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Abstract: Machine learning models are built to predict the strain values for which edge cracking
occurs in hole expansion tests. The samples from this test play the role of sheet metal components
to be manufactured, in which edge cracking often occurs associated with a uniaxial tension stress
state at the critical edges of components. For the construction of the models, a dataset was obtained
experimentally for rolled ferritic carbon steel sheets of different qualities and thicknesses. Two types
of tests were performed: tensile and hole expansion tests. In the tensile test, the yield stress, the tensile
strength, the strain at maximum load and the elongation after fracture were determined in the rolling
and transverse directions. In the hole expansion test, the strain for which edge cracking occurs, was
determined. It is intended that the models can predict the strain at fracture in this test, based on the
knowledge of the tensile test data. The machine learning algorithms used were Multilayer Perceptron,
Gaussian Processes, Support Vector Regression and Random Forest. The traditional polynomial
regression that fits a 2nd order polynomial function was also used for comparison. It is shown that
machine learning-based predictive models outperform the traditional polynomial regression method;
in particular, Gaussian Processes and Support Vector Regression were found to be the best machine
learning algorithms that enable the most robust predictive models.

Keywords: sheet metal forming; machine learning; predictive regression models; fracture strain

1. Introduction

Defects occur very frequently in sheet metal forming, making the process unnecessarily
expensive. Thus, the automotive industry, of great importance in the European market, has
a permanent need for innovation to guarantee profits and simultaneously ensure that its
products meet the requirements of quality, safety, and environmental impact. Currently,
more efficient approaches to process design than traditional trial-and-error are being
sought. At first, the focus was on the application of the finite element method (FEM) for the
simulation of forming processes. This is commonly done resorting to the practical concept
of forming limit diagrams (FLDs), introduced to characterize the ductility of metallic sheets
subjected to forming operations [1,2]. Originally, the FLD determination was based on
an experimental approach, involving the use of metal sheets with different geometries
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to reproduce a certain range of monotonic loading paths. However, this experimental
approach is both expensive and time consuming, while experience has shown that the
obtained FLD presents a very limited usefulness in the formability assessment for processes
that are inherently non-linear [3–5].

It is well stablished that ductile failure in metals occurs due to the presence of defects
such as voids and micro-cracks [6]. On the macroscopic scale, damage is observed as
the degradation of material properties, e.g., the elastic stiffness, the yield stress or other
measurable material properties (see, e.g., [7]). At the microscopic scale, damage evolves by
the initiation, growth and coalescence of defects like voids or micro-cracks. This process
can lead to the initiation and propagation of macroscopic cracks and to catastrophic failure,
which is one reason for the extensive research efforts in this field [8].

During the past three decades, two major damage theories have been developed.
One known as continuous damage mechanics (e.g., [7]) is based on the introduction of an
internal variable (scalar or tensor) that represents the surface density of the defects. It is
also common to include in this category uncoupled models, for which the damage internal
variable has no influence on the other plastic internal variables nor the elastic properties
of the material and vice versa. In this case, the ductile fracture locus is determined based
on the fracture strain evaluated experimentally from tests reproducing a wide range of
stress states (e.g., [9]). The other is a physically based micromechanics approach, which
tries to reproduce the kinematics of the voids (due to nucleation, growth and coalescence)
within the material, for different loading conditions. In this context, Gurson derived a
popular model for damage-induced strain softening in metals, from a micromechanical
rigid-plastic pore growth model [10]. The related internal variable of the macroscopic
constitutive equations is the pore volume fraction, and it has been successfully applied,
extended and modified by numerous authors, with the Gurson–Tvergaard–Needleman
(GTN) model being the most popular [11]. This model has been subsequently modified
to take into account the isotropic and kinematic hardening, as well as strain-path changes
(e.g., [12]) and, more recently, plastic anisotropy (e.g., [13]), including tension-compression
asymmetry [14]. For further details concerning also the numerical strategies commonly
adopted please see, for example [15].

However, the FEM solution alone has limitations related to material variability. Some
approaches have been proposed to combine FEM with statistical methods to evaluate the
process robustness. These are based on a prior knowledge of the statistical distribution
that best describes the variability of each material parameter (e.g., [16,17]). Nevertheless,
there can be significant differences in mechanical behaviour between the various sheet
metal coils received during the production of a certain component, for which the statistical
distribution is unknown. These differences in mechanical behaviour led to the occurrence
of defects in the use of some of these coils, which was not predicted during the design
process. Robust analysis based on machine learning (ML) algorithms allows the engineer
to recognize, monitor and anticipate potential problems that may occur in the production
environment due to dispersion. An important feature of robust design in sheet metal
forming processes include accurate modelling of the different sources of dispersion, namely
material properties, which presupposes the use of representative samples from multiple
coils and cast slabs.

Applications of artificial intelligence (AI) techniques have recently been proposed to
predict, detect, and classify the occurrence of defects in metal forming processes [18–29].
Among these, there are AI-based techniques that have been used to classify surface de-
fects of hot rolling strips based on techniques such as generative adversarial networks
(GAN) [22] and convolutional neural networks (CNN) [23,24], which rely on datasets of
collected defects images; CNN-based approaches used to predict the buckling instability
of automotive sheet metal panels [25]; machine learning-based techniques used to predict
and account for springback in steel and aluminium parts [26–28], as well as for predicting
wrinkling [29].
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The authors of the current work have previously evaluated the performance of various
ML binary classifiers in predicting the occurrence of edge cracking in metal forming
processes, exposed to dispersion in the material properties, which yielded satisfactory
results [21]. Edge cracking defects refer to the occurrence of fractures in a stamped part,
usually at the outer edge of a bent area, where the strain path corresponds to uniaxial
tension [21]. In this context, we now seek to evaluate the performance of ML regression
algorithms in predicting the occurrence of failure in components obtained from metal
forming processes. The main objective is to provide a ML tool capable of performing
analysis of sheet metal forming processes, to predict and avoid fracture, which is a very
common defect, enabling the increase of the overall productivity considering the dispersion
in the mechanical properties. In other words, statistical information on material dispersion
is used to predict the strain at fracture, which, if combined with finite element analysis, for
example, can allow establishing a predictive approach to component nonconformity. For
this purpose, ML models are built to predict the onset of fracture in the hole expansion test,
whose sample plays the role of a component to be manufactured, from the knowledge of
tensile test results. After this introductory section, the paper is organized as follows: first,
the selected regression ML algorithms are described; afterwards, the design procedure to
construct and evaluate the predictive ability of the models is described, followed by the
results and discussion. Finally, the main conclusions drawn from this work are presented.

2. Regression ML Algorithms

The following subsections present a brief description of each of the ML algorithms
used in this work to construct the predictive models; the classic polynomial regression used
for comparison is also described.

2.1. Multilayer Perceptron

The Multi-Layer Perceptron (MLP) is one of the most used types of neural networks.
It is a feed forward network composed of multiple layers of nodes (neurons), including
input, hidden and output layers [30]. The output from a given node of a hidden layer is
given by:

zi = ∅ (∑j wijzj + di) (1)

where zi is the output from node i of the current layer, zj is the output from node j of
the previous layer, wij is the weight associated with zj, di is a bias term and ∅ is a non-
linear activation function. For regression problems, the output layer nodes have a similar
formulation, but without activation function. The training consists of adjusting the weights
to obtain a better fit of the model, through error backpropagation. The weights adjustment
is done by increasing (or decreasing) each weight value and then changing all weights in
the network accordingly, in an iterative process until a minimum estimate of the prediction
error is reached.

2.2. Gaussian Processes

A Gaussian Process (GP) is a collection of random variables that follows a Gaussian
distribution and are fully defined by a mean function and a covariance function [31]. The
mean function is usually assumed to be zero, and so the covariance function is enough to
completely define the GP. The GP regression model can be represented by:

y(x) = f (x) + ε (2)

where y(x) is an observed output for a given set of inputs x, f (x) is the corresponding GP
variable and ε represents a Gaussian white noise with zero mean. Assuming that y(xt) is
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the target vector of outputs concerning the dataset and y(xp) is the vector of outputs to be
predicted, the joint normal probability distribution is given by:[

y(xt)
y(xp)

]
∼ N

(
0,
[

K(X, X) + σ2
ε I K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(3)

where σ2
ε is the noise variance, I is the identity matrix and each K is a covariance matrix

evaluated for all considered points, with X representing the training set data, and X∗ the
unseen data for which the model will make predictions. Finally, the GP model predictions
are given by the following equations:

f∗ = K(X∗, X)
[
K(X, X) + σ2

ε I
]−1

y
(
xt) (4)

cov(f∗) = K(X∗, X∗)−K(X∗, X)
[
K(X, X) + σ2

ε I
]−1

K(X, X∗) (5)

where f∗ is the predictions vector (mean), and cov(f∗) represents the covariance of model
outputs, which acts as a measure of prediction uncertainty.

2.3. Support Vector Regression

The support vector regression (SVR) algorithm fits a function to the available data,
while remaining as smooth as possible. This is achieved by considering an error value, γ,
under which errors are accepted without penalty [32]. This means finding the function
that can encompass the greatest number of training data points in the tube area around it,
with a distance of γ or less. Sometimes this is not feasible, and so to give the model some
flexibility, soft margins can be defined, in the form of slack variables ξi and ξ∗i . Points at a
distance between these variables and γ still affect the shape of the function, but under a
penalty. When considering a linear problem, this model is given by:

min
(

1
2 ||w||2 + V ∑i

(
ξi + ξ∗i

))
with :

yi −wTx− b<γ + ξi
wTx + b− yi<γ + ξ∗i

(6)

where w is the normal weight vector to the surface of the approximated function, b is the
intercept term and V is a constant representing the trade-off between the tolerance for
deviations above γ and the smoothness of the function.

For non-linear problems, this algorithm can be generalized by introducing a kernel
trick. A kernel consists of a similarity function between the inputs of the training data
and inputs for which the model will make predictions. With a kernel trick, the data is
transformed into a higher dimensional space, allowing a linear model to learn non-linear
functions without specific mapping.

2.4. Random Forest

Random Forest (RF) is an ensemble model, which consists of a series of decision tree
models, each one trained with a randomly generated sample from the training data [33]. A
decision tree is generated by applying a continuous splitting process to the training data,
based on simple rules that are chosen to minimize an error metric in the resulting nodes [34].
The most common error metric used in this case is the mean squared error (MSE). The
splitting process is repeated until each of the resulting final nodes has an MSE below a
previously defined threshold, or until all end nodes are below a certain size (regarding the
number of training data points that correspond to that node). The predictions from each
node correspond to the average of the output values from the training points in the node.
The predictions made by a random forest model are the average of the values predicted by
each of the decision trees.
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2.5. Polynomial Regression

Polynomial regression is a classic parametric modelling technique that fits a multi-
variate polynomial function to the available training data [35]. The 2nd order polynomial
function is used in this work:

y∗(x) = β0 + ∑p
i=1 βixi + ∑p

i=1 ∑p
j>i βijxixj + ∑p

i=1 βiix2
i (7)

where y∗(x) is the estimated response for a given set of inputs x and β0, βi, βij and βii
are the set of coefficients (i.e., the model parameters) to be calibrated via traditional least-
squares fitting.

3. Design Procedure

This work consists of evaluating the performance of ML regression algorithms in the
prediction of strain at the onset of fracture by edge cracking occurring in metal forming
components. The following subsections describe the procedure adopted to construct the
predictive models, based on a dataset, which was populated with results of mechanical
tests, obtained on samples taken from various sheet metal coils; the dataset was used
to calibrate the ML algorithms and the performances of the resulting predictive models
were evaluated.

3.1. Dataset

The data used in this work consist of experimental results obtained in two different
types of mechanical tests: the uniaxial tensile test and the hole expansion test. Uniaxial
tensile tests were performed at 0 and 90◦ with the rolling direction—RD according to
ASTM-E8M [36], while hole expansion tests were performed according to ISO 16630 [37].
Uniaxial tension strain paths are present in both types of mechanical tests, similarly to the
regions of the components where fracture by edge cracking generally occurs. These tests
were performed on 163 samples taken from rolled sheet metal coils, with twelve different
thicknesses in the range 0.9 to 8.2 mm, of the same or different type of ferritic carbon
steels, i.e., there are 163 entries in the data set. In this context, the scatter of mechanical
properties within the same type of steel, often at the origin of component losses due to
non-compliance, are also considered.

The results obtained from the tensile tests, at 0 and 90◦ with RD, are the yield stress
(Re), the ultimate tensile strength (Rm), the corresponding logarithmic strain value (εRm)
and the percentage elongation at fracture for the initial reference length of 50 mm (E50).
The minimum, average and maximum values obtained for each variable are presented in
Table 1.

Table 1. Distribution of the tensile test results.

Re,0◦

[MPa]
Re,90◦

[MPa]
Rm,0◦

[MPa]
Rm,90◦

[MPa]
εRm,0◦

[-]
εRm,90◦

[-]
E50,0◦

[%]
E50,90◦

[%]

Minimum 138.6 137.30 257.1 262.0 0.074 0.054 9.0 11.0
Maximum 577.9 630.1 615.6 675.0 0.251 0.260 51.0 52.0

Mean 340.0 356.8 416.5 423.8 0.156 0.146 29.1 28.1
Std. dev. 122.0 135.0 105.3 113.6 0.004 0.046 10.8 11.3

Figure 1 represents all possible relationships between the variables in Table 1. There
are some linear correlations between the values of the stress results, namely between Re,0◦ ,
Re,90◦ , Rm,0◦ and Rm,90◦ , which present R2 correlation values between 0.95 and 0.98. For
the remaining representations, i.e., involving only one or even no stress and the remaining
results (εRm,0◦ , εRm,90◦ , E50,0◦ , E50,90◦ ), no significant correlation can be found.
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Figure 1. Representation of the relationships between the obtained tensile test results, defined in
Table 1.

The samples used for the hole expansion tests (HET) had an initial hole diameter
of 20 mm, the burr was positioned in the freely expanding side during the HET and the
tests were carried out up to values of punch displacement that ensured the fracture of all
samples. The result obtained from these tests is the logarithmic circumferential (hoop)
strain at fracture, εf. Figure 2 shows the distribution of logarithmic strain values at fracture
obtained for the hole expansion tests.
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the tensile test results are shown in Figure 3. No obvious correlation was found.
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3.2. Model Calibration

The predictive models were constructed using the following regression ML algorithms:
(i) Multilayer Perceptron (MLP); (ii) Gaussian Process (GP); (iii) Support Vector Regression
(SVR); (iv) Random Forest (RF). Predictive models based on classic polynomial regression
were also constructed, for comparison. The ML-based predictive models were generated
with python libraries, specifically, GPy for GP [38] and Scikit-learn for the other ML
algorithms [39]. To properly evaluate the predictive performance of the models created
by the various algorithms, the dataset is divided into a training set and a testing set. The
training and testing sets were randomly generated, with the training set containing 70%
of the data and the testing set the remaining 30%. Data scaling was performed in all the
data. An important step in the training process of the ML models is the optimisation of
hyperparameters. This was based on an iterative trial-and-error approach, in which the
training set is split again into a temporary training set containing 70% of the data, and
a calibration set containing the remaining 30%. This split is done randomly, 30 times,
and for each model, trained with the temporary training set, predictions are made for the
validation set and the predictive performance is evaluated. The set of hyperparameters
that leads to the best performances across the 30 data splits are shown in Table 2. For some
algorithm hyperparameters, there are a finite number of possibilities, this is the case of the
choice of kernel to use for the GP or SVR algorithms, for example; on the other hand, some
hyperparameters have endless possibilites, such as the number of nodes in an MLP layer,
or the value of the C parameter for the SVR algorithm. For the hyperparameters with a
finite number of possibilities, all possibilities were considered (except for the GP algorithm,
since the GPy library has many kernel formulations available, and only the RBF, Matern32
and Matern52 kernels were tested). For the remaining hyperparameters, specific values
were selected (e.g., the number of nodes in each layer of an MLP model, where the values 2,
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4, 6, 8 and 10 were tested). For the MLP algorithm, the hyperparameters considered were
the number of layers (ranging from 1 to 3), the number of nodes in each layer (ranging from
3 to 20), the alpha value (ranging from 0.0001 to 0.005), the choice of activation function
(tanh, logistic or relu) and the choice of the solver (lbfgs or adam). The chosen set of
hyperparameters has 3 layers, in a configuration of (6, 4, 4) nodes, with an alpha value of
0.0001, the tanh activation function and using the adam solver. For the GP algorithm, the
hyperparameters considered were the kernel function (RBF, Matern32 or Matern52) and
the optimiser function (lbfgs or tnc). The kernel function chosen was the RBF function and
the optimiser chosen was lbfgs. For the SVR algorithm, the hyperparameters considered
were the kernel function (RBF or polynomial), the value of C (ranging from 0 to 2) and
the epsilon value (ranging from 0.001 to 0.2). The hyperparameter configuration chosen
consists of the RBF kernel, with a C value of 0.5 and an epsilon of 0.01. For the RF algorithm,
the hyperparameters considered were the number of estimators (ranging from 100 to 1000),
the choice of splitting criterion (squared_error or absolute_error) and min_samples_leaf
(ranging from 1 to 3). The chosen set of hyperparameters consists of 1000 estimators, using
the squared_error criterion and a min_sample_leaf of 1.

Table 2. Hyperparameter values set for the ML algorithms MLP, GP, SVR and RF.

MLP
Number of Layers Nodes Per Layer Alpha Activation Function Solver

3 6/4/4 0.0001 Tanh Adam

GP
Kernel function Optimiser function

RBF lbfgs

SVR
Kernel function C Epsilon

RBF 0.5 0.01

RF
Number of estimators Splitting criterion Min_samples_leaf

1000 Squared_error 1

3.3. Performance Evaluation

The predictive performance evaluation is based on four metrics. The first metric is the
root mean square relative error (RMSRE), which is given by:

RMSRE =

√√√√1
j

j

∑
i=1

(
yi − y∗i

yi

)2

(8)

where y and y∗ are the measured and predicted response values for the output variables,
respectively, and j is the number of test points.

The second metric is the maximum absolute error, which is given by:

max error =max
i
|yi − y∗i | (9)

The third metric is the mean absolute error (MAE), which is given by:

MAE =
1
j

j

∑
i=1
|yi − y∗i | (10)

The last metric is the R-square value, given by:

R2= 1 − ∑
j
i=1 (y i − y∗i

)2

∑
j
i=1 (y i − y)2

(11)
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where y is the average of the measured response values of the output variables. This metric
expresses the extent to which the variance of the output variables is explained by the
independent variables in the model, which indicates how likely the model is to make good
predictions for unseen data.

4. Results and Discussion

In order to evaluate the performance of the ML algorithms mentioned above, the
result set of the 163 different materials was randomly split into two groups (one referring
to 115 (70%) materials, used for training, and the other to 48 (30%), used for test); the
choice of materials for each group was performed randomly, in 15 different ways, which
are now called cases under analysis. The analysis consists of predicting the fracture strain
value in the hole expansion test based on the tensile test results referred to in Table 1
and Figure 1, respectively. Figure 4 shows an illustrative example of the results obtained
by the different ML algorithms and the 2nd order polynomial regression, comparing the
prediction of the strain at fracture in the HET with the experimentally measured; this figure
also presents the predictive performances according to the different metrics considered, for
the specific case under analysis (see also Table 3). It shows that the ML algorithms provide
better fracture strain predictions than traditional 2nd order polynomial regression. GP
is the ML algorithm with the best performance, presenting the lowest values of RMSRE
(=0.145), max error (=0.296) and MAE (=0.060), and the highest R2 value (=0.67); in contrast,
polynomial regression presents the highest values of RMSRE (=0.28), max error (=0.62) and
MAE (=0.13), and the lowest R2 value (=−0.63).

Table 3. Performance metrics values corresponding to Figure 4f.

MLP GP SVR RF RSM

RMSRE 0.191 0.145 0.150 0.203 0.280
Max. Error 0.440 0.296 0.301 0.324 0.619

MAE 0.091 0.058 0.062 0.068 0.125
R2 0.206 0.687 0.650 0.481 −0.630

As previously mentioned, the predictive models were tested for 15 random splits
(70% for training + 30% for test), to assess the extent to which the model performances are
influenced by the choice made, even if randomly. The overall results of this robustness
evaluation are shown in Figure 5 (see also Table 4). This figure confirms that GP and SVR
are the best performing ML algorithms, leading to more robust predictive models than
MLP and RF algorithms and the traditional 2nd order polynomial regression. Although
the performance and robustness of both GP and SVR algorithms is significantly superior
to RSM, they still have a predictive capability that could be improved (for example, the
average value of R2 is currently close to 0.5). If the dataset is enriched over time, as new
sheet metal coils become available during production, it is expected that the predictive
capability and robustness of ML algorithms will gradually improve.

Table 4. Performance metrics values corresponding to Figure 5f.

MLP GP SVR RF RSM

RMSRE Mean 0.180 0.156 0.164 0.187 0.274
Std. Dev. 0.031 0.022 0.033 0.030 0.038

Max. Error Mean 0.336 0.273 0.288 0.324 0.494
Std. Dev. 0.083 0.039 0.045 0.062 0.103

MAE Mean 0.091 0.072 0.071 0.080 0.123
Std. Dev. 0.014 0.008 0.008 0.012 0.017

R2 Mean 0.202 0.460 0.474 0.278 −0.604
Std. Dev. 0.439 0.316 0.280 0.418 0.950
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Figure 4. Prediction of fracture strain in the HET as a function of the respective measured value
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polynomial regression; (f) performance metrics (see also Table 3).
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metrics (see also Table 4).
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5. Conclusions

This work deals with the performance of various ML regression algorithms in pre-
dicting fracture strain values related to the onset of edge cracking in sheet metal forming
processes. The aim was to predict the fracture strain value in the hole expansion test from
the knowledge of tensile test results, considering that edge cracking often occurs associated
with a uniaxial tension stress state at the critical edges of components. For this purpose, a
dataset was firstly created, containing experimental results of both tests, then predictive
models were constructed and, finally, their performance was evaluated and compared. In
general, the performance of ML algorithms is clearly superior to traditional polynomial
regression modelling technique. In general, the ML algorithms can predict the onset of
edge cracking satisfactorily. GP and SVR algorithms were found to be capable machine
learning algorithms that enable robust predictive models. Their application in an industrial
environment is recommended, as it can certainly contribute to the reduction of production
costs and scrap rates. In this regard, the prediction results can be applied to sheet metal
forming processes, since edge cracking often occurs associated with a uniaxial tension stress
state at the critical edges of components. For example, finite element simulations of the real
forming process can be used to estimate the strain at critical edges of the component. So, if
this estimated strain exceeds the fracture strain predicted by the ML model, it is likely that
edge cracks will occur in real forming processes.
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