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Abstract

Synthetic Lethality (SL) is currently defined as a type of genetic interaction in which the loss

of function of either of two genes individually has limited effect in cell viability but inactivation

of both genes simultaneously leads to cell death. Given the profound genomic aberrations

acquired by tumor cells, which can be systematically identified with -omics data, SL is a

promising concept in cancer research. In particular, SL has received much attention in the

area of cancer metabolism, due to the fact that relevant functional alterations concentrate

on key metabolic pathways that promote cellular proliferation. With the extensive prior

knowledge about human metabolic networks, a number of computational methods have

been developed to predict SL in cancer metabolism, including the genetic Minimal Cut Sets

(gMCSs) approach. A major challenge in the application of SL approaches to cancer metab-

olism is to systematically integrate tumor microenvironment, given that genetic interactions

and nutritional availability are interconnected to support proliferation. Here, we propose a

more general definition of SL for cancer metabolism that combines genetic and environmen-

tal interactions, namely loss of gene functions and absence of nutrients in the environment.

We extend our gMCSs approach to determine this new family of metabolic synthetic lethal

interactions. A computational and experimental proof-of-concept is presented for predicting

the lethality of dihydrofolate reductase (DHFR) inhibition in different environments. Finally,

our approach is applied to identify extracellular nutrient dependences of tumor cells, eluci-

dating cholesterol and myo-inositol depletion as potential vulnerabilities in different

malignancies.

Author summary

Metabolic reprogramming is one of the hallmarks of tumor cells. Synthetic lethality (SL)

is a promising approach to exploit these metabolic alterations and elucidate cancer-
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specific genetic dependences. However, current SL approaches do not systematically con-

sider tumor microenvironment, which is particularly important in cancer metabolism in

order to generalize identified genetic dependences. In this article, we directly address this

issue and propose a more general approach to SL that integrates both genetic and environ-

mental context of tumor cells. Our definition can help to contextualize genetic dependen-

cies in different environmental scenarios, but it could also reveal nutrient dependencies

according to the genetic context. We also provide a computational pipeline to identify this

new family of synthetic lethals in genome-scale metabolic networks. A computational and

experimental proof-of-concept is presented for predicting the lethality of dihydrofolate

reductase (DHFR) inhibition in different environments. Finally, our approach is applied

to identify extracellular nutrient dependences of cancer cell lines, elucidating cholesterol

and myo-Inositol depletion as potential vulnerabilities in different malignancies.

Introduction

The main challenge of precision oncology is to be able to translate accumulating–omics data

into actionable treatments, personalized for individual patients [1]. Synthetic Lethality (SL),

defined as a type of genetic interaction where the co-occurrence of two (or more) genetic

events results in cellular death, while the occurrence of either event on its own is compatible

with cell viability, represents a promising approach [2]. Given the underlying genetic varia-

tions in tumor cells, SL largely expands the number of possible drug targets and creates an

opportunity for more selective therapies [3].

Extensive work has been done to predict SL in cancer using both experimental and compu-

tational approaches [4–7]. These approaches have been mainly driven by the availability of

large-scale gene knockout screening data for an increasing number of cancer cell lines [8,9].

Importantly, they provide an experimental in vitro measure of cancer gene essentiality, which

can be integrated with genomic and transcriptomic data in order to hypothesize SL and iden-

tify response biomarkers.

Cancer metabolism is an ideal target to exploit the concept of synthetic lethality. Metabolic

reprogramming of tumor cells leads to phenotypes that are substantially different from the

ones observed in their healthy counterpart cells, and that can be potentially used to elucidate

novel therapeutic strategies [10]. Outstanding works exploiting SL in cancer metabolism are

reported in the literature [11–13], where different vulnerabilities were identified according to

the underlying genetic context found in tumor cells.

We previously developed a computational framework to predict synthetic lethality in can-

cer metabolism based on the concept of genetic Minimal Cut Sets (gMCSs) [14]. Given a refer-

ence human genome-scale metabolic network, such as Recon3D [15], gMCSs define minimal

subsets of genes whose simultaneous loss block a particular metabolic target, in our case

metabolites that are essential for cellular growth, e.g. nucleotides for DNA, amino acids for

protein, lipids for cell membranes, etc. gMCSs generalize the concept of SL to genetic interac-

tions of more than 2 genes. Using gene expression data as a proxy for the activity of metabolic

enzymes, identified gMCSs were used to predict metabolic vulnerabilities in cancer. Our in-sil-

ico (network-based) approach was validated using large-scale in vitro gene-knockout screening

data and in vitro functional studies in multiple myeloma.

Despite these promising results, the application of SL to cancer metabolism has still differ-

ent challenges. One of them is the integration of tumor microenvironment in the prediction of

SL [16], since metabolic genetic interactions and nutritional availability are intertwined to
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support cellular proliferation. On the one hand, the presence/deprivation of certain nutrients

in the environment could modify the metabolic landscape and explain tumor resistance/sensi-

tivity to metabolic targets. For example, it was recently reported that the supplementation of

uridine rescues the anti-leukemic effect of dihydroorotate dehydrogenase inhibition [17]. On

the other hand, targeting nutrient dependencies of tumor cells is an emerging topic in cancer

research [18], and they are directly connected to the genetic variations of tumor cells but dis-

connected from the synthetic lethality literature. A paradigmatic example is the dependency

on extracellular L-asparagine in samples with loss of asparagine synthetase (Lazarus et al.,

1969). In fact, L-asparagine depletion via asparaginase administration is an approved therapy

for acute lymphoblastic leukemia [19].

These results evidence the need of a more general approach to target cancer metabolism

that integrates both genetic and environmental factors. However, this has not been systemati-

cally explored in current approaches to SL in cancer metabolism. In this article, we propose a

new definition of SL that that combines loss of gene functions and absence of nutrients in the

environment. Our definition can help to contextualize genetic dependencies in different envi-

ronmental scenarios, e.g. if extracellular uridine is absent in the microenvironment, then dihy-

droorotate dehydrogenase becomes lethal in leukemia. Moreover, we could reveal nutrient

dependencies according to the genetic context, as the case mentioned above where the block-

age of the uptake of L-asparagine is lethal in patients with loss of function of asparagine

synthetase.

In the light of the above definition, we extend the gMCSs approach to search for this family

of synthetic lethal interactions. A computational and experimental proof-of-concept is pre-

sented for predicting the lethality in different environments of a well-studied drug target in

cancer metabolism, dihydrofolate reductase (DHFR) [20]. Finally, our novel approach is

applied to predict extracellular nutrient dependences of in vitro cancer cell lines. We identified

cholesterol and myo-inositol depletion as promising vulnerabilities of different tumors.

Results

Tumor nutrient environment and synthetic lethality

Fig 1 shows an example metabolic network under two different culture mediums (environ-

mental contexts), CM1 and CM2. The network ultimately produces the metabolite C, which is

essential to tumor growth (Fig 1A). Under CM1, g1 and g2 form a synthetic lethal pair because

their simultaneous inactivation blocks biomass production while individual inactivation do

not (Fig 1B). Note here that, if we consider a genetic context where g2 is not active (due to low

expression, deletion or loss-of-function mutation, for example), g1 becomes an essential gene

in this given context (Fig 1C).

On the other hand, when trying to translate these findings to the network in CM2, due to

the additional presence of M2 with respect to CM1 (Fig 1D), the simultaneous knockout of the

two genes (g1 and g2) is not lethal anymore (Fig 1E). This example illustrates that SL is depen-

dent on the environmental context and a more general definition of SL is necessary in cancer

metabolism in order to consider it together with the underlying genetic context. Here, we pro-

pose to identify synthetic lethal interactions involving loss of gene functions but also nutrients

in the environment.

In our example, Fig 1F shows an example of synthetic lethal involving two genes and one

nutrient: {g1, g2, M2}, i.e. the lack of activity of g1 and g2 and the absence of nutrient M2 leads

to cellular death. In a particular context where M2 is not present in the environment and g2 is

not active, g1 remains essential. Similarly, in other context where g1 and g2 are not active, the

depletion of M2 is lethal, i.e. cellular growth is dependent on M2 availability. Thus, this
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definition of SL is more general and allows us to identify both genetic and extracellular nutri-

ent dependencies of tumor cells.

Extending genetic MCSs into nutrient-genetic MCSs

In order to be able to systematically identify this novel family of synthetic lethals, we extend

our previous network-based approach, based on genetic Minimal Cut Sets (gMCSs), leading to

the concept of nutrient-genetic Minimal Cut Sets (ngMCSs). Here, we first revise the concept

of gMCSs. Then, we introduce the concept of ngMCSs and describe how our approach is

adapted for their calculation.

Fig 1. Synthetic Lethality in 2 different environmental contexts. (a) Example metabolic network under Culture

Medium 1 (CM1). We have 5 reactions (rE1, r1, r2, r3, r4), 4 metabolites (M1, A, B, C) and 3 genes (g1, g2, g3). rE1 is an

input exchange reaction and represents the availability of M1; (b) g1 and g2 are synthetic lethals under CM1. (c) If g2 is

not active (red dotted line), the inhibition of g1 is essential under CM1. (d) Example metabolic network under Culture

Medium 2 (CM2). With respect to the metabolic network in (a), we have 2 additional reactions (rE2, r5) and 1

additional metabolite (M2). rE2 is an input exchange reaction and represents the availability of M2; (e) g1 and g2 are

not synthetic lethal under CM2 due to the alternative pathway via M2 degradation (in green). (f) The inhibition of g1
and g2 and deprivation of M2 in the metabolic network from (d) renders cellular proliferation impossible. (g) gMCSs

and ngMCSs for CM1 and CM2. Gray dotted lines stand for not active/not present reactions/metabolites.

https://doi.org/10.1371/journal.pcbi.1009395.g001
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In the context of genome-scale metabolic networks, gMCSs were defined as minimal sub-

sets of gene functions whose simultaneous loss block a particular metabolic task [14]. In cancer

studies, we search for gMCSs that block the flux through the biomass reaction, an artificial

equation that represents the metabolic biosynthetic requirements to support proliferation. At

the metabolic level, gMCSs generalize the concept of SL to more than 2 genes.

With our new concept of ngMCSs, we aim to incorporate nutrient deprivations as part of

the predicted synthetic lethal interactions. More specifically, ngMCSs are defined here as mini-

mal subsets of gene functions and/or nutrients in the environment whose simultaneous loss

block a particular metabolic task, here the flux through the biomass reaction. Fig 1G show the

list of gMCSs and ngMCSs for the 2 environments considered. ngMCSs are directly connected

with the type of synthetic lethals mentioned above that integrate genetic and environmental

events.

While the loss of gene functions is modelled in genome-scale metabolic networks as gene

knockouts, the loss of nutrients in the environment can be modelled as the knockout of input

exchange reactions, which represent the uptake of nutrients. In Fig 1, rE1 and rE2 are the input

exchange reactions associated with the uptake of M1 and M2, respectively. Thus, ngMCSs

define minimal subsets of gene knockouts and/or input exchange reaction knockouts that

block the biomass reaction. For example, ngMCS2:{g1, g2, M2} involves the gene knockouts of

g1 and g2 and the reaction knockout of rE2, which is equivalent to the deprivation of M2. Our

previously developed tool for the calculation of gMCSs, implemented in the COBRA tool-

box [21], was amended to include the knockout of input exchange reactions in the solution

space of gene knockouts and calculate ngMCSs (see Methods section and S1 Code).

Note here that both gMCSs and ngMCSs are structural properties of the reference network

under specific growth medium conditions. However, as it was previously done with gMCSs

[14], we can map experimental (-omics) data on identified ngMCSs and elucidate context-spe-

cific genetic or environmental dependencies (essential genes/nutrients). In other words, a gene

or nutrient is essential for a particular context if it is the only active element in at least one

ngMCS. This was illustrated above with the SL shown in Fig 1F, now ngMCS2, where if g1 and

g2 are inactive in a particular context, M1 becomes an essential nutrient; similarly, if, in a dif-

ferent context, g2 is inactive and M1 is absent in the environment, g1 becomes an essential

gene.

Lethality of DHFR inhibition in different environments

As a proof-of-concept of our ngMCSs approach, we investigated a well-known metabolic target

in cancer: dihydrofolate reductase (DHFR) [22]. The inhibition of DHFR has been proven lethal

in different cancer cell lines under standard growth medium conditions [23]. Similarly, when

we applied our gMCS approach to Recon3D [15], a high-quality reference human genome-scale

metabolic network, under RPMI growth medium conditions, the same result regarding DHFR

essentiality was obtained (see Methods section). On the other hand, in a more complex tumor

microenvironment where all input nutrients annotated in Recon3D were available, we deter-

mined 17 gMCSs and 291 ngMCSs involving DHFR (S1 and S2 Tables). We identified 2

ngMCSs that involve DHFR and exclusively nutrients not included in standard RPMI growth

medium (ngMCS5 and ngMCS289 detailed in S2 Table). For illustration, one of them involves

{DHFR, thymidine, dihydrothymine, thymine}. Since thymidine, dihydrothymine and thymine

are not part of the RPMI growth medium, this ngMCS indicates the essentiality of DHFR under

these in vitro conditions and support our ngMCS approach in a general context.

Among the list of ngMCSs mentioned above, we identified 2 nutrients which have been

previously associated with resistance to DHFR inhibition, namely, thymidine and
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hypoxanthine [23]. In fact, both metabolites were measured in different human biofluids [24],

finding a relevant average plasma concentration for thymidine and hypoxanthine among can-

cer patients [25]. We investigated further this resistance mechanism with our approach and we

re-calculated gMCSs and ngMCSs under the RPMI growth medium plus thymidine and hypo-

xanthine. Under this scenario, the list of gMCSs and ngMCSs involving DHFR is shown in Fig

2A. We have 2 ngMCSs, namely {DHFR, Thymidine} and {DHFR, Hypoxanthine}, which

implies that the deprivation of either thymidine or hypoxanthine makes DHFR essential, as

observed under standard RPMI growth medium. From a different angle, since DHFR is

required in the de novo synthesis pathway of purines and pyrimidines, both thymidine and

hypoxanthine are required to rescue proliferation upon DHFR knockout (Fig 2B). In addition,

we have 4 gMCSs (Fig 2A), which indicate that the alternative salvage pathways through thy-

midine and hypoxanthine requires 1) the presence of the transporter SLC29A2 and 2) key

enzymes, namely TK1 or TK2 for thymidine degradation, while HPRT1 or PNP or (GMPS

and XDH) for hypoxanthine degradation (Fig 2B).

To validate our hypothesis, we conducted experimental study in 3 different cancer cell

lines: JVM2, HT29 and PF382. Note here that, in contrast with PF-382 and JVM-2, HT-29

cells were not grown under RPMI but McCoy’s 5a growth medium (see Methods section). The

computational results shown above for DHFR under RPMI medium were the same for

McCoy’s 5a medium (S3–S5 Tables). We used Methotrexate (MTX) for selective inhibition of

DHFR. We first calculated the MTX GI50 for these cell lines and validated their sensitivity

(IC50< 50 nM) (Fig 3A). Second, we showed that the decrease in proliferation mediated by

MTX is rescued when both thymidine and hypoxanthine are added into the growth medium

(Fig 3B, one-tailed Wilcoxon test p-value� 0.05 for all cell lines), in line with our computa-

tional predictions described above. A similar result was found when thymidine and

Fig 2. Predicted synthetic lethals involving DHFR with thymidine and hypoxanthine in the growth medium. (a) 4

genetic Minimal Cut Sets (gMCSs) and 2 nutrient-genetic Minimal Cut Sets (ngMCSs) involving DHFR. They were

derived from Recon3D under the RPMI1640 growth medium plus thymidine and hypoxanthine; (b) Simplified

network of metabolites and enzymes implied in the synthesis of purines and pyrimidines, emphasizing the role of

DHFR, Thymidine and Hypoxanthine. Abbreviations: DHF: dihydrofolate; THF: tetrahydrofolate; IMP: inosinic acid;

dTMP: 5-Thymidylic acid; DHFR: dihydrofolate reductase; PNP: purine nucleoside phosphorylase; HPRT1:

hypoxanthine phosphoribosyltransferase 1; XDH: xanthine dehydrogenase; GMPS: Guanine Monophosphate

Synthase; TK1: thymidine kinase 1; TK2: thymidine kinase 2; SLC29A2: solute carrier family 29 member 2.

https://doi.org/10.1371/journal.pcbi.1009395.g002
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hypoxanthine was added following DHFR silencing (Fig 3C), except for one of the siRNAs in

JVM2 where no rescue of the proliferation decrease was observed. In particular, we found sta-

tistical significance in both siRNAs in PF-382 and one siRNA in HT29 (one-tailed Wilcoxon

test p-value� 0.05), while we were very close to statistical significance in one siRNA in HT29

and JVM-2 (one-tailed Wilcoxon test p-value: 0.0571). Full details of the experiment of DHFR
silencing at different days can be found in S1 Fig. Note here that both DHFR siRNAs efficiently

decreased DHFR expression in the three cell lines analyzed as detected by qRT-PCR (Fig 3D).

Finally, coherent and high gene expression of SLC29A2, TK1 and HPRT1 was observed in the

three cell lines considered, according to CCLE (Cancer Cell Line Encyclopedia) [9] (see S6

Table), which enable alternative salvage pathways for purine and pyrimidine synthesis through

thymidine and hypoxanthine, respectively.

Considering the experimental data presented above, our ngMCSs approach was successful

in determining in which environmental contexts DHFR inhibition is lethal in cancer. Based on

Fig 3. In-vitro experimental validation of DHFR inhibition with hypoxanthine and thymidine in the growth

medium. a) GI50 values of MTX for PF-382, JVM-2 and HT-29 cell lines. b) Proliferation of PF-382, JVM-2 and HT-

29 cell lines treated with different doses of MTX for 96h in presence or absence of Hypoxanthine-Thymidine. Data

represent mean ± standard deviation of four experiments. c) Proliferation of PF-382, JVM-2 and HT-29 cell lines

nucleofected with siRNAs targeted to DHFR gene in presence or absence of Hypoxanthine-Thymidine was studied by

MTS at day 6 after nucleofection. The proliferation percentage refers to cells nucleofected with a negative control

siRNA. Data represent mean ± standard deviation of at least three experiments. d) mRNA expression of DHFR gene

48 h after nucleofection with the specific siRNAs. Data are referred to GUS gene and an experimental group

nucleofected with negative control siRNA. Data represent mean ± standard deviation of four experiments. All p-values

(p) were determined by one-tailed Wilcoxon tests. Abbreviations: MTX: methotrexate; HT: Hypoxanthine-Thymidine.

https://doi.org/10.1371/journal.pcbi.1009395.g003
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our computational approach, the opposite case was explored below, i.e. which genetic context

makes lethal an extracellular nutrient perturbation.

Extracellular nutrient dependences of tumor cells

Our ngMCS approach can also be used to systematically identify context-specific nutrient

dependences of tumor cells, i.e. supply of extracellular metabolites that are essential for tumor

proliferation in a particular genetic context. To illustrate this, we searched for ngMCSs in

Recon3D under RPMI growth medium conditions (see Methods section). We identified 52

ngMCSs (S7 Table), which involve 19 nutrients. Neglecting essential nutrients under RPMI

growth medium and ngMCSs involving more than one nutrient, we have 8 nutrients: L-aspar-

agine, L-arginine, cholesterol, choline, D-glucose, L-glutamine, myo-Inositol and L-tyrosine.

We discarded for further analysis choline and D-glucose because the associated genes in their

ngMCSs show consistent and high expression and context-specific insights were not obtained

(S2B and S2C Fig). The opposite occurs with L-tyrosine, whose associated genes in the

ngMCSs are lowly expressed in most cell lines, which makes it an essential nutrient in most

cases (S2A Fig). Thus, we focus on the other 5 nutrients (Fig 4A).

The dependency on extracellular L-asparagine in samples with loss of asparagine synthetase

(ASNS) has been long studied in cancer research [26]. In fact, L-asparagine depletion via

asparaginase is an approved therapeutic strategy for acute lymphoblastic leukemia, and it is

being investigated in solid tumors [18]. The dependence on extracellular L-arginine and L-glu-

tamine in samples with loss of glutamine synthetase (GLUL) and Argininosuccinate Synthase

1 (ASS1), respectively, has been validated with in vitro experiments of nutrient depletion and

barcode genetic screens [18]. The clinical importance of the uptake of L-arginine and L-gluta-

mine in different tumors has received much attention in the last years [27,28].

In the case of L-arginine, we also identified the role of Carbamoyl-Phosphate Synthase 1

(CPS1), which is required for de novo biosynthesis of L-citrulline. L-citrulline is essential for de
novo synthesis of L-arginine, but it is not present in the RPMI growth medium and, thus, its

availability relies on de novo synthesis pathway via CPS1 and other genes (see S7 Table). CPS1

is a bottleneck in de novo synthesis of L-citrulline, being only expressed in intestinal epithelial

cells and liver cells. Consequently, L-arginine is essential in most cases under RPMI growth

medium unless L-citrulline is additionally supplemented, which was precisely the strategy fol-

lowed in [18] in order to demonstrate the lethal interaction between L-arginine depletion and

loss of ASS1. This insight again reinforces the importance of the tumor microenvironment to

predict synthetic lethality.

On the other hand, the dependence on extracellular cholesterol in tumors with loss of squa-

lene monooxygenase (SQLE) was demonstrated in lymphoma [29]. They also showed that the

inhibition of the low-density lipoprotein (LDL) receptor (LDLR) was a good proxy for choles-

terol depletion. In addition to SQLE, our ngMCS approach in conjunction with RNA-seq data

from CCLE [9], allow us to identify other genes implied in cholesterol auxotrophic cell lines:

NSDHL, SC5D, FDFT1 and EBP. We identified 18 cell lines whose dependence on extracellu-

lar cholesterol was caused by the loss of one of these 5 genes, assuming a threshold of expres-

sion of 1 TPM. In agreement with the work of Garcia-Bermudez et al., 2019, 8 out of these 18

cholesterol auxotrophic cell lines are derived from lymphoma; however, we also detected 3 cell

lines from endometrial adenocarcinoma (Fig 4B). For comparison, Fig 4B also includes 18 cell

lines that are not dependent on extracellular cholesterol (cholesterol prototrophic cell lines),

particularly those with the highest expression of the genes involved in the ngMCSs associated

with cholesterol. Using large-scale silencing data from DepMap [8], we observed a similar

effect of LDLR down-regulation in both lymphoma and endometrium cholesterol auxotrophic
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cancer cell lines, substantially superior than the one found in cholesterol prototrophic cell

lines, according to the observed CERES scores (Fig 4C, one-tailed Wilcoxon test p-

value = 0.003996 for lymphoma and p-value = 0.06061 for endometrial adenocarcinoma).

Note here that CERES is a method to estimate gene dependency from CRISPR-CAS9 loss-of-

function screens developed by the DepMap initiative. A gene with more negative CERES score

in a particular cell line implies a major depletion of its associated sgRNAs in the population of

such cell line, which indicates a higher dependence for cell viability.

In addition, patients with AML and loss of inositol-3-phosphate synthase 1 (ISYNA1) have

shown a dependency on extracellular myo-Inositol [30]. In this study, the inhibition of the

myo-Inositol transporter SLC5A3 was presented as a good proxy for myo-Inositol depletion.

Fig 4. Extracellular nutrient dependences of in vitro cancer cell lines. a) Relevant ngMCSs involving L-Asparagine,

L-Glutamine, L-Arginine, Myo-Inositol and Cholesterol. b) Expression levels of the most limiting gene in the ngMCSs

associated with Cholesterol in 18 auxotrophic and 18 prototrophic cell lines. Auxotrophic cell lines were defined as

those where the most limiting gene has an expression level below 1 TPM. For comparison, we took the same number

of prototrophic cell lines; c) CERES scores for LDLR in the cell lines shown in b). The more negative CERES scores are,

the more cellular proliferation will be decreased; d) Expression levels of the most limiting gene in the ngMCSs

associated with Myo-Inositol in 45 auxotrophic and 45 prototrophic cell lines. e) CERES scores for SLC5A3 in the cell

lines shown in d). Abbreviations: ‘ALL’ and ‘AML’ refer to Acute Lymphoblastic Leukemia and Acute Myeloid

Leukemia, respectively. In addition, ‘Aux.’ refers to auxotrophic cell lines, e.g. Aux. ALL refers to auxotrophic ALL cell

lines. Note here that in panels (b)-(d) gene expression data was obtained from CCLE [9] and in panels (c)-(e) CERES

scores were obtained from the DepMap platform [8]. The significance of the difference in LDLR and SLC5A3 CERES

scores in the auxotrophic groups against the corresponding prototrophic group was assessed via a one-tailed Wilcoxon

test.

https://doi.org/10.1371/journal.pcbi.1009395.g004
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Again, using RNA-seq data from CCLE, we identified 45 myo-Inositol auxotrophic cell lines,

assuming a threshold of expression of 1 TPM for ISYNA1. Two of these cell lines are derived

from AML; however, 5 and 6 of these cell lines correspond to acute lymphoblastic leukemia

(ALL) and colorectal adenocarcinoma (CA) (Fig 4D). For comparison, Fig 4D also includes 45

cell lines that are not dependent on extracellular myo-Inositol, particularly those with the high-

est expression of ISYNA1. Using DepMap data, we observed that the most extreme effect of

SLC5A3 down-regulation was found in ALL cell lines (one-tailed Wilcoxon test p-

value = 0.0363); however, we could not demonstrate a similar performance in colorectal cancer

(Fig 4E).

For completeness, a similar analysis about cholesterol and myo-Inositol dependencies was

done considering all cell lines included in DepMap. We found a modest but statistically signifi-

cant linear correlation between SLC5A3 CERES scores and the expression of ISYNA1, as well

as between LDLR CERES score and the expression of the partner gene of cholesterol with the

highest expression among different ngMCSs (S3 Fig). In both cases, the distribution of gene

expression data suggests a bimodal structure (S4 Fig), in line with our assumption that cell

lines respond differently to the depletion of cholesterol and myo-Inositol. Finally, we provide

in S8 Table our predictions about which cell lines are dependent on cholesterol, myo-Inositol

and the rest of nutrients, following our conservative threshold expression of 1 TPM for the

genes involved in ngMCSs.

Discussion

There is an increasing body of literature evidencing that in-vivo resistance to metabolic vulner-

abilities identified in-vitro could be mediated by alternative pathways driven by nutrients typi-

cally not included in standard growth media. This is illustrated here with our study about

DHFR inhibition, whose anti-proliferative effect under RPMI growth medium is compensated

with the addition of thymidine and hypoxanthine. There are other relevant cases in the litera-

ture. For example, it was recently reported that the supplementation of uridine rescues the

anti-leukemic effect of dihydroorotate dehydrogenase inhibition [17]. A similar result was

found in pancreatic ductal adenocarcinoma, where tumor-associated macrophages release

pyrimidines to the extracellular medium which confer resistance to gemcitabine [31]. On the

other hand, restricting the availability of certain nutrients for tumor cells is an emergent strat-

egy in cancer research. The dependence on L-asparagine is one paradigmatic example that is

used clinically in patients with acute lymphoblastic leukemia. Other ongoing works include

cholesterol depletion in lymphoma [29] and myo-Inositol depletion in AML [30], which illus-

trate that this therapeutic strategy could be exploited in wider settings. All these results

together emphasize the importance of systematically considering the nutrient environment to

target cancer metabolism via synthetic lethality approaches [32].

Here, we propose a novel family of metabolic synthetic lethal interactions, which include

genes but also nutrients in the environment, going beyond existing definitions in the literature.

For their calculation, we extend our previously developed computational approach to identify

synthetic lethal interactions in cancer metabolism [14]. In particular, we move from genetic

Minimal Cut Sets, gMCSs, to nutrient-genetic Minimal Cut Sets, ngMCSs. While gMCSs

define minimal subsets of gene knockouts perturbations that lead to cellular death, ngMCSs

incorporate extracellular nutrient deprivation as part of the predicted synthetic lethal interac-

tions. The ngMCS approach is a more flexible framework that allows us to predict context-spe-

cific genetic and nutritional perturbations that lead to cellular death.

Our computational tool could help to assess previously identified synthetic lethal interac-

tions in more complex environmental scenarios and identify combinatorial therapies that
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target alternative metabolic pathways. For example, based on the gMCSs shown in Fig 2, DHFR

inhibition could be combined with SLC29A2 inhibition to avoid the uptake of hypoxanthine

and disrupt the salvage pathway for purines biosynthesis. Our ngMCS approach could also pre-

dict nutrient restriction strategies that strengthen the efficacy of metabolic targets identified in
vitro. This was illustrated in Fig 2, where restricting the availability of thymidine or hypoxan-

thine makes more effective the inhibition of DHFR in tumor cells. From another perspective,

our approach opens new avenues to systematically identify novel response biomarkers to exist-

ing metabolic treatments, beyond frequently used genomic biomarkers [33].

In addition, based on RNA-seq data, the ngMCS approach can be used to predict extracellu-

lar nutrient dependences of tumor cells. In our analysis, summarized in Fig 4, we found that

the lethality of cholesterol depletion previously reported in lymphoma can be extended to a

subgroup of endometrial adenocarcinoma cell lines. Similarly, we pose the relevance of myo-

Inositol depletion in acute lymphoblastic leukemia, going beyond previous results in acute

myeloid leukemia. Although further work is required to assess the clinical relevance of these

results, they illustrate the importance of studying more systematically the role of tumor micro-

environment in order to identify metabolic vulnerabilities.

One may argue that targeting nutrient dependencies could largely overlap with the corre-

sponding removal of nutrient transporter. However, transporters are not specific in many

cases and could accept several nutrients. Moreover, nutrients typically have different transport

systems, which can be more difficult to target. Myo-Inositol and cholesterol dependencies

were assessed with one of the transporters previously recognized in the literature as relevant

for their uptakes; however, this is not the optimal experiment. The optimal experiment would

be to deplete myo-Inositol and cholesterol from the growth medium, as done in other works

[18]. As the availability of large-scale studies evaluating the effect of nutrient depletions in can-

cer cell lines are lacking, the type of validation for our predictions is currently limited.

Current therapeutic approaches to control the level of nutrients in the tumor microenviron-

ment include nutrient-degrading enzymes and custom diets. The intravenous administration

of L-asparaginase enzyme to acute lymphoblastic leukemia patients is one successful example.

This enzyme, synthetized from E. coli, involves relevant toxic effects; however, they are nonfa-

tal, manageable, and reversible [34], which is encouraging for further developments. On the

other hand, the effectiveness of custom diets in cancer has been successfully tested in mouse

models [35]. However, their application to cancer patients is an open question and further

clinical studies are required to demonstrate their benefit.

Finally, the study of tumor microenvironment and nutrient availability requires the use of

metabolomic approaches. Availability of metabolomics data in different biofluids is growing

day-by-day in cancer studies [36]; however, metabolomics studies in tumor extracellular

microenvironment are less frequent but crucial to understand metabolic activity and identify

metabolic vulnerabilities [37,38]. Once this information is available for different tumors, our

ngMCSs approach constitutes an elegant strategy to integrate genomics, transcriptomics and

metabolomic data with genome-scale metabolic networks and predict synthetic lethals and

genetic and nutrient dependencies in cancer.

Methods

Metabolic networks and synthetic lethality

For the results presented above, we used Recon3D_3.01 as reference human genome-scale

metabolic network [15], which is available in https://www.vmh.life/. Recon3D_3.01 involves

13,543 reactions, where collectively participate 4,138 metabolites and 3,695 genes. Note here

that we corrected annotation errors previously identified in Recon 2 [14,39] and inherited in
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Recon3D_3.01. In addition, we deleted HMR_9797 reaction, since adenine deaminase func-

tion has not been reported in human cells [40]. All corrections are summarized in S9 Table.

In the Results section, we used three different growth medium conditions. First, we simulated

the RPMI1640 culture medium following the nutrient availability provided by the formulation of

RPMI1640 with L-Glutamine (Lonza, Basel, Switzerland), similar to the one reported in [41].

However, for completeness, we also included in our RPMI formulation the nutrients provided by

fetal bovine serum (FBS), typically added to in-vitro cell cultures (see S3 and S4 Tables for details).

Second, we simulated the most general growth medium conditions by enabling all input exchange

fluxes of nutrients available in Recon3D_3.01. Finally, we simulated the RPMI1640 culture

medium, as described above, plus thymidine and hypoxanthine, as discussed in Figs 2 and 3.

Genome-scale metabolic networks can be used to predict metabolic synthetic lethals. From

a network perspective, a synthetic lethal is defined as a subset of genes whose simultaneous

loss blocks the flux through the biomass reaction. This reaction integrates the essential meta-

bolic requirements for cellular proliferation and its associated flux represents the proliferation

rate. In our analysis, we used the default biomass reaction available in Recon3D_3.01.

The genetic Minimal Cut Set approach

The identification of synthetic lethals was done through our previously developed approach

termed genetic Minimal Cut Sets (gMCSs) [14]. Given a reference metabolic network for a

specific growth medium, gMCSs define minimal subsets of gene whose simultaneous loss dis-

rupt a particular metabolic task. When gMCSs are applied to block the flux through the bio-

mass reaction, gMCSs match with synthetic lethals.

In contrast with other approaches in the literature that first build context-specific metabolic

models using -omics data and then identify lethal single gene knockouts [42], we avoid this

contextualization step and directly calculate gMCSs from the reference (uncontextualized)

metabolic network. Once they are calculated, we integrate -omics data and search for context-

specific genetic dependencies of tumors. In particular, a gene is considered essential for a par-

ticular context if it is the only expressed element in at least one gMCS. With our gMCSs

approach and gene expression data, we showed a superior performance than other algorithms

in the literature to predict essential genes in cancer [14].

From a computational perspective, the exhaustive search of gMCSs from the full space of

gene deletions is a combinatorial problem, which is infeasible even for networks of moderate

size. However, we can enumerate a subset of gMCSs by increasing number of genes via mixed-

integer linear programming (MILP) using standard solvers such as IBM ILOG CPLEX (see

details in [43]), i.e. we calculate the shortest gMCS, then the second shortest, and so on until a

termination criterion is satisfied. The computation of the shortest gMCS is NP-hard; however,

it is tractable for the available genome-scale metabolic networks of human cells.

In addition, the computation time to solve our MILP approach can be alleviated heuristi-

cally by fixing a time limit in the search process at the expense of generating false positives

(solutions that are not minimal in terms of number of genes). We previously showed that a

time limit per gMCS of 30 seconds restricts the rate of false positives to less than 1% in the

computation of 1000 solutions for Recon2.v04 and Recon3D_3.01 [43]. Overall, our MILP

approach is able to determine a subset of gMCSs from which we can effectively elucidate

genetic dependences of cancer cells.

The nutrient-genetic Minimal Cut Sets approach

Here, we extend our gMCS approach in order to consider the environmental context and

nutrients availability. In particular, we introduce a novel concept: the nutrient-genetic
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Minimal Cut Sets (ngMCSs), which are defined as minimal subsets of gene functions and/or

nutrients in the environment whose simultaneous loss block a particular metabolic task, here

the flux through the biomass reaction. We describe below how our previous formulation is

amended to incorporate the loss of nutrients in the environment in the identification of syn-

thetic lethal interactions.

A central part of our gMCSs approach is the construction of the binary G matrix, where

each row defines the reactions deleted by a minimal subset of gene knockouts. Then, based on

duality theory and mixed-integer linear programming, we can identify minimal combinations

of rows of G that blocks the biomass reaction. Full details can be found in [43].

In genome-scale metabolic reconstructions, input exchange reactions represent the avail-

ability of different nutrients in the environment. These reactions do not include any genetic

association and, consequently, they cannot be blocked through any gene knockout, being their

associated columns in G always zero. In order to consider their removal, which enables us to

model the deprivation of nutrients in the environment, the G matrix must be amended. In par-

ticular, we need a new row for each nutrient in the environment with all entries equal to ‘0’

except for the column associated with its input exchange reaction. With this simple extension

of G, ngMCSs can be determined using our previously developed algorithms for gMCSs.

In order to amend G matrix for the calculation of ngMCSs, we created an artificial gene for

each different input exchange reaction present in the environment, e.g. gene_Ex_thymidine

for the input exchange reaction of thymidine. This updated metabolic model was introduced

as input data to our previously developed MATLAB function to calculate gMCSs (Calculate-
GeneMCS), freely available in the COBRA Toolbox [21], which requires IBM ILOG CPLEX to

solve the underlying mixed-integer linear programming models. In this setting, the result

could be both gMCSs and ngMCSs. We modified our MATLAB function to allow the user to

calculate ngMCSs in the COBRA Toolbox (code available in S1 Code).

For the study of the lethality of DHFR, we followed two different strategies to calculate

ngMCSs in the most complex environment with all nutrients present in Recon3D_3.01 avail-

able. First, we explored all possible combinations of gene knockouts and nutrient deprivations.

Second, combinations of the DHFR knockout and nutrient deprivations were directly ana-

lyzed. Note here that CalculateGeneMCS function can restrict the search space among a prede-

fined list of genes (gene_set optional parameter). The resulting gMCSs and ngMCSs are

detailed in S1 and S2 Tables. A similar analysis was done for the environment defined by the

nutrients in the RPMI growth medium plus thymidine and hypoxanthine. The list of obtained

gMCSs and ngMCSs are shown in Fig 2. For the study of extracellular nutrient dependencies

of cancer cell lines, we considered all possible combinations of gene knockouts and depriva-

tions of nutrients available in the RPMI growth medium. The list of ngMCSs can be also found

in S7 Table. These results were computed with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz

processors, limiting to 8 cores and 8 GB of RAM. A time limit of 60 seconds was set for each

solution derived from the function CalculateGeneMCS.

Computational modelling of DHFR knockout

The knockout of DHFR leads to the accumulation of DHF (dihydrofolate), which blocks the

enzyme AICART (aminoimidazole carboxamide ribonucleotide transformylase) [44]. At the

same time, the inhibition of AICART increases the levels of 5-aminoimidazole-4-carboxa-

mide-1-β-d-ribofuranosyl 50-monophosphate (AICAR), which inhibits adenosine deaminase

(ADA) and AMP deaminase (AMPDA) [44]. In summary, in our presented analysis, the

knockout of DHFR involves the removal of their associated reactions in Recon3D_3.01 and,

indirectly, the reactions associated with AICART, ADA and AMPDA.
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Computational modelling of extracellular nutrient dependences in cancer

cell lines

We neglected 5 reactions in Recon3D_3.01 annotated to protein degradation, since the metab-

olism of macromolecules is not well represented, leading to unbalanced and meaningless

cycles. For consistency, we also deleted the availability of albumin from our simulations under

the RPMI growth medium. This assumption does not affect the main results obtained for cho-

lesterol and myo-Inositol.

Cell culture

The cell lines PF-382 and JVM-2 were maintained in culture in RPMI1640 medium (Gibco,

Grand Island, NY) and HT-29 cells with McCoy’s 5a medium (Gibco, Grand Island, NY), all

of them supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY) and penicillin/

streptomycin (BioWhitaker, Walkersvill, MD) at 37˚C in a humid atmosphere containing 5%

CO2. Cell lines were obtained from the DSMZ or the American Type Culture Collection

(ATCC). All cell lines were authenticated by performing a short tandem repeat allele profile

and were tested for mycoplasma (MycoAlert Sample Kit, Cambrex), obtaining no positive

results.

Cell proliferation assay

Cell proliferation was analyzed using the CellTiter 96 Aqueous One Solution Cell Proliferation

Assay (Promega, Madison, W). This is a colorimetric method for determining the number of

viable cells in proliferation. For the assay, cells were cultured by triplicate in 96-well plates, PF-

382 at a density of 1x106 cells/mL (100.000 cells/well, 100μL/well) and JVM-2 at a density of

2x105 cells/mL (20.000 cells/well, 100μL/well). HT-29 cells were obtained from 80–90% conflu-

ent flasks and 100 μL of cells were seeded at a density of 5000 cells /well in 96-well plates by

triplicate. Before addition of the compound, adherent cells were allowed to attach to the bot-

tom of the wells for 12 hours. In all cases, only the 60 inner wells were used to avoid any border

effects.

After 96 hours of treatment with different doses of methotrexate (MTX) (Selleckchem, TX,

USA), plates with suspension cells were centrifuged at 800 g for 10 minutes and medium was

removed. The plates with adherent cells were flicked to remove medium. Then, cells were

incubated with 100 μL/well of medium and 20 μL/well of CellTiter 96 Aqueous One Solution

reagent. After 1–3 hours of incubation at 37˚C, the plates were incubated for 1–4 hours,

depending on the cell line at 37˚C in a humidified, 5% CO2 atmosphere. The absorbance was

recorded at 490 nm and 640 nm as a reference wavelength, using 96-well plate readers until

absorbance of control cells without treatment was around 0.8. The background absorbance

was measured in wells with only cell line medium and solution reagent. First, the average of

the absorbance from the control wells was subtracted from all other absorbance values. Data

were calculated as the percentage of total absorbance of treated cells/absorbance of non-treated

cells. The GI50 values of the different compounds were determined using non-linear regression

plots with the GraphPad Prism v5 software.

MTX treatment

PF-382, JVM-2 and HT-29 cells were seeded by triplicate in 96-well plates at 100000, 20000

and 5000 cells per well. HT-29 cells were plated 24 hours before treatment. Then, all cell lines

were treated with 20, 50, 75 and 100nM of MTX (Selleckchem, TX, USA) in presence or

absence of 100μM hypoxanthine and 16μM thymidine (HT) (ThermoFisher Scientific). The
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cell proliferation assay was performed 96 hours after as described above. First, the average of

the absorbance from the control wells was subtracted from all other absorbance values. Data

were calculated as the percentage of total absorbance of treated cells/absorbance of non-treated

cells.

Cell transfection

Cells were passaged 24 h before nucleofection and culture was divided into two parts. One

continues growing under same conditions (absence of HT) while the other was supplemented

with 100μM hypoxanthine and 16μM thymidine. The transfection of siRNAs was done with

the Nucleofector II device (Amaxa GmbH, Köln, Germany) following the Amaxa guidelines.

Briefly, 1 × 106 of PF-382 and JVM-2 cells were resuspended in 100 μL of supplemented cul-

ture medium, with or without HT, with 75 nM of DHFR siRNAs or Silencer Select Negative

Control-1 siRNA (Ambion, Austin, TX) and nucleofected with the Amaxa nucleofector appa-

ratus using programs C-009 and C-006, respectively. In the case of HT-29, siRNAs were trans-

fected using lipofectamine transfection reagent 2000 (Invitrogen, Carlsbad, CA) according to

manufacturer’s protocol. Briefly, HT-29 cells (50,000 cells per well) were seeded in a six-well

plate with antibiotic-free medium 24 h before transfection. Cells were then incubated with

transfection mixtures containing 75 nM of siRNAs or Silencer Select Negative Control-1

siRNA (Ambion, Austin, TX) for 4 h. Then, medium was replaced with full culture medium.

Transfection efficiency was determined by flow cytometry using the BLOCK IT Fluorescent

Oligo (Invitrogen Life Technologies, Paisley, UK). We used four different siRNAs against

DHFR target, two for the isoforms 1, 3 and 4 and another two for the isoform 2 (siDHFR-134

A: AAGUCUAGAUGAUGCCUUA; siDHFR-134 B: AACCAGAAUUAGCAAAUAA;

siDHFR-2 A: AGUACAAAUUUGAAGUAUA; siDHFR-2 B: AAAUUGAUUUGGAG

AAAUA) to demonstrate that the results obtained with DHFR siRNA nucleofection are not

due to a combination of inconsistent silencing and sequence specific off-target effects. Silencer

Select Negative Control-1 siRNA was used to demonstrate that the nucleofection did not

induce non-specific effects on gene expression. Nucleofection was performed twice with a 24 h

interval. After 48 h of the second nucleofection, the DHFR mRNA expression was analyzed by

qRT-PCR (GUS was employed as the reference gene). Cell proliferation was analyzed 0, 2, 4

and 6 days after two repetitive transfections as described above. HT were refreshed every two

days. First, the average of the absorbance from the control wells was subtracted from all other

absorbance values. Data were calculated as the percentage of total absorbance of DHFR trans-

fected cells/absorbance of control cells.

Quantitative RT-PCR

The expression of DHFR was analyzed by qRT-PCR in PF-382, JVM-2 and HT-29 cell lines.

First, total mRNA was extracted with Trizol Reagent 5791 (Life Technologies, Carlsbad, CA,

USA) following the manufacturer instructions. RNA concentration was quantified using

NanoDrop Specthophotometer (NanoDrop Technologies, USA). cDNA was synthesized from

1 μg of total RNA using the PrimeScript RT reagent kit (Perfect Real Time) (cat. no. RR037A,

TaKaRa) following the manufacturer’s instructions. The quality of cDNA was checked by a

multiplex PCR that amplifies PBGD, ABL, BCR, and β2-MG genes. qRT-PCR was performed

in a 7300 Real-Time PCR System (Applied Biosystems), using 20 ng of cDNA in 2 μL, 1 μL of

each primer at 5 μM (DHFR F:50-CCATTCCTGAGAAGAATCGAC-30; DHFR R:50- GGCAT-

CATCTAGACTTCTGGAAA-30; GUS F: 50-GAAAATATGTGGTTGGAGAGCTCATT-30;

GUS R:50-CCGAGTGAAGATCCCCTTTTTA-30), 6 μL of SYBR Green PCR Master Mix 2X

(cat. no. 4334973, Applied Biosystems) in 12 μL reaction volume. The following program
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conditions were applied for qRT-PCR running: 50˚C for 2 min, 95˚C for 60 s following by 45

cycles at 95˚C for 15 s and 60˚C for 60 s; melting program, one cycle at 95˚C for 15 s, 40˚C for

60 s and 95˚C for 15 s. The relative expression of each gene was quantified by the Log2

(−ΔΔCt) method using the gene GUS as an endogenous control.

Supporting information

S1 Code. ZIP file compressing the MATLAB code for computing ngMCSs, the R code for

generating Figs 4 and S1–S4 and necessary input data.

(ZIP)

S1 Table. List of identified gMCSs involving DHFR with all nutrients present in Recon3D

available in the growth medium. Gene Symbol and Entrez identifiers are provided for genes.

(XLSX)

S2 Table. List of identified ngMCSs involving DHFR will all nutrients present in Recon3D

available in the growth medium. Gene Symbol and Entrez identifiers are provided for genes,

while Recon3D identifiers for nutrients (metabolites). ngMCSs shaded in yellow are men-

tioned in the main text.

(XLSX)

S3 Table. Composition of the RPMI Culture media used in the experiments and its corre-

spondence to Recon3D metabolites. Input flux is limited to millimolar concentration of the

metabolite available in the culture media.

(XLSX)

S4 Table. Composition of the FBS supplement used in the experiments and its correspon-

dence to Recon3D metabolites. Input flux is limited to millimolar concentration of the

metabolite available in the culture media.

(XLSX)

S5 Table. Composition of the McCoy’s 5A Culture media used in the experiments and its

correspondence to Recon3D metabolites. Input flux is limited to millimolar concentration of

the metabolite available in the culture media.

(XLSX)

S6 Table. Expression data in TPM for genes implied in the gMCSs and ngMCSs shown in

Fig 2 in the cell lines tested in Fig 3. They were derived from Cancer Cell Line Encyclopedia.
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S7 Table. List of identified ngMCSs present in Recon3D available under RPMI growth

medium computed for searching for extracellular nutrient dependencies. Gene Symbol and

Entrez identifiers are provided for genes, while Recon3D identifiers for nutrients (metabo-

lites). ngMCSs shaded in yellow are mentioned in the main text.

(XLSX)

S8 Table. Binary matrix showing the essentiality (1) / non-essentiality (0) of the nutrients

present in the RPMI culture medium across the CCLE cell lines assuming a threshold of

expression of 1 TPM for genes involved in ngMCS.

(XLSX)

S9 Table. Corrections performed to Recon3D metabolic network.
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S1 Fig. Proliferation of PF-382, JVM-2 and HT-29 cell lines nucleofected with siRNAs tar-

geted to DHFR gene in presence or absence of Hypoxanthine-Thymidine was studied by

MTS at day 2, 4 and 6 after nucleofection. The proliferation percentage refers to cells nucleo-

fected with a negative control siRNA. Data represent mean ± standard deviation of four exper-

iments.

(TIFF)

S2 Fig. Expression level of the limiting gene in the ngMCSs involving a) L-tyrosine, b) glucose

and c) choline in cancer cell lines obtained from CCLE (Ghandi et al., 2019).

(TIF)

S3 Fig. a) Dependence of the CERES essentiality score of LDLR on the expression of the limit-

ing gene in the ngMCSs involving cholesterol. The slope of the regression line is statistically

significant (p = 0.00464, r = 0.097). b) Dependence of the CERES essentiality score of SLC5A3

on the expression of the limiting gene in the ngMCSs involving myo-Inositol. The slope of the

regression line is statistically significant (p = 6.67�10–6, r = 0.154). Gene expression data was

obtained from CCLE (Ghandi et al., 2019) and CERES scores were obtained from the DepMap

platform (Tsherniak et al., 2017).

(TIF)

S4 Fig. Expression level of the limiting gene in the ngMCSs involving a) cholesterol and b)

myo-Inositol in cancer cell lines obtained from CCLE (Ghandi et al., 2019).

(TIF)
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Felipe Prosper, Francisco J. Planes.

Methodology: Iñigo Apaolaza, Luis V. Valcarcel, Francisco J. Planes.

Software: Iñigo Apaolaza, Luis V. Valcarcel.

Supervision: Xabier Agirre, Felipe Prosper, Francisco J. Planes.

Validation: Edurne San José-Enériz, Xabier Agirre.
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