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Unsupervised ensemble learning refers to methods devised for a particular task that combine data pro-
vided by decision learners taking into account their reliability, which is usually inferred from the data.
Here, the variant calling step of the next generation sequencing technologies is formulated as an unsuper-
vised ensemble classification problem. A variant calling algorithm based on the expectation-maximization
algorithm is further proposed that estimates the maximum-a-posteriori decision among a number of
classes larger than the number of different labels provided by the learners. Experimental results with
real human DNA sequencing data show that the proposed algorithm is competitive compared to state-of-
the-art variant callers as GATK, HTSLIB, and Platypus.

© 2022 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Ensemble learning refers to methods devised for a particular
task that fuse data provided by decision agents, e.g., algorithms
or annotators in crowdsourced applications, and infer the reliabil-
ity of these agents to be considered when the data is combined.
Comprehensive surveys can be found in [1,2]. In particular, un-
supervised ensemble classification deals with the problem of de-
signing a meta-learner to classify objects without using ground-
truth data to train the learners, and based only on the tags pro-
vided by individual decision agents [3]. Applications are found in
diverse areas such as medicine and biology, e.g., [4,5] where de-
cision agents are either algorithmic techniques or individuals, re-
spectively; team decision-making strategies [6]; and 5G communi-
cation systems [7] where decision agents are sensors, among oth-
ers.

Based on the seminal paper of Dawid and Skene [8], a vast ma-
jority of works estimate the statistics of the decision agents and
use these estimates either to solve a Maximum Likelihood (ML) de-
tection problem or to initialize the Expectation-Maximization (EM)
algorithm in [8]. For instance, works in [9,10] solve a binary clas-
sification task and advocate a spectral decomposition technique of
the second-order statistics of agent responses that yields the re-
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liability parameters of the agents. In a multi-class setting, Zhang
et al. [11] utilizes third-order moments and orthogonal tensor de-
composition to estimate the unknown reliability parameters and
then initialize the EM algorithm of Dawid and Skene [8]. Also,
in [12] a MAP approach is adopted to solve a multi-class ensemble
classification problem using moment-based estimates of the confu-
sion matrices of the decision agents. A broadly adopted assumption
in the literature is to consider conditionally independent agents,
meaning that there is no communication among different decision
agents. Under this assumption, the likelihood function of the indi-
vidual labels breaks down into factors so that the number of pa-
rameters of the likelihood function is reduced and the ensemble
classification problem becomes more doable.

As evidence in [13], pattern recognition plays a pivotal role in
the area of bioinformatics with significant contributions to DNA
sequence analysis, including sequence comparison and gene pre-
diction, and DNA microarray data analysis. For instance, a spec-
tral distortion measure is proposed in [14] for finding similarities
between DNA or protein sequences, which helps life-science re-
searchers understand the information content and functions of bi-
ological sequences. In [15] the distribution of D, statistic, widely
used in alignment-based methods, is analysed to give usable ap-
proximations for ranges of parameters frequently encountered in
the study of biological sequences. Further, an spectrum analysis ap-
proach based on the Fourier transform is proposed in [16] to solve
the prediction of exons, which are protein coding subregions. Re-
garding array data analysis, Ou-Yang et al. [17] presents a sparse
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regularized Tucker tensor regression approach to perform feature
selection on genomic data. All these techniques apply to sequenced
genomes, and this paper focuses on the use of ensemble learning
methods to improve the genome sequencing pipeline.

As it will be explained, the procedure followed by Next Gen-
eration Sequencing (NGS) technologies for DNA! sequencing in-
cludes a step named variant calling. In brief, variant calling con-
sists on the identification of variants or discrepancies between (i)
the sequenced genome and (ii) that of a reference genome of the
same species as the sequenced genome. Due to the high similar-
ities across genomes of the same species, the called variants are
useful to compress the information of a sequenced genome since
a genome can be reconstructed given the identified variants and
the reference genome. Therefore, the called variants are generally
the input to downstream analyses. In the clinical setting, the iden-
tification of variants is critical to diagnose, design treatments, and
study cancer development, among others. For example, in [18] they
show that variants in specific genes can cause sever hypercholes-
terolemia, and in [19] they discover previously undetected muta-
tions (variants) in genes BRCA1, BRCA2, CHEK2, TP53, and PTEN
that increase the risk of breast cancer. As such, precision in variant
calling is of utmost importance.

Several algorithms for variant calling exist, with the most rele-
vant specially in the clinical and research setting [20] being: i) the
Genome Analysis Toolkit (GATK) software package? first introduced
in 2011 [21] and subsequently updated since 2013 [22] (last release
in Feb. 2022), which is recommended by the Broad Institute in its
Best Practices pipeline for genome sequencing [23]| and currently
one of the most-widely used; ii) the High Throughput Sequencing
LIBrary (HTSLIB)?, which uses the Samtools suite developed by The
Wellcome Trust Sanger Institute [24] (last release in Feb. 2022);
and iii) Platypus, developed by Oxford University [25]. These unsu-
pervised methods employ Bayesian statistics to infer the existence
of a variant, and although they produce similar sets of variants,
differences exist. Moreover, it has been reported that the set of
identified variants generally contain many incorrectly called vari-
ants and miss several true ones [26]. Hence novel variant callers
that can improve on the accuracy of the identified variants are im-
portant.

In this work we show that variant calling can be formulated
as an unsupervised multi-class ensemble classification problem,
and present EMVC, an ensemble classifier based on the EM al-
gorithm that solves the variant calling step. The performance of
the EMVC algorithm is evaluated using real genomic data avail-
able for chromosome 20 of one particular human individual de-
noted by the name NA12878. The genome of this individual has
been thoroughly characterized by the National Institute of Stan-
dards and Technology’s (NIST) Genome In A Bottle (GIAB) consor-
tium, and a set of high-confidence variants, i.e., gold standard or
ground truth, exists [27]. The numerical experiments presented in
our work show that EMVC results are competitive to those ob-
tained with the state-of-the-art variant callers GATK, HTSLIB, and
Platypus.

The paper is organized as follows. Section 2 provides an
overview of the pipeline followed by NGS technologies for DNA
sequencing. Then, in Section 3 we present the data model and for-
mulate the variant calling step as an unsupervised ensemble classi-
fication problem. This problem is solved by means of an EM-based
algorithm presented in Section 4. The performance of the proposed
algorithm is assessed using a real data, and results are compared

1 DNA stands for Deoxyribonucleic Acid.

2 Available at  https://gatk.broadinstitute.org/hc  and
broadinstitute/gatk/releases (last Release in Feb. 2022).

3 Available at http://www.htslib.org and https://github.com/samtools/samtools/
releases/ (last release in Feb.2022).

https://github.com/
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Fig. 1. NGS technologies require a library preparation of the DNA sample, which in-
cludes cutting the DNA into small fragments that are used as input to the sequenc-
ing machine which performs the sequencing in parallel. Figure extracted from [28].

to GATK, HTSLIB, and Platypus in Section 5. Finally, Section 6 con-
cludes the paper.

Notation: Unless otherwise noted, lowercase bold letters, X, de-
note vectors, uppercase bold letters, X, represent matrices, and cal-
ligraphic uppercase letters, X, stand for sets. The (i, j)th entry of
matrix X is denoted by X(i, j).

2. Genome sequencing overview

DNA chains consists of two strands of millions of nucleobases of
type {A,C, G, T}* arranged following a helicoidal shape so that each
nucleobase on one strand chemically bonds with another nucle-
obase on the other strand. Each pair of bonded nucleobases, which
can be either GC or AT, are called base-pair and they constitute
the building block of the DNA. The DNA is stored in the nucle-
ous of cells and it is organized into chromosomes, whose number
and length differ between organisms. Cells might be classified into
diploid or haploid, where diploid means that the cell has two dif-
ferent copies of each type of chromosome as opposed to haploid
when the cell has one copy only. For instance, human cells are
diploid with 23 pairs of chromosomes so that, in a simplified way,
each copy is inherited from one of the progenitors, i.e., mother and
father.

NGS technologies provide massive parallel sequencing tech-
niques that yield yet to be envisioned research opportunities in
the biological science field. As a groundbreaking application, indi-
vidualized therapies based on the patient’s genome have nowadays
become a reality thanks to these low-cost NGS technologies. These
technologies take advantage of the similarity among the genome of
individuals belonging to the same species. As an example, human
DNA is 3 x 10° base-pairs long but, on average, DNA of two human
beings differs in only 0.1% [28]. This evidence allows to establish a
reference genome for each species, which is usually avaliable and
obtained through more advanced expensive sequencing methods.

NGS technologies for DNA sequencing proceed as follows. First,
as shown in Fig. 1, a library of the DNA sample is prepared so that
multiple copies of the same DNA are cut into small fragments, typ-
ically of the order of hundreds of base-pairs. Then, these fragments
are sequenced by a parallel sequencing machine, which performs
the base calling. Each sequenced DNA fragment is called read and is
an ordered sequence of hundreds of nucleobases. The ordered se-
quence of nucleobases corresponds to one strand of the DNA frag-
ment, being the other strand obvious since base-pairs can be either
AT or GC. Indeed, the reads can come from either one strand, and
they can be thought of as short strings sampled at random from
the original genome. Thus, NGS technologies produce a collection
of millions of fragments of hundreds of nucleobases, called reads,
instead of the whole genome sequence. It is important to take in
mind that in diploid cells reads indistinctly correspond to one of
the two copies of the chromosome of the DNA sample. Also, since
base calling is subject to errors, each read comes with a sequence
of quality scores (Q-scores) of the same length indicating the re-

4 Adenine, Cytosine, Guanine, and Thymine.
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Fig. 2. Typical pipeline of genome sequencing with corresponding generated files
at each step.

liability of each nucleobase of the read. The reads and the corre-
sponding Q-scores are stored in the widely used FASTQ format.

In the typical analysis pipeline, the next step after the base
calling is the alignment process that determines the location of
each read in the reference genome of the species to which the
DNA sample belongs to. This is achieved through a mapping al-
gorithm that compares the sequence of each read to the refer-
ence genome, and tries to locate the segment of the reference se-
quence that matches the read, while tolerating a certain amount
of mismatches. The alignment information is stored in the standard
SAM format [24] together with the original reads and the Q-scores.
Fig. 2 describes the pipeline of genome sequencing with the corre-
sponding files generated at each step. The sizes of the files corre-
spond to a human genome with a coverage of 200, which indicates
the average number of reads per nucleotide position.

The final step of the analysis pipeline is the so-called variant
calling or caller, an algorithm that given the nucleobase of the
reads, their quality scores and the mapping information, decides
the discrepancies or variants between the original genome and the
reference sequence. Typically, the variants can be either a single
nucleotide variation (e.g., from an A in the reference genome to a
C in the original genome) or INDELS, that stands for insertions or
deletions. The set of variants, together with some extra informa-
tion such as the quality of the variant calling, are stored in a VCF
file [29], which is in the order of one gigabyte for human genomes
with 3 million variants on average. The most widely used variant
calling algorithm is the Genome Analysis Toolkit (GATK) software
package.

3. Variant calling data setup

The variant calling step can be formulated as an unsupervised
ensemble classification problem in which learners are defined us-
ing the Q-scores. After the alignment, the reads and the corre-
sponding Q-score sequences are allocated with respect to the refer-
ence sequence as represented in Fig. 3. Quality scores indicate the
level of confidence of each nucleobase of the read and they are as-
sumed to relate to the error probability P. of that nucleobase as
follows

Q = [-10log,o P (1)

In the scale Phred+33, Q-scores take values Q € {0, 1,...,40} and
are stored in a FASTQ file using the ASCII characters of integers
[33 : 73], where each integer corresponds to Q + 33. Fig. 3 shows a
toy example where CCTC are the labels or observed data available
for the nucleobase at position n = 1.03 x 10° from 4 reads with Q-
scores equal to (40,2,35,39) since the ASCII characters (I, #, D, H)
correspond to the integers (73,35,68,72), respectively.

The mathematical relation between quality scores and proba-
bility of error in Eq. (1) must be handled wisely, and it basically
reveals that the higher the Q-score, the lower the P. of the nucle-
obase of that read. Moreover, as Q-scores represent a large frac-
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Fig. 3. Sequence of reads allocated in the reference genome and corresponding Q-
scores.

Table 1
Q-scores binning proposed by Illumina and used by EMVC.

Bin (learner) 1 2 3 4 5 6 7

Q-score range 2-9 10-19 20-24 25-29 30-34 35-39 > 40

tion of the storage space required by FASTQ and SAM files, they
are usually compressed into a reduced number of quality bins that
reduce the data storage requirements significantly without affect-
ing the reliability of the sequencing results. A typical binning is
the one used by Illumina [30] given in Table 1. It is worth to men-
tion that latest [llumina machine uses this scheme and another one
with 4 bins only.

In our setup, we define one learner for each bin so that all la-
bels with a Q-score in the range of a bin are associated to the cor-
responding learner. The binning used in this work is the same pro-
posed by Illumina and given in Table 1. Note that those labels with
a Q-score equal to {0, 1} are not considered since due to the high
probability of error, as indicated by Eq. (1), no call is produced
in these cases. For instance, in the toy example of Fig. 3 at posi-
tion n = 1.03 x 106, learner m = 1 (with Q-scores between 2 — 9)
provides one label equal to C, learner m = 6 (with Q-scores be-
tween 35 — 39) provides labels {C, T}, and learner m = 7 (with Q-
score equal to 40) gives a C. The rest of learners do not tag that
position.

3.1. Problem formulation

Let's assume that a DNA sample with N base-pairs is se-
quenced and M =7 learners tag each nucleobase position with
none, one or multiple labels that correspond to the set {A,C, G, T}.
Nucleotide positions are indexed by n € {1, ..., N} and learners by
me {1,...,M}. We further assume that learner m provides P} la-
bels for nucleotide position n, and that the responses of learner m
for position n are denoted by the set

R ={rm (D), ... 10 (P}

where 1 (p) denotes the pt" label that learner m provides for nu-
cleotide position n. Note that different learners may provide a dif-
ferent number of labels for the same nucleotide position n, i.e., in
general Py # P7,, and that the same learner m may provide a dif-
ferent number of labels for different nucleotide positions, i.e., in
general P + P, Labels are modelled here as discrete random vari-
ables (r.v.’s) that take L = 4 different values, i.e.,

m(p) e{1,2,3,4}

for p=1,..., P, which correspond to the four different nu-
cleotides {A, C, G, T}, respectively. For convenience, let’s denote the
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number of times learner m tags position n with label I by s? (1), so
that YF_; s (1) = P

Sequencing basically consists in deciding the nucleobase for
each position of the DNA sample at hand. We model these nu-
cleobases as latent or hidden r.v.’s denoted by {y”}’,;’:1. In hap-
loid cells, with only one copy of each chromosome, at each po-
sition n we might have four different values which are {A,C, G, T}.
However, in diploid cells we have to decide a combination of two
nucleobases for each position n, one for each of the two copies.
Therefore, in diploid cells, y* belongs to K = 10 different classes
denoted by

ye{1,2,...,10} (2)

which one by one correspond to the pairs
{AA,CC, GG, TT, AC, AG, AT,CG,CT,GT}, which are all available
unordered combinations of two nucleobases. Thus, in the toy
example in Fig. 3, the variant calling algorithm should decide
the estimate y" among K possible values (K = 10 for diploid cells
and K =4 for haploid cells) for position n=1.03 x 10%, given
that learner m = 1 provides label C, learner m = 6 provides labels
{C, T}, and learner m = 7 gives a C, and the rest of learners do not
tag that position.

For convenience, and before presenting the EM-based algorithm
as a variant calling algorithm, let's denote the set of hidden r.v.’s by
Y={y"n=1,...,N}; and the tags of learner m by Ry, = ug’le%,
the tags given at position n by all learners by R" = U%Z1R31v and
the set of all labels by R = UN_ | R" = UM_  Ryy,.

4. EM-based variant calling

At this point, we are ready to formulate the variant calling step
as an unsupervised multiple-class ensemble classification prob-
lem as follows. Given the labels for all nucleobase positions, i.e.,
{RP=UM_ RI:n=1,...,N} grouped into M =7 learners as ex-
plained in Section 3, decide the class of {y*;n=1,..., N} out of
K = 10 possible classes given by Eq. (2). The problem is solved us-
ing an EM-based iterative approach followed by a final Maximum
A Posteriori (MAP) decision. For that, we regard R as the incom-
plete observation set; {R, )Y} as the complete observation set; and
0 as the set of parameters to estimate. Initialized with 9, at itera-
tion t + 1, with t > 0, the general formulation of the EM algorithm
is as follows.

S1) E-step: given an estimate 6!, compute the conditional expecta-
tion of the log-likelihood function

Q(6;0") :=Ey{log f(R,¥;0) | ', R}, 3)

where § denotes a 'trial’ value of 6.
S2) M-step: obtain the estimate for the next iteration as

gr+l = argmax Q(6; 2% (4)
g

In our setup, the parameters to be estimated are 6 =
{TmM_1: {m K}, where Iy e RPK is the confusion matrix
of learner m, and ;, is the a priori probability of class k. The entry
at row i and column j of the confusion matrix of learner m is
equal to

In(i, j) = Pr(mm =ily = j). (5)
for i=1,....,L and j=1,...,K; where Pr(-) denotes probability
and ry, refers to a generic label of learner m. It is therefore as-
sumed that the confusion matrix entries are independent of the
nucleotide position n. Interestingly note that, unlike other EM-
based algorithms for ensemble learning, in our case the cardinal-
ity of the observation set L =4 is different from the number of
classes K = 10. The a priori probability of the K classes are equal
to my := Pr(y" = k) and are assumed to be independent of the nu-
cleotide position n.
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4.1. Expectation step

At this point we want to obtain an expression for Q(4; %) in
Eq. (3). First, note that assuming the r.v.s associated to different
nucleobase positions n are independent, the log-likelihood function
is equal to

N
log f(R, ¥:0) = log <1_[ fR™ ¥ 5))
n=1

N
=Y log f(R}.....RY.y":6). (6)

where in the second equality we use R" = u%lem. The condi-
tional expected value of Eq. (6) required in Eq. (3) can be ob-
tained as follows
. N K N .
Eyf{log f(R, ¥;0)|0", R ZZ log f(RY, ..., Ry, y" = k; ) - Pr(y" = k|6*, R)
n=1 k=1

(7)
Let's denote the conditional a posteriori probabilities of the classes
by
af = Pr(y" = k|6, R) = Pr(y" = kB, R") (8)

forn=1,...,Nand k=1,.
assume that ozt

,K, where in the second equality we
. only depends on the labels for position n. Then,

substituting Eq (8) into Eq. (7), the log-likelihood function be-
comes
N K
] >3 ok (log f(RE. ... Ryly™ =k: 0) +logPr(y" = k; 6))

Assuming lgarners are conditional independent among them and
that § = {{Tn}M_;; {nk _1), we further obtain

m=1

N K
Q(:6 ZZ nk<10gm<+zlogf(72” ly" =k; l"m)> 9)
n=1 k=1

Indeed, the likelihood function of R}, i.e., the labels provided by
learner m for position n, given y" = k is the correct value is equal
to

L

FRAIY" =k T) = [ (En . R0) ™ (10)

=1

Then, substituting Eq. (10) into Eq.

N M L
Q:6 Z <logﬁk+ZZs”m(l)logf‘m(l,k)). (11)

m=1 |=1

(9) we get

At iteration t, the E-step merely needs to calculate the set of a pos-
teriori probabilities {an en=1... Nand k=1,...,K}. Using the
Bayes’ theorem, these probabilities can be computed as follows:

‘ Pr(y" = k, R™; Ot)
Cl{n,k =T A
Pr(Rn; 61)
_ Pr(RM|y" = k; 6) Pr(y" = k; 8%)
K Pr(R|yn = k' 8t) Pr(y" = k'; 1)
AT, Pr(RY |y = k; 1)

= = . (12)
K1 7L Ty Pr(Rp|yn = k'; 0t)

where in the last equality we use the property of conditional
independence among learners. Recall that Pr(RE|y" =k;6) in
Eq. (12) can be computed using Eq. (10).
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4.2. Maximization step

t_; and {rm}%:1 can be estimated separately
as they are decoupled in Eq. (11). At the M-step, the set of M
confusion matrices are updated solving the following optimization
problem

~t+1 M i M
[rm } —arg max Q({Fm}m 17{rm}m:1)
m=1 V{rm]m 1
st. 1'Tp=1" Vm (13)

where 1 is an all-ones vector of dimension L. Imposing the con-
straint using a Lagrange multiplier A, each confusion matrix can
be easily obtained solving

Parameters {7 }K

N K L L
f'f,:l =arg max Y > ol Y smDlogEn k) — A > Tu. k) -1}, (14)
VIR T =1 =
which readily results in
Yol kS” ()
ZI’ 1Zn lank m(l)

forl=1,..., Lk=1,..., Kandm=1,..., M.
The set of K a priori probabilities are updated solving the fol-
lowing optimization problem

{”kﬂ}k | =arg ma]x Q({ﬂk}k 1!{771{}1( 1)

;H (L k)= (15)

Zﬁk =1 (16)

Again, imposing the constraint using a Lagrange multiplier, the es-
timate at the it" iteration is equal to

N t
[+1 Zn:l an,k

it N (17)
forn=1,..., Nand k=1,..., K.
4.3. MAP decision

In a nutshell, after proper initialization of 90 =
{{f?n} _:{#2K, ), the EM algorithm iteratively solves Eqs.

(12), (15) and (17), until convergence of Q(é;éf), upon which a
final estimate of {a,’:k}, {f‘;} and {ﬁ,{} is obtained. Finally, a class
decision is taken with a MAP rule that uses these final estimates.
That is, at each position n we decide the class of y" as

V= argmaxafk, (18)

k=1,...,

which readily maps the pair of nucleotides
{AA,CC, GG, TT, AC, AG, AT, CG,CT, GT}. The presented EM-based
Variant Calling (EMVC) algorithm is summarized in Algorithm 1
and represents the meta-learner classifier of the formulated
ensemble learning problem.

5. Experimental results

The performance of the EMVC algorithm is assessed by means
of experiments using real data available for chromosome 20 of
one particular human individual denoted with the name NA12878,
which has been thoroughly characterized and for which a set of
high-confidence variants, i.e., ground truth, exists [27]. Note that
sequencing data from this individual has been extensively used for
comparative analyses in the past. For example, in [26], where the
effect of lossy compression of quality scores on variant calling is
analyzed, or in [20], where best practices for variant calling in the
clinical setting are proposed.
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Algorithm 1 EM Variant Calling (EMVC).
Require: {RIl;m=1,..., M andn=1,---,N}

Ensure: {j"}V_, 9 = (1, o (D)
1: procedure

PN 20
20 00={{T M {70}k Yandt <0 > Initialization
3 repeat
4 Compute ozfl‘k; n=1,..., Nand k=1,..., K as in Eq.12 > E-Step
5: Compute fﬁnﬂ; m=1,..., M as in Eq.15 > M-Step
6 Compute A+ k=1,..., K as in Eq.17 > M-Step
7 until Convergence of Q(f; 8%)
8 a{k_ot;k;nz ..... Nand k=1,..., K

9:  J"=argmax,_,;
10: end procedure

Chromosome 20 has 60 million of base-pairs and in the ex-
periments we use the reference genome of chromosome 20, and
a SAM file with a total of 8,7 x 10% reads that fully span chro-
mosome 20 of NA12878. This SAM file has a coverage within the
range of 10 — 30 labels per nucleotide position. The EMVC perfor-
mance is evaluated using the true genome sequencing or ground
truth of chromosome 20 of NA12878. Results of the EMVC algo-
rithm are compared to those provided by GATK, HTSLIB, and Platy-
pus in terms of precision and sensitivity. Precision denoted by P
and sensitiviy (or recall) denoted by S are computed as

#TP
= ¥TP+ #FP (19)
#TP
S= (20)

where TP, FP and RE stand for true positives, false positives and
relevant elements, respectively. In our setup the REs are the nu-
cleotide positions of the ground truth where at least one of the
couple of nucleotides is different from the nucleotide of the refer-
ence genome. These positions are called variants® Therefore, pos-
itives refer to nucleotide positions where the variant calling algo-
rithm decides there is a variant. The TPs of a variant calling al-
gorithm are given by the number of nucleotide positions where
the algorithm correctly identifies a variant, i.e. at least one of
the couple of nucleotides of the decided class is different from
the reference genome and the decided class coincides with the
one of the ground truth. The FPs of a variant calling algorithm
are given by the number of nucleotide positions where the algo-
rithm incorrectly identifies a variant, i.e., at least one of the couple
of nucleotides of the decided class is different from the reference
genome but either this position is not a true variant (i.e., is not a
relevant element) or the decided class is different from the couple
of nucleotides given by the ground truth.

This section is organized as follows. First, details regarding ini-
tialization and convergence of the EMVC algorithm are presented.
Then, the performance of the EMVC is evaluated for different val-
ues of N and compared to state-of-the-art variant callers using real
data.

5.1. EMVC initialization

The cost function of the EM algorithm, given by (11) in the
problem at hand, has multiple local minima and a wise initializa-
tion of the parameters is required to achieve a competitive perfor-
mance. In our setup, classes {AA,CC, GG, TT} correspond to a po-
sition where both the chromosome of the mother and the father

5 Variants refer to differences in the nucleotides with respect to the reference
genome but also to insertions and deletions, named INDELS. The EMVC algorithm
detects changes of nucleotides but not INDELS, yet.
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have the same nucleotide than the reference genome. Indeed, these
classes have a much higher probability of occurrence than the rest
because only around 0.1% of the DNA of human beings differ from
the reference genome. In view of this, in our experiments the a
priori probabilities are initialized as follows

- 0205 k=1,...,4
0 _ s
k—{o.oa k=5.....10 (21)
where Y§ | #0 = 1 must be guaranteed. With regards to the con-
fusion matrices of the learners, all of them take the same initial
value given by

04 02 02 02 03 03 03 02 02 02

20 02 04 02 02 03 02 02 03 03 02
m 02 02 04 02 02 03 02 03 02 03
02 02 02 04 02 02 03 02 03 03

(22)

Ym=1,..., M, where the probability of observing a nucleotide
conditioned on a given couple increases if the observed nucleotide
belongs to the couple. For instance, the initial probability that a
read of learner m is A conditioned that the true class is AA is given
by l“om(l, 1) = 0.4; the initial probability that a read is A condi-
tioned that the true class is AG is l‘f,’1 (1,6) = 0.3; and the initial
probability that a read is A conditioned that the true class is GG
is set to F?n(l, 3) = 0.2. Even though the relation between the Q-
score and the probability of error in (1) might be used to initialize
the confusion matrices of the different learners, we opt here for
initializing all matrices the same and let the EMVC algorithm to
learn the confusion matrices from the data.

5.2. Convergence of EMVC

In this section we analyze the first 3 x 10° reads of the SAM file
of NA12878 and run the EM algorithm. At this point, it is impor-
tant to remark that the EMVC algorithm only uses the nucleobase
positions where at least two reads provide different labels. That is,
if for instance at a given nucleobase position all reads provide a
label equal to A, the decision taken by the classifier is going to be
AA, and the reads of this position are not used by the EMVC algo-
rithm. However, these nucleotide positions where all reads provide
the same label are obviously considered in the computation of the
precision and sensitivity. Therefore, after analyzing the first 3 x 108
reads of the SAM file that reach up to the nucleotide at position
20,627,099 of the chromosome 20 of NA12878, only the labels of
N = 928, 406 nucleotide positions are used to run the EMVC algo-
rithm. In this particular case we have M = 6 learners that corre-
spond to the first 6 bins in Table 1 and the number of iterations of
EMVC is fixed to 50.

Regarding the convergence of the EMVC algorithm, Fig. 4
plots the evolution of the a priori probabilities per EM iteration.
Clearly, {ﬁ,ﬁ}le converge and, interestingly, the final values 7/ =
{0.2997, 0.1864, 0.1870, 0.3027, 0.0021, 0.0082, 0.0019, 0.0020,
0.0079,0.0021} are very similar to {0.3028,0.1839,0.1859,
0.3051, 0.0018, 0.0078, 0.0015, 0.0018, 0.0076, 0.0018}, which are
the class probabilities provided by GATK.

With regards to the convergence of the confusion matrices, Figs.
5 and 6 show the evolution of the entries of tllg confusAipn matrix
of learner m =1 and m = 6, respectively, i.e., {I'; (I, k), 'g(l,k); 1 =
1,....,4and k=1,...,10}. Clearly learner m = 1, who is the less
reliable with lower Q-score values, is the one that needs more it-
erations to converge.

Egs. (23) and (24) provide the final values f‘{ and fé. respec-

tively. As expected, the confusion matrix f'g of learner m = 6 esti-
mated by the EMVC algorithm corresponds to a reliable learner,

whereas the estimated f‘{ corresponds to a less reliable learner
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Table 2

Pattern Recognition 129 (2022) 108721

Precision (P) and sensitivity (S) obtained by: EMVC for up to the first 3 x 10° reads of chromosome 20 of NA12878 with a coverage in the range of
10 — 30, and by GATK [21,22], HTSLIB [24] and Platypus [25] using the full chromosome 20 of NA12878, i.e., 8.7 x 10° reads.

# Reads of NA12878 Nucleotide Initial Position =~ Nucleotide Final Position  # Nucleotides N (EMVC) P (%) S (%)

100K 59,988 750,036 40,119 77.01 (EMVC) 96.81 (EMVC)
1M 59,988 6,957,434 373,859 83.23 (EMVC) 97.51 (EMVC)
2M 59,988 13,798,418 631,785 85.29 (EMVC) 97.51 (EMVC)
3M 59,988 20,626,160 928,406 85.03 (EMVC) 97.56 (EMVC)
8.7M (full) 74.31 (GATK) 96.98(GATK)
8.7M (full) 72.88 (HTSLIB) 96.83 (HTSLIB)
8.7M (full) 76.45 (Platypus) 91.90 (Platypus)

since m = 1 gathers reads with the nine lowest Q-score values. For
instance, after convergence of the EMVC algorithm, the probability
that a read of learner m =6 is A conditioned that the true class
is AA becomes by Fé(l, 1) =0.9964 for learner m = 6 but only

Fé(l, 1) = 0.4122 for learner m = 1; or the probability that a read
is different from A or G conditioned that the true class is AG is al-
most O for learner m = 6 but equal to l'{(Z, 6) + l'{(4, 6) =0.0494
for learner m = 1.

[0.4122 0.1946 0.1856 0.1646 0.4099 0.4395
#/_ 02271 04882 01272 01965 05631 0.0293
1= 101949 0.1274 04897 02268 0.0188 0.5111

| 0.1657 0.1897 0.1974 04121 0.0083 0.0201

[0.9964 0.0028 0.0041 0.0015 0.5584 0.6493
#/_ | 00007 09918 00014 00012 04416 0.0000
6=10.0012 00015 0.9912 0.0008 0.0000 0.3507

| 00017 00039 0.0033 0.9966 0.0000 0.0000

5.3. EMVC performance

In this section, the precision and sensitivity of the EMVC algo-
rithm is computed in different experiments using real data. In all
experiments, M = 7 learners given by Table 1 are used; the number
of labels is L =4 and the number of classes is K = 10 that corre-
spond to {A,C,G, T} and {AA,CC, GG, TT, AC, AG, AT, CG,CT, GT}, re-
spectively. The initial values of the a priori probabilities are given
by (21) and the confusion matrices are all initialized using (22).
The number of iterations run by EMVC is equal to 50 and the num-
ber of nucleotide positions denoted by parameter N depends on
the experiment as detailed below.® Table 2 shows precision and
sensitivity of the EMVC algorithm for an increasing number of nu-
cleotides of chromosome 20 of individual NA12878 up to the first
3 x 108 reads. For comparative purposes, Table 2 also includes the
precision and sensitivity achieved by the state-of-the-art variant
callers, namely, GATK [21,22]7, HTSLIB [24]%, and Platypus [25]. Re-
sults for these pipelines are obtained using the full chromosome,
i.e,, the complete SAM file that includes 8.7 x 106 reads.

For the sake of clarity, take for instance the row 2M (resp.?
100K) in Table 2. The value 2M (resp. 100K) means that the first
2 x 108 (resp. 100 x 103) reads of the SAM file of NA12878 are
considered in the procedure, being the position of the first nu-
cleotide 59,988 and the position of the last one 13,798,418 (resp.
750,036). Indeed, for the first 59,987 positions there are no reads
available and this initial part cannot be sequenced, which is usual

6 Implementation is done in MATLAB and Python, and it is available upon request
to the authors.

7 Available at  https://gatk.broadinstitute.org/hc
broadinstitute/gatk/releases (last Release in Feb. 2022)

8 Available at http://www.htslib.org and https://github.com/samtools/samtools/
releases/ (last release in Feb.2022)

9 resp. is an abbreviated form of respectively.

and  https://github.com/

in other SAM files. The total number of nucleotide positions to be
sequenced is 13, 738, 431 = 13, 798, 418 — 59, 987 (resp. 690, 049 =
750,036 —59,987) but only N =631, 785 (resp. 40,119) positions
show discrepancy in the labels of the reads. Hence, these are
the nucleotide positions for which EMVC takes a decision about
the class they belong to, i.e., {AA, CC, GG, TT, AC, AG, AT, CG, CT, GT}.
In the rest of nucleotide positions, i.e., a total of 13,738,431 —
631,785 = 13, 106, 646 (resp. 690, 049 — 40, 119 = 649, 930) posi-

0.5995 0.0142 0.0170 0.0198

0.0271 0.4734 0.4851 0.0180 (23)
0.0146 0.5001 0.0334 0.5196

0.3587 0.0123 0.4645 0.4426

0.4946 0.0000 0.0008 0.0000

0.0000 0.4742 0.3574 0.0000 (24)
0.0000 0.5240 0.0000 0.3649

0.5054 0.0018 0.6418 0.6351

tions, the labels of all reads for these positions are equal and they
are not used by the EMVC algorithm since the decision is trivial,
i.e., one of the first four classes {AA, CC, GG, TT}.

As observed in Table 2, the performance of EMVC is superior
to the rest of variant callers since it achieves a higher precision
and similar sensitivity. Indeed, the precision and sensitivity val-
ues of EMVC saturate to 85% and 97%, respectively, using the first
2 x 10 reads and running the EMVC with N = 631, 785 nucleotide
positions. This result means that the EMVC algorithm performs
well even without using the full genome, which might help to
reduce the computational cost and memory requirements of the
sequencing procedure by analysing fragments of the SAM file in
parallel.

In the previous experiment, results in Table 2 are obtained with
a single realization of EMVC. Fig. 7 and 8 show boxplots of the

90
‘ ==
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2 \
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ke
0
[&]
o
o
80+
|
|
1
100K 1M 2M

Fig. 7. Boxplots of precision obtained by EMVC using 10 realizations with 100 x 103
(100K), 1 x 106 (1M), and 2 x 105 (2M) reads of the SAM file..
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Table 3

Pattern Recognition 129 (2022) 108721

Precision (P) and sensitivity (S) obtained by EMVC for the full chromosome 20 of NA12878 split into three fragments, and obtained by GATK [21,22],

HTSLIB [24] and Platypus [25] using the full chromosome 20. Coverage of 20.

# Reads of NA12878 Nucleotide Initial Position =~ Nucleotide Final Position  # Nucleotides N (EMVC) P (%) S (%)
3M 59,988 20,626,160 928,406 85.03 (EMVC) 97.56 (EMVC)
3M to 5M 20,626,060 36,929.891 785,153 35.70 (EMVC) 96.78 (EMVC)
5M to 8,7M 36,929,793 62,965,486 1,407,042 76.70 (EMVC) 97.26 (EMVC)
8.7M (full*) 66.63 (EMVC) 97.27 (EMVC)
8.7M (full) 74.31 (GATK) 97.5 (GATK)
8.7M (full) 72.88 (HTSLIB) 96.83 (HTSLIB)
8.7M (full) 76.45 (Platypus) 91.90 (Platypus)
99 30 x 106 there is a region with abnormal values of coverage as
high as 500. Typically, this occurs in the presence of groups of
98.5 reads that are a copy of other ones within the same SAM file,
— which are called spurious. This region makes the EMVC algorithm
_ ogl obtain a global sensitivity of 97.27% and a precision of 66.63%
&L — for the full chromosome, which is lower than the rest of variant
> E — callers, e.g. GATK is 74.31%. Indeed, GATK has a mechanism to deal
%97'5 | with these regions, that our method does not include. Still, even
5 without this filtering post-processing step, EMVC achieves compet-
D g7t i itive figures of precision and sensitivity compared to the state-of-
I the-art variant callers GATK, HTSLIB, and Platypus.
96.5 — With regards to the computational cost of the EMVC algorithm,
the execution time of EMVC using MATLAB is in the range of
9% 0.18 — 0.20 seconds per 1.000 processed nucleotides and per itera-
100K 1M 2M tion. Thus, for instance, the execution time of the fragment 3M of

Fig. 8. Boxplots of sensitivity obtained by EMVC using 10 realizations with 100 x
103 (100K), 1 x 10% (1M), and 2 x 10% (2M) reads of the SAM file..

precision and sensitivity obtained by EMVC using 10 realizations
for three different cases {100K, 1M, 2M}. The first case, namely
100K, means that each realization is executed using 100 x 103
reads. The data for the different realizations are obtained by split-
ting the first 1 x 10% reads of the SAM file into 10 files. In the
other two cases, namely 1M and 2M, the EMVC is executed us-
ing 1 x 10% and 2 x 10% reads, respectively. The 10 files of data
are obtained from the first 3 x 106 reads of the SAM file using a
regular data shift or lag. The empirical mean value and standard
deviation of the precision (sensitivity) for 100K are 82.03% 4 4.33
(97.48% 4+ 0.66); for 1M are 85.85% + 1.52 (7.56% & .1); and for 2M
5.96% + 0.40(7.58% + 0.05). It can be observed that the range of
precision and sensitivity results achieved by EMVC are significantly
reduced when 2 x 106 reads are analyzed, suggesting that this is a
convenient file size if the SAM file was processed in parallel.

Table 3 shows precision and sensitivity of the EMVC algo-
rithm of different fragments of the SAM file of chromosome 20
of NA12878. The coverage of the SAM file used in these experi-
ments is expected to be in the range of 10 — 30 labels of reads
per nucleotide position. The SAM file has 8.7 x 10° reads and it is
partitioned into three fragments: one with the first 3 x 106 reads
(row 3M in Table 3), a second one with the subsequent 2 x 106
reads (row 3M to 5M in Table 3), and the final one with the last
3.7 x 10° reads (row 5M to 8.7M in Table 3). Then, the EMVC al-
gorithm is run for each of these three fragments, and the precision
and sensitivity are computed. Note that, for computational limita-
tions, the precision and sensitivity of EMVC in row 8.7M (full*) are
calculated gathering the information obtained with the three frag-
ments separately.

As it can be observed in Table 3, the EMVC performance for
the fragment 3M to 5M decreases significantly with a precision of
35.70%, much lower than GATK. After an inspection of the dataset,
we observe that between the nucleotide positions 25 x 106 and

Table 3 with N =928,406 and 50 iterations costs around 2 hours
and a half. This computational load is expected to be significantly
reduced if other programming languages that handle big data files
more efficiently were used. Indeed, this is proposed as future work.

6. Conclusions

The variant calling step in next generation sequencing tech-
nologies for DNA sequencing is presented here as an unsu-
pervised classification task, where for each nucleotide posi-
tion of the DNA in diploid cells a decision among the classes
{AA, CC, GG, TT, AC, AG, AT, CG, CT, GT} must be taken given several
labels among the set {A,C, G, T} that are provided by the reads.
In this paper, we solve the variant calling step as an ensemble
classification problem by arranging the read labels into groups ac-
cording to their quality scores, so that labels of the same group
show a similar reliability. A variant caller algorithm based on the
EM algorithm is proposed, and experimental results prove that the
proposed algorithm is competitive in terms of precision and sensi-
tivity to other state-of-the-art variant callers as GATK, HTSLIB and
Platypus. In particular, EMVC obtains in some cases the same sen-
sitivity but improved precision, which corresponds to fewer incor-
rectly called variants, and can lead to better clinical decisions. The
proposed variant caller bins the quality scores, fact that further
supports the idea shown in previous studies that the full range of
quality scores is not needed to obtain a high quality set of variants.
This is interesting to reduce the memory requirements of the SAM
file. To the best of our knowledge, this work presents the first vari-
ant caller formulated as an ensemble classifier that shows a com-
petitive performance compared to state-of-the-art methods. More-
over, we do believe our work paves the way to the research com-
munity to apply other existing ensemble classification algorithms
to solve the variant calling problem. Future work includes the de-
velopment of an improved EMVC algorithm capable of detecting
insertions and deletions that typically occur in the DNA; to develop
the full pipeline code in more efficient open-source code for the
research community; and devise filtering mechanisms to improve
the performance of EMVC in DNA regions with spurious reads.
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