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A B S T R A C T   

In recent years, the integration of Digital Twins (DT) for the adoption of smarter maintenance strategies has 
grown exponentially in different industrial sectors. New IoT and edge computing systems are being developed for 
this purpose, however, there are still some open issues and challenges to be solved. Firstly, this paper presents 
new approaches to the initial dependencies of the studied solution and make a new proposal to improve the 
interoperability of the presented system. Secondly, this paper provides a methodology applicable to similar 
developments of edge-based AI (Artificial Intelligence) solution, which comprises of four phases: the presentation 
of the multi-objective problem and the pre-selection of AI-based models, the description of the evaluation ar
chitecture, the profiling of the different models for the selection of the most suitable one and explainable AI 
strategies for getting insights of the selected model. Finally, it presents a use case of an edge-solution for the 
railway catenary geometry diagnostic (stagger amplitude of the overhead wire), saving the interoperability of the 
message exchange with other systems is provided.   

1. Introduction 

A Digital Twin (DT) can be defined as a virtual model that accurately 
represents a physical object, process, or service and is used to help 
optimizing its management during its whole life cycle. It relies on real- 
time and historical data to represent the past and present and eventually 
forecast the future, allowing the simulation and prediction of failures 
(Tao et al., 2019). DTs usually comprise five dimensions including 
physical entities, virtual models, data, services, and connections, and 
have a great potential to radically improve the design, manufacturing, 
maintenance and renewal processes across multiple industries (Tao and 
Zhang, 2017; Errandonea et al., 2020). 

DT is a fast-growing technology and every year it is applied to a 
wider range of business and processes, which include construction, 
transportation, smart cities, healthcare, or energy efficiency. Due to the 
growing interest that this technology is having in the industry, the ex
pected global market of DT-based solutions is expected to grow from US 
$ 10.3 billion in 2021 to reach US$ 54.6 billion by 2027 (Digital Twin 
Market, 2022–2027). 

One of the market niches where DT provide huge benefits is product 
and infrastructure maintenance. The models and data included in the 
virtual representation of the DT provide a great tool to enable a transi
tion from traditional corrective maintenance strategies (repairing after 
failure) to the more interesting and effective condition-based (real-time 
monitoring of assets health) or predictive maintenance (anticipate to the 
future condition of assets). These two latter maintenance strategies 
require a continuous monitoring and diagnosis to assess the health 
condition of assets. Going a step further, the ultimate goal is to achieve 
prescriptive maintenance to optimize maintenance operations: being 
able to anticipate the future condition of the different components by 
means of a combination of physical modelling and advanced data 
analysis of the collected data is key to enable complex decision support 
scenarios. 

Railway industry is one of the fastest-growing industries in the 
application of DT technology. It has initially been mostly used for the 
digitalization of assets for construction operations (e.g., using BIM), but 
it is widening its application to operations management and optimiza
tion and to improve rolling stock and infrastructure maintenance 
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operations and costs. At European level, railway infrastructure and 
vehicle maintenance and renewal costs are estimated to be above €25 
billion per year (Using analytics to get European rail maintenance on 
track, 2022), Additionally, global growing population and an estimated 
shift to cleaner transportation modes like railway forecast an increase of 
railway operations and infrastructure, with the associated increase of 
maintenance costs (Publication: The Future of Rail, 2022b). 

In the railway sector, there are several approaches for anomaly 
detection using technologies such as edge-computing and IoT (Internet 
of Things). Most of the proposed solutions focus on train-specific failure 
modes. For example, publications such as (Hodzic et al., 2020) show an 
example of a solution for detecting anomalies in the traction motor. In 
contrast, (Liu et al., 2018) shows the work to be done for the detection of 
anomalies within critical subsystems of rolling stock. The work reflected 
in (Teng et al., 2021) focuses more on wheel-rail interaction. One can 
also find approaches for signal anomaly detection such as the one pre
sented in (Rabatel and Bringay, 2009). More specifically, (Kang et al., 
2018) is focused on the anomaly detection of speed signals. 

The use of Machine Learning (ML) models to monitor and diagnose 
stagger amplitude has been mainly limited to artificial neural networks 
(ANNs) for image processing (Karakose et al., 2017; Yang et al., 2020; 
Zhang et al., 2020). The main disadvantage of these approaches is the 
computational cost of training the convolutional neural networks, 
together with many hand-labelled images. This is also a problem for 
Support Vector Machine (SVM) type models when several features are 
extracted from the images (Cho and Ko, 2015). 

No previous work is known in the railway sector that describes the 
process of developing an edge solution based on theoretical results for 
the diagnostic of stagger amplitude. This paper contributes to the pro
cess of transferring theoretical results to real-life applied solutions. A 
new methodology is presented to create solutions based on edge intel
ligence for stagger amplitude diagnosis. An AI model selection criterion 
is defined based on a multi-objective problem for the proposed solution. 
Considering the possible difficulties in the interpretability of a ML 
model, some guidelines are also included to improve the comprehension 
of selected models. 

This article is organized in 5 sections. Section 2 describes the pre
liminary solution to address the stagger amplitude diagnostic challenge, 
and presents the latest enhancements made for interoperability. Section 
3 presents the proposed methodology and Section 4 shows the evalua
tion criteria and the results of the methodology applied to a stagger 
amplitude diagnosis use case. Finally, some conclusions are derived 
from the proposed work in Section 5. 

2. Background on catenary diagnosis: limitations and new 
enhancements 

SIA is a research project funded by the European Union’s Horizon 
H2020 research and innovation programme (Home - SIA project, 2022) 
and supported by EUSPA, the European Union Agency for the Space 
Program (About EUSPA, 2022). The main objective of the project is to 
develop several services to provide real-time prognostic information on 
the health condition of the railway’s most demanding assets in terms of 
maintenance costs. The higher costs occur on the components where the 
moving vehicle interacts with the surrounding infrastructure, i.e., 
wheel–rail and pantograph-catenary interactions. 

To monitor both interactions and the components involved, several 
modules have been developed: iWheelMon and iRailMon provide real- 
time information about wheel and rail condition respectively, whereas 
iPantMon and iCatMon supervise the real-time condition of the panto
graph and catenary. These systems provide a continuous monitorization 
of the assets using non-invasive and low-cost components. 

Within iCatMon, and in particular focused on the health monitoring 
of the overhead line, an accurate characterization of the involved assets 
was made, as well as a virtual framework to simulate, train and test the 
developed ML algorithms that provide a diagnostic information about 

the current condition of the components. 
Next, the previously developed stagger amplitude diagnosis module, 

its limitations and new contributions regarding speed-variable analysis 
are described. Then, the IoT-based monitoring system architecture of the 
SIA project and further contributions for gaining interoperability are 
introduced. 

2.1. Stagger amplitude diagnosis module 

For asset health diagnosis, there are different techniques used in 
different industrial sectors. One of them makes use of physics-based 
models, where the accuracy of the results is very precise since they 
are very faithful to the dynamic behaviour of the asset as such. Another 
technique commonly used is the deployment of data-driven models, also 
called ML models (Wang et al., 2020; de et al., 2019). Both techniques 
show difficulties for its applicability in the described context. In the case 
of physics-based models, they are computationally demanding and 
time-consuming for an edge solution. On the other hand, in case of data 
models, a large volume of data would be needed to train the models. 

To overcome these issues and to take advantage of their comple
mentary benefits, a solution using hybrid models is proposed. This is 
done by training a model based on synthetic data, generated by physics- 
based model of the asset. 

Fig. 1 shows the followed steps to extract the hybrid model for 
catenary stagger diagnosis. A mathematical model of the physical asset 
has been developed, a series of scenarios of interest have been defined 
and the simulations of these scenarios launched. Then, a processing and 
analysis of the simulated signals has been performed and the necessary 
features have been defined and extracted to finally train the data-based 
model or ML model. 

In this case, the mathematical model simulates the behaviour of the 
different accelerometers installed in a pantograph. The simulated signals 
are processed to extract the necessary characteristics for the training of 
the ML models. To train a hybrid model, simulations of the different 
scenarios that may occur in real life must be performed. All details about 
the mathematical model, the signal processing performed, and the 
simulated scenarios are published in (Blanco et al., 2022). From all the 
simulations carried out, 36 features have been extracted (described in 
the Table 1). 

H2O AutoML (Hutter et al., 2019) has been used for training and 
cross-validation of models for the diagnosis of stagger at 100, 200 and 
300 km/h. A total of 150 different ML models have been trained for this 
purpose. To reduce the risk of overfitting, all training has been per
formed with 10 folds in the cross-validation. The metric used for the 
evaluation of the trained models is the Root-Mean-Square-Error (RMSE). 
This metric measures the error between the observed values (vi) and 
those predicted by the model (v̂i): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(vi − v̂i)

2

√

(1) 

Fig. 1. Virtual scenarios for synthetic data generation for ML model training.  
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The trained models show good performance for the estimation of 
stagger (see Table 2). 

Overall, the results indicate that the proposed virtual scenario sim
ulations for data generation, together with the selected features are 
suitable to train ML models capable of infer the health condition of the 
stagger amplitude, as its RMSE is acceptable and independent of the 
speed (similar results for the three models). A more extensive explana
tion of these results is published in (Blanco et al., 2022). 

However, there are still some limitations for this approach that have 
to be solved. For example, three different ML models were created (for 
discrete speeds), whereas in production, the ML model should be ready 
to be used for a range of speed values. Next section analyses the rele
vance of speed factor in the model and justifies a new alternative in
dependent of the speed, before going further with the proposed 
methodology for ML model selection for edge-based systems. 

2.1.1. Model re-factoring: speed variable analysis 
To perform the speed factor analysis, the three input datasets have 

been unified obtaining one with 1800 observations. An extra variable 
has been included referring to the constant speed at which it has been 
simulated. For training, the same method used previously was used: 150 
models were trained using the RMSE metric as a basis using AutoML. 
This training has been performed in two different ways in parallel: the 
first one considering the speed variable and the other one without 
considering the speed variable. 

Table 3 shows the comparison of the best five models among the 150 
trained: the results of the training considering the variable speed, and 
without taking such variable into account. 

The results show that the RMSE values are maintained by unifying 
the three datasets. Furthermore, it can be seen that there is hardly any 
difference between training with and without the speed variable. To 
verify the importance of the speed variable, Fig. 2 shows the results of a 
sensitivity analysis of the 36 features (Y-axis) that has been performed 
on the 150 trained models (X-axis). It shows the most relevant models, 
where the sensitivity value is on a colour scale from blue (0 sensitivity) 
to red (1 sensitivity). 

The results show that the speed variable (black box on Y-axis) has a 
sensitivity value close to zero. The dark blue result means that the 
sensitivity of the model to this variable is very low, so it has been 

decided not to include it as an input to the ML model. 
Once having decided that the input features will be those 36 already 

identified and speed will not be taken into account for the stagger 
amplitude prediction, the final selected ML model (see Section 4) will be 
deployed in the edge computing system based on IoT that is explained 
next. 

2.2. IoT based monitoring system 

The project has identified several defects that stand out for the in
terest they arouse in the end users (e.g., infrastructure managers and 
maintenance service providers), such as, for example, the appearance of 
cracks in the rail, the stagger or the contact force between pantograph 
and catenary. For early detection of identified defects, a monitoring 
system based on IoT technologies has been designed (Errandonea et al., 
2021). 

The information transmitted from the monitoring system is com
plemented with positioning information. This way, the events detected 
by the sensors can be located along the route taken by the train. As 
another part of the monitoring system implementation, a series of sen
sors have been installed both on the train wheels and on the pantograph. 
For example, in the case of the pantograph, some accelerometers are 
placed at the pantograph head and lower arm (see Fig. 3). 

The implemented architecture centralizes all the information 
generated by the positioning subsystem, pantograph monitoring sub
system and the wheelset monitoring subsystem in a module called 
DataHub. This module is responsible for collecting and transmitting two 
types of information to the central server: all the raw data captured from 
the different systems, and the detection of anomaly events. 

Fig. 4 shows the architecture deployed in the development of the 
DataHub module. The transfer of raw information is done in batches of 
data in different files and transmitted to the central server via FTP (file 
transfer protocol). This transfer is done through the Wi-Fi installed in the 
stations, in order to ensure that the bandwidth is sufficient to send the 
files and not lose the signal at the time of transmission. 

For the notification of anomaly events, a publisher/subscriber sys
tem using LTE technologies has been developed. For events messages 
management, an MQTT broker has been deployed with three topics for 
the different types of messages: SIA/pos for positioning system messages, 
SIA/pant for pantograph system messages and SIA/aba for wheelset 
system messages. Several hierarchical topics have been created to 
organize the messages transmitted. 

Two specific topics have been defined for sending event messages: 
SIA/aba/event and SIA/pant/event. The following two sections describe 
how the event message structure has been defined and how the module 
that detects the events has been developed. In this work, the focus has 
been set on developing a module to detect catenary stagger anomalies. 

However, there are still some limitations for this approach that need 
to be solved, such as the interoperability with other existing systems in 
the rail sector. In the following section, a proposed architecture for 
CDM-based message exchange is presented. 

2.2.1. CDM-based data model for event messages 
Within the European Linx4Rail project (LINX4RAIL, 2022), the 

objective is to address the issue of a missing unified approach towards a 
Railway System Architecture. To this end, work has been done on the 
definition of a Common Data Model (CDM), which defines a unified 
conceptual structure and data model representing the components of the 
railway system, and the kind of information they exchange during their 
operation identifying the relations between them and providing a 
common language and data dictionary to identify them and describe 
them. 

This stagger amplitude diagnosis system makes use of the structure 
defined for observations made in train operations defined in the CDM. 
Since the monitoring system has been installed in a passenger train, the 
measurements were taken during regular services of the train. Fig. 5 

Table 1 
Stagger features.  

Index Feature Description 

1–2 mean (SAWPi) Mean value of SAWP for each i-th sensor 
3–4 std (SAWPi) Standard deviation of SAWP for each i-th sensor 
5 mean (Rtstag) Mean value of Rtstag 

6 std (Rtstag) Standard deviation of Rtstag 

7 mean [max (Rtstag)] Mean of relative maximums of Rtstag 

8 mean [min (Rtstag)] Mean of the relative minimums of Rtstag 

9 max (Rtstag) Absolute maximum of Rtstag 

10 min (Rtstag) Absolute minimum of Rtstag 

11–14 WL[PSD(SAWPi)]1
st
, 2

nd Wavelengths of the 1st and 2nd dominant peaks 
of the SAWPi PSD for the i-th sensor 

15–18 |PSD(SAWPi)|1
st
, 2

nd Magnitude of the 1st and 2nd dominant peaks of 
the SAWPi PSD for the i-th sensor 

* SAWPi = Scale Average Wavelet Power, Rtstag=log10

(SAWPright

SAWPleft

)

, 

PSD= Power Spectral Density  

Table 2 
RMSE results for stagger amplitude ML models.  

Model RMSE [mm] CI95 [mm] 

Model 100 km/h 4.5 [3.6, 5.7] 
Model 200 km/h 4.9 [4.3, 5.3] 
Model 300 km/h 4.6 [3.9, 5.2]  
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shows the structure on which the information is exchanged by the 
monitoring system. 

The information exchanged by the developed monitoring system is 
that of the observations captured by the stagger amplitude diagnosis 
model. This observation is not collected directly from the physical sen
sors placed on the pantograph, but through the processing performed by 
the ML model in the edge (in the vehicle). Therefore, it could be said that 
the sensor referred to in this observation is virtual and not physical. The 
observation is completed with the information of the observation ID, the 
feature of interest, the estimated value, the unit, and the timestamp. 

The information provided also relates to an element of the railway 
infrastructure, in this case the catenary. Information on the position of 
the catenary must also be submitted, together with some extra infor
mation about train operation, train ID, travel direction, etc. With the use 
of these mechanisms, the interoperability of the designed system with 
other railway systems is ensured. 

Table 3 
Speed variable importance comparation.   

Without Speed variable With Speed variable  

Model RMSE [mm] Model RMSE [mm]  

1 StackedEnsemble_BestOfFamily_7 4.467479 StackedEnsemble_BestOfFamily_8 4.439279  
2 GBM_grid_1_model_17 4.581003 StackedEnsemble_BestOfFamily_4 4.545824  
3 StackedEnsemble_BestOfFamily_4 4.583752 StackedEnsemble_BestOfFamily_5 4.547984  
4 GBM_grid_1_model_15 4.599797 GBM_grid_1_ model_5 4.550151  
5 GBM_grid_1_model_5 4.617085 GBM_grid_1_ model_7 4.617055  

Fig. 2. Speed variable importance in models.  

Fig. 3. SIA Pantograph monitoring system.  
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With the information extracted from the diagnostic system, a mes
sage with the structure defined by CDM, described in Fig. 5, is created in 
JSON format. As defined in the "Integration Layer" of CDM, there are 
several possibilities for the transmission of such messages. For this work, 
it was chosen to deploy a REST API for message exchange between 
systems. Since a publisher/subscriber system for message exchange has 
already been deployed for our monitoring system, it has been decided to 
implement a complementary system that would comply with the CDM 
guidelines. 

Fig. 6 shows the architecture deployed to maintain message ex
change compatibility with the CDM. 

The deployed monitoring system receives all detected events through 
a subscription to the topic of an MQTT broker. After receiving the 
message, the message structure is edited to conform to the CDM format. 
The InvokeHTTP process is the one that establishes connection with the 
Web server to POST the message to the defined topic. In this way, other 
applications or users could access this information. 

For the integration of ML model into an Edge solution, there are 
several things to consider. Usually, the most important factor to consider 
is the response time of the model. Normally a monitoring system has a 
very high sampling rate, and the equipment does not have a large 
computational capacity. 

3. ML model selection methodology proposal for edge 
computing 

Normally, when ML models are developed to provide a solution to a 
given problem, the theoretical focus is usually on the model’s success 
rate or accuracy. However, there are times when other problems are 
encountered when deploying the solution in a practical case. For 
example, the computational complexity of the model selected for 
deployment must be considered (Baskakov and Arseniev, 2021; Lee and 
Chen, 2020). Several works in the literature show the need to take into 
account the resource consumption of the chosen model as well as the 
processing time, latency and, of course, accuracy (Tsiropoulou et al., 
2017; Yang et al., 2021). 

The proposed methodology, presented in  Fig. 7, consists of four 
phases. First, a pre-selection is made among the models considered for 
the solution by means of the Pareto front definition method. Secondly, a 
processing sequence is deployed by integrating the pre-selected models 
into an architecture of smaller Hardware resources. Thirdly, the results 
obtained are analysed to select the final model. Finally, an analysis of 
the interpretability of the selected model is performed. 

The first phase consists of a preselection among all the trained 
models. The objective is to get a subset of ML candidate models whose 
performance analysis will be carried out in more detail. For this 

Fig. 4. SIA Data Hub system.  

Fig. 5. CDM Data model diagram.  Fig. 6. CDM-based interoperability system.  
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preselection, the multi-objective problem needs to be defined, which 
will depend on the type of ML problem that is being addressed and the 
use case where it is applied. At least one of the metrics will be related to 
the performance evaluation metric of the ML model: for classifiers, ac
curacy, confusion matrix, precision, recall, F-Score or AUC (Area Under 
the Curve)-ROC (Receiver Operating Characteristic curve) might be 
used. For regression models, others like MAE (Mean Absolute Error), 
RMSE (Root Mean Squared Error), and RMSLE (Root Mean Squared 
Logarithmic Error) can be used. It is also interesting to include some 
metric related to the computational performance (e.g., prediction time). 
The result of this phase is a list of ML models that will be further 
analysed. 

The second phase consists of the preparation of a setup for the pre
selected models profiling. The objective is to prepare an evaluation 
environment (with a range of related hardware (HW) resources) where 
comprehensive model profiling can be carried out. On the one hand, 
candidate models need to be exported as they would be for an embedded 
solution. The software (SW) application for executing the model for 
different inputs needs to be prepared to be deployed in the HW-scalable 
setup. On the other hand, the scalable computation infrastructure with 
monitoring capabilities needs to be prepared. This implies that, in 
addition to gathering information about model quality metrics, infor
mation about HW resources consumption needs also to be gathered. The 
result of this phase is a test scenario capable of monitoring performance 
in different hardware capabilities. 

The third phase consists of the final selection of the model. Consid
ering the results obtained from the profiling performed in the test sce
nario defined in the previous phase, a model is selected, which will be 
deployed in the edge computing solution. This selection is made based 
on the specific needs of the problem to be addressed. Depending on the 
context of the solution and the stakeholders involved, the model that 
better suits the desired solution is selected. As a result of this phase, the 
selected model to be deployed in the edge computing system is obtained. 

The fourth phase consists of an analysis of the model’s interpret
ability. The objective of this phase is to understand in more detail how 
the selected ML model behaves. One of the drawbacks of the application 
of ML is the lack of comprehensiveness of the models. In applications 
aimed at more critical aspects, it is understandable that the user wants to 
understand how the applied model behaves, instead of treating it as a 
black box (Hall et al., 2019). 

To address this drawback, there are certain methods to describe the 
behaviour of the selected model. These methods make a ML model more 
explainable. During this work, three aspects of the selected model have 
been analysed: the sensitivity of the features, the effect of the features on 
the target variable and, finally, an intrinsically interpretable ML model. 

The sensitivity analysis results in a ranking of the features that have a 

bigger influence on target variable. Two methods are the most common 
ones for carrying out this analysis (Interpretable Machine Learning, 
2022): the permutation method, and the Shapley values method. The 
permutation method consists of measuring the importance of a feature 
by calculating the increase in the model’s prediction error after 
permuting the feature. A feature is “important” if shuffling its values 
increases the model error, because in this case the model relied on the 
feature for the prediction. This way, the importance of each of the 
variables in the prediction of the target variable is observed. The 
Shapley values method consists in assess every combination of features 
to determine each impact in the prediction (Lundberg and Lee, 2016). 

An analysis of the effects of the different features on the value of the 
target variable has also been carried out. Specifically, two studies have 
been performed: Individual Conditional Expectation (ICE) y Partial 
Dependence (PDP). The PDP shows a curve of the average of how much 
the prediction varies in response to changes in one of the features, all 
other features being held constant (Friedman, 2001). The ICE shows 
how the prediction varies for each of the observations, only modifying 
the characteristic under study and keeping the rest constant (Goldstein 
et al., 2014). 

As a last analysis, a surrogate model has been developed. It aims at 
drawing summary conclusions about the original model. This is done by 
providing an intrinsically interpretable model that approximates the 
predictions. The selected intrinsically interpretable model is a decision 
tree. Decision trees are directed graphs in which each interior node 
corresponds to an input feature. The terminal nodes (or leaf nodes) 
represent a value of the target variable given the values of the input 
variables represented by the path from the root to the leaf. To predict the 
outcome in each leaf node, the average outcome of the training data in 
this node is used. The paths can be visualized with simple if-then rules. In 
short, decision trees are data-derived flowcharts that follow a Boolean- 
like logic. As such, they are displayed graphically in a natural way that is 
easy to interpret. 

Variable importance and interactions displayed in the surrogate 
model are assumed to be indicative of the internal mechanisms of the 
complex model. Variables that are higher or used more frequently are 
more relevant. Variables that are above and below one another can have 
interactions. The decision tree surrogate model has a global focus of 
interpretation. Nonetheless, local behaviour can also be visualized by 
highlighting the paths of specific instances through the internal nodes. 
By using the three analyses defined for this phase, more intuitive results 
are obtained for gaining more understanding about the behaviour of the 
model selected. 

The proposed methodology not only addresses the problem from a 
multi-objective point of view, but also presents an evaluation and se
lection architecture based on the interaction of the model in 

Fig. 7. Methodology diagram.  
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environments closer to reality. It provides a systematic methodology for 
the selection of models, knowing its behaviour in the deployment ma
chine, from a logical and physical point of view. The following section 
describes a practical use case, oriented to the diagnosis of catenary 
stagger amplitude, giving more detailed information on each of the steps 
established by the proposed methodology. 

4. Use case: stagger amplitude diagnosis edge solution 

In this section, a practical step-by-step use case of the methodology is 
presented regarding the stagger amplitude diagnosis ML model selection 
for edge computing. A detailed description of each of the phases of the 
methodology is given, showing the results obtained. 

4.1. Preselection of ML models 

Using H2O.ia’s AutoML tool, 150 trained models of different typol
ogies have been obtained: deep learning models, gradient boosting 
machines, generalized linear models and distributed random forests. In 
addition, it makes use of the stacked ensemble technique to improve 
overall model accuracy (Wolpert, 1992). 

Among the 150 trained models, H2O provides several variables 
commonly used to determine the accuracy of the model. Since it is a 
regressor model, of all the variables provided, the RMSE (see (1)) is 
taken as a reference to determine the accuracy of the model. To help the 
user, H2O provides two extra variables for each trained model to eval
uate the computational complexity of the model: the training time in 
milliseconds and the prediction time per row in milliseconds. Consid
ering that the objective is to analyse the behaviour of the model in its 
final deployment, the prediction time per row is taken as the second 
variable of interest. 

Considering the above, it can be said that we are facing a multi- 
objective problem, since we want to minimize the model error (RMSE) 
and also minimize the model execution time. For this reason, an analysis 
has been carried out to identify, among the 150 trained models, those 
that mark the frontier to achieve the two objectives. 

Fig. 8 shows the relationship between the two variables involved in 
the multi-objective problem. The x-axis shows RMSE, the error of each of 
the trained models. The y-axis shows the prediction time per row. For 
this figure, models with a RMSE greater than 6 mm and prediction 
execution time higher than 0.1 ms have been filtered out. 

The red line that is defined is the one corresponding to the Pareto 
front (Roocks, 2016). It is the boundary that marks the solution to the 
multi-objective problem of minimizing the error and execution time of 

the model. Considering the interest of the railway sector, the preselected 
ML models for further analysis are those from the pareto front with the 
lowest RMSE values.  Table 4 shows the specific values of RMSE and 
prediction time in milliseconds for the selected candidate models. 

It has also been considered that the prediction times given by the 
H2O cluster depend on the resources of the machine. For the training of 
the different models, a Docker container with R server has been 
deployed. The computer where the container is deployed has the 
following characteristics is an Intel® Core™ i7–8700 CPU @ 3.2 GHz 
3.19 GHz with a RAM of 32 GB. The resources allocated to Docker are 5 
CPUs, 26.50 GB of memory and 1.5 GB of swap. 

The model cannot be selected without considering how it would 
behave on machines with tighter resources than the cluster where it has 
been trained. Therefore, an analysis and comparison between the 
behaviour of the selected models on different machines with different 
resources must be performed. Next step describes how this analysis can 
be done in order to carry out a model profiling. 

4.2. Setup preparation for model profiling 

As explained in the previous section, in order to carry out the 
candidate models’ profiling, the specific test setup needs to be prepared 
both in terms of SW application and the computation infrastructure, 
together with the corresponding monitoring capabilities for model 
profiling. 

For the model profiling, the RMSE as the quality metric and pre
diction time per row, the RAM and CPU consumption in percentages of 
use are considered. A summary of the evaluation criteria and their units 
can be found in Table 5. 

First of all, the trained candidate models have been exported to a 
format called MOJO (Model Object Optimized), which is specific to 
H2O, due to the following advantages (Kraljevic, 2016):  

• The resulting artifact does not need to be compiled. 

Fig. 8. Pareto front.  

Table 4 
Pareto front defining models features.   

Model RMSE [mm] Prediction time [ms] 

1 StackedEnsemble_BestOfFamily_7 4.467479 0.014873 
2 GBM_grid_1_model_17 4.581003 0.012007 
3 GBM_grid_1_model_15 4.599797 0.010886 
4 GBM_grid_1_model_5 4.617085 0.009256 
5 GBM_grid_1_model_27 4.650621 0.008230  
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• It is supported by the Java runtime.  
• Low latency, perfect for real-time applications.  
• Efficient working in a row per time, perfect for streaming 

applications. 

To perform the analysis, the exported models have been inserted into 
a Java application (see Fig. 9). This Java application reads the five 
selected models in MOJO format and performs a batch of 1000 pre
dictions for each one of them, to take measurements of prediction 
execution times per observation and per batch of 1000 observations. 

A Docker image has been created with the compiled Java applica
tion. This Docker image deploys a container with Alphine operating 
system with the java JDK (version 1.8). It executes the JAR for the 
program to perform the 5000 predictions (5 models with 1000 pre
dictions each), while making measurements of execution times (per 
prediction and per 1000 predictions), RAM consumption and CPU 
consumption. 

To perform the comparisons with different compute resources, an 
architecture has been deployed on AWS (Amazon Web Services), making 
use of ECR (Elastic Container Registry), ECS (Elastic container Services) 
and S3 (Simple storage service) services (see  Fig. 10). 

ECR is a repository to store and manage Docker container images 
where the configured Docker image has been stored. This service is 
complementary to the ECS service, since it makes use of the images 
registered in this repository. This service deploys Docker containers in 
different Amazon EC2 (Elastic compute cloud) instances of the charac
teristics determined by the user. For this work, five EC2 instances have 
been deployed and they are described in Table 6: 

Finally, all measurements performed on the different instances are 
collected in S3, a service provided by AWS for data storage. 

4.3. Final model selection for edge computing 

The RAM memory and CPU consumption readings are shown in  
Fig. 11: on the y-axis shows the consumption percentage and on the x- 
axis the time. It shows that the higher the RAM and CPU capacity, the 
less both resources are saturated. It is also observed that when the RAM 
and CPU resources are doubled, the RAM memory becomes half as 
saturated. This shows that the bottleneck is the CPU and not the RAM 
memory. On the other hand, the CPU still maintains a significant satu
ration level, but the execution time improves considerably. 

On the other hand, the  Fig. 12 shows the results of the models in 
prediction execution times: by batches of 1000 and the average per 
observation and model. 

The results show that machines with more resources such as t2.large 
and t2.medium help to sustain a better prediction execution time. 
Probably the reason is that these instances have two CPUs and more 
RAM. In the comparison of the execution times per row with those given 
by the H2O cluster, the reason for the time difference is the machine 
resources. 

If the difference in prediction execution times is analysed, the 
ensembled model (model 1) has a higher mean than the GBMs. Looking 
at the batch results of 1000 predictions, the ensembled model (model 1) 
shows times around 1.5 s or below 1 s, if the machine has more than 2 
CPUs and 4 GB of RAM. In contrast, rest of models show times below of 
400 ms or below 200 ms with better machines. 

In a monitoring system installed in a passenger train running at a 
maximum speed of 80 km/h, two approaches are possible: batch or row- 
by-row predicting. In the first, considering the sampling frequency of the 
sensors is very high (e.g., 200 Hz) and continuous during the entire 
route, it could be estimated to perform 1000 samples in 5 s. In that case 
the model would respond in 30% of the capture time. In the second case, 
the times of any model are below 0.3 ms. Both approximations estimate 
a good prediction execution time for either model, therefore, the best 
model would be model 1 (StackedEnsemble_BestOfFamily_7, with 
4.46 mm of RMSE), thus prioritising minimising the RMSE. 

Once the model to be implemented in the monitoring system has 
been selected, a more exhaustive analysis of the model’s behaviour has 
been performed. The following section shows different characteristics of 
the selected model. 

4.4. Machine Learning model explainability analysis 

In the fourth phase of the proposed methodology, three types of 
analysis are defined, in order to have a better comprehension of the 
selected model, and the one that will finally be deployed in the solution. 
The first of the analyses to be carried out is the sensitivity analysis. To do 
this, IML (Interpretable Machine Learning) library is used, which pro
vides several tools for the analysis (Molnar et al., 2018). 

Fig. 13 relates the results of the permutation method (x-axis) to the 
results of the Shapley values method (y-axis). On both axes, the nor
malised results are shown, where 0 represents the lowest sensitivity and 
1 the highest. They show of the sensitivity of the 36 features, only 
naming the two most important ones. 

The results show that for both methods the two most sensitive var
iables are the following: p_std_ratio_rear, p_std_ratio_front. These vari
ables are the standard deviation of the Rtstag, which is the ratio between 
SAWP (Scale-Averaged Wavelet Power) from right and left accelerom
eters. The expressions rear and front refer to the front or rear strips of the 
pantograph. 

The second analysis to be carried out is the analysis of the features 
effects. To perform this exercise, IML (Interpretable Machine Learning) 
library is used for this analysis too. In Fig. 14, the effect of the most 
important feature detected above is studied: p_std_ratio_rear. For this 
purpose, the ICE and PDP curves are plotted, with the study feature on 
the x-axis and the predicted value on the y-axis. 

The results show that when the value of the feature (p_std_ratio_rear) 
increases, the prediction value increases as well. The ICE curves show in 
more detail, with what probability the result can vary. However, in all 
observations, the trend is the same. It can also be observed that stagger 
amplitude is more sensitive to the lower values of feature. 

The third analysis consists of developing a subrogated model, in this 
case a decision tree model, to analyse the result. In this case, the tool 
used to carry out the analysis is Rpart (Therneau and Atkinson, 2022). 
The decision tree surrogate model is trained on the original inputs and 
predictions of the final stack ensemble model already selected in the 
previous section. A depth of four nodes is chosen as a trade-off between 

Table 5 
Evaluation criteria summary.  

Variable Units 

RMSE mm 
Predict time per row ms 
RAM consumption % 
CPU consumption %  

Fig. 9. Execution sequence.  
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accuracy and interpretability. The decision tree is tuned by 
cross-validation. The decision tree is shown in Fig. 15. 

The figure shows how the value of the stagger amplitude is classified, 
considering the different depth nodes of the decision tree. For example, 
if no variable was taken into account in the first depth node, the model 

would only assign the value of 0.13 as stagger amplitude prediction to 
100% of the observations, in this case 1800. 

Considering the depth of four nodes that have been assigned to it, all 
decisions of the surrogate model are dependent on the same feature: 
p_std_ratio_rear. This is natural, considering the importance it has 
demonstrated in previous analyses. The fact that the other features do 
not appear does not mean that they have no effect on the prediction of 
the original model. It simply means that the surrogate model did not 
consider it relevant enough to incorporate it. 

5. Conclusions 

This paper presents a methodology identifying the process to be 
followed to implement a railway catenary stagger amplitude diagnosis 
model in an onboard edge computing solution in-service trains. The 

Fig. 10. Performance evaluation architecture.  

Table 6 
Deployed EC2 instance description.  

EC2 Instance CPU [3.3 GHz] RAM [GB] 

t2.nano 1 0.5 
t2.micro 1 1 
t2.small 1 1.5 
t2.medium 2 4 
t2.large 2 8  

Fig. 11. a) RAM consumption and b) CPU consumption.  

Fig. 12. a) Prediction Execution time for 1000 observation b) average prediction execution time per observation.  
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presented pipeline is divided into four parts: a) the presentation of the 
multi-objective problem and the pre-selection of the model, b) presen
tation of the evaluation architecture, c) the analysis of the profiling re
sults of the different models for the selection of the most suitable one, 
and d) the interpretation of the selected model. 

For this purpose, the previous work on which the proposal is based 
has been presented. The design of the monitoring system developed has 

been described. Then, the mechanisms used for the interoperability of 
the system with other railway systems have been described (LINX4RAIL, 
2022) and, finally, the methodology followed for the development of the 
stagger amplitude diagnosis model has also been reported. 

Once the previous steps have been analysed, the next step has been to 
refactor the model to fit the real context. Thanks to this refactoring, it has 
been possible to obtain a model that is speed-independent, and thus more 
applicable to different scenarios. Considering the objective of integrating 
the selected ML model into an Edge solution, it has been necessary to 
analyse the problem from a multi-objective perspective. In conclusion, 
five models that meet the objectives of minimizing model error and 
minimizing execution time have been pre-selected. Following the anal
ysis, 5 models has been pre-selected: StackedEnsemble_BestOfFamily_7, 
GBM_grid_1_model_17, GBM_grid_1_model_15, GBM_grid_1_model_5 and 
GBM_grid_1_model_27. All have obtained RMSE results of less than 
4.7 mm and prediction execution times of less than 0.015 ms per 
observation. 

The next step has been to perform a profiling of the pre-selected models. 
A test environment has been deployed to measure RAM consumption, CPU 
consumption and execution times. With the results obtained, the model 
with the best characteristics to implement in an Edge solution has been 
selected. It has also been observed that machines with higher CPU and 
RAM availability may be a better option to improve execution time. The 
model selected was StackedEnsemble_BestOfFamily_7 (model 1), with an 
RMSE of 4.46 mm. The prediction execution time in batches of 1000 ob
servations has been less than 1.5 s in all instances. It is suggested to use 

Fig. 13. Sensibility analysis.  

Fig. 14. PDP and ICE.  

Fig. 15. Surrogate model.  
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machines similar to the characteristics of instances such as t2.medium or 
t2.large, as it has been shown that prediction execution times can fall 
around 800 ms. 

Finally, the selected model has been analysed by various methods to 
provide interpretability to its behaviour. In this way, an interpretable 
model is obtained instead of a black box, giving greater reliability in its 
application as a solution to the early infrastructure diagnosis in railway 
infrastructure. It has been observed that the sensitivity of the model for 
the characteristic p_std_ratio_rear marks its behaviour. 

In conclusion, a procedure has been defined for the selection of a ML 
model to be integrated into an edge solution. Considering the charac
teristics of the procedure, it is applicable to any context where the 
objective is similar to the one analysed here as a use case. 

Several possible future works have been identified to continue with 
this research. The first one would be to apply the methodology here 
proposed to other failure modes of interest. For example, also related to 
the catenary, this methodology could be used to create an edge- 
computing system for steady arm diagnosis. It would also be inter
esting to apply it for the diagnosis of other components failure modes as 
part of an inspection system. For example, track inspection system. 

Another line of future work is to complement certain aspects of the 
methodology proposed in this paper. New explainable AI methods could 
be included in the fourth phase of the methodology. Another option is to 
develop a framework to automate the execution of the methodology. As 
a final step, this framework would automatically deploy the selected 
model in the on-board system, following operations defined by MLOps 
strategies. 

Finally, other future work identified would be to develop a system to 
complete the event information provided by the IoT system (diagnosis 
and position), with complementary information of the asset itself. 
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