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a b s t r a c t 

Unsupervised ensemble learning refers to methods devised for a particular task that combine data pro- 

vided by decision learners taking into account their reliability, which is usually inferred from the data. 

Here, the variant calling step of the next generation sequencing technologies is formulated as an unsuper- 

vised ensemble classification problem. A variant calling algorithm based on the expectation-maximization 

algorithm is further proposed that estimates the maximum-a-posteriori decision among a number of 

classes larger than the number of different labels provided by the learners. Experimental results with 

real human DNA sequencing data show that the proposed algorithm is competitive compared to state-of- 

the-art variant callers as GATK, HTSLIB, and Platypus. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

t

o

i

C

s

s

t

v

d

c

s

c

e

 

j

u

t

a

s

t

O

O

l

e

c

t

i

c

s

i

m

a

v

r

c

t

s

d

t

b

s

o

u

p

h

0

(

. Introduction 

Ensemble learning refers to methods devised for a particular 

ask that fuse data provided by decision agents, e.g., algorithms 

r annotators in crowdsourced applications, and infer the reliabil- 

ty of these agents to be considered when the data is combined. 

omprehensive surveys can be found in [1,2] . In particular, un- 

upervised ensemble classification deals with the problem of de- 

igning a meta-learner to classify objects without using ground- 

ruth data to train the learners, and based only on the tags pro- 

ided by individual decision agents [3] . Applications are found in 

iverse areas such as medicine and biology, e.g., [4,5] where de- 

ision agents are either algorithmic techniques or individuals, re- 

pectively; team decision-making strategies [6] ; and 5G communi- 

ation systems [7] where decision agents are sensors, among oth- 

rs. 

Based on the seminal paper of Dawid and Skene [8] , a vast ma-

ority of works estimate the statistics of the decision agents and 

se these estimates either to solve a Maximum Likelihood (ML) de- 

ection problem or to initialize the Expectation-Maximization (EM) 

lgorithm in [8] . For instance, works in [9,10] solve a binary clas- 

ification task and advocate a spectral decomposition technique of 

he second-order statistics of agent responses that yields the re- 
∗ Corresponding author. 
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iability parameters of the agents. In a multi-class setting, Zhang 

t al. [11] utilizes third-order moments and orthogonal tensor de- 

omposition to estimate the unknown reliability parameters and 

hen initialize the EM algorithm of Dawid and Skene [8] . Also, 

n [12] a MAP approach is adopted to solve a multi-class ensemble 

lassification problem using moment-based estimates of the confu- 

ion matrices of the decision agents. A broadly adopted assumption 

n the literature is to consider conditionally independent agents, 

eaning that there is no communication among different decision 

gents. Under this assumption, the likelihood function of the indi- 

idual labels breaks down into factors so that the number of pa- 

ameters of the likelihood function is reduced and the ensemble 

lassification problem becomes more doable. 

As evidence in [13] , pattern recognition plays a pivotal role in 

he area of bioinformatics with significant contributions to DNA 

equence analysis, including sequence comparison and gene pre- 

iction, and DNA microarray data analysis. For instance, a spec- 

ral distortion measure is proposed in [14] for finding similarities 

etween DNA or protein sequences, which helps life-science re- 

earchers understand the information content and functions of bi- 

logical sequences. In [15] the distribution of D 2 statistic, widely 

sed in alignment-based methods, is analysed to give usable ap- 

roximations for ranges of parameters frequently encountered in 

he study of biological sequences. Further, an spectrum analysis ap- 

roach based on the Fourier transform is proposed in [16] to solve 

he prediction of exons, which are protein coding subregions. Re- 

arding array data analysis, Ou-Yang et al. [17] presents a sparse 
under the CC BY-NC-ND license 
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Fig. 1. NGS technologies require a library preparation of the DNA sample, which in- 

cludes cutting the DNA into small fragments that are used as input to the sequenc- 

ing machine which performs the sequencing in parallel. Figure extracted from [28] . 
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egularized Tucker tensor regression approach to perform feature 

election on genomic data. All these techniques apply to sequenced 

enomes, and this paper focuses on the use of ensemble learning 

ethods to improve the genome sequencing pipeline. 

As it will be explained, the procedure followed by Next Gen- 

ration Sequencing (NGS) technologies for DNA 

1 sequencing in- 

ludes a step named variant calling . In brief, variant calling con- 

ists on the identification of variants or discrepancies between (i) 

he sequenced genome and (ii) that of a reference genome of the 

ame species as the sequenced genome. Due to the high similar- 

ties across genomes of the same species, the called variants are 

seful to compress the information of a sequenced genome since 

 genome can be reconstructed given the identified variants and 

he reference genome. Therefore, the called variants are generally 

he input to downstream analyses. In the clinical setting, the iden- 

ification of variants is critical to diagnose, design treatments, and 

tudy cancer development, among others. For example, in [18] they 

how that variants in specific genes can cause sever hypercholes- 

erolemia, and in [19] they discover previously undetected muta- 

ions (variants) in genes BRCA1, BRCA2, CHEK2, TP53, and PTEN 

hat increase the risk of breast cancer. As such, precision in variant 

alling is of utmost importance. 

Several algorithms for variant calling exist, with the most rele- 

ant specially in the clinical and research setting [20] being: i) the 

enome Analysis Toolkit (GATK) software package 2 first introduced 

n 2011 [21] and subsequently updated since 2013 [22] (last release 

n Feb. 2022), which is recommended by the Broad Institute in its 

est Practices pipeline for genome sequencing [23] and currently 

ne of the most-widely used; ii) the High Throughput Sequencing 

IBrary (HTSLIB) 3 , which uses the Samtools suite developed by The 

ellcome Trust Sanger Institute [24] (last release in Feb. 2022); 

nd iii) Platypus, developed by Oxford University [25] . These unsu- 

ervised methods employ Bayesian statistics to infer the existence 

f a variant, and although they produce similar sets of variants, 

ifferences exist. Moreover, it has been reported that the set of 

dentified variants generally contain many incorrectly called vari- 

nts and miss several true ones [26] . Hence novel variant callers 

hat can improve on the accuracy of the identified variants are im- 

ortant. 

In this work we show that variant calling can be formulated 

s an unsupervised multi-class ensemble classification problem, 

nd present EMVC, an ensemble classifier based on the EM al- 

orithm that solves the variant calling step. The performance of 

he EMVC algorithm is evaluated using real genomic data avail- 

ble for chromosome 20 of one particular human individual de- 

oted by the name NA12878. The genome of this individual has 

een thoroughly characterized by the National Institute of Stan- 

ards and Technology’s (NIST) Genome In A Bottle (GIAB) consor- 

ium, and a set of high-confidence variants, i.e., gold standard or 

round truth, exists [27] . The numerical experiments presented in 

ur work show that EMVC results are competitive to those ob- 

ained with the state-of-the-art variant callers GATK, HTSLIB, and 

latypus. 

The paper is organized as follows. Section 2 provides an 

verview of the pipeline followed by NGS technologies for DNA 

equencing. Then, in Section 3 we present the data model and for- 

ulate the variant calling step as an unsupervised ensemble classi- 

cation problem. This problem is solved by means of an EM-based 

lgorithm presented in Section 4 . The performance of the proposed 

lgorithm is assessed using a real data, and results are compared 
1 DNA stands for Deoxyribonucleic Acid. 
2 Available at https://gatk.broadinstitute.org/hc and https://github.com/ 

roadinstitute/gatk/releases (last Release in Feb. 2022). 
3 Available at http://www.htslib.org and https://github.com/samtools/samtools/ 

eleases/ (last release in Feb.2022). 

m

t

b

o

2 
o GATK, HTSLIB, and Platypus in Section 5 . Finally, Section 6 con- 

ludes the paper. 

Notation: Unless otherwise noted, lowercase bold letters, x , de- 

ote vectors, uppercase bold letters, X , represent matrices, and cal- 

igraphic uppercase letters, X , stand for sets. The (i, j) th entry of 

atrix X is denoted by X (i, j) . 

. Genome sequencing overview 

DNA chains consists of two strands of millions of nucleobases of 

ype { A, C, G, T } 4 arranged following a helicoidal shape so that each

ucleobase on one strand chemically bonds with another nucle- 

base on the other strand. Each pair of bonded nucleobases, which 

an be either GC or AT , are called base-pair and they constitute 

he building block of the DNA. The DNA is stored in the nucle- 

us of cells and it is organized into chromosomes, whose number 

nd length differ between organisms. Cells might be classified into 

iploid or haploid, where diploid means that the cell has two dif- 

erent copies of each type of chromosome as opposed to haploid 

hen the cell has one copy only. For instance, human cells are 

iploid with 23 pairs of chromosomes so that, in a simplified way, 

ach copy is inherited from one of the progenitors, i.e., mother and 

ather. 

NGS technologies provide massive parallel sequencing tech- 

iques that yield yet to be envisioned research opportunities in 

he biological science field. As a groundbreaking application, indi- 

idualized therapies based on the patient’s genome have nowadays 

ecome a reality thanks to these low-cost NGS technologies. These 

echnologies take advantage of the similarity among the genome of 

ndividuals belonging to the same species. As an example, human 

NA is 3 × 10 9 base-pairs long but, on average, DNA of two human 

eings differs in only 0.1% [28] . This evidence allows to establish a 

eference genome for each species, which is usually avaliable and 

btained through more advanced expensive sequencing methods. 

NGS technologies for DNA sequencing proceed as follows. First, 

s shown in Fig. 1 , a library of the DNA sample is prepared so that

ultiple copies of the same DNA are cut into small fragments, typ- 

cally of the order of hundreds of base-pairs. Then, these fragments 

re sequenced by a parallel sequencing machine, which performs 

he base calling . Each sequenced DNA fragment is called read and is 

n ordered sequence of hundreds of nucleobases. The ordered se- 

uence of nucleobases corresponds to one strand of the DNA frag- 

ent, being the other strand obvious since base-pairs can be either 

T or GC. Indeed, the reads can come from either one strand, and 

hey can be thought of as short strings sampled at random from 

he original genome. Thus, NGS technologies produce a collection 

f millions of fragments of hundreds of nucleobases, called reads, 

nstead of the whole genome sequence. It is important to take in 

ind that in diploid cells reads indistinctly correspond to one of 

he two copies of the chromosome of the DNA sample. Also, since 

ase calling is subject to errors, each read comes with a sequence 

f quality scores (Q-scores) of the same length indicating the re- 
4 Adenine, Cytosine, Guanine, and Thymine. 

https://www.gatk.broadinstitute.org/hc
https://www.github.com/broadinstitute/gatk/releases
http://www.htslib.org
https://www.github.com/samtools/samtools/releases/
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Fig. 2. Typical pipeline of genome sequencing with corresponding generated files 

at each step. 
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Fig. 3. Sequence of reads allocated in the reference genome and corresponding Q- 

scores. 

Table 1 

Q-scores binning proposed by Illumina and used by EMVC. 

Bin (learner) 1 2 3 4 5 6 7 

Q-score range 2–9 10–19 20–24 25–29 30–34 35–39 ≥ 40 
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iability of each nucleobase of the read. The reads and the corre- 

ponding Q-scores are stored in the widely used FASTQ format. 

In the typical analysis pipeline, the next step after the base 

alling is the alignment process that determines the location of 

ach read in the reference genome of the species to which the 

NA sample belongs to. This is achieved through a mapping al- 

orithm that compares the sequence of each read to the refer- 

nce genome, and tries to locate the segment of the reference se- 

uence that matches the read, while tolerating a certain amount 

f mismatches. The alignment information is stored in the standard 

AM format [24] together with the original reads and the Q-scores. 

ig. 2 describes the pipeline of genome sequencing with the corre- 

ponding files generated at each step. The sizes of the files corre- 

pond to a human genome with a coverage of 200, which indicates 

he average number of reads per nucleotide position. 

The final step of the analysis pipeline is the so-called variant 

alling or caller , an algorithm that given the nucleobase of the 

eads, their quality scores and the mapping information, decides 

he discrepancies or variants between the original genome and the 

eference sequence. Typically, the variants can be either a single 

ucleotide variation (e.g., from an A in the reference genome to a 

 in the original genome) or INDELS, that stands for insertions or 

eletions. The set of variants, together with some extra informa- 

ion such as the quality of the variant calling, are stored in a VCF 

le [29] , which is in the order of one gigabyte for human genomes

ith 3 million variants on average. The most widely used variant 

alling algorithm is the Genome Analysis Toolkit (GATK) software 

ackage. 

. Variant calling data setup 

The variant calling step can be formulated as an unsupervised 

nsemble classification problem in which learners are defined us- 

ng the Q-scores. After the alignment, the reads and the corre- 

ponding Q-score sequences are allocated with respect to the refer- 

nce sequence as represented in Fig. 3 . Quality scores indicate the 

evel of confidence of each nucleobase of the read and they are as- 

umed to relate to the error probability P e of that nucleobase as 

ollows 

 = �−10 log 10 P e � (1) 

n the scale Phred +33 , Q-scores take values Q ∈ { 0 , 1 , . . . , 40 } and

re stored in a FASTQ file using the ASCII characters of integers 

33 : 73] , where each integer corresponds to Q + 33 . Fig. 3 shows a

oy example where CCTC are the labels or observed data available 

or the nucleobase at position n = 1 . 03 × 10 6 from 4 reads with Q-

cores equal to (40,2,35,39) since the ASCII characters (I, # , D, H) 

orrespond to the integers (73,35,68,72), respectively. 

The mathematical relation between quality scores and proba- 

ility of error in Eq. (1) must be handled wisely, and it basically 

eveals that the higher the Q-score, the lower the P e of the nucle- 

base of that read. Moreover, as Q-scores represent a large frac- 
3 
ion of the storage space required by FASTQ and SAM files, they 

re usually compressed into a reduced number of quality bins that 

educe the data storage requirements significantly without affect- 

ng the reliability of the sequencing results. A typical binning is 

he one used by Illumina [30] given in Table 1 . It is worth to men-

ion that latest Illumina machine uses this scheme and another one 

ith 4 bins only. 

In our setup, we define one learner for each bin so that all la- 

els with a Q-score in the range of a bin are associated to the cor-

esponding learner. The binning used in this work is the same pro- 

osed by Illumina and given in Table 1 . Note that those labels with

 Q-score equal to { 0 , 1 } are not considered since due to the high

robability of error, as indicated by Eq. (1) , no call is produced 

n these cases. For instance, in the toy example of Fig. 3 at posi-

ion n = 1 . 03 × 10 6 , learner m = 1 (with Q-scores between 2 − 9 )

rovides one label equal to C, learner m = 6 (with Q-scores be- 

ween 35 − 39 ) provides labels { C, T } , and learner m = 7 (with Q-

core equal to 40) gives a C. The rest of learners do not tag that

osition. 

.1. Problem formulation 

Let’s assume that a DNA sample with N base-pairs is se- 

uenced and M = 7 learners tag each nucleobase position with 

one, one or multiple labels that correspond to the set { A, C, G, T } .
ucleotide positions are indexed by n ∈ { 1 , . . . , N} and learners by

 ∈ { 1 , . . . , M} . We further assume that learner m provides P n m 

la-

els for nucleotide position n , and that the responses of learner m 

or position n are denoted by the set 

 

n 
m 

= { r n m 

(1) , . . . , r n m 

(P n m 

) } 
here r n m 

(p) denotes the p th label that learner m provides for nu- 

leotide position n . Note that different learners may provide a dif- 

erent number of labels for the same nucleotide position n , i.e., in 

eneral P n m 

� = P n 
m 

′ , and that the same learner m may provide a dif-

erent number of labels for different nucleotide positions, i.e., in 

eneral P n m 

� = P n 
′ 

m 

. Labels are modelled here as discrete random vari-

bles (r.v.’s) that take L = 4 different values, i.e., 

 

n 
m 

(p) ∈ { 1 , 2 , 3 , 4 } 
or p = 1 , . . . , P n m 

, which correspond to the four different nu-

leotides { A, C, G, T } , respectively. For convenience, let’s denote the 
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umber of times learner m tags position n with label l by s n m 

(l) , so

hat 
∑ L 

l=1 s 
n 
m 

(l) = P n m 

. 

Sequencing basically consists in deciding the nucleobase for 

ach position of the DNA sample at hand. We model these nu- 

leobases as latent or hidden r.v.’s denoted by { y n } N n =1 . In hap-

oid cells, with only one copy of each chromosome, at each po- 

ition n we might have four different values which are { A, C, G, T } .
owever, in diploid cells we have to decide a combination of two 

ucleobases for each position n , one for each of the two copies. 

herefore, in diploid cells, y n belongs to K = 10 different classes 

enoted by 

 

n ∈ { 1 , 2 , . . . , 10 } (2) 

hich one by one correspond to the pairs 

 AA, CC, GG, T T , AC, AG, AT , CG, CT , GT } , which are all available

nordered combinations of two nucleobases. Thus, in the toy 

xample in Fig. 3 , the variant calling algorithm should decide 

he estimate ˆ y n among K possible values ( K = 10 for diploid cells 

nd K = 4 for haploid cells) for position n = 1 . 03 × 10 6 , given

hat learner m = 1 provides label C, learner m = 6 provides labels

 C, T } , and learner m = 7 gives a C, and the rest of learners do not

ag that position. 

For convenience, and before presenting the EM-based algorithm 

s a variant calling algorithm, let’s denote the set of hidden r.v.’s by 

 = { y n ; n = 1 , . . . , N} ; and the tags of learner m by R m 

= ∪ 

N 
n =1 R 

n 
m 

,

he tags given at position n by all learners by R 

n = ∪ 

M 

m =1 
R 

n 
m 

, and

he set of all labels by R = ∪ 

N 
n =1 

R 

n = ∪ 

M 

m =1 
R m 

. 

. EM-based variant calling 

At this point, we are ready to formulate the variant calling step 

s an unsupervised multiple-class ensemble classification prob- 

em as follows. Given the labels for all nucleobase positions, i.e., 

R 

n = ∪ 

M 

m =1 
R 

n 
m 

; n = 1 , . . . , N} grouped into M = 7 learners as ex-

lained in Section 3 , decide the class of { y n ; n = 1 , . . . , N} out of

 = 10 possible classes given by Eq. (2) . The problem is solved us-

ng an EM-based iterative approach followed by a final Maximum 

 Posteriori (MAP) decision. For that, we regard R as the incom- 

lete observation set; {R , Y} as the complete observation set; and 

as the set of parameters to estimate. Initialized with 

ˆ θ0 , at itera- 

ion t + 1 , with t ≥ 0 , the general formulation of the EM algorithm

s as follows. 

1) E-step: given an estimate ˆ θ t , compute the conditional expecta- 

tion of the log-likelihood function 

Q( ̃  θ ; ˆ θ t ) : = E Y { log f (R , Y; ˜ θ ) | ˆ θ t , R} , (3) 

where ˜ θ denotes a ’trial’ value of θ . 

2) M-step: obtain the estimate for the next iteration as 

ˆ θ t+1 = arg max 
˜ θ

Q( ̃  θ ; ˆ θ t ) . (4) 

n our setup, the parameters to be estimated are θ = 

{ �m 

} M 

m =1 ; { πk } K k =1 
} , where �m 

∈ R 

L ×K is the confusion matrix 

f learner m , and πk is the a priori probability of class k . The entry

t row i and column j of the confusion matrix of learner m is 

qual to 

m 

(i, j) = Pr ( r m 

= i | y = j ) , (5) 

or i = 1 , . . . , L and j = 1 , . . . , K; where Pr (·) denotes probability

nd r m 

refers to a generic label of learner m . It is therefore as-

umed that the confusion matrix entries are independent of the 

ucleotide position n . Interestingly note that, unlike other EM- 

ased algorithms for ensemble learning, in our case the cardinal- 

ty of the observation set L = 4 is different from the number of 

lasses K = 10 . The a priori probability of the K classes are equal

o πk := Pr (y n = k ) and are assumed to be independent of the nu-

leotide position n . 
4 
.1. Expectation step 

At this point we want to obtain an expression for Q( ̃  θ ; ˆ θ t ) in 

q. (3) . First, note that assuming the r.v.’s associated to different 

ucleobase positions n are independent, the log-likelihood function 

s equal to 

og f (R , Y; ˜ θ ) = log 

( 

N ∏ 

n =1 

f (R 

n , y n ; ˜ θ ) 

) 

= 

N ∑ 

n =1 

log f (R 

n 
1 , . . . , R 

n 
M 

, y n ; ˜ θ ) , (6) 

here in the second equality we use R 

n = ∪ 

M 

m =1 R m 

. The condi-

ional expected value of Eq. (6) required in Eq. (3) can be ob- 

ained as follows 

 Y { log f (R , Y; ˜ θ ) | ̂ θ t , R} = 

N ∑ 

n =1 

K ∑ 

k =1 

log f (R 

n 
1 , . . . , R 

n 
M , y 

n = k ; ˜ θ ) · Pr (y n = k | ̂ θ t , R ) 

(7) 

et’s denote the conditional a posteriori probabilities of the classes 

y 

t 
n,k = Pr (y n = k | ̂  θ t , R ) = Pr (y n = k | ̂  θ t , R 

n ) (8) 

or n = 1 , . . . , N and k = 1 , . . . , K, where in the second equality we

ssume that αt 
n,k 

only depends on the labels for position n . Then, 

ubstituting Eq. (8) into Eq. (7) , the log-likelihood function be- 

omes 

( ̃ θ ; ˆ θ t ) = 

N ∑ 

n =1 

K ∑ 

k =1 

αt 
n,k 

(
log f (R 

n 
1 , . . . , R 

n 
M | y n = k ; ˜ θ ) + log Pr (y n = k ; ˜ θ ) 

)

ssuming learners are conditional independent among them and 

hat ˜ θ = {{ ̃  �m 

} M 

m =1 
; { ̃  πk } K k =1 

} , we further obtain 

( ̃  θ ; ˆ θ t ) = 

N ∑ 

n =1 

K ∑ 

k =1 

αt 
n,k 

( 

log ˜ πk + 

M ∑ 

m =1 

log f (R 

n 
m 

| y n = k ; ˜ �m 

) 

) 

. (9) 

ndeed, the likelihood function of R 

n 
m 

, i.e., the labels provided by 

earner m for position n , given y n = k is the correct value is equal

o 

f (R 

n 
m 

| y n = k ; ˜ �m 

) = 

L ∏ 

l=1 

(
˜ �m 

(l, k ) 
)s n m (l) 

(10) 

hen, substituting Eq. (10) into Eq. (9) we get 

( ̃  θ ; ˆ θ t ) = 

N ∑ 

n =1 

K ∑ 

k =1 

αt 
n,k 

( 

log ˜ πk + 

M ∑ 

m =1 

L ∑ 

l=1 

s n m 

(l) log ˜ �m 

(l, k ) 

) 

. (11) 

t iteration t , the E-step merely needs to calculate the set of a pos- 

eriori probabilities { αt 
n,k 

; n = 1 , . . . , N and k = 1 , . . . , K} . Using the

ayes’ theorem, these probabilities can be computed as follows: 

t 
n,k = 

Pr (y n = k, R 

n ; ˆ θ t ) 

Pr (R 

n ; ˆ θ t ) 

= 

Pr (R 

n | y n = k ; ˆ θ t ) Pr (y n = k ; ˆ θ t ) ∑ K 
k ′ =1 Pr (R 

n | y n = k ′ ; ˆ θ t ) Pr (y n = k ′ ; ˆ θ t ) 

= 

ˆ π t 
k 

∏ M 

m =1 Pr (R 

n 
m 

| y n = k ; ˆ θ t ) ∑ K 
k ′ =1 ˆ π t 

k ′ 
∏ M 

m =1 Pr (R 

n 
m 

| y n = k ′ ; ˆ θ t ) 
, (12) 

here in the last equality we use the property of conditional 

ndependence among learners. Recall that Pr (R 

n 
m 

| y n = k ; ˆ θ t ) in 

q. (12) can be computed using Eq. (10) . 
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Algorithm 1 EM Variant Calling (EMVC). 

Require: {R 

n 
m ; m = 1 , . . . , M, and n = 1 , · · · , N} 

Ensure: { ̂ y n } N n =1 , 
ˆ θ f = {{ ̂ � f 

m } M m =1 ; { ̂  π f 

k 
} K 

k =1 
} 

1: procedure 

2: ˆ θ0 = {{ ̂ �0 

m } M m =1 ; { ̂  π0 
k 
} K 

k =1 
} and t ← 0 � Initialization 

3: repeat 

4: Compute αt 
n,k 

; n = 1 , . . . , N and k = 1 , . . . , K as in Eq.12 � E-Step 

5: Compute ˆ �
t+1 

m ; m = 1 , . . . , M as in Eq.15 � M-Step 

6: Compute ˆ π t+1 
k 

; k = 1 , . . . , K as in Eq.17 � M-Step 

7: until Convergence of Q( ̃  θ ; ˆ θ t ) 

8: α f 

n,k 
= αt 

n,k 
; n = 1 , . . . , N and k = 1 , . . . , K 

9: ˆ y n = arg max k =1 , ... ,K α
f 

n,k 
as in Eq.18 

10: end procedure 
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P
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5 Variants refer to differences in the nucleotides with respect to the reference 

genome but also to insertions and deletions, named INDELS. The EMVC algorithm 

detects changes of nucleotides but not INDELS, yet. 
.2. Maximization step 

Parameters { ̃  πk } K k =1 
and { ̃  �m 

} M 

m =1 
can be estimated separately 

s they are decoupled in Eq. (11) . At the M-step , the set of M

onfusion matrices are updated solving the following optimization 

roblem 

 

ˆ �
t+1 

m 

} M 

m =1 
= arg max 

∀{ ̃ �m } M m =1 

Q 

(
{ ̃  �m 

} M 

m =1 , { ̂  �
t 

m 

} M 

m =1 

)
s.t. 1 

T ˜ �m 

= 1 

T ∀ m (13) 

here 1 is an all-ones vector of dimension L . Imposing the con- 

traint using a Lagrange multiplier λ, each confusion matrix can 

e easily obtained solving 

ˆ 
t+1 

m = arg max 
∀ ̃ �m ∈ R L ×K 

N ∑ 

n =1 

K ∑ 

k =1 

αt 
n,k 

L ∑ 

l=1 

s n m (l) log ̃  �m (l, k ) − λ

( 

L ∑ 

l ′ =1 

˜ �m (l ′ , k ) − 1 

) 

, (14) 

hich readily results in 

ˆ 
t+1 

m 

(l, k ) = 

∑ 

n α
t 
n,k 

s n m 

(l) ∑ L 
l ′ =1 

∑ N 
n =1 α

t 
n,k 

s n m 

(l ′ ) 
(15) 

or l = 1 , . . . , L , k = 1 , . . . , K and m = 1 , . . . , M. 

The set of K a priori probabilities are updated solving the fol- 

owing optimization problem 

 ̂  π t+1 
k 

} K k =1 = arg max 
∀{ ̃ πk } K k =1 

Q 

({ ̃  πk } K k =1 , { ̂  π t 
k } K k =1 

)
s.t. 

K ∑ 

k =1 

˜ πk = 1 (16) 

gain, imposing the constraint using a Lagrange multiplier, the es- 

imate at the i th iteration is equal to 

ˆ t+1 
k 

= 

∑ N 
n =1 α

t 
n,k 

N 

, (17) 

or n = 1 , . . . , N and k = 1 , . . . , K. 

.3. MAP decision 

In a nutshell, after proper initialization of ˆ θ0 = 

{ ̂  �0 

m 

} M 

m =1 
; { ̂  π0 

k 
} K 

k =1 
} , the EM algorithm iteratively solves Eqs. 

12), (15) and (17) , until convergence of Q( ̃  θ ; ˆ θ t ) , upon which a

nal estimate of { α f 

n,k 
} , { ̃  � f 

m 

} and { ̃  π f 

k 
} is obtained. Finally, a class

ecision is taken with a MAP rule that uses these final estimates. 

hat is, at each position n we decide the class of y n as 

ˆ 
 

n = arg max 
k =1 , ... ,K 

α f 

n,k 
, (18) 

hich readily maps the pair of nucleotides 

 AA, CC, GG, T T , AC, AG, AT , CG, CT , GT } . The presented EM-based

ariant Calling (EMVC) algorithm is summarized in Algorithm 1 

nd represents the meta-learner classifier of the formulated 

nsemble learning problem. 

. Experimental results 

The performance of the EMVC algorithm is assessed by means 

f experiments using real data available for chromosome 20 of 

ne particular human individual denoted with the name NA12878, 

hich has been thoroughly characterized and for which a set of 

igh-confidence variants, i.e., ground truth, exists [27] . Note that 

equencing data from this individual has been extensively used for 

omparative analyses in the past. For example, in [26] , where the 

ffect of lossy compression of quality scores on variant calling is 

nalyzed, or in [20] , where best practices for variant calling in the 

linical setting are proposed. 
5 
Chromosome 20 has 60 million of base-pairs and in the ex- 

eriments we use the reference genome of chromosome 20, and 

 SAM file with a total of 8 , 7 × 10 6 reads that fully span chro-

osome 20 of NA12878. This SAM file has a coverage within the 

ange of 10 − 30 labels per nucleotide position. The EMVC perfor- 

ance is evaluated using the true genome sequencing or ground 

ruth of chromosome 20 of NA12878. Results of the EMVC algo- 

ithm are compared to those provided by GATK, HTSLIB, and Platy- 

us in terms of precision and sensitivity. Precision denoted by P 

nd sensitiviy (or recall) denoted by S are computed as 

 = 

# T P 

# T P + # F P 
(19) 

 = 

# T P 

# RE 
(20) 

here T P , F P and RE stand for true positives, false positives and 

elevant elements, respectively. In our setup the REs are the nu- 

leotide positions of the ground truth where at least one of the 

ouple of nucleotides is different from the nucleotide of the refer- 

nce genome. These positions are called variants 5 Therefore, pos- 

tives refer to nucleotide positions where the variant calling algo- 

ithm decides there is a variant. The TPs of a variant calling al- 

orithm are given by the number of nucleotide positions where 

he algorithm correctly identifies a variant, i.e., at least one of 

he couple of nucleotides of the decided class is different from 

he reference genome and the decided class coincides with the 

ne of the ground truth. The FPs of a variant calling algorithm 

re given by the number of nucleotide positions where the algo- 

ithm incorrectly identifies a variant, i.e., at least one of the couple 

f nucleotides of the decided class is different from the reference 

enome but either this position is not a true variant (i.e., is not a 

elevant element) or the decided class is different from the couple 

f nucleotides given by the ground truth. 

This section is organized as follows. First, details regarding ini- 

ialization and convergence of the EMVC algorithm are presented. 

hen, the performance of the EMVC is evaluated for different val- 

es of N and compared to state-of-the-art variant callers using real 

ata. 

.1. EMVC initialization 

The cost function of the EM algorithm, given by (11) in the 

roblem at hand, has multiple local minima and a wise initializa- 

ion of the parameters is required to achieve a competitive perfor- 

ance. In our setup, classes { AA, CC, GG, T T } correspond to a po-

ition where both the chromosome of the mother and the father 
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Fig. 4. Evolution of the a priori probabilities { ̂ π t 
k 
} K=10 

k =1 
over the 50 iterations. 

Fig. 5. Evolution of the entries of ˆ �
t 

1 the confusion matrix of learner m = 1 per EM 

iteration. 

Fig. 6. Evolution of the entries of ˆ �
t 

6 the confusion matrix of learner m = 6 per EM 

iteration. 
ave the same nucleotide than the reference genome. Indeed, these 

lasses have a much higher probability of occurrence than the rest 

ecause only around 0 . 1% of the DNA of human beings differ from 

he reference genome. In view of this, in our experiments the a 

riori probabilities are initialized as follows 

˜ 0 k = 

{
0 . 205 k = 1 , . . . , 4 

0 . 03 k = 5 , . . . , 10 

(21) 

here 
∑ K 

k =1 ˆ π0 
k 

= 1 must be guaranteed. With regards to the con- 

usion matrices of the learners, all of them take the same initial 

alue given by 

ˆ 
0 

m 

= 

⎡ 

⎢ ⎣ 

0 . 4 0 . 2 0 . 2 0 . 2 0 . 3 0 . 3 0 . 3 0 . 2 0 . 2 0 . 2 

0 . 2 0 . 4 0 . 2 0 . 2 0 . 3 0 . 2 0 . 2 0 . 3 0 . 3 0 . 2 

0 . 2 0 . 2 0 . 4 0 . 2 0 . 2 0 . 3 0 . 2 0 . 3 0 . 2 0 . 3 

0 . 2 0 . 2 0 . 2 0 . 4 0 . 2 0 . 2 0 . 3 0 . 2 0 . 3 0 . 3 

⎤ 

⎥ ⎦ 

(22) 

 m = 1 , . . . , M, where the probability of observing a nucleotide

onditioned on a given couple increases if the observed nucleotide 

elongs to the couple. For instance, the initial probability that a 

ead of learner m is A conditioned that the true class is AA is given

y �0 
m 

(1 , 1) = 0 . 4 ; the initial probability that a read is A condi-

ioned that the true class is AG is �0 
m 

(1 , 6) = 0 . 3 ; and the initial

robability that a read is A conditioned that the true class is GG 

s set to �0 
m 

(1 , 3) = 0 . 2 . Even though the relation between the Q-

core and the probability of error in (1) might be used to initialize 

he confusion matrices of the different learners, we opt here for 

nitializing all matrices the same and let the EMVC algorithm to 

earn the confusion matrices from the data. 

.2. Convergence of EMVC 

In this section we analyze the first 3 × 10 6 reads of the SAM file

f NA12878 and run the EM algorithm. At this point, it is impor- 

ant to remark that the EMVC algorithm only uses the nucleobase 

ositions where at least two reads provide different labels. That is, 

f for instance at a given nucleobase position all reads provide a 

abel equal to A , the decision taken by the classifier is going to be

A , and the reads of this position are not used by the EMVC algo-

ithm. However, these nucleotide positions where all reads provide 

he same label are obviously considered in the computation of the 

recision and sensitivity. Therefore, after analyzing the first 3 × 10 6 

eads of the SAM file that reach up to the nucleotide at position 

0,627,099 of the chromosome 20 of NA12878, only the labels of 

 = 928 , 406 nucleotide positions are used to run the EMVC algo-

ithm. In this particular case we have M = 6 learners that corre- 

pond to the first 6 bins in Table 1 and the number of iterations of

MVC is fixed to 50. 

Regarding the convergence of the EMVC algorithm, Fig. 4 

lots the evolution of the a priori probabilities per EM iteration. 

learly, { ̂  π t 
k 
} K 

k =1 
converge and, interestingly, the final values ˆ π f = 

 0 . 2997 , 0 . 1864 , 0 . 1870 , 0 . 3027 , 0 . 0021 , 0 . 0082 , 0 . 0019 , 0 . 0020 , 

 . 0 079 , 0 . 0 021 } are very similar to { 0 . 3028 , 0 . 1839 , 0 . 1859 ,

 . 3051 , 0 . 0018 , 0 . 0078 , 0 . 0015 , 0 . 0018 , 0 . 0076 , 0 . 0018 } , which are

he class probabilities provided by GATK. 

With regards to the convergence of the confusion matrices, Figs. 

 and 6 show the evolution of the entries of the confusion matrix 

f learner m = 1 and m = 6 , respectively, i.e., { ̂  �t 

1 (l, k ) , ˆ �
t 

6 (l, k ) ; l =
 , . . . , 4 and k = 1 , . . . , 10 } . Clearly learner m = 1 , who is the less

eliable with lower Q-score values, is the one that needs more it- 

rations to converge. 

Eqs. (23) and (24) provide the final values ˆ �
f 

1 and 

ˆ �
f 

6 , respec- 

ively. As expected, the confusion matrix ˆ �
f 

6 of learner m = 6 esti- 

ated by the EMVC algorithm corresponds to a reliable learner, 

hereas the estimated 

ˆ �
f 

1 corresponds to a less reliable learner 
6 
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Table 2 

Precision (P) and sensitivity (S) obtained by: EMVC for up to the first 3 × 10 6 reads of chromosome 20 of NA12878 with a coverage in the range of 

10 − 30 , and by GATK [21,22] , HTSLIB [24] and Platypus [25] using the full chromosome 20 of NA12878, i.e., 8 . 7 × 10 6 reads. 

# Reads of NA12878 Nucleotide Initial Position Nucleotide Final Position # Nucleotides N (EMVC) P (%) S (%) 

100K 59,988 750,036 40,119 77.01 (EMVC) 96.81 (EMVC) 

1M 59,988 6,957,434 373,859 83.23 (EMVC) 97.51 (EMVC) 

2M 59,988 13,798,418 631,785 85.29 (EMVC) 97.51 (EMVC) 

3M 59,988 20,626,160 928,406 85.03 (EMVC) 97.56 (EMVC) 

8.7M (full) 74.31 (GATK) 96.98(GATK) 

8.7M (full) 72.88 (HTSLIB) 96.83 (HTSLIB) 

8.7M (full) 76.45 (Platypus) 91.90 (Platypus) 
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ince m = 1 gathers reads with the nine lowest Q-score values. For 

nstance, after convergence of the EMVC algorithm, the probability 

hat a read of learner m = 6 is A conditioned that the true class

s AA becomes by � f 
6 
(1 , 1) = 0 . 9964 for learner m = 6 but only

f 
6 
(1 , 1) = 0 . 4122 for learner m = 1 ; or the probability that a read

s different from A or G conditioned that the true class is AG is al-

ost 0 for learner m = 6 but equal to � f 
1 
(2 , 6) + � f 

1 
(4 , 6) = 0 . 0494

or learner m = 1 . 

ˆ 
f 

1 = 

⎡ 

⎢ ⎣ 

0 . 4122 0 . 1946 0 . 1856 0 . 1646 0 . 4099 0 . 4395 

0 . 2271 0 . 4882 0 . 1272 0 . 1965 0 . 5631 0 . 0293 

0 . 1949 0 . 1274 0 . 4897 0 . 2268 0 . 0188 0 . 5111 

0 . 1657 0 . 1897 0 . 1974 0 . 4121 0 . 0083 0 . 0201 

ˆ 
f 

6 = 

⎡ 

⎢ ⎣ 

0 . 9964 0 . 0028 0 . 0041 0 . 0015 0 . 5584 0 . 6493
0 . 0 0 07 0 . 9918 0 . 0014 0 . 0012 0 . 4416 0 . 0 0 0 0
0 . 0012 0 . 0015 0 . 9912 0 . 0 0 08 0 . 0 0 0 0 0 . 3507
0 . 0017 0 . 0039 0 . 0033 0 . 9966 0 . 0 0 0 0 0 . 0 0 0 0

.3. EMVC performance 

In this section, the precision and sensitivity of the EMVC algo- 

ithm is computed in different experiments using real data. In all 

xperiments, M = 7 learners given by Table 1 are used; the number 

f labels is L = 4 and the number of classes is K = 10 that corre-

pond to { A, C, G, T } and { AA, CC, GG, T T , AC, AG, AT , CG, CT , GT } , re-

pectively. The initial values of the a priori probabilities are given 

y (21) and the confusion matrices are all initialized using (22) . 

he number of iterations run by EMVC is equal to 50 and the num- 

er of nucleotide positions denoted by parameter N depends on 

he experiment as detailed below. 6 Table 2 shows precision and 

ensitivity of the EMVC algorithm for an increasing number of nu- 

leotides of chromosome 20 of individual NA12878 up to the first 

 × 10 6 reads. For comparative purposes, Table 2 also includes the 

recision and sensitivity achieved by the state-of-the-art variant 

allers, namely, GATK [21,22] 7 , HTSLIB [24] 8 , and Platypus [25] . Re- 

ults for these pipelines are obtained using the full chromosome, 

.e., the complete SAM file that includes 8 . 7 × 10 6 reads. 

For the sake of clarity, take for instance the row 2M (resp. 9 

00K) in Table 2 . The value 2 M (resp. 100 K) means that the first

 × 10 6 (resp. 100 × 10 3 ) reads of the SAM file of NA12878 are

onsidered in the procedure, being the position of the first nu- 

leotide 59,988 and the position of the last one 13,798,418 (resp. 

50,036). Indeed, for the first 59,987 positions there are no reads 

vailable and this initial part cannot be sequenced, which is usual 
6 Implementation is done in MATLAB and Python, and it is available upon request 

o the authors. 
7 Available at https://gatk.broadinstitute.org/hc and https://github.com/ 

roadinstitute/gatk/releases (last Release in Feb. 2022) 
8 Available at http://www.htslib.org and https://github.com/samtools/samtools/ 

eleases/ (last release in Feb.2022) 
9 resp. is an abbreviated form of respectively. 

F

(

7 
995 0 . 0142 0 . 0170 0 . 0198 

271 0 . 4734 0 . 4851 0 . 0180 

146 0 . 5001 0 . 0334 0 . 5196 

587 0 . 0123 0 . 4645 0 . 4426 

⎤ 

⎥ ⎦ 

(23) 

 . 4946 0 . 0 0 0 0 0 . 0 0 08 0 . 0 0 0 0 

 0 0 0 0 0 . 4742 0 . 3574 0 . 0 0 0 0 

 0 0 0 0 0 . 5240 0 . 0 0 0 0 0 . 3649 

 . 5054 0 . 0018 0 . 6418 0 . 6351 

⎤ 

⎥ ⎦ 

(24) 

n other SAM files. The total number of nucleotide positions to be 

equenced is 13 , 738 , 431 = 13 , 798 , 418 − 59 , 987 (resp. 690 , 049 =
50 , 036 − 59 , 987 ) but only N = 631 , 785 (resp. 40,119) positions

how discrepancy in the labels of the reads. Hence, these are 

he nucleotide positions for which EMVC takes a decision about 

he class they belong to, i.e., { AA, CC, GG, T T , AC, AG, AT , CG, CT , GT } .
n the rest of nucleotide positions, i.e., a total of 13 , 738 , 431 −
31 , 785 = 13 , 106 , 646 (resp. 690 , 049 − 40 , 119 = 649 , 930 ) posi-

ions, the labels of all reads for these positions are equal and they 

re not used by the EMVC algorithm since the decision is trivial, 

.e., one of the first four classes { AA, CC, GG, T T } . 
As observed in Table 2 , the performance of EMVC is superior 

o the rest of variant callers since it achieves a higher precision 

nd similar sensitivity. Indeed, the precision and sensitivity val- 

es of EMVC saturate to 85% and 97% , respectively, using the first 

 × 10 6 reads and running the EMVC with N = 631 , 785 nucleotide 

ositions. This result means that the EMVC algorithm performs 

ell even without using the full genome, which might help to 

educe the computational cost and memory requirements of the 

equencing procedure by analysing fragments of the SAM file in 

arallel. 

In the previous experiment, results in Table 2 are obtained with 

 single realization of EMVC. Fig. 7 and 8 show boxplots of the 
ig. 7. Boxplots of precision obtained by EMVC using 10 realizations with 100 × 10 3 

100K), 1 × 10 6 (1M), and 2 × 10 6 (2M) reads of the SAM file.. 

https://www.gatk.broadinstitute.org/hc
https://www.github.com/broadinstitute/gatk/releases
http://www.htslib.org
https://www.github.com/samtools/samtools/releases/
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Table 3 

Precision (P) and sensitivity (S) obtained by EMVC for the full chromosome 20 of NA12878 split into three fragments, and obtained by GATK [21,22] , 

HTSLIB [24] and Platypus [25] using the full chromosome 20. Coverage of 20. 

# Reads of NA12878 Nucleotide Initial Position Nucleotide Final Position # Nucleotides N (EMVC) P (%) S (%) 

3M 59,988 20,626,160 928,406 85.03 (EMVC) 97.56 (EMVC) 

3M to 5M 20,626,060 36,929.891 785,153 35.70 (EMVC) 96.78 (EMVC) 

5M to 8,7M 36,929,793 62,965,486 1,407,042 76.70 (EMVC) 97.26 (EMVC) 

8.7M (full ∗) 66.63 (EMVC) 97.27 (EMVC) 

8.7M (full) 74.31 (GATK) 97.5 (GATK) 

8.7M (full) 72.88 (HTSLIB) 96.83 (HTSLIB) 

8.7M (full) 76.45 (Platypus) 91.90 (Platypus) 

Fig. 8. Boxplots of sensitivity obtained by EMVC using 10 realizations with 100 ×
10 3 (100K), 1 × 10 6 (1M), and 2 × 10 6 (2M) reads of the SAM file.. 
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recision and sensitivity obtained by EMVC using 10 realizations 

or three different cases { 100K, 1M, 2M } . The first case, namely 

00K, means that each realization is executed using 100 × 10 3 

eads. The data for the different realizations are obtained by split- 

ing the first 1 × 10 6 reads of the SAM file into 10 files. In the

ther two cases, namely 1M and 2M, the EMVC is executed us- 

ng 1 × 10 6 and 2 × 10 6 reads, respectively. The 10 files of data 

re obtained from the first 3 × 10 6 reads of the SAM file using a

egular data shift or lag. The empirical mean value and standard 

eviation of the precision (sensitivity) for 100K are 82 . 03% ± 4 . 33

 97 . 48% ± 0 . 66 ); for 1M are 85 . 85% ± 1 . 52 ( 7 . 56% ± . 1 ); and for 2M

 . 96% ± 0 . 40(7 . 58% ± 0 . 05 ). It can be observed that the range of

recision and sensitivity results achieved by EMVC are significantly 

educed when 2 × 10 6 reads are analyzed, suggesting that this is a 

onvenient file size if the SAM file was processed in parallel. 

Table 3 shows precision and sensitivity of the EMVC algo- 

ithm of different fragments of the SAM file of chromosome 20 

f NA12878. The coverage of the SAM file used in these experi- 

ents is expected to be in the range of 10 − 30 labels of reads

er nucleotide position. The SAM file has 8 . 7 × 10 6 reads and it is

artitioned into three fragments: one with the first 3 × 10 6 reads 

row 3M in Table 3 ), a second one with the subsequent 2 × 10 6 

eads (row 3M to 5M in Table 3 ), and the final one with the last

 . 7 × 10 6 reads (row 5M to 8.7M in Table 3 ). Then, the EMVC al-

orithm is run for each of these three fragments, and the precision 

nd sensitivity are computed. Note that, for computational limita- 

ions, the precision and sensitivity of EMVC in row 8.7M (full ∗) are 

alculated gathering the information obtained with the three frag- 

ents separately. 

As it can be observed in Table 3 , the EMVC performance for 

he fragment 3M to 5M decreases significantly with a precision of 

5 . 70% , much lower than GATK. After an inspection of the dataset, 

e observe that between the nucleotide positions 25 × 10 6 and 
8 
0 × 10 6 there is a region with abnormal values of coverage as 

igh as 500. Typically, this occurs in the presence of groups of 

eads that are a copy of other ones within the same SAM file, 

hich are called spurious . This region makes the EMVC algorithm 

btain a global sensitivity of 97 . 27% and a precision of 66 . 63%

or the full chromosome, which is lower than the rest of variant 

allers, e.g. GATK is 74 . 31% . Indeed, GATK has a mechanism to deal

ith these regions, that our method does not include. Still, even 

ithout this filtering post-processing step, EMVC achieves compet- 

tive figures of precision and sensitivity compared to the state-of- 

he-art variant callers GATK, HTSLIB, and Platypus. 

With regards to the computational cost of the EMVC algorithm, 

he execution time of EMVC using MATLAB is in the range of 

 . 18 − 0 . 20 seconds per 1.0 0 0 processed nucleotides and per itera-

ion. Thus, for instance, the execution time of the fragment 3M of 

able 3 with N = 928 , 406 and 50 iterations costs around 2 hours

nd a half. This computational load is expected to be significantly 

educed if other programming languages that handle big data files 

ore efficiently were used. Indeed, this is proposed as future work. 

. Conclusions 

The variant calling step in next generation sequencing tech- 

ologies for DNA sequencing is presented here as an unsu- 

ervised classification task, where for each nucleotide posi- 

ion of the DNA in diploid cells a decision among the classes 

 AA, CC, GG, T T , AC, AG, AT , CG, CT , GT } must be taken given several

abels among the set { A, C, G, T } that are provided by the reads.

n this paper, we solve the variant calling step as an ensemble 

lassification problem by arranging the read labels into groups ac- 

ording to their quality scores, so that labels of the same group 

how a similar reliability. A variant caller algorithm based on the 

M algorithm is proposed, and experimental results prove that the 

roposed algorithm is competitive in terms of precision and sensi- 

ivity to other state-of-the-art variant callers as GATK, HTSLIB and 

latypus. In particular, EMVC obtains in some cases the same sen- 

itivity but improved precision, which corresponds to fewer incor- 

ectly called variants, and can lead to better clinical decisions. The 

roposed variant caller bins the quality scores, fact that further 

upports the idea shown in previous studies that the full range of 

uality scores is not needed to obtain a high quality set of variants. 

his is interesting to reduce the memory requirements of the SAM 

le. To the best of our knowledge, this work presents the first vari- 

nt caller formulated as an ensemble classifier that shows a com- 

etitive performance compared to state-of-the-art methods. More- 

ver, we do believe our work paves the way to the research com- 

unity to apply other existing ensemble classification algorithms 

o solve the variant calling problem. Future work includes the de- 

elopment of an improved EMVC algorithm capable of detecting 

nsertions and deletions that typically occur in the DNA; to develop 

he full pipeline code in more efficient open-source code for the 

esearch community; and devise filtering mechanisms to improve 

he performance of EMVC in DNA regions with spurious reads. 
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