information Criterion) for high-dimensional datasets where

p> n. For ordinary linear regression, eBIC is defined in Chen and Chen, 2008 [23], as follows:

eBIC ¼ n � logðMSEÞ þ K � logðnÞ þ 2 � g � log
p

K

 !

Eq ð41Þ

, where n is the number of instances,MSE is the Mean Square Error of the regression model for

selected features using both training and validation data,K is the number of selected features and p
is the total number of features. Note here that g is a consistency parameter. We used the standard

value g = 0.5 if p> n; if p� n, we fixed g = 0, which is equivalent to the Bayesian Information Crite-

rion (BIC). Note here that in the Akaike Information Criterion (AIC), we have g = 0 and substitute

log(n) by 2.

Here, we modify the standard eBIC to consider the use of Ridge regression instead of ordi-

nary linear regression. This was done by substituting the number of features K by the effective

number of parameters in the model Keff and degrees of freedom (df(δ)):

eBIC ¼ n � logðMSEÞ þ df ðdÞ � logðnÞ þ 2 � g � log
p

Keff

 !

Eq ð42Þ

The number of degrees of freedom in Ridge regression is well-known [38]:

df ðdÞ ¼ traceðXQðKÞ � ðX
T
QðKÞ � dXQðKÞ þ d � IKÞ

� 1
� XT

QðKÞÞ Eq ð43Þ

, where XQ(K) is the sub-matrix of X only including the columns of the K features selected.

Note here that if there is no regularization (δ = 0), the number of effective parameters is pre-

cisely K. As df(δ) will be typically non-integer, we round up Keff to the nearest integer:

Keff ¼ min x : fx � df ðdÞ; x 2 Zþg Eq ð44Þ

Computational implementation

In cases with a high number of features, we divide the full set of features into random blocks of

features of length L (here L = 10) and apply our MIQP approach described above to each block

using m different δ values (here m = 10). The selected features in each block are integrated and

again divided into random blocks. Our MIQP approach is then applied to each new block.

This process is repeated until convergence, namely when the subset of selected features is the

same after several iterations or the number of features is less than L. In the case of eBIC, in a

first stage, in order to select the number of features in each random block, we used BIC, which

is a less restrictive strategy. In a second stage, with the resulting subset of features obtained in

the first stage, our random block strategy was repeated using a higher m value (m = 50 for low
settings, m = 100 for the rest) and eBIC for feature selection. Note here that the minimum and

maximum δ values were extracted from the glmnet package [39]. In particular, they correspond

to the minimum and maximum value of the lambda parameter involved in the Lasso and
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Ridge regression, respectively. Then, the rest of δ values are equally spaced between the mini-

mum and maximum value in a logarithmic scale.

We used IBM ILOG CPLEX to solve the MIQP defined by Eqs (30)–(40). In order to over-

come numerical issues derived from the use of the big M method in Eqs (32)–(36), we imple-

mented indicator constraints available in IBM ILOG CPLEX [40]. The code was implemented

in the R package BOSO, available on the Comprehensive R Archive Network (https://cran.r-

project.org/web/packages/BOSO/index.html) and on GitHub (https://github.com/lvalcarcel/

BOSO). We fixed a time limit for each optimization run of 60 seconds on a 64 bit Intel(R)

Xeon(R) CPU E5-2630 v4 @ 2.20GHz running Linux, setting a maximum of 4 cores and 4 GB

of RAM.

Drug sensitivity in cancer

For the drug sensitivity analysis, RNA-seq data for different CCLE cancer cell lines was down-

loaded from the DepMap (Dependency Map) portal (www.depmap.org)[41]. Gene expression

levels are provided in log2(TPM+1). We kept for further analysis those genes with: 1) mean

expression value across the cell lines greater than 1 TPM; 2) variance across the cell lines

greater than one unit. IC50 values were also taken from the DepMap portal.

Cell culture

PF-382, P12-ICHIKAWA, JVM-2, A-498, LOUNH91, U-87MG, PEER, and SEM cell lines

were obtained from the DSMZ or the American Type Culture Collection (ATCC) and were

authenticated by performing an STR (short tandem repeat) allele profile. UMUC1 and

UMUC7 lines were provided by Dr. Paramio at CIEMAT (Centro de Investigaciones Energéti-

cas, Medioambientales y Tecnológicas). U-87MG was cultured with DMEM medium and the

rest cell lines were maintained in culture in RPMI 1640 medium supplemented with fetal

bovine serum at 37˚C in a humid atmosphere containing 5% CO2. Aside from UMUC1 and

UMUC7, the rest of cell lines were tested for mycoplasma (MycoAlert Sample Kit, Cambrex).

Methotrexate treatment and cell proliferation assay

Methotrexate (S1210) was purchased from Selleckchem (Houston, TX), dissolved in DMSO at

10mM and stored at -80˚C.

Cell proliferation was analyzed using the CellTiter 96 Aqueous One Solution Cell Prolifera-

tion Assay (Promega, Madison, W). This is a colorimetric method for determining the number

of viable cells in proliferation. For the assay, suspension cells were cultured by triplicate at a

density of 1x106 cells/mL in 96-well plates (100.000 cells/well, 100μL/well), except for JVM-2

cell line that was cultured at a density of 0.2x106 cells/mL (20.000 cells/well, 100μL/well).

Adherent cells were obtained from 80–90% confluent flasks and 100 μL of cells were seeded at

a density of 2500 cells /well in 96-well plates by triplicate. Before addition of the compounds,

adherent cells were allowed to attach to the bottom of the wells for 12 hours. In all cases, only

the 60 inner wells were used to avoid any border effects.

After 96 hours of MTX treatment at different doses, plates with suspension cells were centri-

fuged at 800 g for 10 minutes and medium was removed. The plates with adherent cells were

flicked to remove medium. Then, cells were incubated with 100 μL/well of medium and 20 μL/

well of CellTiter 96 Aqueous One Solution reagent. After 1–3 hours of incubation at 37˚C, the

plates were incubated for 1–4 hours, depending on the cell line at 37˚C in a humidified, 5% CO2

atmosphere. The absorbance was recorded at 490 nm using 96-well plate readers until absorbance

of control cells without treatment was around 0.8. The background absorbance was measured in

wells with only cell line medium and solution reagent. First, the average of the absorbance from
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the control wells was subtracted from all other absorbance values. Data were calculated as the per-

centage of total absorbance of treated cells/absorbance of non-treated cells. The GI50 values were

determined using non-linear regression plots with the GraphPad Prism v5 software.
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trexate in DrugBank. The type of interaction is described in the column Mechanism.

(XLSX)

S1 Fig. Illustration of the random block strategy implemented in the BOSO algorithm. An

example dataset with 7 features is split into training and validation sets. We defined random

blocks of features of size L = 3. Green boxes represent the optimal selected features for a spe-

cific K value in certain block. In the first iteration, the dataset is separated in {X5, X7, X2}, {X1,

X4, X3} and {X6}. Applying the BOSO algorithm to each block, we selected {X5, X2} in the
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first block, {X4, X3} in the secondo block and {X6} in the third block. Resulting variables are

resampled again and randomly distributed into different blocks. In the second iteration, the

blocks are {X2, X6, X4} and {X3, X5}. After BOSO, there are three remaining variables {X2, X6,

X3}, which equals the block size. The final problem is re-solved, resulting in the optimal feature

selection, which is {X3, X6}

(TIF)

S2 Fig. F statistic in the Low setting. This accuracy metric is presented for the different fea-

ture selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed Lasso) and

scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio (SNR) levels)

considered in the main text. S1 Appendix provides full details of the different situations con-

sidered. Points and error bars represent the mean and standard deviation in 10 random simu-

lations, respectively. Note here that n is the number of instances, p is the total available

features and s is the actual number of features contributing to the response variable.

(TIF)

S3 Fig. Number of non-zero coefficients in the Low setting. This accuracy metric is pre-

sented for the different feature selection methods (Best Subset, BOSO, Forward Stepwise,

Lasso and Relaxed Lasso) and scenarios (according to Beta-type, autocorrelation levels and sig-

nal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix provides full details

of the different situations considered. Points and error bars represent the mean and standard

deviation in 10 random simulations, respectively. Note here that n is the number of instances,

p is the total available features and s is the actual number of features contributing to the

response variable. Dotted line represents the actual number of features.

(TIF)

S4 Fig. False Positives in the Low setting. This accuracy metric is presented for the different

feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed Lasso)

and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio (SNR)

levels) considered in the main text. S1 Appendix provides full details of the different situations

considered. Points and error bars represent the mean and standard deviation in 10 random

simulations, respectively. Note here that n is the number of instances, p is the total available

features and s is the actual number of features contributing to the response variable.

(TIF)

S5 Fig. False Negatives in the Low setting. This accuracy metric is presented for the different

feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed Lasso)

and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio (SNR)

levels) considered in the main text. S1 Appendix provides full details of the different situations

considered. Points and error bars represent the mean and standard deviation in 10 random

simulations, respectively. Note here that n is the number of instances, p is the total available

features and s is the actual number of features contributing to the response variable.

(TIF)

S6 Fig. Relative Test Error in the Low setting. This accuracy metric is presented for the dif-

ferent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.
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Dotted curve represents the results for the null model.

(TIF)

S7 Fig. F statistic in the Medium setting. This accuracy metric is presented for the different

feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed Lasso)

and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio (SNR)

levels) considered in the main text. S1 Appendix provides full details of the different situations

considered. Points and error bars represent the mean and standard deviation in 10 random

simulations, respectively. Note here that n is the number of instances, p is the total available

features and s is the actual number of features contributing to the response variable.

(TIF)

S8 Fig. Number of non-zero coefficients in the Medium setting. This accuracy metric is pre-

sented for the different feature selection methods (Best Subset, BOSO, Forward Stepwise,

Lasso and Relaxed Lasso) and scenarios (according to Beta-type, autocorrelation levels and sig-

nal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix provides full details

of the different situations considered. Points and error bars represent the mean and standard

deviation in 10 random simulations, respectively. Note here that n is the number of instances,

p is the total available features and s is the actual number of features contributing to the

response variable. Dotted line represents the actual number of features.

(TIF)

S9 Fig. False Positives in the Medium setting. This accuracy metric is presented for the dif-

ferent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

(TIF)

S10 Fig. False Negatives in the Medium setting. This accuracy metric is presented for the dif-

ferent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

(TIF)

S11 Fig. Relative Test Error in the Medium setting. This accuracy metric is presented for the

different feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

Dotted line represents the results for the null model.

(TIF)

S12 Fig. F statistic in the High-5 setting. This accuracy metric is presented for the different

feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed Lasso)

PLOS COMPUTATIONAL BIOLOGY BOSO: A novel feature selection algorithm for linear regression with high-dimensional data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010180 May 31, 2022 20 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s020
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s023
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s024
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s025
https://doi.org/10.1371/journal.pcbi.1010180


and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio (SNR)

levels) considered in the main text. S1 Appendix provides full details of the different situations

considered. Points and error bars represent the mean and standard deviation in 10 random

simulations, respectively. Note here that n is the number of instances, p is the total available

features and s is the actual number of features contributing to the response variable.

(TIF)

S13 Fig. Number of non-zero coefficients in the High-5 setting. This accuracy metric is pre-

sented for the different feature selection methods (Best Subset, BOSO, Forward Stepwise,

Lasso and Relaxed Lasso) and scenarios (according to Beta-type, autocorrelation levels and sig-

nal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix provides full details

of the different situations considered. Points and error bars represent the mean and standard

deviation in 10 random simulations, respectively. Note here that n is the number of instances,

p is the total available features and s is the actual number of features contributing to the

response variable. Dotted line represents the actual number of features.

(TIF)

S14 Fig. False Positives in the High-5 setting. This accuracy metric is presented for the differ-

ent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

(TIF)

S15 Fig. False Negatives in the High-5 setting. This accuracy metric is presented for the dif-

ferent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

(TIF)

S16 Fig. Relative Test Error in the High-5 setting. This accuracy metric is presented for the

different feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

Dotted curve represents the results for the null model.

(TIF)

S17 Fig. F statistic in the High-10 setting. This accuracy metric is presented for the different

feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed Lasso)

and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio (SNR)

levels) considered in the main text. S1 Appendix provides full details of the different situations

considered. Points and error bars represent the mean and standard deviation in 10 random

simulations, respectively. Note here that n is the number of instances, p is the total available
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features and s is the actual number of features contributing to the response variable.

(TIF)

S18 Fig. Number of non-zero coefficients in the High-10 setting. This accuracy metric is

presented for the different feature selection methods (Best Subset, BOSO, Forward Stepwise,

Lasso and Relaxed Lasso) and scenarios (according to Beta-type, autocorrelation levels and sig-

nal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix provides full details

of the different situations considered. Points and error bars represent the mean and standard

deviation in 10 random simulations, respectively. Note here that n is the number of instances,

p is the total available features and s is the actual number of features contributing to the

response variable. Dotted line represents the actual number of features.

(TIF)

S19 Fig. False Positives in the High-10 setting. This accuracy metric is presented for the dif-

ferent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

(TIF)

S20 Fig. False Negatives in the High-10 setting. This accuracy metric is presented for the dif-

ferent feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

(TIF)

S21 Fig. Relative Test Error in the High-10 setting. This accuracy metric is presented for the

different feature selection methods (Best Subset, BOSO, Forward Stepwise, Lasso and Relaxed

Lasso) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise ratio

(SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10

random simulations, respectively. Note here that n is the number of instances, p is the total

available features and s is the actual number of features contributing to the response variable.

Dotted curve represents the results for the null model.

(TIF)

S22 Fig. F statistic in the Low setting for BOSO under different information criteria. This accu-

racy metric is presented for BOSO under different information criteria (BOSO—AIC, BOSO—BIC

and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation levels and signal-to-noise

ratio (SNR) levels) considered in the main text. S1 Appendix provides full details of the different sit-

uations considered. Points and error bars represent the mean and standard deviation in 10 random

simulations, respectively. Note here that n is the number of instances, p is the total available features

and s is the actual number of features contributing to the response variable.

(TIF)

S23 Fig. Number of non-zero coefficients in the Low setting for BOSO under different

information criteria. This accuracy metric is presented for BOSO under different information
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criteria (BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type,

autocorrelation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1

Appendix provides full details of the different situations considered. Points and error bars rep-

resent the mean and standard deviation in 10 random simulations, respectively. Note here that

n is the number of instances, p is the total available features and s is the actual number of fea-

tures contributing to the response variable. The dotted line is the actual number of features.

(TIF)

S24 Fig. False Positives in the Low setting for BOSO under different information criteria.

This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S25 Fig. False Negatives in the Low setting for BOSO under different information criteria.

This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S26 Fig. Relative Test Error in the Low setting for BOSO under different information cri-

teria. This accuracy metric is presented for BOSO under different information criteria (BOSO

—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrela-

tion levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix

provides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable. Dotted curve represents the results for the null model.

(TIF)

S27 Fig. F statistic in the Medium setting for BOSO under different information criteria.

This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S28 Fig. Number of non-zero coefficients in the Medium setting for BOSO under different

information criteria. This accuracy metric is presented for BOSO under different information

criteria (BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type,
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autocorrelation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1

Appendix provides full details of the different situations considered. Points and error bars rep-

resent the mean and standard deviation in 10 random simulations, respectively. Note here that

n is the number of instances, p is the total available features and s is the actual number of fea-

tures contributing to the response variable. Dotted line represents the actual number of fea-

tures.

(TIF)

S29 Fig. False Positives in the Medium setting for BOSO under different information crite-

ria. This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S30 Fig. False Negatives in the Medium setting for BOSO under different information cri-

teria. This accuracy metric is presented for BOSO under different information criteria (BOSO

—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrela-

tion levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix

provides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S31 Fig. Relative Test Error in the Medium setting for BOSO under different information

criteria. This accuracy metric is presented for BOSO under different information criteria

(BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, auto-

correlation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1

Appendix provides full details of the different situations considered. Points and error bars rep-

resent the mean and standard deviation in 10 random simulations, respectively. Note here that

n is the number of instances, p is the total available features and s is the actual number of fea-

tures contributing to the response variable. Dotted line represents the results for the null

model.

(TIF)

S32 Fig. F statistic in the High-5 setting for BOSO under different information criteria.

This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S33 Fig. Number of non-zero coefficients in the High-5 setting for BOSO under different

information criteria. This accuracy metric is presented for BOSO under different information
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criteria (BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type,

autocorrelation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1

Appendix provides full details of the different situations considered. Points and error bars repre-

sent the mean and standard deviation in 10 random simulations, respectively. Note here that n is

the number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable. The dotted line represents the actual number of features.

(TIF)

S34 Fig. False Positives in the High-5 setting for BOSO under different information crite-

ria. This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S35 Fig. False Negatives in the High-5 setting for BOSO under different information crite-

ria. This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S36 Fig. Relative Test Error in the High-5 setting for BOSO under different information

criteria. This accuracy metric is presented for BOSO under different information criteria

(BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, auto-

correlation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1

Appendix provides full details of the different situations considered. Points and error bars rep-

resent the mean and standard deviation in 10 random simulations, respectively. Note here that

n is the number of instances, p is the total available features and s is the actual number of fea-

tures contributing to the response variable. Dotted curve represents the results for the null

model.

(TIF)

S37 Fig. F statistic in the High-10 setting for BOSO under different information criteria.

This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S38 Fig. Number of non-zero coefficients in the High-10 setting for BOSO under different

information criteria. This accuracy metric is presented for BOSO under different information
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criteria (BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type,

autocorrelation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1

Appendix provides full details of the different situations considered. Points and error bars rep-

resent the mean and standard deviation in 10 random simulations, respectively. Note here that

n is the number of instances, p is the total available features and s is the actual number of fea-

tures contributing to the response variable. The dotted line represents the actual number of

features.

(TIF)

S39 Fig. False Positives in the High-10 setting for BOSO under different information crite-

ria. This accuracy metric is presented for BOSO under different information criteria (BOSO—

AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrelation

levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix pro-

vides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S40 Fig. False Negatives in the High-10 setting for BOSO under different information cri-

teria. This accuracy metric is presented for BOSO under different information criteria (BOSO

—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocorrela-

tion levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix

provides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable.

(TIF)

S41 Fig. Relative Test Error in the High-10 setting for BOSO under different information

criteria. This accuracy metric is presented for BOSO under different information criteria

(BOSO—AIC, BOSO—BIC and BOSO—eBIC) and scenarios (according to Beta-type, autocor-

relation levels and signal-to-noise ratio (SNR) levels) considered in the main text. S1 Appendix

provides full details of the different situations considered. Points and error bars represent the

mean and standard deviation in 10 random simulations, respectively. Note here that n is the

number of instances, p is the total available features and s is the actual number of features con-

tributing to the response variable. Dotted curve represents the results for the null model.

(TIF)

S42 Fig. Prediction of IC50 values for 50 drugs present in the GDSC database. a) For 20

random partitions into training, validation and test data of the 50 drugs detailed in S8 Table,

comparison of the Pearson Correlation values between GDSC IC50 and predicted IC50 values

with BOSO-BIC, BOSO-eBIC, Forward Stepwise, Lasso and Relaxed Lasso, respectively, in the

Test partition; b) Summary table of mean Pearson Correlation values for the analyzed cases in

‘a’ panel in the three data partitions; c) Comparison of number of active features for the ana-

lyzed cases in ‘a’; d) Summary table for the mean number of selected variables for the analyzed

cases in ‘a’.

(TIF)

S43 Fig. Comparison of predicted log(IC50[μM]) for the top 25% most sensitive and resis-

tant cell lines with the different methods included in the main text. IC50 for each cell line

PLOS COMPUTATIONAL BIOLOGY BOSO: A novel feature selection algorithm for linear regression with high-dimensional data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010180 May 31, 2022 26 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s052
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s053
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s054
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s055
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010180.s056
https://doi.org/10.1371/journal.pcbi.1010180


were predicted using the mean value across 100 runs considered in Fig 7. Q1 involves cell lines

with a predicted IC50 below the first quartile (sensitive cell lines), whereas Q4 cell lines with a

predicted IC50 above the third quartile (resistant cell lines). In order to avoid overfitting, we

considered 708 cell lines in CCLE that were not included in the GDSC database.

(TIF)

S44 Fig. Comparison between experimentally measured IC50 values of MTX and predicted

values with different computational methods. a) BOSO—AIC; b) BOSO—BIC; c) BOSO—

eBIC; d) Forward Stepwise; e) Lasso; f) Relaxed Lasso. Predicted values are the mean values

obtained with 100 random seeds.

(TIF)

S45 Fig. Summary of 5 best-ranked features in BOSO and accuracy comparison with fea-

tures extracted from DrugBank. a) For each of the 5 best-ranked genes obtained from BOSO

(LRRC8C, MFNG, RNLS, KBTBD11, CUEDC1), dot plot showing its corresponding CCLE

expression level (x-axis) and MTX IC50 values (y-axis) for cell lines available in the GDSC

database. The table shows the Pearson correlation rho value and its associated p-value for each

these 5 genes. b) Ridge regression model of MTX IC50 value using as predictors i) genes anno-

tated to MTX in DrugBank (see S12 Table), ii) 5 best-ranked genes obtained from BOSO and

iii) the union of both subsets of genes. The table show the correlation between predicted and

actual MTX IC50 values for training, validation and test set.

(TIF)
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