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a b s t r a c t

During the learning process, a child develops a mental representation of the task he or she is learning.
A Machine Learning algorithm develops also a latent representation of the task it learns. We investigate
the development of the knowledge construction of an artificial agent through the analysis of its
behavior, i.e., its sequences of moves while learning to perform the Tower of Hanoï (TOH) task. The TOH
is a well-known task in experimental contexts to study the problem-solving processes and one of the
fundamental processes of children’s knowledge construction about their world. We position ourselves
in the field of explainable reinforcement learning for developmental robotics, at the crossroads of
cognitive modeling and explainable AI. Our main contribution proposes a 3-step methodology named
Implicit Knowledge Extraction with eXplainable Artificial Intelligence (IKE-XAI) to extract the implicit
knowledge, in form of an automaton, encoded by an artificial agent during its learning. We showcase
this technique to solve and explain the TOH task when researchers have only access to moves that
represent observational behavior as in human–machine interaction. Therefore, to extract the agent
acquired knowledge at different stages of its training, our approach combines: first, a Q-learning
agent that learns to perform the TOH task; second, a trained recurrent neural network that encodes
an implicit representation of the TOH task; and third, an XAI process using a post-hoc implicit rule
extraction algorithm to extract finite state automata. We propose using graph representations as visual
and explicit explanations of the behavior of the Q-learning agent. Our experiments show that the IKE-
XAI approach helps understanding the development of the Q-learning agent behavior by providing
a global explanation of its knowledge evolution during learning. IKE-XAI also allows researchers to
identify the agent’s Aha! moment by determining from what moment the knowledge representation
stabilizes and the agent no longer learns.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction: a multi-disciplinary context for cognitive
modeling

Knowledge development and its evolution in humans and arti-
icial agents is a question that can be addressed from (i) the cog-
itive science perspective and (ii) the Artificial Intelligence (AI)
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perspective, more specifically, in open-ended learning (Doncieux
et al., 2020, 2018) and the developmental robotics field (Lun-
garella, Metta, Pfeifer, & Sandini, 2003). In this introduction, we
will present the multidisciplinary background of this work that
aims to explain knowledge development within artificial agents
by taking inspiration from the following areas: (1) Knowledge
development in humans for problem-solving, (2) Reinforcement
Learning (RL) in developmental robotics, and (3) eXplainable AI,
the field that is rapidly evolving at the intersection of AI and
human AI interaction (see Fig. 1).
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Fig. 1. Conceptual summary of current works and related fields: Knowledge graph of all contributed elements (in green) to explain sequential problem-solving and
domain disciplines (in red) that inform IKE-XAI method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
1.1. Problem-solving task modeling: Knowledge development in hu-
mans and the acquisition of expertise

The development of knowledge in humans has been exten-
ively studied in the field of cognitive science as one of the
henomena that includes the construction of human mental
epresentation of the world through their interaction with it.
nowledge can be acquired through explicit learning (the ac-
uisition of explicit knowledge – easier to access and verbalize
using attentional resources (Hélie, Proulx, & Lefebvre, 2011))

nd implicit learning (the acquisition of expertise through ex-
erience, in an incidental manner, without awareness of what
as been learnt) (Ettlinger, Margulis, & Wong, 2011). Individuals
ho are repeatedly subjected to observed temporal regularities
i.e., variants or rules), eventually, extract, learn and include
hem immediately in their reasoning and their interactions with
he environment without being aware of it. Therefore, implicit
earning mechanisms producing improved performance during
ehearsals (Cleeremans, Servan-Schreiber, & McClelland, 1989;
eber, 1967) lead to consider behavioral properties as an indi-
ator of the problem-solving process and, in particular, of the
econstruction of the problem representation, namely the Aha!
oment or problem insight (Charisi, Díaz-Rodríguez, Mawhin, &
erino, 2022).
For children, the knowledge development of a mental rep-

esentation during learning to perform a task was studied by
iaget with his theory of cognitive development (Lefa, 2014) who
ssumes that during knowledge acquisition, learners gradually
onstruct schemata about the world to help them understand
nd interpret it. A schema is defined as ‘‘different sensory motor
aps that the learner constructs about the world in their knowledge
evelopment ’’ (Lefa, 2014) and it is constructed by involving men-
al and physical actions. A schema includes both, the category of
96
knowledge and the process to obtain that knowledge. Piaget de-
scribes the learner as actively engaged towards cognitive equilib-
rium, i.e., an ongoing process towards a state of balance between
their mental schemata and their environment which refines and
transforms mental structures. This adaptation relies on two dy-
namic processes continuously interacting: assimilation, i.e., the
addition of a piece of information to existing cognitive structures
and accommodation, i.e., the update of those structures in case
of contradictions or conflicts between them and the information
so that the learner can deal with new knowledge. There is thus a
continuous update of a child’s schema; the evolution of a child’s
behavior reflects these changes and the emergence various psy-
chological structures or patterns of thinking that influence how
children interpret information (Charisi, Liem, & Gomez, 2018;
Lefa, 2014; Poissant, Poëllhuber, & Falardeau, 1994). As a result,
one of the techniques cognitive scientists use to study children’s
knowledge development is with the use of problem-solving tasks
that stimulate the above-mentioned processes.

A problem-solving task can be defined by three characteris-
tics (Mayer, 1977; Poissant et al., 1994): (a) an initial state where
the problem begins with a starting situation that is deemed
unsatisfactory; (b) an objective state, where the desired situation
is different from the initial situation and where a reflection is
necessary to transform the initial state; (c) several obstacles that
make the way to get from the initial state to the objective state
not obvious and previously unknown. A problem can therefore be
conceptualized as a difference between a current situation and
the desired situation. Among the categories of problem-solving
tasks, in the current work we will address the transformation
problems category. We refer the reader to Poissant et al. (1994)
for further details about problem-solving tasks.

Transformation problems have initial and final states both
clearly defined and the relationships between elements of the
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roblem are known in the initial and final states. The difficulty
ies in the way to go from one state to the other. Generally, the
ore the players try to solve a problem, the more they under-
tand the required strategies. This is the principle of transforma-
ion of knowledge and development of expertise from beginner
o expert through practice (Hoffman, 2014; Kim, Ritter, & Koubek,
013). At the cognitive level, the acquisition of expertise is due to
he evolution from explicit to implicit knowledge (Reber, 1967).
owever, in some cases, the players can also fail the task several
imes, and try again until they suddenly have an Aha! moment
nd find a solution which is later further optimized. The Aha!
oment is identified as a solution that appears suddenly thanks

o intuition (Chronicle, MacGregor, & Ormerod, 2004; Kounios
Beeman, 2014) and transforms the processing of the prob-

em: when a solution arises, the information that was difficult
o process can be processed more fluidly (Topolinski & Reber,
010). This experience is also called ‘‘insight problem-solving’’
r ‘‘insight problem’’ (Smith, 1995) and can be conceptualized
s a two-phase process (Chronicle et al., 2004): (i) the fruitless
earch/blocking phase in the face of a situation or questioning,
ii) the sudden emergence of a solution after a mental pause or
e-evaluation of the problem. Therefore, the Aha! moment often
ppears to be part of the transition from tacit knowledge (appear-
ng in the exploration phase) to explicit knowledge (appearing in
he exploitation phase) (Charisi et al., 2022).

Insight problem-solving is studied with the use of tasks that
end to evoke this type of solution experience (Chu & MacGre-
or, 2011) such as Tower of Hanoï (TOH) which is a prototype
ask in the category of transformation problems. The TOH is
idely used in cognitive science to assess high-executive func-
ions which include the following processes: (1) the player needs
o experiment and try many strategies (sequences of moves)
efore discovering how to perform the task efficiently, and (2)
he player needs to anticipate the future state of the task to
llow him or her to consider the next moves. As a well-defined
roblem, easily administered, and brief, TOH represents an exper-
mental context to evaluate the expertise acquisition in humans
nd artificial agents (Bennetot, Charisi, & Díaz-Rodríguez, 2020;
harisi, Gomez, Mier, Merino, & Gomez, 2020; Edwards, Downs,
Davidson, 2018).
During the task performance, implicit heuristic cognitive pro-

esses in the form of exploration function as a means for the child
o identify that the use of an auxiliary movement (inhibition1)
eads to the optimal solution of the task. Typically, the use of the
uxiliary movement happens initially randomly, during sponta-
eous and exploratory actions, as a result of local heuristics to
ove the disk to an unoccupied peg (Klahr & Robinson, 1981;
elsh, 1991). After several attempts, the child realizes that it

s the use of the strategy of inhibition that leads to the optimal
olution. From that moment onward, a more consistent use of the
nhibition strategy is observed which means that the learning has
ccurred. The behavioral onset of the sudden realization of the
trategy of inhibition in the TOH task has been identified as the
oment of insight or the Aha!moment, Awareness of this kind of

epresentational change, though abrupt, takes place after a period
f unconscious processing (Van Steenburgh, Fleck, Beeman, &
ounios, 2012). Children’s behavioral patterns of solving the TOH
ask with a consistent use of inhibition after the Aha!moment at a
aster pace, and with the probable exhibition of affective engage-
ent due to the positive reward of the process, help us identify

he moment of insight. However, since young children lack the
eta-cognitive skills to explain their behavior, further research

1 Inhibition movement because moving a disk to a peg where it should not
ie in the final state is an illusionary apparent detour of what seems to be the
ost straight forward way to arrive at the final state.
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and understanding are needed on this phenomenon. A detailed
description of the TOH, as a discussion about its characteristics
for studying insight in problem-solving tasks with children, can
be found in Appendix B.

It is important to highlight the modeling of the Aha! moment
n artificial agents is an open scientific question. To our knowl-
dge, there has been relatively little work considering insight
rom an artificial agent perspective (Colin & Belpaeme, 2019) and
ven less from a developmental robotics perspective. The work
resented in this paper contributes to bridge this gap.

.2. Reinforcement Learning (RL) for cognitive modeling: Develop-
ental robotics, the design of autonomous cognitive capabilities for
rtificial agents inspired by children

Cognitive science examines the nature and function of human
ognition and as such, it keeps inspiring AI approaches. In this
ork, we are interested in computational methods that widely
tudy the knowledge acquisition and development in humans in
similar spirit to different Machine Learning (ML) approaches

Chraibi Kaadoud, Rougier, & Alexandre, 2022; Donnarumma,
aisto, & Pezzulo, 2016; Heuillet, Couthouis, & Díaz-Rodríguez,
020; Lake, Ullman, Tenenbaum, & Gershman, 2017; Lesort, Ro-
ríguez, Goudou, & Filliat, 2018; Madumal, Miller, Sonenberg, &
etere, 2020; Puiutta & Veith, 2020; Servan-Schreiber, Cleermans,
McClelland, 1988; Yuan, Xiang, Crandall, & Smith, 2020), and

obotics ones (Alexandre, Hinaut, Rougier, & Viéville, 2021; Can-
elosi & Schlesinger, 2018; Colas, Karch, Sigaud, & Oudeyer, 2021;
ungarella et al., 2003).
Developmental robotics (Cangelosi & Schlesinger, 2018) – and

ynonyms Cognitive developmental robotics, Autonomous mental
evelopment as well as Epigenetic robotics – studies the
utonomous design of behavioral and cognitive capabilities in
rtificial agents (AAs) with, among others, RL approaches. RL is a
ield of ML that focuses on how artificial agents undertake actions
n an environment through the search for a balance between
xploration (e.g., of uncharted territory) and exploitation (e.g., of
urrent knowledge of sources of reward). This field addresses the
uestion of designing autonomous agents that can evolve through
xperience and interaction (Sutton, Barto, et al., 1998). Devel-
pmental robotics is thus a field intrinsically interdisciplinary
hat directly draws inspiration from developmental principles
nd mechanisms observed in children’s natural cognitive abili-
ies to design AAs that learn to explore and interact with the
orld (Cangelosi & Schlesinger, 2018; Lungarella et al., 2003).
In Bennetot et al. (2020) the work of Charisi et al. (2020) is

xtended to test whether robotic learning and AA learning pro-
esses can be inspired by child development. They worked in the
ontext of a child–robot interaction setting, with child-initiated
obotic interventions. Due to its characteristics, the TOH task was
sed to study the initiation of a request for voluntary help. The
uthors focus on the analysis of ‘‘when’’ and ‘‘why’’ to ask for help,
o study the impact of these questions on the resolution of col-
aborative tasks in inhibitory processes. Among the contributions
f this work, we focus on one aspect of the study: the average
umber of moves of an AA. The authors used the variation in the
umber of moves to solve the task during the experiments as an
xplicit metric to assess changes in the behavior. While training
he model, if the average number of moves decreases, the agent
ecomes more efficient in fulfilling the task since it needs fewer
oves. The phenomenon was studied in different experimental
ontexts, which leads us to consider that there is indeed a trace of
he hidden knowledge, i.e., latent representation, of the agent in
ts sequences of moves. This work is of particular interest because
child might not be able to verbalize the purposes of an action

depending on their age, vocabulary, and cognitive maturity level)
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nd thus, it seems even more complex to make it explicit for an
A to learn. This rationale motivates the need for explainability
trategies that overcome this constraint and bring solutions, on
he one hand, to better understand the behaviors of virtual agents
nd, on the other hand, to compare them and get inspiration from
hose of children.

.3. Explainable AI: knowledge extraction from RL models

When it comes to cognitive modeling, one recurrent question
oncerns the knowledge representation of abstract models that
end to mimic human cognitive functions: ‘‘What knowledge do
odels acquire that can explain the logic and rationale of their
ehavior in a specific context?’’. It is important to highlight
hat the questions of AI models with explanation goals have
een questioned and investigated a long time ago, even if the
erms eXplainable Artificial Intelligence (XAI) and Interpretable
L have been recently proposed (Chraibi Kaadoud, Fahed, &
enca, 2021). For example, efforts to explain Recurrent Neural
etworks (RNN) and connections models with an internal rep-
esentation of time (Durand, 1995) that model artificially the
ognitive function of implicit learning using sequences, started
n the eighties and continues to this day. Many works inves-
igated the extraction of the encoded regularities, also called
ules, using rule extraction algorithms (Jacobsson, 2005; Towell &
havlik, 1993) in the form of a Finite State Automaton (FSA), i.e., a
irected graph composed of nodes and transitions (Bhargava
Purohit, 2011; Elman, 1990; Lawrence, Giles, & Fong, 2000;
urdoch & Szlam, 2017; Omlin & Giles, 1996, 2000; Smith, 2003;
trobelt, Gehrmann, Huber, Pfister, & Rush, 2016; Wang, Zhang,
I, Xing, Liu, & Giles, 2017; Weiss, Goldberg, & Yahav, 2017;
eng, Goodman, & Smyth, 1993). Let us note that the majority
f these works extract rules in the form of FSA. The domains
f rule extraction and FSA generation are thus strongly linked.
mong existing related works, we highlight the work of Towell
nd Shavlik (1993) at the crossroads of symbolic and connec-
ionist approaches in artificial intelligence. This work lays the
oundations of the field of knowledge extraction from neural
etworks by exploiting the advantages of both approaches. First,
onnectionist models can encode neural representations that take
nto account the importance of the past and the context. Second,
ymbolic representations are much more accessible and intelligi-
le by humans, which facilitates knowledge transfer and ‘‘human
nspection’’. The authors described a three-step process necessary
or extracting rules from neural networks (rules initially in the
orm of symbolic knowledge): First, the knowledge must be ac-
uired by a neural network through the learning phase. Second,
he network must be refined, i.e., the learning must be tuned
o that the acquired knowledge is of acceptable quality. Third,
he knowledge can then be extracted from the network in the
orm of symbolic rules. This step is the most difficult, notably
ue to the complexity of extracting rules that need to be both (i)
recise and faithful to the network’s behavior, and (ii) ‘‘humanly
ntelligible’’. For this purpose, they introduce the concepts of
nowledge Based Artificial Neural network and Knowledge based
eural network, the latter produced from the former, and propose
he MoFN method for efficiently refining symbolic knowledge
hrough neural networks. Their method extracted rules that gen-
ralize better to new examples (not seen during the training) than
ules produced by ‘‘all-symbolic’’ rule refinement algorithms.

Recently, due to the social and legal context, the performance
nd accuracy of models are no longer the only criteria for eval-
ating algorithms. Their transparency has become an additional
riterion that is now essential, especially for end-users (Weitz,
chiller, Schlagowski, Huber, & André, 2021), government and le-
al authorities (Truby, Brown, Ibrahim, & Parellada, 2022). There-
ore, many advances are made in these fields of interpretable
98
ML and XAI (Gilpin, Bau, Yuan, Bajwa, Specter, & Kagal, 2018;
Guidotti, Monreale, Ruggieri, Turini, Giannotti, & Pedreschi, 2018).
Interpretability is the ability to break down all inner mechanisms
of a black box (without necessarily understanding them) (Doshi-
Velez & Kim, 2017); whereas an explainable Artificial Intelligence
(XAI) system produces details or reasons to clarify its functioning
and ease its understanding, for a given particular audience (Arri-
eta et al., 2020). Explainability is strongly linked to the concept
of ‘‘explanation’’ as an interface between the data, the AI model,
and the targeted audience (Arrieta et al., 2020; Chaput, Cordier,
& Mille, 2021; Guidotti et al., 2018). Defined as ‘‘an informa-
tion in a semantically complete format, which is self-sufficient and
chosen according to the target audience regarding its knowledge,
its expectations, and the context ’’ (Chraibi Kaadoud et al., 2021),
an explanation is oriented to a target-audience. Its goal is to
clarify the context, causes, and consequences of facts through a
set of statements or additional information (Van Fraassen, 1988).
The evaluation of an explanation is inherently contextual, often
subjective, and linked to the target audience and its level of
expertise about the issue studied.

1.4. Positioning and main contributions

Many works have shown that within humans, the study of
exhibited behavior (performance evolution for example) can lead
to understanding the implicit knowledge behind that behav-
ior (Mix, Bower, Hancock, Yuan, & Smith, 2022; Schulz, 2012;
Siegel, Magid, Pelz, Tenenbaum, & Schulz, 2021; Smith & Yu,
2008). Other works (Breazeal & Scassellati, 2002; Hussein, Gaber,
Elyan, & Jayne, 2017; Schillaci, Hafner, & Lara, 2016) have fo-
cused on mimicking the behavior of natural agents using artificial
ones (Colin, 2020; Oudeyer, Kaplan, & Hafner, 2007). Interpretable
and explainable techniques were used to get hints about the
reason behind a specific behavior. Our work is in line with all
these studies and fits in the context of neural-symbolic learning
methodology (X-NeSyL) (Díaz-Rodríguez et al., 2022), as it has
two out of the three key components (neural and symbolic pro-
cessing modules). This methodology blends neural and symbolic
(in our case a FSA) components to provide more interpretable
model outcomes.

To focus our study on problem-solving tasks of transformation
problems and the associated implicit knowledge development
within an AA, we define knowledge here as a set of facts, in-
formation, and skills acquired through experience by the AA that
contribute to gaining a theoretical or practical understanding of a
subject or the world. To do so, we get inspired from works made
in Developmental robotics (Bennetot et al., 2020) and cognitive
modeling (Chraibi Kaadoud et al., 2022) fields. The selected use
case is the task of the TOH. Our research questions (RQs) are
associated with the following hypotheses:

1. H1: The sequences of movements of an AA reflect and
contain an implicit trace of the knowledge acquired by it as
it learns the TOH task. This trace contains the best moves
to reach the final state and the knowledge of the possible
moves to reach the desired final state.

2. H2: The sequences of moves recorded at different stages of
learning show the AA knowledge acquisition and develop-
ment and, by extension, the transformation of its expertise
in solving the task.

3. H3: Each sequence of movements is governed by implicit
rules that can be extracted in the form of a Finite State
Automaton.

Therefore, our objective is twofold, i.e., being able to identify
the Aha! moment on both sides: for an AA to know when it
stabilizes its knowledge, and for the model developer to identify
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Table 1
Acronyms used in this paper.
Acronym Meaning Acronym Meaning

XAI eXplainable Artificial Intelligence AA Artificial Agent
IKE-XAI Implicit Knowledge Extraction with XAI RNN Recurrent Neural Network
ML Machine Learning TOH The Tower of Hanoï
SRL State Representation Learning TOH states States of the TOH task
NN Neural Network (e.g., ‘‘111‘‘ or ‘‘321’’)
LSTM Long Short Term Memory LSTM states Implicit activation states of the LSTM RNN
RL Reinforcement learning FSA Finite State Automaton
and understand the optimized learning stage of the AA. Our
main contribution consists of proposing a new methodology for
Implicit Knowledge Extraction with XAI (IKE-XAI) to extract the
implicit knowledge, in form of an automaton, encoded by an AA
during training to perform a task. This methodology is applicable
when researchers have only access to moves that represent obser-
vational behavior as in human–machine interaction. Specifically,
we propose: (1) the IKE-XAI methodology to explain the learning
agent training process and (2) an explanation interface of the
evolution of the AA knowledge (i.e., latent representation) con-
struction for better identifying their Aha! moment. By using the
OH task as the case study to showcase and validate the IKE-XAI
ethodology, we propose a novel approach that can be extended

o transformation problems. Finally, as an explainable process
eeds to always be adapted for a target audience (Arrieta et al.,
020), we specify that IKE-XAI proposes explanations directed
owards researchers in the XAI field interested in the study of
xplaining the learning of AAs, as well as towards the Devel-
pmental robotics community (Cangelosi & Schlesinger, 2018;
ungarella et al., 2003). Let us specify that to interpret the ex-
racted FSA and their evolution, the target audience does not
eed any specific technical knowledge (e.g., LSTM computational
rinciples), only the context of the task performed by the AA.
The ultimate goal of this work aims at having the potential to

nform studies that explore children’s problem-solving processes
nd the emergence of knowledge in tasks beyond the use case
f the TOH task. In addition, identifying the process of implicit
earning in AA and the transformation of implicit into explicit
nowledge might give us insights on how to effectively support
his phenomenon in young children. This is particularly rele-
ant from a methodological perspective, given that often in early
hildhood the required cognitive tools and verbal capacities for
hildren’s meta-cognitive actions are still developing. Lastly, from
child-AI interaction perspective, this research might contribute
owards the development of child-friendly explainable systems.
t the same time, promoting transparency in the interaction can
lso effectively support children’s decision-making processes.
We organize the current paper as follows: Section 2 presents

elated works in the field of explainable RL. In Section 3, we intro-
uce the IKE-XAI methodology as a 3-step XAI process to extract,
isualize and explain the acquired knowledge of an AA and how
o evaluate its evolution. In Section 4, we present our results and
inally discuss the outcomes of this study in Section 5, before
oncluding with prospective work in Section 6. Fig. 1 presents
conceptual summary of current works and related fields in the
hape of a knowledge graph of all contributed elements to explain
equential problem-solving and domain disciplines that inform
KE-XAI method, and Table 1 presents all the acronyms used in
his work and their meanings.

. Related work: Explainable RL

Trust in human–robot interaction is mainly based on the intel-
igibility of the reasons behind a robot’s action and the involved
actors (Wells & Bednarz, 2021). XAI research in the context of
L and Deep Learning aims to explain the inner mechanisms
99
of black-box models and provide information explaining why a
model behaves the way it does (Arrieta et al., 2020; Heuillet
et al., 2020). When it comes to provide explainability to the
specific field of RL, we find several challenges (Wells & Bednarz,
2021): (1) Including time as part of the explanation: Compared to
standard ML techniques where decisions can happen in isolation
or are unrelated to each other and static in time, RL explanations
can involve a large number of decisions made over time, and often
aim at predicting next action to take in real-time. Explanations
for AA will generally need to encompass actions or a set of
actions that are related in some way, (2) Requirement to perform
continual learning (Lesort, Lomonaco, Stoian, Maltoni, Filliat, &
Díaz-Rodríguez, 2020) or not knowing the continuous stream
data to learn from in advance: Except when the human-replay
data is used (Vinyals, Ewalds, Bartunov, Georgiev, Vezhnevets,
Yeo, et al., 2017), RL agents learn from a continuous streams of
data that may not be able to face again in the future, data that get
discarded, and the model should consolidate knowledge to better
deal with similar data if it is presented in the future. Generating
human-readable explanations is thus challenging since learning
rather happens from the execution of actions in an environment
supported by a feedback loop, based on observations not known
in advance.

The majority of papers in XAI applied to explain RL mod-
els focused on application domains of video games (Wells &
Bednarz, 2021) (e.g., Atari games and Pac-Man), grid-world en-
vironments (Heuillet, Couthouis, & Díaz-Rodríguez, 2022) with
navigation tasks and robotics (Wallkötter, Tulli, Castellano, Paiva,
& Chetouani, 2021). They also put in light, which is confirmed
by the reviewed literature for this work, that in the field of RL,
there are many ways to explain the learning of AAs (Heuillet et al.,
2020). Among them, we can indicate various categories of works:
(1) focusing on explaining AA policies (Verma, Murali, Singh,
Kohli, & Chaudhuri, 2018), strategies (Amitai & Amir, 2021; La-
puschkin, Wäldchen, Binder, Montavon, Samek, & Müller, 2019),
and reward functions (Huang, Held, Abbeel, & Dragan, 2019; Lage,
Lifschitz, Doshi-Velez, & Amir, 2019), (2) designing explainable
agents that can provide on request the reasons for its behav-
ior (Langley, Meadows, Sridharan, & Choi, 2017), (3) focusing on
the causal model behind the AA behavior through the knowledge
of how its actions impact the environment (Madumal et al., 2020),
(4) using a query-based approach to extract explanations from
the AA (Hayes & Shah, 2017; Kazak, Barrett, Katz, & Schapira,
2019; Sridharan & Meadows, 2019) and (5) focusing on explaining
the AA behavior such as Amir and Amir (2018), Engelhardt, Lange,
Wiskott, , and Konen (2021), Sun and Sessions (2000), Wang, Gou,
Shen, and Yang (2018a). The last one is the approach we follow
in this paper.

One particular paradigm of XAI that studies how to extract
useful information from RL models is State Representation Learn-
ing (SRL), as a particular case of feature learning in which the
features to learn are low dimensional, evolve through time, and are
influenced by actions or interactions (Lesort et al., 2018). This field
is thus particularly suited for the RL field, where an AA learns
to perform a task through interactions with its environment. SRL

algorithms learn representations that capture the variation in the
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Fig. 2. Experimental design of the IKE-XAI methodology to make explicit the process of the autonomous agent (AA) knowledge construction in three steps:
STEP (1) RL Phase: a Q-learning agent learns to perform the TOH task. At several stages of the learning process, the training process is suspended to make a
recording of the AA’s move sequences while it plays after learning. This step obtains: (a) sequences of moves and (b) an AA trained to perform TOH whose behavior
is observable through its sequences of moves, to inform the solution chosen by the AA to reach the solution state (i.e., sequences of moves).
STEP (2) Moves Sequence Learning Phase: the recorded sequences of moves of the AA are fed to train an LSTM to predict the AA’s next move at time t based
n the current and past ones. This step returns a dataset of recordings of hidden patterns (i.e., the activity vectors of the hidden layer generated by the network
t each input). The trained LSTM model had encoded an implicit representation of the TOH rules due to the learned sequences. Let us note that the trained LSTM
odel is trained on sequences generated from the TOH abstract representation (Fig. B.13).
TEP (3) XAI Phase: a post-hoc implicit rule extraction algorithm and a graph visualization technique are applied to the dataset of recorded hidden patterns to
xtract graphs of AA behavior at different stages of training.
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nvironment generated by the agent’s action. This approach is
articularly suitable for robotics (Lesort et al., 2018) and can be
sed to explain the behavior of the agent. Among the reviewed
iterature, some works share characteristics with the current one
nd are discussed in Appendix A.

. Implicit knowledge extraction for eXplainable AI (IKE-XAI)
ethodology: extracting automata to synthesize and explain

he evolution of learning

Our work focuses on studying the behavioral changes of an
A, and to do so, the IKE-XAI methodology combines: (1) a RL
pproach where an AA learns to perform a task (in this use case
hrough a Q-learning algorithm), (2) a ML approach for sequence
earning, and (3) an XAI approach, as an interface, whose role is
o make explicit the knowledge learned by the AA, in the form of
n automaton to explain its evolution.

n this section, we present these three approaches as the three
teps of the proposed method and protocol. We will explain with
articular attention the concept of ‘‘state’’ and the difference
etween states of an LSTM and those of the TOH task. Fig. 2
resents the experimental design of the IKE-XAI 3-step approach
o explain and make explicit the AA behavior. For further tech-
ical details, Appendix C describes parameters and algorithms at
ach step.

.1. Step 1: RL with Q-learning algorithm

As in Bennetot et al. (2020), we are investigating the behavior
hanges of an AA, and to do it we utilize the use case of the TOH
100
task using Q-learning (Watkins & Dayan, 1992) as a standard RL
algorithm. It involves an artificial learning agent, a set of states
(in our use case, the different positions in which the TOH can be
found), and a set of actions that can be performed given a state
(moving a disk from one rod to another). The agent can transition
from one state to another by performing an action, which earns
it a reward (a numerical score). The agent’s goal is to maximize
its total reward, and thus to choose in each state the action
providing it the largest possible reward. The Q-learning algorithm
uses a reward matrix that represents the rewards associated
with each action when performed in each state. This matrix is
initialized to an arbitrary fixed value and is updated using the
reward obtained each time the agent acts. It is important to
highlight that the Q-learning algorithm requires no initial model
of the environment and it cannot memorize action sequences.
A detailed description of the Q-learning Algorithm can be found
in Jang, Kim, Harerimana, and Kim (2019).

Initially, as in the original work, we design a task with N = 3
isks to reduce the number of possible states to 27. We define
n action as the movement realized by the AA at time t according
o the state of the TOH task. An action is dependent on the task
i.e., the number of disks) and its state (e.g., for TOH with N = 3,
t can be 111, 311). An action induces a change in the state of the
ame. For example, the action ‘‘1-3’’ means moving the top disk
rom rod 1 to rod 3 and changes the TOH state from 111 to 311.
OH states describe the task status through the number of disks
n the rods at a specific time step t . For example, state ‘‘123’’,
resented in Fig. B.12. (6), means that the small disk is on rod 1,
he middle disk is on rod 2 in the middle, and the biggest disk is
n rod 3. They correspond to a node in the graph representation
f Fig. B.13 that represents all the possible moves for the TOH
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Fig. 3. Architecture of the LSTM model used in step 2 of IKE-XAI methodology. RNN with three layers: an input, a hidden, and an output layer. Input and output
layers are both composed of artificial neurons. The hidden layer is composed of LSTM units (Gers, Schmidhuber, & Cummins, 1999) that provide a real-valued vector
of size 8. Each LSTM unit is composed of: an input gate, a forget gate, an output gate and a CEC, i.e., a computational unit that remembers values over arbitrary
time intervals. σ is the sigmoid activation function and tanh the hyperbolic tangent activation function. All white dots outside LSTM units are linked to all black
ots. Skip connections connect input and output units. Figure adapted from Chraibi Kaadoud et al. (2022) and inspired from Lapalme (2006). .
ith N = 3 disks. According to this figure, an action is associated
with the number of edges present for each node. We thus identify
that there are 3 possible actions according to Fig. B.13, except
for nodes 111, 222, and 333, which have only two edges, and
thus, two possible actions. Regardless of the value of N disks, if
he number of rods remains invariant, then the list of possible
ovements remains the same. For the initial basic experiment
f TOH with N = 3 rods, the list of possible movements is: ‘‘1-
’’, ‘‘1-3’’, ‘‘2-1’’, ‘‘2-3’’, ‘‘3-1’’, ‘‘3-2’’.2 For example, it is possible
o reach the TOH state ‘‘321’’ following the actions ‘‘1-2’’, ‘‘2-3’’,
r ‘‘1-3’’ that can be codified as follows: (i) initial_state(311) +

ction(1-2) = new_state(321), (ii) initial_state(221) + action(2-
3) = new_state(321), and (iii) initial_state(121) + action(1-3) =

ew_state(321).
Since we deal with a close-ended task, each sequence of moves

as a beginning state and an ending state (easily identified in our
ase encoded with symbols B and E). The assignment of rewards
roceeds as follows: illegal moves get a reward of −∞, those
eading to the goal state get a reward of 100, and other moves get
reward of 0. Appendix C.1 presents the algorithm of the Step 1.
There are important points to explicit about the task: (i) re-

ards put aside, the AA cannot lose the task, and (ii) the AA does
ot have any knowledge of all the possible moves that can be
layed. This is relevant to our work since we are trying to mimic
he behavior of a child who learns a task without having any prior
nowledge of it. The expertise (i.e., the acquisition of experience)
s made precisely as the interaction with the game progresses and
e arrives at the final states. The whole sequences carried out by
n agent are considered valid by definition since they result from
succession of actions in a determined and delimited environ-
ent in terms of possibility (as it is not possible to carry out an
ction other than those authorized by the task). An agent cannot
herefore lose but he can carry out very long or even infinite
equences of moves and not reach the final state. Therefore, all
equences of movements carry thus information, and we insist on
he fact that we are not in a context of classification of a good or
ad behavior (i.e., sequences). The consequence of these features

2 Whereas for TOH with 4 rods, the list of possible movements increases to
2 moves: ‘‘1-2’’, ‘‘1-3’’, ‘‘1-4’’, ‘‘2-1’’, ‘‘2-3’’, ‘‘2-4’’, ‘‘3-1’’, ‘‘3-2’’, ‘‘3-4’’, ‘‘4-1’’,
‘4-2’’, ‘‘4-3’’.
101
is that the LSTM model will build its implicit representation only
based on valid sequences without any prior knowledge of the
grammar (set of rules) at the beginning of training. We will detail
the importance of these features in the following section.

3.2. Step 2: Sequence learning using an RNN with LSTM units

Long short-term memories (LSTMs) are a type of artificial RNN
architecture with feedback connections (Hochreiter & Schmid-
huber, 1997) and a complex architecture that performs simple
calculations. A common LSTM unit is composed of an LSTM block
with one cell called a Constant Error Carousel (CEC), an input gate,
an output gate, and a forget gate. The CEC is a computational
unit that remembers values over arbitrary time intervals and
the three gates regulate the flow of information into and out of
the cell. This allows LSTM units to do essentially two things. On
the one hand, they explicitly account for time thanks to their
architecture. On the other hand, thanks to the ‘‘Constant Error
Carousel’’, a computational unit, they can maintain the error on
several time steps without it vanishing or being altered. This last
feature allows LSTMs to handle long sequences without suffering
from gradient fading or any other unfolding problem. It allows
them to process not only single data points (such as images)
but also entire sequences of data (such as a video). LSTM units
are well-suited for classifying, processing, and making predictions
based on time series data since there can be lags of unknown
duration between important events in a time series. A detailed
description of an LSTM and its variations can be found in Greff,
Srivastava, Koutník, Steunebrink, and Schmidhuber (2017), and
some explainability approaches to deal with these in Rojat, Puget,
Filliat, Del Ser, Gelin, and Díaz-Rodríguez (2021).

For our investigation purpose, we reproduce the implementa-
tion presented by Chraibi Kaadoud et al. (2022). We use an RNN
of three layers: an input, a hidden, and an output layer. Input and
output layers are both composed of artificial neurons whereas the
hidden layer is composed of LSTM units as described by Gers et al.
(1999): with forget gates and skip connections but no peephole
connections. Fig. 3 presents the implemented RNN architecture
with LSTM units and a detailed representation of an LSTM unit
(i.e., one block with one cell). The number of artificial neurons in
the input and output layers is equal to the finite set of 8:6 actions
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hat are possible in a TOH with 3 rods and 3 disks, i.e., ‘‘1-2’’,
‘1-3’’, ‘‘2-3’’, ‘‘3-2’’, ‘‘2-1’’, ‘‘3-1’’, and the beginning and ending
ymbols, i.e., B and E. In the remaining of the text, we will refer
o the RNN with LSTM units as LSTM model. The purpose of the
STM model is to learn valid sequences of moves (i.e., positive
xamples of sequences that respect the TOH rules displayed in
ig. B.13 and Table 2(b)3) leading to states, considered here as
n artificial grammar, to encode an implicit representation of the
ask. More precisely, the LSTM model learns to predict the next
ove according to the current move and the past ones. Since
STM units present fewer weaknesses than other RNNs when it
omes to long sequences, these models are particularly suited for
OH sequences that can become very long when an agent learns
hrough trial and error in RL. Appendix C.2 presents the algorithm
f the Step 2.
Hence, once the learning phase of the LSTM model is made,

he network can be used for two purposes: (1) to predict new
equences of moves when solving the task, (2) to check if a
equence of moves is valid according to the TOH rules implicitly
ncoded by the trained LSTM in its latent space. This is the reason
hy the trained LSTM model will be used to study the behavior
f the AA according to the moves it adopts (see Step 3): while
rocessing inputs (i.e., receiving stimuli) from its environment
he network goes through different latent states. We will refer to
hem as LSTM states that can be understood as implicit activation
tates of the LSTM model at each prediction.
LSTM states are associated with hidden patterns that are n-

imensional coordinate vectors (n being the size of the hidden
ayer) in which the network is after processing each input at
ach time step t . We define a hidden pattern h as a numerical
ector of size n that represents the outputs of the LSTM units
t each time step. The relation between LSTM states and hidden
atterns can be represented as follows: At time t , the network
eceives information i and internally produces the hidden pattern
, which corresponds to new coordinates in latent space. At the
imestep t + 1, according to the received information it+1, the
etwork produces a new hidden pattern ht+1 which corresponds
o new coordinates of the latent space, at which the network
ill find itself. With each different input to the network, the
STM hidden layer will produce a new hidden pattern, i.e., new
oordinates in the latent space. Clustering the hidden patterns
llows to quantify the latent space into k clusters according to
distance measurement. A cluster (e.g., cluster 2 in Fig. 8(a)) can
hus be considered as a set of coordinates designating a ‘‘location’’
n the latent space that allows the model to have a particular
tate.

.3. Step 3: eXplainable AI for post-hoc rule extraction

Explainable AI (XAI) techniques using rule extraction allow
echnical audiences such as data scientists, researchers, and do-
ain scientists to validate and debug the model. One way to
pproach the problem is extracting the rules implicitly encoded
y a recurrent network that learned sequences respecting those
ules, in the form of a FSA (Elman, 1990; Omlin & Giles, 1996;
ervan-Schreiber et al., 1988; Wang, Zhang, Ororbia, Alexander,
ing, Liu, et al., 2018b). Two cases can occur: (i) the grammar
ontaining the rules is known (ii) the grammar is unknown. In
he first case, the extracted rules in the form of a FSA can be
ompared to the original grammar as a baseline to evaluate the
erformance of the proposed method. In the second case, the
xtracted FSA may require a qualitative evaluation by experts of

3 An example of non-valid sequence of moves i.e., would be {‘‘1-3", ‘‘1-2",
‘2-3", ‘‘1-3", ‘‘1-2", ‘‘2-3", ‘‘1-2’’} that does not respect the rules of the TOH task
s described in Appendix B.
102
the studied domain. Our work is in the first case: we propose a
methodology tested on data from a known grammar (TOH).

To make explicit this hidden knowledge acquired by the re-
current network, we chose to use the implicit rule extraction
algorithm of Omlin and Giles (1996) adapted by Chraibi Kaadoud
et al. (2022) and in line with Tiňo and Šajda (1995). These three
works focused on studying RNNs implicit representation while
they learn non-binary sequences. These can be of various sizes
with symbols that can be present multiple times (within a se-
quence) but with different contexts. All sequences are generated
from artificial grammars. More concretely, in these works, the
objective is extracting structured knowledge acquired by implicit
learning when the grammar is unknown and only valid sequences
are available for learning (Schellhammer, Diederich, Towsey, &
Brugman, 1998; Tiňo & Šajda, 1995), which is our case when
training an AA.

The implicit rule extraction algorithm, presented as the third
step of Fig. 2 can be described as follows:

(1) Process the sequences of moves by the LSTM model to
retrieve a list of hidden patterns: Each one represents the hidden
layer activity at each time step.

(2) Cluster hidden patterns using the k-means clustering
algorithm (Zeng et al., 1993): To determine the best value of k,
we compute the silhouette score s, a quality metric of a dataset
clustering.4 This step results in the association of each hidden
pattern h to a cluster C and the grouping of many hidden patterns
nto a cluster C .

(3) Generation of a FSA for each value of k: Cluster C as-
ociated with each hidden pattern h represents the nodes of
he automaton graph. By default, all graphs discussed in this
ork are directed graphs unless stated otherwise. The nodes of
he graph represent the LSTM states (Appendix C.2) and each
ransition between two nodes, or a node on itself in the case
f a recurrent loop, represents the change of the network from
ne state to another when it receives an input. The number of
ach node in each FSA depends on the value of k chosen for the
-means algorithm. Since each input is a move, each transition
f the extracted graph can also be associated with a move as
label. It is important to highlight that each hidden pattern

s related to a specific time step, and also a specific input. As
roposed in the algorithm in Chraibi Kaadoud et al. (2022), we
esignate each edge of the FSA with a label that represents the
nput associated with the edge. The labeling of FSA transitions
y the input data allows to explain ‘‘Which move realized by the
A led to a particular state?’’ A pseudo-code of the implicit rule
xtraction algorithm is provided in Appendix C.3.
We propose that each edge in the FSA has a label and weight

hat is incremented by a value of 1 each time the AA passes
hrough the states linked by such transition. In other words, a net-
ork that passes through the same state x times, due to repeated
equential inputs, would have associated transition weight equal
o x (note the presence of node −1, which designates the neutral
tate of the LSTM model after it is trained and before it receives
ny input).

4 To obtain the best value of k in the clustering phase, we compute the
silhouette score s, a quality metric of clustering of a dataset in automatic
classification for all samples for each value of k. More precisely, for a particular
sample, the purpose of this metric is to study the distance between resulting
clusters on a range of [−1, 1]. If the s value is close to −1 the sample is in
the wrong cluster, if close to 0, then the sample is at the limit of two clusters
and if close to 1, the clustering is considered of good quality, since the sample
is assigned to one cluster and far from the others. Thus, the average silhouette
score for all samples for each cluster is an objective metric that allows evaluating
the quality of clustering for a k value (Rousseeuw, 1987)
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Algorithm 1: IKE-XAI methodology: full 3-steps algorithm .
Require:
N = 3
training_sessions = [0, 100, 300, 500, 1000]
learn_time= play_time=100

Function IKE_XAI (N, training_sessions, learn_time, play_time) :
# STEP 1 of IKE-XAI methodology with RL: AA’s Exploration and Training
R = generate_reward_matrix(N)
q_learning_sequences_of_moves = AA_exploration_and_training(R, training_sessions, learn_time,
play_time)

# STEP 2 of IKE-XAI methodology with sequence learning: Implicit rule encoding
toh_grammar= generate_grammar_from_reward_matrix(R)
toh_dataset_of_sequences = generate_sequences(toh_grammar, 1000)
trained_LSTM_model = LSTM_model_training(toh_dataset_of_sequences, number_units,
number_LSTM_cells)

# STEP 3 of IKE-XAI methodology with XAI: understanding the AA learning phase
for all session from training_sessions do
AA_sequences= get_sequences_of_moves_per_training_session(q_learning_sequences_of_moves,
session)
hidden_patterns = trained_LSTM.test(AA_sequences)
XAI_generation_of_FSA(hidden_patterns, AA_sequences, k)

end for
End function
We choose setting aside (i) the step of minimization5 of the
enerated FSA (generally used in rule extraction algorithms) to
ocus on the visual information provided by the extracted latent
epresentation through time, and (ii) the validation process of the
xtracted FSA with sequences to validate the implicit encoding
ower of the LSTM model since it is done and discussed for the
ame LSTM model architecture in Chraibi Kaadoud et al. (2022)
o which we refer the reader.

.4. Experimental protocol to produce global explanations with IKE-
AI

We propose an experimental design in three steps to make
xplicit the knowledge construction of a learning AA, in this case,
hile performing the TOH task. In the current section, we will
etail how the algorithmic blocks presented in previous sections
it all together. As presented in Fig. 2, each step provides data
or next one: Step 1 allows researchers and model developers
o extract sequences of movements of the AA at different stages
f learning. Step 2 uses this dataset as input to test the trained
STM model. During the test phase, a dataset of recorded hidden
atterns is extracted. Finally, Step 3 uses this dataset to perform
post-hoc rule extraction process for XAI purposes. Algorithm 1
resents the IKE-XAI global algorithm using the pseudo-code of
he three steps. Appendix C presents the algorithms of the three
teps.

. Results

In this section, we will analyze and detail the results obtained
y the proposed IKE-XAI methodology. We particularly focus on
xplaining the link between the behavior of the AA and the
hanges observed due to the XAI process rendered through the

5 The minimization process consists of the transformation of a given FSA
nto a deterministic finite automaton having a minimal number of states and
ecognizing the same rational language (Hopcroft, Motwani, & Ullman, 2006).
103
FSA. First, we describe the dataset and the characteristics of the
sequences. Second, we analyze the behavior of the AA during the
execution of the TOH task in three different contexts: TOH with
N = 3, N = 4 and N = 6. Then, we present for each context
the results of the IKE-XAI methodology by detailing the extracted
automata obtained using the post-hoc implicit rule extraction
algorithm performed on the LSTM model. Particular attention is
paid to the classical context of TOH with N = 3 disks, and then
test scalability on larger N . Finally, we discuss results meaning for
TOH states and LSTM states at the explainability level.

4.1. Description of the dataset: Sequences of autonomous agent
moves

A play can be traced as a sequence of the task’s states (Ta-
ble 2(a)) or a sequence of moves made by the player (Table 2(b)).
If states have each a unique index, transition labels are not
unique. Indeed a move can be played many times but in different
contexts. For example, the move ‘‘1-3’’ is made 3 times in the
sequence presented in Table 2(b).

While the trained agent is playing, it is thus possible to record
sequences that have the same beginning and ending states but
varying lengths and repeated moves in different contexts. All
sequences of the dataset have the symbol B to mark the begin-
ning of the sequence and symbol E for the end of the sequence
as shown in Table 2(c) This process is called encapsulation: it
corresponds to the addition of a start and end symbol to a
sequence. This technical implementation detail aids the neural
network learning and explainability phases by making explicit the
beginning and end of a sequence (Table 2(b)) (Servan-Schreiber
et al., 1988). On the explainability level, encapsulation facilitates
the identification of the movements associated with the transi-
tions during the FSA generation phase (Fig. 2, Step 3). Thus, it
becomes easier to interpret behaviors in terms of the extracted
FSA of sequential problem-solving actions (Chraibi Kaadoud et al.,
2022).

Each sequence of e moves contains e − 1 samples that cor-
respond to pairs of ‘‘current move-next move’’. For example, in
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Fig. 4. Evolution of the average number of moves of the AA while playing: (a) the TOH with N = 3 disks after different sessions of training with different numbers
f training episodes: 0, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. Each training session was reproduced 100 times to
rovide robust results; (b) the TOH with N = 4 disks after different sessions of training with different numbers of training episodes: 0, 1, 3, 6, 10, 30, 60, 100, 300,
00, 1000, 3000, 4000; (c) the TOH with N = 6 disks after different sessions of training with different numbers of training episodes: 0, 1000, 5000, 7000, 10000,
0000, 60000, 100000, 150000. In all contexts, each training session was reproduced 100 times.
Table 2
The TOH with N = 3 disks: Examples (a) and (b) show two runs of the game that express the same
sequence of moves taken to solve the task (according to the graph of states in Fig. B.13). Sequence
(c) represents the encapsulated version of (b) as learned by the action prediction LSTM model. The
encapsulation process of sequences aids the LSTM model learning and FSA explanation extraction
phases by making explicit the beginning and end of a sequence.
(a) Sequence of visited states 111, 311, 321, 221, 223, 123, 133, 333
(b) Sequence of moves 1-3 , 1-2, 3-2, 1-3, 2-1, 2-3, 1-3
(c) Sequence of moves encapsulated B, 1-3, 1-2, 3-2, 1-3, 2-1, 2-3, 1-3, E
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Table 2(c), the sequence has 9 moves, i.e., 8 pairs of moves: {(B,
1-3), (1-3, 1-2), (1-2, 3-2), (3-2, 1-3), (1-3, 2-1), (2-1, 2-3), (2-3,
1-3), (1-3, E)}.

At this point, it is important to clarify the difference between
move and a state. Each TOH state can result from either 2 or 3
ifferent moves. For example, it is possible to reach the TOH state
‘321’’, following the moves ‘‘1-2’’, ‘‘2-3’’, or ‘‘1-3’’ (see Fig. B.13).
e focus on the analysis of sequences of moves since we want

o observe the evolution of the agent’s behavior at successive
ime steps. To do so, the LSTM model learns to predict at time
the next move according to the current one and the agent’s

earning. This is why we decompose each sequence as pairs of
oves ‘‘current move-next move’’.
Finally, let us clarify that, by construction, the LSTM model

ever receives the last move of a sequence as input. For example,
e consider the sequence S1: {B, 1-3, 1-2, 3-2, 1-3, 2-1, 2-3, 1-3,
}, followed by sequence S2 that also starts with B. The pairs of
oves associated with S1 are: {(B, 1-3), (1-3, 1-2), (1-2, 3-2), (3-2,
-3), (1-3, 2-1), (2-1, 2-3), (2-3, 1-3), (1-3, E)}. The LSTM model
ill receive a succession of the following inputs: {B, 1-3, 1-2, 3-2,
-3, 2-1, 2-3 and 1-3}, for which it will have to predict respec-
ively the following outputs: {1-3, 1-2, 3-2, 1-3, 2-1, 2-3, 1-3, E}.
t the end of the input sequence from sequence S1, the model
gain receives B as the input from sequence S2. Consequently, the
ymbol E is never provided as input to the LSTM model. Fig. 11
llustrates this example through the recurrent loop bearing the
abel ‘‘B’’ between states 333 and 111.

.2. Visualizing the evolution of the learning agent behavior: Prelim-
nary analysis with different number of N disks

We recorded the average number of moves of an AA while
erforming the TOH task at different stages of its training. The
A plays after training at each stage. Preliminary analysis with
ifferent numbers of N disks showed that after a given number
f episodes, the average number of moves tends to converge to a
inimum. We focus thus on the analysis of the behavior during
104
he first training episodes (until stabilization) with the hypothesis
hat the most important changes in the learning behavior can be
bserved then. Figs. 4(a), 4(b), and 4(c) present the evolution of
he AA average number of moves to solve the task during training,
or TOH with N = 3 disks (for the first 1000 training episodes),
OH with N = 4 disks (for the first 4000 training episodes), and
OH with N = 6 disks (for the first 150000 training episodes),
espectively.

From the analysis of these three figures, we can observe that
he AA learns alone to solve the task. For example, in the context
f TOH with N = 3 disks, the average number of moves decreases
uring the first 500 training episodes before stabilizing at an
verage value of 9 moves to solve the task (7 is the optimal
umber of moves). Despite the problem’ simplicity, the model
ever learns to solve the problem optimally using the minimal
umber of movements. Regardless, we observe that the evolution
f the average number of movements during training reaches a
lateau after 500 training episodes. This evolution of the length
f the movement sequences does indeed contain an implicit trace
f the knowledge acquired by the agent as it learns. Next section
nvestigates how XAI explains the Aha! moment that leads the AA
o converge, i.e., to realize how to solve the task in the context of
OH with N = 3 disks.

.3. TOH with N = 3 disks: Finding the Aha! moment through
xtracted automaton analysis

To illustrate the methodology, we present the analysis of the
xtracted knowledge representations obtained for AA learning to
erform TOH with N = 3 disks, during the first 1000 learning
pisodes. We chose to particularly analyze the AA behavior at
ertain stages of learning: at the beginning of the learning, after
00, 300, 500, and after reaching 1000 training episodes. For each
raining stage, we recorded during the training phase (for further
etails see Appendix C.1) a dataset of 100 sequences of moves.
ince we consider 5 training stages, we have recorded 5 datasets
f 100 sequences each, and 5 FSA have been extracted as a result
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Fig. 5. Extracted automata with color edges displaying their weights at different stages of the AA training while learning the TOH task with N = 3 disks for [0,
000] training episodes. The darkness of the edge color represents the importance of the weight. Extraction made for: (a) k = 7, (b) k = 7, (c) k = 8, (d) k = 7 and
e) k = 7, k being the number of clusters for the k-means algorithm that has the best average silhouette score value. The IDs in the nodes represent the clusters’
umbers. Each node is an LSTM state that corresponds to one or many TOH states. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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f step 3 of the IKE-XAI methodology (Fig. 2, Section 3.3), on the
irst 1000 hidden patterns.

We analyze each FSA to compare its features (number of edges,
dge labels, edge weights) to explicit the behavioral changes.
able 3 provides the features of the dataset, Fig. 5 presents the
xtracted automaton with colored edges at different stages of the
elected training stages, and Figs. 6, 7, 8 represent the automata
xtracted and the associated edges table at the beginning of the
raining (Fig. 5(a)), after 300 training episodes (Fig. 5(c)) and
fter 1000 training episodes (Fig. 5(e)). Each represented FSA has
eighted edges color-coded using a heatmap. The darker the
olor of the edge compared to its weight, the more the AA goes
hrough the state to solve the task.

The sum of all weights of a FSA equals the total number of
airs of moves, i.e., samples of the dataset (i.e., the total number
f pairs ‘‘current move-next move’’) analyzed for the explanation.
n Figs. 5, 6(a), 7(a) and 8(a), edge weights in the y axis are
ormalized between 0 and 1: each edge weight is divided by
he sum of the edges’ weights for a FSA where each weight is
btained from the times that state transition is predicted by the
STM model in one task solving sequence.
The analysis of the feature of datasets in the experiment (Ta-

le 3), the extracted automata and their associate table of edges
eature allows us to observe that:

(1) According to Table 3 during the experiment the average
umber of moves per sequence goes from 159.49, at the begin-
ing of the training, to 56.02 after 300 training episodes to an
verage of 9 moves after 1000 training episodes. We interpreted
his result as an implicit modification of the AA behavior as it
as learned the movements that allow it to perform the task
fficiently. However, it should be noted that the best k value
or the k-means algorithm does not evolve. Its value stays at

= 7 mainly. This implies that regardless of the size of the
equences and the stage of training, the LSTM model encodes an
mplicit representation composed of 7 main states according to
he silhouette score calculated for the k-means algorithm at each
105
snapshot of the training process selected to extract and display a
FSA.

(2) According to Table 3 we observe that after 1000 training
episodes, the average number of moves over 100 sequences of
training is 9.0 and that the agent performed 900 moves in total.
Figs. 6(b) and 6(c) showed that all transitions evolve to converge
to the same weight value of 100 (except the first one), which
implies that each move is repeated 100 times. Since the AA does
not learn anymore after 1000 training episodes (Fig. 4(a)), we
can emphasize its behavior to solve the task becomes repetitive,
which implies a stabilization of its knowledge consolidation.

(3) According to Figs. 6(b), 6(c), 7(b) and 8(b), from 0 (the
beginning of training) to 300 training episodes, the edges are
numerous and of different weights. We counted 37 state tran-
sitions (i.e., edges) for the FSA at the beginning of the training,
34 for the extracted FSA after 300 learning episodes, and only
10 edges for the FSA after 1000 training episodes. These changes
in the extracted automaton can be interpreted as follows: at the
beginning, the agent tries different strategies before it ends up
adopting the same sequence of moves, once it has found the op-
timal sequence of moves (or what it seems to be for it). Then, this
translates into the reinforcement of the transition weights that
correspond to the optimal sequence of moves, and the weakening
of the rest.

(4) According to Fig. 5, edge weights of the extracted FSA,
ndependently of the stage of learning, are higher for some edges
han others, which implies that some moves were more repeated
han others by the AA when playing.

(5) According to Figs. 6(a), 7(a), and 8(a), we observed that
t the beginning of training and also after 300 training episodes,
he extracted graph edges remain with different weights; while
fter 1000 training episodes, except one edge, all others adopt
pproximately the same weight values (i.e., dark blue). The anal-
sis of Fig. 4(a) and Table 3 show that the average number
f moves performed by the AA reduces drastically, about 83%,
uring training between episodes 300 and 500, at the same
ime as the performance greatly improves. Fig. 5 presents the
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Fig. 6. FSA extracted at the beginning of the training of the TOH task with N = 3 disks, with k = 7 for the k-means algorithm: (a) Extracted FSA with colored edges
displaying their weights: the darker the edge, the more important the weight. (b, c) Associated actions and computed weights. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
t
t
o
m
n
a
(
F

t

dominant sequence of moves repeated by the AA after 1000 train-
ing episodes. These elements lead us to consider that the Aha!
moment, i.e., the moment when the learning AA finds a solution,
is around 500 episodes since after that the average number of
movements barely evolves (from 10 to 9 average moves). In this
case, it is not a particular time step, but a time range over which it
modifies its behavior in a fast way to adopt what seems to be the
optimal solution (even if computationally, the adopted solution is
not the optimal one).

As per the previous observations and analysis, we can make
two conclusions: First, the more the AA is trained to perform
the TOH task, the more the extracted FSA tends to converge to
a stable form with transitions of approximately equal weight.
In other words, once the AA’s number of average moves stabi-
lizes, i.e., the behavior gets stable, the extracted FSA does not
change anymore (and neither do the values of the associated
edge weights). An AA that does not learn anymore, uses the
already discovered path (i.e., optimized sequence of moves) to
perform the task. Second, the Aha! moment during training can
be detected using the IKE-XAI method by allowing researchers
to identify the moment where the AA finds a solution through
the adoption of the AA of stable behavior, not only in terms of
convergence of the learning curve but also in terms of a graphical
simplified representation of the same, in form of a FSA.

4.4. TOH with N > 3 disks

To evaluate the contribution of our approach on a more com-
plex task, we chose to test the IKE-XAI methodology on N = 4
and N = 6. In this section, we present the results in these two
contexts.

4.4.1. TOH with N = 4 disks
For N = 4 disks, the optimal number of moves is 24

− 1 = 15.

he graph of all possible moves contains 81 nodes and 120 edges.

106
We recorded the average number of movements performed by
the AA (i) every 10 training episodes from 0 to 100, (ii) every 100
training episodes from 100 to 1000, and (iii) every 500 training
episodes, until reaching 8000 training episodes. The average was
calculated on 100 simulations. We observed that for N = 4,
he average number of sequences decreases between 0 and 4000
raining episodes before stabilizing around the optimal number
f movements. For 0 training episodes, the average number of
ovements recorded is 800. After 4000 training episodes, this
umber is reduced to 15. Therefore, we chose to extract the
utomata on 1000 hidden patterns at the following sessions: 0
before training), 1000, 2000, 3000, and 4000 training episodes.
ig. 4(b) shows the evolution of the number of moves for N = 4.
Fig. 9 presents the automata extracted at different stages of

raining for an AA who performs a TOH with N = 4 disks on 1000
hidden patterns, i.e., 1000 time steps. We notice an evolution
of the number of edges between the beginning of the training
and after 4000 training episodes: from 37 to 11. We also observe
an evolution of the weights of these edges: At the beginning of
the training the maximum weight is 45 while after 4000 training
episodes, the maximum weight is 983, but it concerns only one
transition (the recurrent loop on node 0). Moreover, although
the task has become more complex (the number of nodes and
transitions in the graph of all possible moves of the TOH task
with N = 4 disks is more important than for N = 3 disks)
we observe that the automata extracted for 1000 patterns all
have 7 nodes. This makes them intelligible visual representations
with a small number of nodes. As the automata represent the
construction and the evolution of the implicit knowledge of the
AA, we emphasize that these representations allow observing the
structuring of its knowledge through the evolution of its behavior.
Indeed, as the training progresses, we observe the reinforcement
of certain edges, and the forgetting of others, which represents an
evolution. We can also see that the representations in Fig. 9(d)

and Fig. 9(e), both allow us to identify the state in which the
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Fig. 7. FSA extracted after 300 training episodes of the TOH task with N = 3 disks, with k = 8 for the k-means algorithm: (a) Extracted FSA with colored edges
isplaying their weights: the darker the edge, the more important the weight. (b) Associated actions and computed weights. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. FSA extracted after 1000 training episodes of the TOH task with N = 3 disks, with k = 7 for the k-means algorithm: (a) Extracted FSA with colored edges
displaying their weights: the darker the edge, the more important the weight. (b) Associated actions and computed weights. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Analysis of the dataset composed of recorded sequences of moves of an AA trained to solve the TOH
task with N = 3 disks. Each dataset is composed of 100 sequences of moves of various lengths and
is analyzed at different stages of training: At the beginning, after 100, 300, 500, and 1000 learning
episodes. Each dataset is clustered using the k-means algorithm for k ∈ [5; 100]. The table presents:
(i) the best value of k selected for each dataset, (ii) the associated computed average number of
moves per sequence (obtained as the total number of actions/total number of sequences), and (iii)
the total number of samples (i.e., pairs of moves) of each dataset.
Number training Best k Average number Total number
episodes (i.e., sequences) value of moves per sequence of samples

0 7 159.49 15949
100 7 57.31 5731
300 8 56.02 5602
500 7 10 1000
1000 7 9 900
107
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Fig. 9. Extracted automata with color edges displaying their weights at different stages of the AA training while learning the TOH task with N = 4 disks for [0,
000] training episodes. The darkness of the edge color represents the importance of the weight. Extraction made for k = 6 for all stages of training, k being the
umber of clusters for the k-means algorithm that has the best average silhouette score value. The IDs in the nodes represent clusters’ numbers. Each node is an
STM state that corresponds to one or many TOH states. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
gent remains the longest: namely the 0 state. An analysis of the
ssociated actions and computed weights allowed us to identify
hat the state 0 is linked to the following movements ‘‘3-1’’, ‘‘2-1’’,
‘3-2’’, ‘‘1-3’’, ‘‘1-2’’ that are played more than 200 times.

.4.2. TOH with N = 6 disks
For N = 6 disks, the optimal number of moves is 26

− 1 =

63. The graph of all possible moves contains 729 nodes and
1092 edges. During preliminary experiments, we recorded the
AA average number of movements from 0 to 500000 training
episodes in steps of 50000 training episodes. We observed that
for N = 6, the average number of sequences decreases linearly
between 0 and 150000 training sessions before stabilizing around
70 moves. We, therefore, chose to extract the automata at the
following sessions: 0 (before training), 30000, 60000, 100000, and
150000 training sessions. Fig. 4(c) shows the evolution of the
number of moves for N = 6. As for TOH with N = 4, we set a
threshold number of movements so that the AA during playing
does not go beyond 10000 moves per playing trial (i.e., to avoid
infinite loops).

Fig. 10 presents the automata extracted at different stages of
training for an AA who performs a TOH with N = 6 disks on the
first 1000 hidden patterns, i.e., 1000 time steps. The analysis of
the characteristics of the FSA shows an evolution of the number of
nodes and the weights of the transitions. Indeed, between 0 and
60000 training episodes (Fig. 10(a), (b), (c)), the automata have
11 nodes and the maximum weight on all transitions is 36 at the
beginning of the training. The maximum weight value increases
to 44 for 30000 training episodes and remains at 44 after 60000
training episodes.

When the agent trains 100000 times (Fig. 10(d)), the extracted
automaton associated with its behavior has 7 nodes. The max-
imum weight of the transitions is 936 but only concerns the
recurrent loop on node 0. The other transitions have a weight that
varies between 2 and 16 (except the first transition associated
108
with the node −1) After 150000 training episodes, we observe
that the maximum weight of the transitions is 271 (Fig. 10(e)).
More precisely, 4 transitions have an important weight: 208
(transition (4, 4)), 227 (transition (4, 1)), 233 (transition (1, 4) and
271 (transition (1, 1)). The other transitions have weights that
vary between 4 and 8 (except for the first transition involving
node −1). These variations of weights between transitions allow
us to establish that there is indeed a change of behavior in the
movements performed by the agent. Over 1000 patterns, i.e., time
steps, the agent explores several strategies through several dif-
ferent sequences of movements before reducing its choices to
determined actions that are repeated after that. We also notice
that although the number of nodes and possible transitions for
TOH with N = 6 disks is much higher (729 nodes, 1092 tran-
sitions) than for N = 4 (81 nodes, 120 edges) and N = 3 (27
nodes and 39 edges), the extracted FSAs for the same number
of patterns (1000 in the 3 cases) are still quite small (number of
nodes between 6 and 10), which makes them visually accessible.
Let us recall here that the nodes of the extracted automata corre-
spond to the LSTM states. Each node can group one or more TOH
states. Whether it is for N = 4 or N = 6, the number of nodes
and transitions being very important makes the follow-up of the
agent’s behavior complex for a human observer. However, our
automata allow synthetic representations of the TOH task with
a reduced number of nodes, as perceived by the AA, by grouping
together the TOH states that result from the same rule, i.e., series
of moves. We recall here that a rule is defined as a sub-part
of a sequence of 2 to 3 successive moves in time. For example,
the study of the associated movements linked to the nodes and
transitions of the automaton extracted after 150 000 training
episodes (Fig. 10(e)) shows that the automaton often repeats the
rule ‘‘3-1, 2-1, 3-2’’ in succession, resulting in the clustering of
TOH states ‘‘213222’’, ‘‘113222’’ and ‘‘112222’’ at node 4 of the
automaton. Another example is the rule ‘‘1-2, 3-2, 3-1’’, repeated
several times in time at node 1 which induces the grouping of
TOH states ‘‘312332’’, ‘‘322332’’ and ‘‘222332’’.
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Fig. 10. Extracted automata with color edges displaying their weights at different stages of the AA training while learning the TOH task with N = 6 disks for [0,
150000] training episodes. The darkness of the edge color represents the importance of the weight. Extraction made for: (a) k = 10, (b) k = 10, (c) k = 10, (d) k =

6 and (e) k = 6, k being the number of clusters for the k-means algorithm that has the best average silhouette score value. The IDs in the nodes represent clusters’
numbers. Each node is an LSTM state that corresponds to one or many TOH states. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Table 4
Summary of the results concerning the number of average training episodes that result in an Aha!
moment and the evolution of the average length of sequences at the beginning of training and after
the Aha! moment in the different experimental contexts tested: TOH task with N in [3, 4, 6].

TOH with N = 3 TOH with N = 4 TOH with N = 6

Aha! moment (average 500 3000 100000
number of training episodes)

Average length of sequences 6 800 21500
at the beginning of training

Average length of sequences 9 15 63
after the Aha! moment
The results provided in the three different contexts (TOH task
ith N in [3, 4, 6]) show that the IKE-XAI methodology works

n complex contexts. Our methodology offers a way to observe
he phenomenon of implicit knowledge building and evolution
resent in the sequences of movements of the artificial agents.
egarding the Aha! moment, in the 3 contexts, from the analyses
erformed we concluded that the Aha! moment for an AA occurs
hen it changes its behavior noticeably, which translates into
significant change in the extracted FSAs and a stabilization
f them. In the first context, TOH with N = 3 disks, the Aha!
oment occurs around 500 training episodes (Figs. 5, 7 and 4(a)).

n the second context, TOH with N = 4 disks, the Aha! moment
ccurs around 3000 training episodes (Figs. 9 and 4(b)). Finally in
he third context, TOH with N = 6 disks, the Aha! moment occurs
round 100000 training sessions (Figs. 10 and 4(c)). Table 4 sum-
arizes these results and displays also the change in the average

ength of sequences between the beginning of the training and
fter the Aha! moment. In each experimental context, after each
etected Aha! moment, extracted FSA stabilize (Figs. 5(d), 5(e),

9(d), 9(e) and 10(d) and 10(e)). Therefore, we consider that for
an artificial agent, the Aha! moment corresponds to the moment
when it adopts a monotonic strategy that it repeats thereafter.
Let us underline the fact that the Aha! moment does not occur
109
at the same time in the three contexts because of the complexity
of the tasks, as when complexity increases, more exploration is
required.

4.5. Discussion and investigation of the link between TOH states and
LSTM states

In this section, we discuss the link between the TOH states
and LSTM states in the extracted automata. Fig. 11 presents the
extracted FSA obtained (TOH with N = 3 disks) after 1000
training episodes, with TOH states mapped on the LSTM states
(nodes). The FSA edge labels indicate the associated move played
to go from one state of the task to another. As per Fig. 11, we
observed that many TOH states can correspond to one LSTM state.
The TOH states ‘‘311’’, ‘‘223’’ and ‘‘333’’ are grouped at the level
of an LSTM state or node ‘‘6’’ (Fig. 8(a)), and TOH states ‘‘323’’
and ‘‘133’’ are grouped at the level of an LSTM state or node ‘‘0’’
(Fig. 8(a)). More precisely, we observed that the states grouped
are states resulting from the same move. For the game to be
in states ‘‘311’’, ‘‘223’’, and ‘‘333’’, the previous move is ‘‘1-3’’,
i.e., moving the top disk from rod 1 to rod 3. For the game to be
in states ‘‘323’’ and ‘‘133’’ which are grouped, the previous move

is ‘‘2-3’’,i.e., moving the top disk from rod 2 to rod 3. Thus the
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Fig. 11. Analysis of FSA extracted for TOH with N = 3 disks: (a) Extracted FSA after 1000 training episodes with k = 7 for the k-means algorithm. (1) colored
edges represent their importance weight (the darker the edge, the more important the weight); (2) TOH states identify each FSA node (instead of LSTM states as
in Fig. 8(a)); (3) Edge labels explain the move to make according to the trained LSTM, to go from one TOH state to another. (b) Associated actions and computed
weights in the TOH task. (c) Associated path in the FSA graph representation (Fig. B.13): Green arrows represent the AA followed path, i.e., a sequence of moves that
correspond to the task strategy displayed in (a) and (b) The explanation about the arrow from the final state ‘‘333’’ to the starting one ‘‘111’’ with label B is explained
by the fact that the transitions are labeled at each time step by the data provided as input to the LSTM model (More details in Section 4.1). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
grouping of states of the game seems to imply that they are the
result of the same move.

The order of the TOH states in a node, from top to bottom,
represents the order of the TOH states in which the agent finds
itself when acting according to the progression of the sequence
of moves. The fact that some TOH states are grouped into the
same node in the FSA, means that the LSTMmodel perceives these
states as close in its learned latent space. Since an LSTM state is
characterized by the node at which the input is currently being
processed, different TOH states can be grouped within the same
LSTM state.

Apart from the fact that their corresponding hidden states are
similar in the vector space, the grouping of TOH states together in
the same corresponding LSTM state allows us to understand the
representation of the game for the agent as it interacts. This tends
to be supported by the fact that the TOH states grouped resulted
from the same action. The FSA extracted seems to carry the
‘‘vision of the world’’ that the AA has built through the interaction
with its environment (here the TOH task with N disks), and that
is hidden in the sequences. Moreover, if the action leading to a
node of the automaton is repeated several times (high transition
weight) and the latter gathers several TOH states, this can be
interpreted as a strategy of movements for the agent to lead the
game to a particular state that it considers part of the solution.

In summary, there is a clear link between interpreting LSTM
states and the task (here TOH) states: the former can be seen
or rendered as clusters of the latter, as the learning AA encoded
them nearby in the embedding, and recalls them over time during
its training experience. While this ability to cluster is interesting
from the perspective of the question of analyzing the evolution
of knowledge within an AA (hypothesis H2, Section 1.3), it is also
an important limitation of our approach. Indeed, we recognize
that the representation of time in the automaton in a simple and
110
accessible way for a non-expert user of our methodology can be
a limit for the adoption of our approach. When TOH states are
grouped in an LSTM state, it is difficult to determine which TOH
state was reached first, without going through the generation
history of the automaton. This is also true for two transitions that
connect two nodes in opposite directions. In summary, while the
extraction of several automata allows us to visually observe the
evolution of the agent’s knowledge, the complex access to the
history of the choices made by the agent over time remains a ma-
jor obstacle to the adoption of our methodology by a non-expert
audience.

5. Discussion

In this paper, we tackle the problem of explaining the acquisi-
tion and evolution of the latent representation of a task acquired
by an AA while learning. We focus our study on the TOH task,
a well-known transformation problem in the field of problem-
solving. The main contribution of our work is to propose the
IKE-XAI end-to-end methodology for knowledge extraction from
AA observational behavior. On the taxonomy of XAI techniques,
IKE-XAI can be labeled as a post-hoc explainable methodology
that provides a visual model-agnostic explanation (it can ex-
plain any AA behavior). At the experimental level, we were
able to demonstrate that it is possible to extract the vision of
the AA of a task (simple and complex one) using a sequence
learning model (LSTM) and to extract knowledge, in the form
of FSA that represents AA’s problem-solving strategies, for their
explainability. Since our work is a multidisciplinary one at the
crossroad of different domains, we will discuss our contributions
for each domain: explainable RL and developmental psychology
(Aha! moment).
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First, let us discuss our work’s contribution to the explainable
L field: this work offers the IKE-XAI methodology for implicit
nowledge extraction in the shape of FSA when only sequences
f moves are available (only positive examples). It is important
o highlight that no precise methodology to extract AA’s acquired
epresentation of the task/world was available based on observa-
ional behavior such as in human–machine interaction. Our work
hus allows filling this gap by combining RL, implicit rule learn-
ng from sequences, and a post-hoc rule extraction explainable
lgorithm. Regarding the contribution of explainability on the
volution of a learning agent behavior, we confirmed hypothesis
2 (Section 1.3) by making explicit the behavioral changes of
n AA due to the analysis of the edge weights of the extracted
utomata. From the AA behavioral analysis point of view, for TOH
ith N in [3, 4, 6] disks, the extracted automata at different stages
f the AA training (1) provide information about the behavior
hange and knowledge acquisition, (2) evolve into a consolidated,
impler FSA that is easier to convey to debug and explain the
odel. This last characteristic allows to confirmed hypothesis H3

Section 1.3).
Note that our approach also allows explaining behaviors that

re not optimal. For TOH with N = 3 disks, when after 1000
raining episodes, the agent performs the task with 9 movements
nstead of 7 (that is the optimal number of moves), our method
llows us to determine it. We considered that it was interesting to
ee the contribution of our method when the observed behavior
s not the expected one. Fig. 11 illustrates this difference. In the
resent work, we did not investigate the reasons for this behavior.
e wanted to stay focused on the explanation of the behavior by

he construction and evolution of knowledge, which are intrinsic
o the agent. Nevertheless, we would like to extend our work to
his type of problem in the future. It is important to underline
hat the IKE-XAI method makes explicit the global behavior of
he agent when it plays by putting forward only the part of the
earned knowledge used to play even on a particular sequence of
oves (independently of its size). Once the LSTMmodel has been

rained on TOH sequences (step 2 of the IKE-XAI methodology),
he FSA extraction algorithm allows to extract an automaton
ithout any constraint on the size of the sequence. This permits
targeted explainability of a particular behavior i.e., a specific

equence of moves. The association of labels to transitions and
ime steps allows characterizing temporally an action that led
o a state and describing it contextually (past actions, current
ction, and the resulting state in terms of action and perception).
n top of that, the use of LSTM in IKE-XAI helps the method
o encode long-term dependencies (long sequences with distant
ontext) that can be hidden in the AA sequence of moves. In
he case of the TOH task, only recent context (move and state
t t − 1) matter for the prediction of the next movement and
tate. However Chraibi Kaadoud et al. (2022) showed that LSTM
an encode and predict sequences of 100000 symbols length with
ong term dependencies. IKE-XAI can thus theoretically be used to
nalyze sequences of moves of an important length where first
oves impact the prediction of moves that happen later in the
equence. Finally, the consolidation of the extracted automata
akes it possible to establish the moment when the AA seeks no

onger to try strategies to solve the task, by using only the most
ffective found paths it learned. Comparing the rules of TOH to
treets in a city, during step 1 of IKE-XAI, the AA explores and
earns the streets. During step 2 of IKE-XAI, the RNN learns all the
tineraries that could be followed by the AA in the city to encode
n implicit map of this city. Thus, step 3 takes care of explaining
hich part of the map the AA mainly used to solve the task, and
ow it finds a way to do it.
Next, at developmental psychology (Aha! moment) level, it
s important to recall that there is only a small amount of work
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on the issue of insight modeling in artificial agents (Colin, 2020;
Colin & Belpaeme, 2019). Our work contributes to investigating
this scientific question. In this field, the Aha! moment is defined
as a sudden and spontaneous change in an individual’s behavior.
At the cognitive level, it is the emergence in the conscious sphere
of an individual of an idea that allows him to solve the problem
he is facing. If this is apparently spontaneous (the famous Aha!
moment), studies show that insight is not a sudden flash that
comes from nowhere, but is the result of the implicit cognition6
piecing together loosely connected bits of information stemming
from prior knowledge and experiences to form novel associa-
tions among them (Carpenter, 2019). Moreover, the lack of other
means of communication (and provided that he/she can express
it) and without specific techniques (e.g., fMRI), make it difficult
for us to hypothesize with confidence the occurrence of the Aha!
moment. In the case of children, this was apparent especially
through verbal reflection or/and non-verbal behaviors. Therefore
it is difficult to demonstrate exactly when insight occurred in a
scientific and applied technical manner. In children, in principle,
the TOH requires the use of inhibitory control at certain instances,
which means that for certain cases the solver does not perform
the most obvious move. It was also observed that the transi-
tion from the exploratory phase to the phase of understanding
requires that moment of cognitive transformation (the so-called
Aha! moment). This moment can be observed (i) by considering
the task performance and (ii) by taking into account the rele-
vant verbal and non-verbal manifestations. In the case of the
AA, we lack the second input. However we can underline some
resemblances between the AA behavior and children regarding
the Aha! moment: (1) the fruitless search/impasse phase from the
resolution moment (convergence of the model) (Figs. 5, 9, 10),
(2) the steepness of the performance curve (Fig. 4) that shows
the expertise transformation in the AA, (3) the use of previously
acquired learning of the task to make the ‘‘insight’’ possible, (4)
The processing of the problem that becomes more fluidly after
the ‘‘insight’’, and (5) the shift in the agent’s behavior from explo-
ration to exploitation i.e., the Eureka! moment for the agent and
the Aha! moment for the researcher when he/she understands
when it happens (an increase in the speed of resolution of the
task). On top of that, if we consider that the concept of ‘‘moment’’
is not linked to a particular instant t but rather to a specific time
range, this conceptualization of insight supports the interest of
our study since it allows us to detect the range of time over which
an agent finds and adopts a strategy (even if it is not optimal) over
the long term. We are aware that this represents a limitation of
our approach and we hope to work on this subject in our future
work. Nevertheless, we believe that the current work offers an
interesting way of investigating the subject of Aha! moment for
autonomous agents and beyond that, it leads to a reflection on the
question of the definition of insight for an artificial autonomous
agent. The convergence of models is thus interesting for the study
of this phenomenon in autonomous artificial agents, and more
globally for the question of explainability and should be studied
further.

Finally, regarding the originality of our contribution con-
cerning the original works of Bennetot et al. (2020) and
Chraibi Kaadoud et al. (2022), we differ from the first work by
considering sequences of movements as instantiations of the
agent’s behavior (and not only their average sequence length) to
evaluate the evolution of behavior and learning. Indeed in the
current work, we hypothesized (Hypothesis H1, Section 1.3) –
and confirmed – that each sequence of movements is governed
by implicit rules of behavior that can be extracted. Our analysis

6 That refers to ‘‘unconscious influences reflecting perception, memory, and
learning, without subjective phenomenal awareness’’. (Reingold & Ray, 2002)
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f the data thus went further than the original work (originally
ith TOH with N = 3 disks) to explicit the behavior. Let us also

highlight that we extended it to new experimental contexts (N =

and N = 6). Concerning the second work, originally in the
ield of interpretability, by positioning ourselves in the field of
xplainability applied to developmental robotics. We put forward
hat an implicit rule extraction algorithm from an RNN that
earned sequences could also bring explanations on the behavior
f an AA, using visualization techniques, at time t, but also during
ime at different stages of the training acquisition, which was not
reated in the original paper. Our work is thus an original work
hat focuses on the problem of the study of the evolution of the
onstruction of the latent representation of an AA through the
tudy of its observational behavior.
To conclude, this technique is presented as a tentative model

or insight problem-solving in artificial agents by mimicking chil-
ren, and as a promising technique for improving the problem-
olving abilities of artificial agents. Regarding the reproducibility
r scalability of the IKE-XAI methodology, the selected use case
n TOH, the type of dataset, and the algorithms provided in
ppendix C allow it to be easily extended to other domains
here the data to learn from is in the form of sequences of ac-
ions, decisions, or movements. In addition, the complete code is
vailable on the GitHub plateform at https://github.com/ichraibi/
xtracting_Aha_moment_from_Qlearning_agent_through_IKE-XAI
ethod.ip for further development or re-use by third parties.

. Conclusion and future work

The proposed IKE-XAI methodology contributes to the field
f explainability of learning agent behavior using a cognitive
odeling approach. We considered in this work the field of
xplainable RL as an alliance of cognitive modeling and XAI. We
sed the TOH as a guiding showcase of the proposed IKE-XAI
ethodology. We showed that, as for humans during a problem-
olving task, the AA builds a global knowledge (i.e., a latent
epresentation) of the task performed during interaction with
he environment. That knowledge evolves along training, i.e., and
o does the acquisition of experience. The IKE-XAI methodology
ade it possible to identify the Aha!moment. The AA got a Eureka
oment optimizing its moves for the TOH and we humans have
Eureka moment figuring out when the artificial agent is capable
f doing it. As a conclusion of our results, we showed that IKE-
AI makes it possible to elucidate the evolution of knowledge
cquisition of a learning AA through the study of its behavior
ver time in terms of an extracted, synthesizing FSA. This allows
s to convey, in a symbolic manner, a more explainable vision
f black box sequence learning models. As main directions for
uture work, an important perspective of this work would be
o obtain iterative feedback from the developmental robotics
ommunity on how useful XAI approaches can be to understand
he knowledge development of AI systems. It can have two-
old benefits and, at the same time, shed some light on new
deas and debates to improve the state-of-the-art in develop-
ental psychology and cognitive science. It can also help us

ranspose the IKE-XAI methodology in different contexts such
s studying the construction of a complex AA behavior (Lieto,
hatt, Oltramari, & Vernon, 2018; Vanderelst & Winfield, 2018)
r a child’s knowledge during the autonomous learning process
f a transformation problem. Regarding the latter, we would be
articularly interested in the formal operational stage when the
easoning capacities are set up. This is the stage where the child’s
ognitive structures shape to be close to those of an adult and
nclude conceptual reasoning (Donald, Lazarus, & Lolwana, 2006).
he child can thus perform a variety of tasks involving the use of
ypotheses to solve problems. Therefore, solving transformation
112
problems such as TOH could bring interesting elements for the
implementation of cognitive strategies in education and could
be generalized to different cognitive profiles (Lefa, 2014). Addi-
tionally, it could contribute to (i) works that explore the type
of possible targeted interventions and scaffolding that a child
needs for the optimization of the problem-solving process in
a specific task such as the TOH (Charisi et al., 2020; Charisi,
Merino, Escobar, Caballero, Gomez, & Gómez, 2021), (ii) works
that design child–robot interaction settings with child-initiated
robotic interventions.

To conclude, we invite AI and XAI future research works
and, more globally, the scientific community to adopt trans-
disciplinary approaches, especially in the human-centered AI do-
main. Works at the crossroads of multiple fields may participate
to improve knowledge about artificial cognition, through the
study and modeling of human learning and, above all, to improve
the trust in ML algorithms by making the reasons behind their
behavior more accessible and transparent to everyone.
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ppendix A. Explainable RL: Related work discussion

We discuss here some works in the field of eXplainable RL that
hare characteristics with the current work.
Sun and Sessions (2000) proposed a hybrid model combining

L algorithms which they created as a generator of reactive plans,
nd probabilistic planning algorithms to extract explicit, explain-
ble plans for RL algorithms. In a specific problem scenario, plans
an be generated in-place using a beam-seeking strategy that
hains actions with optimal Q values at each step. The novelty of
he work lies in a two-step process where the algorithm in first
lace performs a closed-loop policy acquisition and at a second
tep, an open-loop policy acquisition or semi-open loop policies.
beam search algorithm using an A* type heuristic performs
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Fig. B.12. Schematic representation of the TOH with N = 3 disks and a specific sequence of moves {‘‘1-3’’, ‘‘1-2’’, ‘‘3-2’’, ‘‘1-3’’, ‘‘2-1’’, ‘‘2-3’’, ‘‘1-3’’} presented in
Table 2(b) and with green arrows in Fig. B.13. The task’s objective is to move the stack from first left-most rod (Rod 1) to the final right-most rod attending to the
game rules (Rod 3). The minimum number of moves required to solve a TOH with N disks puzzle is 2N

− 1. Thus for N = 3, the puzzle can be solved in 7 moves
and goes through 8 different states including the starting state (111) and a final state (333). The encoding is such that each state has a unique identifier of 3 digits.
Each digit encodes the position of a disk on a rod. The first digit encodes the position of the blue (smallest) disk, the second digit the yellow (medium size) disk,
and the last digit encodes the position of the green (largest) disk. Each digit can take 3 possible values: ‘‘1’’ when the associated disk is in Rod 1, the value ‘‘2’’
when it is on Rod 2, and the value ‘‘3’’ when it is on Rod 3. For example, state ‘‘111’’ indicates that the three disks are all stacked on Rod 1 and state ‘‘321’’ encodes
that the small blue disk is on Rod 3, the yellow mid-size disk is on Rod 2 in the middle, and the largest, the green disk is on the first rod. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
the plan extraction process. Although this work is a precursor in
explainable RL and aims at explaining how a sequential decision-
making model can learn to plan explicitly without much a priori
domain knowledge, it produces plans that can be explained as
finite sequences of action specifications that lead to a goal. In
our work, however, the sequences are not the explanation but
the information to be explained, i.e., implicit knowledge. While
this work focuses on explaining the RL algorithm for planning, our
objective is to understand the evolution of knowledge acquisition
of agents, that can be deduced from the action sequences.

Wang et al. (2018a) proposed DQNViz, an application-specific
visualization tool for Deep-Q Reinforcement Learning Networks.
Its purpose is to explore the AA’s space of action to identify
and extract AA’s patterns of action or movement or reward.
Through the alliance of visualization techniques and algorithmic
tools (regular expressions, principal component analysis, dynamic
time warping, and hierarchical clustering), the system allows the
identification of AA behaviors and their investigation at particular
moments. The tool can provide explanations about ‘‘what the
agent did at what time?’’ and ‘‘what are the most activated layers
of the neural network used at that moment?’’. Applied to cer-
tain AA behaviors, DQNViz allowed researchers to explore what
caused bad behaviors for AA (such as hesitation or repetition).
The work of Wang et al. (2018a) and the current one tend both
to explore the AA space of action to explain the AA behaviors
and provide visual explanations. However, DQNViz was made
for Deep Learning architecture and Deep Learning experts (the
usability for non-experts remains to be seen (Wells & Bednarz,
2021)), whereas we propose a multi-disciplinary approach using
ML to extract a representation of the learning behavior of AA in
the form of automata. Although we emphasize the importance of
such work, we consider our work and motivations different from
those of Wang et al. (2018a).

In Lapuschkin et al. (2019), the authors investigate the
problem-solving behavior of AA to explicit its strategy. The au-
thors proposed a semi-automated Spectral Relevance Analysis,
referred to as SpRAy, to study the AA behavior in the context
of arcade games and various tasks from the computer vision
113
field. Based on heatmaps, SpRAy allows researchers to investigate
the learned decision behavior of learning machines to detect the
unexpected or undesirable ones or to label it ‘‘from naive and
short-sighted to well-informed and strategic ’’. Through this visual
analysis of AA strategies, the authors question the efficiency of
standard performance evaluation metrics, since they noticed that
these can be oblivious in distinguishing diverse problem-solving
behaviors. This work uses visual explanations to explore AA
strategies, a line of work that we are aligned with. If the purpose
of the authors is to characterize the strategies, ours is to study the
building of the knowledge behind the strategy and its evolution.
This work underlines the importance of visual explanation to
investigate complex behaviors.

While previous works essentially complement ours in the
sense of aiming at understanding AA problem-solving behavior,
our work differs in one essential point: it focuses on analyzing
the knowledge development and evolution in a learning AA.

Appendix B. A problem-solving task: The use case of the TOH

In this appendix, we describe first the TOH task and the data
it generates in form of actions, i.e., sequences of moves, and
second its interesting characteristics from a cognitive science
perspective.

B.1. Description of TOH task

The TOH task involves, in its basic setting, three rods and a
number of disks N of different incremental sizes. There are a set
of specific rules to move the disks. Fig. B.12 displays a schematic
representation of the TOH with three disks and rods. The task
starts with all N disks stacked onto the left rod, in ascending order
of size (the smallest at the top). As illustrated in the scenario in
Fig. B.13, the objective of the task is to move the stack of disks
from the left-most rod to the right-most rod according to the
following rules: (1) Only one disk can be moved at a time; (2)
Only the top disk in a rod can be moved in each action; (3) Each
rod must preserve the order among its disks: no disk can hold a
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Fig. B.13. The TOH with N = 3 disks: graph representation of all the possible
moves with 27 nodes and 39 edges. Each node represents a state of the task
(i.e., the position of each disk on the rods). Each transition represents a possible
action that leads to a new state. The represented task has starting (111) and
final (333) states. Arrows display sequences of moves that allow succeeding in
the task. Green arrows represent the optimized path, i.e., the minimum number
of moves that correspond to the task strategy displayed in Fig. B.12, while it is
also possible to deviate from the green optimal path (red arrows) to solve the
task. For example, after the state ‘‘223’’, the agent might (faulty) move towards
‘‘323’’-‘‘313’’-‘‘213’’-‘‘233’’-‘‘333’’. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

larger size one on top. Any disk can be moved on any rod as long
as the moved disk is placed on top of a larger surface disk, or no
other disk at all.

The graph in Fig. B.13 represents all potential moves that a
player can make in a TOH task with N = 3 disks. Each node is
named by a unique three digits identifier that indicates the posi-
tion of the disks on the rods for the smallest, medium and large
size disks, respectively. For example, state ‘‘111’’ indicates that
the three disks are all stacked on rod number 1. Each transition
of the graph represents an action, i.e., moving a disk from one
rod to another and has a label that encodes the ‘‘starting rod -
final rod’’ move; e.g., transition ‘‘1-2’’ between begin state ‘‘111’’
and ‘‘211’’ is read as: the first disk is moved from rod number
1 to number 2. With N = 3 disks, the TOH task has 27 states
and can be solved in 7 moves (represented with green arrows
in Fig. B.13). The minimal and thus, optimal number of moves
required to solve the TOH task is 2N

−1. The task presents a finite
set of 6 possible moves: ‘‘1-2’’, ‘‘1-3’’, ‘‘2-1’’, ‘‘2-3’’, ‘‘3-1’’ and ‘‘3-
2’’. All sequences of moves start and finish with the same states
(states ‘‘111’’ and ‘‘333’’ respectively in Fig. B.13), independently
of the number of intermediate actions.

B.2. The TOH task to assess high-executive cognitive functions in
problem-solving

The TOH is a prototype task of the category of transformation
problems. It is widely used in cognitive science to assess high-
executive functions in problem-solving. Among those, the TOH
allows to track the activation patterns and networks in the brain
using an fMRI as it involves complex stages of cognition and
motor actions (Anderson, Albert, & Fincham, 2005; Dunbar, 1998).
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In neuropsychology, the TOH is one of the basics to evaluate
executive functions such as problem-solving, cognitive flexibility,
and response inhibition. As it relies on nonverbal planning, it is
also used for cognitive remediation (Voelbel, Wu, Tortarolo, &
Bates, 2016).

In cognitive modeling approaches, such as the current work,
the TOH task is selected based on the fact that the optimal
solution of this task involves the distinct cognitive strategy of in-
hibition. In novice agents, such as young children, it has been ob-
served that other mechanisms emerge first starting from an un-
stable and misleading problem representation (Humphrey, 1951)
such as in the form of exploration. Exploration is involved in the
initial phase of the TOH task in children while the mobilization of
the strategy of inhibition requires a representational restructur-
ing (Ohlsson, 1992). While previous research such as in Gilhooly
and Murphy (2005) has classified the TOH task as a non-insight
task, the same authors discuss that in some cases the cognitive
processes involved in tasks of insight and non-insight are blurred.
Furthermore, we note that the current task classification made
by Gilhooly and Murphy (2005) into insight and non-insight tasks
is mainly based on experiments and perceptions of adult subjects.
Their examination with young children and children of different
age groups exhibit different cognitive processes in the solution of
the TOH (Welsh, 1991). Lastly, the incremental nature of the TOH
task allowed iterations with gradually more complex settings of
the child or the artificial agent.

Appendix C. IKE-XAI framework implementation parameter
setup and algorithms

In this appendix section, we provide the parameter setup for
implementing the IKE-XAI framework. For each step, a pseudo-
code is provided.

C.1. Step 1: Parameter setup and algorithm for the Q-learning algo-
rithm

The AA here is a Q-learning algorithm (Watkins & Dayan,
1992) with a learning rate α = 1, and a discount factor γ = 0.8.
he exploration parameter is ϵ = 0. The evaluation metric con-
idered here is the average number of moves required to solve the
ask after. This metric is computed at different stages of training.
ach stage is a two-step process: (1) the learning step of the
A that updates the Q-table according to the number of learning
pisodes, and (2) the playing step during which 100 sequences
f moves are recorded. Sequences of moves and their length
re recorded during the playing step of each training session at
ifferent stages of the training. We recorded the sequences (i)
very 10 training episodes from 0 to 100, (ii) every 100 training
pisodes, between runs 100 and 1000, and (iii) every 500 training
pisodes, until reaching 8000 training episodes. Note that when
he number of training episodes is 0, the AA plays from scratch
ithout any training performed (i.e., with a non-updated Q-
able). Finally, each recorded sequence of moves is processed as
etailed in Section 4.1. The experiment was repeated 100 times
o produce reproducible and robust results. Algorithm 2 presents
he pseudo-code of step 1.

.2. Step 2: Parameter setup and algorithm for the action prediction
STM model

In our work, we implemented an RNN with three layers as
escribed in Chraibi Kaadoud et al. (2022): an input and an output
ayer of 8 artificial neurons with sigmoïd activation function and
hidden layer of 8 LSTM cells. The learning phase was performed
ith the following parameters: a learning rate of 0.01, Adam
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Algorithm 2: STEP 1 of IKE-XAI methodology: Algorithm for training the Q-learning agent to perform TOH with N disks .
Require:
# Definition of game variables and rules according the number of disks N
N = 3
R = generate_reward_matrix(N)
training_sessions = [0,100, 300, 500, 1000]
learn_time= 100
play_time=100

Function AA_exploration_and_training((R, training_sessions, learn_time, play_time) :
sequences={}
for all n from learn_time do
sequences_of_training_session={}
for all i, Nb_episodes from enumerate(training_sessions) do
Q= learn_Q(R, Nb_episodes)
policy = get_policy(Q,R)
sequence_states=[ ]
for all j from play_time do
start_state=get_starting_state(R)
end_state = get_ending_state(R)
state = start_state
one_sequence=[ ]
while state != end_state do
state = random.choice(policy[state])
one_sequence.append(state)

end while
sequence_states.append(one_sequence)

end for
sequences_of_training_session[i]= sequence_states

end for
sequences[n]= sequences_of_training_session

end for

return sequences

End Function
Algorithm 3: STEP 2 of IKE-XAI methodology: Training the LSTM model to learn sequences of TOH with N disks .
Require:
# Definition of LSTM model parameters according the number of disks N
toh_grammar= generate_grammar_from_reward_matrix(R)
toh_dataset_of_sequences = generate_sequences(toh_grammar, 1000)

Function LSTM_model_training(toh_dataset_of_sequences, number_units, number_LSTM_cells) :

# Splitting data
train_dataset = get_part_of_dataset(toh_dataset_of_sequences, 0.60)
evaluation_dataset =get_part_of_dataset(toh_dataset_of_sequences, 0.20)
test_dataset= get_part_of_dataset(toh_dataset_of_sequences, 0.20)

# Building, training, validation and test of the LSTM model—–
number_input_units = number_output_units= number_units
LSTM_model.build_model(number_input_units, number_LSTM_cells, number_output_units)
LSTM_model.learning(train_dataset)
LSTM_model.evaluation(evaluation_dataset)
LSTM_model.test(test_dataset)
return LSTM_model

End Function
optimizer, and a number of epochs fixed at 10. The mean square

error was used as the output evaluation metric. As a dataset, 1000
115
sequences of moves of various sizes were generated from the TOH

abstract representation presented in Fig. B.13. 60% of the dataset
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Algorithm 4: STEP 3 of IKE-XAI methodology: Algorithm for extracting rules in the form of a FSA using the hidden patterns of the
STM model. Algorithm adapted from (Chraibi Kaadoud et al., 2022) .

Function XAI_generation_of_FSA (hidden_patterns, sequences, k) :
# Clustering —————————————————-
clusters_list = k_means(k, hidden_patterns)
# Generation of automaton FSA—————————————————-
FSA = {} # Dictionnary
current_node= -1
FSA[’nodes’].add(current_node)
FSA[’edges’] = [ ] # list of dictionnaries
for all pattern h of index i from hidden_patterns do
associated_cluster = clusters_list[i]
if associated_cluster ̸∈ FSA[’nodes’] then
FSA[’nodes’].add(associated_cluster)

end if

edge= {} # Dictionnary
edge[’id’] = (current_node, associated_cluster)
if edge ̸∈ FSA[’edges’] then
new_edge = edge
new_edge[’weight’] = 1
new_edge[’label’] = moves_list[i]
FSA[’edges’].add(new_edge)

else
edge[’weight’] = edge[’weight’] +1
edge[’label’] = edge[’label’]+ moves_list[i]
FSA[’edges’].update(edge)

end if
# Update of the current node
current_node= associated_cluster

end for

plot_and_save(FSA)
return FSA

End Function
A

A

A

A

B

was used for the training phase, 20% for the validation phase
and 20% for the test phase. Sequences were randomly sampled.
One-hot encoding was used to encode each move, providing a
binary vector with a single non-zero unit. Algorithm 3 presents
the pseudo-code of step 2.

C.3. Step 3: Parameter setup and algorithm for implicit rule extrac-
tion algorithm

This step represents the junction point where both RL (step 1
ig. 2) and sequence learning (step 2 Fig. 2) meet. The sequences
f moves recorded during the different training sessions of the
A represent its behavior. Each sequence is decomposed as a
ample of ‘‘current move-next move’’. Each sample is input to
he LSTM model, that should predict the next move (i.e., output)
ccording to the current move (i.e., the input) and the past ones
the memory of the network). The dataset of hidden patterns
btained at the end of step 2 represents the starting point of the
mplicit rule extraction algorithm. We apply on the dataset a k-
means clustering algorithm where k in [5, 100]. For each value of
, we computed the average silhouette score s. We choose the first
alue of k for which the value of s is the maximum. This allows

extracting an intelligible FSA with the smallest possible number
of nodes for which the clustering is good. We then perform, for
that k value, the FSA generation algorithm of the FSA algorithm
as described in Chraibi Kaadoud et al. (2022). The result of this
116
step is the generation of a FSA that represents the behavior of
the AA with weighted and labeled edges. These last ones can
be interpreted as the actions made that induce the LSTM states
transitions. Algorithm 4 presents the pseudo-code of step 3.
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