INFINITELY MANY NODAL SOLUTIONS FOR
ANISOTROPIC (p,q)-EQUATIONS
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ABSTRACT. We consider an anisotropic (p.q)-Neumann problem with
an indefinite potential term and a reaction which is only locally defined
and odd. Using a variant of the symmetric mountain pass theorem, we
show that the problem has a whole sequence of smooth nodal solutions
which converge to zero in C* (ﬁ) .

1. INTRODUCTION

Let © C RY be a bounded domain with a C?— boundary 9Q. In this
paper we study the following anisotropic (p, ¢)-equation)

—Apyu (2) = Dgiyu (2) + € (2) [u ()PP 2 u(z)
=f(zu(z) nQ, (11
9u — () on 90

Given s € L> (2) with 1 <s_ <s(2) < sy <ooforaa. z€Q, by Ay,
we denote the s (z) —Laplacian defined by

A,y = div (| Dul*® 72 Du) for all u € W@ (Q),
(2) 0

Here we assume that the variable exponents p(-) and ¢(-) belong to
ct (ﬁ) . This allows us to use the existing regularity theory for anisotropic
problems. The potential function £ (-) € L () and in general it is sign-
changing. The reaction function f (z, z) is only locally defined, that is, f (-, )
is defined on Q2 x [—6, 0], § > 0 and it is a Carathéodory function (that is, for
all x € [-0,0], z — f(z,2) is measurable and for a.a. z € Q, z — f (z,2)
is continuous). We assume that for a.a. 2 € Q, f(z,) |[—g,9 is odd. In the
boundary condition n (-) denotes the outward unit normal on 9.

Using a version of the symmetric mountain pass theorem due to Kajikiya
[8] (see Proposition 3), together with suitable truncations and comparison
techniques, we show that there exists a whole sequence {uy},~; C ct (ﬁ)
of nodal solutions of (1.1), such that u, — 0 in C* (Q).

Elliptic equations with locally defined reaction, were first considered by
Wang [18], who considered semilinear Dirichlet equations driven by the
Laplacian and with a reaction of the form A |z|? 2 z+g¢ (z, z) with 1 < ¢ < 2.
So, the reaction has a parametric concave term (the function A |72 z) and
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a perturbation g € C (€2 x R) which is odd in € R for |z| small and

g9 (2 )
x—0 |x’q_2x

= 0 uniformly for a.a. z € Q.

No conditions are imposed on ¢ (z,-) for |z| big. So, the hypotheses on
g (z,-) are local near zero. In this setting the author proves the existence
of a sequence {un},~,; C H} () of weak solutions. Later, Li-Wang [11]
extended the work of [18] to Schroedinger equations and also showed that
the solutions {u,},~, are nodal.

Recently the aforementioned works were extended to Robin problems by
Papageorgiou-Veltro-Veltro [15] (semilinear problems driven by the Lapla-
cian plus an indefinite and unbounded potential) and by Papageorgiou-
Radulescu [12] (nonlinear nonhomogeneous equations).

For anisotropic equations there are no such results. Infinitely many so-
lutions for p () —Laplacian-type equations were proved by Andrei [1], Fan-
Zhang [5] (Dirichlet problems with strictly positive potential terms) and
by Boureanu-Preda [2], Liang-Zhang [9] (Neumnann problems with strictly
positive potential terms). All these works have reactions which are glob-
ally defined and impose conditions on f(z,-) as * — +o00. Moreover, none
of these works provide sign information for the solutions produced. We
mention that Boureanu-Preda [2] use the fountain theorem to obtain weak
solutions {un},~, such that [lun|y1pe) () — +oo while Liang-Zhang [9]
use the symmetric mountain pass theorem of Kajikiya [8] to show that
||Un||W1,p(z>(Q) — 0.

2. MATHEMATICAL BACKGROUND

Let M (£2) be the space of all measurable functions u : 2 — R. As usual
we identify two such functions which differ only on a set of zero measure.
Also let

L (Q) = {p €eL>*():1< es(szinfp} .
Given p € L (Q), we define

p_ = egsinf p and py = esssup p
Q

and the variable exponent Lebesgue space
P& Q) =S ue M(Q): / ulP® dz < oo
Q

This space is furnished with the so called Luxemburg norm defined by

p(z)
U =inf< A>0: M dz <1
p(2) A

Q

These spaces resemble the classical Lebesgue spaces. They are separable
Banach spaces and they are reflexive if and only if 1 < p_ < py < oo (in
fact they are uniformly convex) and simple and continuous functions with
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compact support are dense in LP(*) (Q).If p, ¢ € L§° (), then Lr(2) Q) —
L9) (Q) continuously if and only if ¢ (2) < p(z) for a.a. z € Q.

Let p, p" € L{° () satisty ﬁ—l—wlz) = 1fora.a. z € Q. Then LP(?) (Q)* =

LP'(*) (Q) and we have the following Holder type inequality

1 1
/mmws[p+]ypwm@mm@
Q

for all u € LP®) (Q) all v € LP) (Q) (p% + ;% = 1) . We can also define

variable exponent Sobolev spaces by
W' (@) = {u e 17 (9) : |Dul € D) (@) }.

We equip WP(?) (Q) with the following norm

[l = Nullpezy + 1Dwlll) -

p(z)

An equivalent norm of W1hP(2) () is given by

p(2) p(2)
(5 +(5) ]dzgl

The space WHP() (Q) is a separable Banach space and it is reflexive (in
fact uniformly convex), if 1 < p_ < p, < co. Also, we have WP (Q) —
WhP- (Q) continuously.

We set

ul|" =inf ¢ A >0 :/
Q

)= +oo if N <p(z).

{ XL i p(z) <N
Ifp,g e C(QNLFEQ), p+ < Nand 1 < q(z) < p*(z) (resp. 1 <
q(z) < p*(2)) for all z € Q, then WP (Q) is embedded continuously
(resp. compactly) into L*) (Q).

Very useful for the analysis of these spaces and for the study of anisotropic
boundary value problems, is the modular function of the space L"(?) (Q) with
r € L$° () defined by

Pr(z) (u) = / u|"?) dz.
Q

There is a close relation between this function and the norm [[-[| ;.. -
Proposition 2.1. (a) Foru € L") (Q), u # 0, we have

[ullyz) =A== prz) (%) <1

() llull,y <1 (resp. =1, > 1) <= py(z) () <1 (resp. =1, > 1);
(@) Ny <1 = llull 7ty < ooy () < [l and
lulloy > 1= Tl < o () <l
(@) lnlly (o) = 0 = prce) (1) — 0
(€) llunll,zy = +00 <= pr(z) (un) = +o0.
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A comprehensive treatment of variable exponent spaces can be found in
the book of Diening-Harjulehto-Hésto-Rujicka [3]. Their use in the study of
various anisotropic boundary value problems can be found in the book of
Radulescu-Repovs [16].

Let A, : W@ (Q) — W) (Q)* be the nonlinear map defined by

(A (u)  h) = /Q |Du|"*) =2 (Du, Dh)g dz for all u, h € W) (Q).

The next proposition summarizes the main properties of this map (see,
Gasinski-Papageorgiou ([6]).

Proposition 2.2. The map A, ,) : W@ (Q) — W) (Q)* defined above
is bounded (that is, maps bounded sets to bounded sets), continuous, mono-
tone (hence maximal monotone, too), and of type (S) ., that is, if for every

sequence {un},>; C W) (Q) such that u, — u and

lim sup <A,,(Z) (Up) ,up — u> <0,
n—oo

one has
Up, — ¢ m X as n — oo.

The anisotropic regularity theory (see Fan [4]) will lead us to the Banach
space C! (Q) . This is an ordered Banach space with a positive cone given
by

C+:{u€C’1(ﬁ) tu(z) >0 forall z€Q}.
This cone has a nonempty interior given by
int C1 ={ueCq:u(z)>0forall z€Q},

If X is a Banach space and ¢ € C' (X, R), then by K, we denote the critical
set of ¢, that is,
K,={ueX:¢ (u)=0}

We say that ¢ (-) satisfies the the Palais-Smale condition (the PS-condition,
for short) if: every sequence {un},~; € X such that {¢ (un)},cy i bounded
and ¢ (up) — 0in X*as n — oo admits a strongly convergent subsequence.

As we already mentioned in the Introduction, we will use a version of
the symmetric mountain pass theorem due to Kajikiya [8]. More precisely,
we will use the next proposition, which is a special case of Theorem 1 of
Kajikiya [8].

Proposition 2.3. If X is a Banach space, ¢ € C' (X,R) satisfies the sat-
isfies the PS—condition, it is even, bounded below, ¢ (0) = 0 and for every
n € N there exists an n—dimensional subspace V,, C X and an p, > 0 such
that

sup {¢ (u) : uw € Vi, [Jull = pn} <0,
then there exists a sequence {un},~; C X such that

¢ (up) <0 for alln € N, up, — 0 in X.

The hypotheses on the data of (1.1) are the following:
(Ho): €€ L>®(Q),p,geC'(Q) and 1 < g < q(z) <qy <p- <p(2) <
P+.
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(Hy): f:Qx[—0,0] =R is a Carathéodory function such that f (z,0) =0
for a.a. z € Q2 and
(i) for a.a. 2 € Q, f(2,°) ||—6,9) is odd and f (z,2)z > 0 for a.a.z €
Q, all z € [-0,0];
(7i) there exists ag € L (2) such that

|f (z,2)| < ag(z) for a.a.z € Q, all x € R with |z| < 6;

(id)
lim L’j) = +oo for a.a. z € Q;
z—0 |Q;|q_ T

Consider an even function 5 € C (R) such that:

0<B(x)<lforallzeR, 3 =1withO<pu<®,

— 4]
suppf C [-0,6].
We introduce the following Carathéodory function defined on  x R :
fo(z @) =B () f (z,2) + (1= B (2)) [2['P 2 a. (2.1)

For a.a. z € Q, the function fj(z,.) has the following properties

fo(z,.) is odd, fo (z,") [(—pu= f (2,) l[=p, and

fo(z,2) =& (2) |2PP 2 2 if |2| > 6. (2:2)

In particular we have

fo(2,0) = £ (2) P2 and fy (z,—0) = —€ (2) ") for a.a.z € Q. (2.3)

We can find r € C () such that py < r(z) < p* (z) for all z € Q and, for
some Cy >0 :

|fo(z,2)| < C1 [1 + \:U|T(Z)_1} fora.a. z€Q, allz € R (2.4)

(see hypothesis (Hy) (4¢) and (2.1)). On account of hypothesis (Hj ) (¢3¢) and
(2.4)) we see that given n > 0, we can find Cy = C3 () > 0 such that

fo(z,z)x >nlz|% = Cyla["® for aa. z€Q, all z € R, (2.5)
We set
k(z,2) =z 22 — Cy x| @22 for all (z,2) € Q x R.
Evidently k € C (ﬁ X R) )

3. NODAL SOLUTIONS

Motivated by the unilateral growth estimate (2.5), we consider the fol-
lowing anisotropic Neumann problem

— Ayt (2) = Dgayu (2) + 1€ (2)] [u ()PP u(2)
=k(z,u(z)) in Q, (3.1)
g—z =0 on 0N
Proposition 3.1. If hypotheses (Hg) hold, then problem (3.1) has a unique

positive solution u € int Cy and since (3.1) is odd, v = —u € —intC is the
unique negative solution of (3.1).
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Proof. We introduce the function k (z,z) defined by
k(z,—0)—6PE-1  if < -0
/k\:(z,x) ={ k(z,z)+ \x|p(z)*2:c if —0<ax<b (3.2)
k(z,0) + 6r)—1 if 0<uw.

Evidently k € C (2 xR). We set K (z,2) = / k (2, s)ds and consider the
0
C'—functional @, : W) (Q) — R defined by

wlP® 4z wl?®) g
By (u) = /()\D| d+/()|D\ d

/’5 DL, ot dz—/Kzu

for all w € W'P(2) (Q) . From (2.5) it is clear that $, () is coercive. Also, us-
ing the compact embedding of W1?() (Q) into LP*) (Q), we see that 3, (-)
is sequentially weakly lower semicontinuous. So, by Weierstrass-Tonelli the-
orem, we can find @ € WHP*) (Q) such that

5. () = inf {@ (0) s u € Whel® (Q)} . (3.3)

Let u € intCy and t € (0,1) small such that tu (z) < @ for all z € Q. Using
(3.2) we have
{5-1- (tu) < t;;;pp(z) (DU) + t;%pq(z) (DU)
D - _
5= [€lloo + 1 ppe) () = 2219 ullE + S=p, () (u)
p q_
< tpfmax{Hqu ulP*} + 5= max {flu]]* Ll
+5= Cs max {[[ull~ Jull ™} = = ulls”
2= Gy mase { P [l — 2 2

for some C3, Cy >0

(see Proposition 2.1). In deriving the previous estimate, we have used also
the continuous (in fact compact) embeddings W) (Q) < LP®) (Q) and
Wirl@) (Q) — L") (Q).

Since ¢- < p— < r_, choosing n > 0 big (see hypothesis (Hjy) (¢ii)) it
follows from (3.4) that by taking ¢ € (0,1) even smaller if necessary, we have
@+ (tu) <0,

hence
B (@) <0 =34 (0) (see (33)),

therefore

From (3.3) we have
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hence

(Apezy (@), 1) + (Ag() (U)7h>+/ﬂ[!£(Z)|+1] P2 whdz

~ (3.5)
= /k (z,7") hdz for all h € WP(2) (Q)
)
In (3.5) we choose h = -~ € W'P() (Q) . Then
Po(z) (Du”) + poz) (Du”) + /Q € )] + 1] (@)™ d= = 0
(see (3.2)), hence
Po(z) (Du™) <0,
therefore
7>0, U0
Also in (3.5) we choose h = [@ — 0]7 € W'P(2) (Q). We obtain
(Apy @), [T —07) + (Ay(e) (@), [a — 0] )
/ 2|+ 1] [aPP "t @ - 6)t dz
/ [k (2,0) + 0P~ [a — 0] dz (see (3.2))
= / (01—t — Cog"@ =L 4 9P~ [m — 0] dz
Q
< / [fo (2,0) + 0P~ [a — 0] dz (see (2.5))
Q
/ (€ (2)] + 1] 0P -1 (7 — 0)" d= (see (2.3))
= (Apy (0),[u—60]7) + (A6, [u — 6]")
+/ 1€ (2)| + 1] P&~ (@ — 0) T dz (see (2.3)),
Q
hence
u<é
So, we have proved that
u e [0,0], u##0. (3.6)

From (3.6), (3.2) and (3.5) it follows
u is a positive solution of (3.1).

From Proposition 3.1 of Gasinski-Papageorgiou [6], we have that w € L> (Q).
Then, Theorem 1.3 of Fan [4] (see also Lieberman [10]), we have that
u € C4\{0}. Finally the anisotropic maximum principle of Zhang [19],
implies that
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Next we show that this positive solution is unique. To this end we consider
the integral functional j : L' () — R = RU{+00} defined by

1 1
1 — _1 —
/Qp(z) Du-|dz + /Qq(z) Du-|dz ifu> 0 and uf%—
j('LL) — " |£Ezg| (uql> ds c lep(z) (Q)
p(z
Q
+00 otherwise

From Theorem 2.2 of Takac-Giacomoni [17], we know that the functional
j (+) is convex.
Suppose that 7 € W'(2) (Q) is another solution of (3.1). Again we have
On account of Proposition 4.1.22, p.274, of Papageorgiou-Radulescu-Repovs
[14], we have
u

€ L™ (Q).

9

SERSS

From Theorem 2.5 (and its proofs) of Takac-Giacomoni [17], we have
J @) (@t —at)

- / ~ AT (2) = Dy (2) + [€ ()| [ (2) P
Q

e (@~ — 4% ) dz,

J () (@t — )

:/_Ap(z)a(z) — Ay (2) + € (2)] [T (2) PO
Q

a- — 1

(U —u)dz.
The convexity of j (-) implies the monotonicity of j' (-) and so we have
0< / 0y [ O] @ ) dz <o,
Q

(since ¢ < p_ < r_), hence

u=1u.
This proves the uniqueness of positive solution w € intC,..
Since problem (3.1) is odd, © = —u € —intCy is the unique negative
solution of (3.1). O
We define

St = {u : u is a positive solutions of (1.1) in [0,6]}

S_ = {v: v is a negative solution of (1.1) in [—6,0]}.

From Papageorgiou-Radulescu-Repovs [13] (see the proof of Proposition 7)
Sy is downward directed
(that is, if uy, ug € Sy, then we can find u € S; such that v < uy and
u < ug) and
S_ is upward directed

(that is, if vy, vo € S_, then we can find v € S_ such that v; < v and
vy < ).
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Reasoning as in the first part of proof of Proposition 3.1, with & (z, z)
replaced by fo (z,z), we obtain the following result.

Proposition 3.2. If hypotheses (Hg), (Hy) hold, then
@ #+£8 C[0,0]NintCy and @ #S_ C [-6,0] N (—intCy) .

In the next proposition, we produce a lower bound for the elements of S
and an upper bound for the elements of S_.

Proposition 3.3. If hypotheses (Hg), (H1) hold, then
u<wu forallue Sy and v <7 for allveS_.
Proof. Let u € S C intCy. We introduce the following Carathéodory func-

tion

B k(z,2t)  if z<u(?)
T+ (z2) = { E(Z,u(z)) if u(z) <z (37)

We set Ty (z,x) = / 7, (2,5) ds and consider the the C''—functional o :
0
W) (Q) — R defined by

oy (u) = /() /Qq(1Z)|Du’q(Z)dZ
/If( z!+1 ()P dz - /QT+ (z,u) dz

for all u € W) (Q). From (3.7) it is clear that oy (-) is coercive. Also it
is sequentially weakly lower semicontinuous. So, we can find 7 € W1P(*) (Q)
such that

o (@) =inf {o; (u):we WO (@)} <0=0 (0).
(see the proof of Proposition 3.1). Hence
u # 0.
We have

o', (@) =0,
hence
u u 2 alP*) 2 Ghdz
(Ao (@) 1) + (Ayge (@) 1)+ [ 1]+ 110~ Tha

= /U+ (z,u) hdz for all h € wlp(z) (Q)
Q

In (3.8) we choose h = —u~ € W'P(2) (Q) and obtain

>0, U 0.
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Next in (3.8) we choose h = [u — u]T € WHP() (Q). Then
(Apez) (@), [a =] ") + (Agz) (@), [a — o] T)

(1€ ()] + 1 @D~ (@ — w) T dz

=

_l’_

k(z,u) (@ —u) dz (see (3.7))

(k (z,u) + uP@7Y) (@ — u)* dz (see (3.2) and recall that u € Sy)

Il
S— 5— 5— 55—

(B (u) f (z,u) + w1 (@ —w)t dz (see (2.5), (2.1), (2.2))

IN

[f (z,u) + wP®) 1] (@ — u)" dz (see hypothesis (Hy) (4))

p(z) (U’) ) (ﬂ - u)+> + <Aq(z) (u) ’ (ﬂ - U)+>

[€(2) + 1 uP® 1 (T —u)T dz (since u € Sy),

I
N

+
S~

< (Apee) (), (@ =) ") + (Agey (), (@ —u) ™)

+ A (1€ (2)| + 1] uP@ =1 (T — u)t dz
hence

u < u.
So, we have proved that
€[0,u], uw#0.
hence
u=m1u € intCy (see (3.7),(3.2) and Proposition 3.1)

therefore

u < wuforall ueSy.

Similarly we show that
v<vforallvedS_.
O

Using these bounds we can show the existence of extremal constant sign
solutions, namely that S has a smallest element u, € intC (hence u, < u
for all u € S4) and S_ has a biggest element v, € —intCy (hence v < v,
for all v € S_). These extremal solutions will lead to nodal ones.

Proposition 3.4. If hypotheses (Hg), (Hy) hold, then there exist extremal
constant sign solutions of (1.1)

Ux € intCy and vy € —intCy

Proof. Recall that the set Sy is downward directed. So, according to Lemma
3.10, p. 178, of Hu-Papageorgiou [7], we can find {uy}, .y € Sy decreasing
such that

inf u, = inf Sy.
n>1
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We have
<Ap(z Up) h> + <A /f un “hdz
(3.9)
/f 2, up) hdz for all h € WhP() (Q), all n € N,
u < up, < wuj for all n € N (see Proposition 3.3). (3.10)

Choosing h = u,, € W) (Q) in (3.9) and using (3.10) and hypothesis
(Hy) (4i), we infer that

{un}nen € WHPE) (Q) is bounded.
So, we may assume that
Up —2 u, in W) (Q) and w, — u, in LP3) (Q) asn— oo, (3.11)

In (3.9) we choose h = u, — u, € WP (Q), pass to the limit as n— oo
and use (3.11) . We obtain

lim <Ap(z) (Up) ,up — u*> + <Aq(z) (up) ,up — u*> =0,

n—oo

hence

lim sup <Ap(z) () s Up — u*> + <Aq(z) (wy) Uy, — u*> <0,

n—o0

from the monotonicity of Ay.) (-), therefore

limsup (Ap.) (Un) , un — te) < 0.

n—o0

We conclude that
Up — uy in WHPE (Q) ) 7 < u, (3.12)

(see Proposition 2.2 and (3.10)). Passing to the limit as n— oo in (3.9) and
using (3.12) we conclude that

Uy € St and uy, = inf Sy
Similarly we produce the biggest negative solution

vy € S_ and v, =supS_.

Now let n9 > [|£]|, and consider the following Carathéodory function

fo (2,0 (2)) + 10 [vs (PP 20 (2) i @< 0 (2)
7o (zo2) = § fo(z,@) +m0 2" 22 it v, (2) <2 <. (2)
fo (2,1 (2)) + mots (2)P 7 it w(z) <@

(3.13)
Let

To(z,x) = /OfETO (z,8)ds
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and consider the the C''—functional ¢g : W'(2) (Q) — R defined by

1 1
u) = Dup(z)dz+/ Du|??) 4
e (u) /Qp(Z)‘ | QQ(Z>’ |

+/§(z)+770 lu (2)]P?) dz — / To (z,u) dz for all u € W) (Q) .
o p(2) Q

The functional ¢ (-) is even (see hypothesis (Hp) (7)) and on account
of (3.13), we have that g (-) is coercive (recall that ny > ||£]|, ), hence
bounded below and satisfies the PS—condition (see Proposition 5.1.15, p.
369, of Papageorgiou-Radulescu-Repovs [14]).

Let V C WHP() (Q) be a finite dimensional subspace

Proposition 3.5. If hypotheses (Hg), (Hy) hold, then there exist py > 0
such that

sup {o (u) 1 u € V, [Jul| = pv} < 0.

Proof. Let m, = min < minu,, min (—v*)} > 0 (recall u, € intCy and
Q Q

vx € —intC,). On account of hypothesis (Hy) (éii), given any n > 0, we can
find 6 = d (n) € (0,m,) such that

F(z,z) > A |z~ for a.a. z € Q, all |z| < 4. (3.14)
q

Since V is finite dimensional, all norms are equivalent. Therefore we can
find py € (0,1) such that

uweV, ul|l <py = |u(z)| <0 fora.a. ze. (3.15)
Therefore if u € V with ||u|]| = py, then in view of (3.13), (3.14), (3.15),
hypothesis (Hy) (i) and Proposition 2.1, we have

1 1
w0 (u) < — |lullP~ + — uq‘—nuq‘]
(u) o [l . [l [Jullg

1 1
< }t [|ul/P~ + qi [lul]f= — nCs ||u||*"] for some C5 > 0.

(recall that on V' all the norms are equivalent).
Choosing n > C% > 0, it follows that

1
o (u) < p—pz‘g,’ — Cgp{; for some Cg > 0.
+

Since py € (0,1) and ¢— < p_, choosing py € (0, 1) even smaller if necessary
we conclude that

sup {o (u) 1 u € V, [Jul| = pv} < 0.

Now we are ready for the main result of this work.

Theorem 3.6. If hypotheses (Hg), (Hy) hold, then there exists a sequence
{un},en € C (Q) of nodal solutions of (1.1) such that

un%OinCl(ﬁ) as n — 0o.
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Proof. We use Proposition 2.3 and have a sequence {un}, .y € Ky, such
that
uy, — 0 in WHPE) (), (3.16)
Using (3.13) and the anisotropic regularity theory (see Fan [4]) we obtain
that
Kgy C [vs,u] NCH(Q)
therefore {uy}, .y are solutions of (1.1) when f is replaced by fy.
Proposition 3.1 of Gasinski-Papageorgiou [6], implies that we can find
C7 > 0 such that
lunllo, < C7 for all n € N.

Then Theorem 1.3 of Fan [4] (see also Lieberman [10]) implies that we can
find o € (0,1) and Cg > 0 such that

u, € CH(Q), Huanla(ﬁ) < Cg for all n € N. (3.17)

Then from (3.16), (3.17) and the compact embedding of C'* () into
c! (ﬁ) , we have
u, — 0in C* () asn — oc. (3.18)
Let
[t = min {,u, minu,, min (—’U*)} > 0.
Q Q
From (3.18) it follows that

{un}nZno - [_ﬁa :U‘] for some ng € N. (319)

Then from (3.19), (2.2) and the extremality of the solutions u, and v, we

conclude that {un},,, are nodal solutions of (1.1) and

un—>OinC1(§) as n — oo.
O
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