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Abstract. We consider an anisotropic (p.q)-Neumann problem with
an indefinite potential term and a reaction which is only locally defined
and odd. Using a variant of the symmetric mountain pass theorem, we
show that the problem has a whole sequence of smooth nodal solutions
which converge to zero in C1

(
Ω
)
.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2− boundary ∂Ω. In this
paper we study the following anisotropic (p, q)-equation) −∆p(z)u (z)−∆q(z)u (z) + ξ (z) |u (z)|p(z)−2 u (z)

= f (z, u (z)) in Ω,
∂u
∂n = 0 on ∂Ω

(1.1)

Given s ∈ L∞ (Ω) with 1 < s− ≤ s (z) ≤ s+ < ∞ for a.a. z ∈ Ω , by ∆s(z)

we denote the s (z)−Laplacian defined by

∆s(z)u = div
(
|Du|s(z)−2Du

)
for all u ∈W 1,s(z)

0 (Ω) ,

Here we assume that the variable exponents p (·) and q (·) belong to
C1
(
Ω
)
. This allows us to use the existing regularity theory for anisotropic

problems. The potential function ξ (·) ∈ L∞ (Ω) and in general it is sign-
changing. The reaction function f (z, x) is only locally defined, that is, f (·, ·)
is defined on Ω× [−θ, θ], θ > 0 and it is a Carathéodory function (that is, for
all x ∈ [−θ, θ] , z 7→ f (z, x) is measurable and for a.a. z ∈ Ω, x 7→ f (z, x)
is continuous). We assume that for a.a. z ∈ Ω, f (z, ·) |[−θ,θ] is odd. In the
boundary condition n (·) denotes the outward unit normal on ∂Ω.

Using a version of the symmetric mountain pass theorem due to Kajikiya
[8] (see Proposition 3), together with suitable truncations and comparison
techniques, we show that there exists a whole sequence {un}n≥1 ⊆ C1

(
Ω
)

of nodal solutions of (1.1) , such that un → 0 in C1
(
Ω
)
.

Elliptic equations with locally defined reaction, were first considered by
Wang [18], who considered semilinear Dirichlet equations driven by the

Laplacian and with a reaction of the form λ |x|q−2 x+g (x, z) with 1 < q < 2.

So, the reaction has a parametric concave term (the function λ |x|q−2 x) and
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a perturbation g ∈ C (Ω× R) which is odd in x ∈ R for |x| small and

lim
x→0

g (z, x)

|x|q−2 x
= 0 uniformly for a.a. z ∈ Ω.

No conditions are imposed on g (z, ·) for |x| big. So, the hypotheses on
g (z, ·) are local near zero. In this setting the author proves the existence
of a sequence {un}n≥1 ⊆ H1

0 (Ω) of weak solutions. Later, Li-Wang [11]

extended the work of [18] to Schroedinger equations and also showed that
the solutions {un}n≥1 are nodal.

Recently the aforementioned works were extended to Robin problems by
Papageorgiou-Veltro-Veltro [15] (semilinear problems driven by the Lapla-
cian plus an indefinite and unbounded potential) and by Papageorgiou-
Radulescu [12] (nonlinear nonhomogeneous equations).

For anisotropic equations there are no such results. Infinitely many so-
lutions for p (x)−Laplacian-type equations were proved by Andrei [1], Fan-
Zhang [5] (Dirichlet problems with strictly positive potential terms) and
by Boureanu-Preda [2], Liang-Zhang [9] (Neumnann problems with strictly
positive potential terms). All these works have reactions which are glob-
ally defined and impose conditions on f (z, ·) as x → ±∞. Moreover, none
of these works provide sign information for the solutions produced. We
mention that Boureanu-Preda [2] use the fountain theorem to obtain weak
solutions {un}n≥1 such that ‖un‖W 1,p(z)(Ω) → +∞ while Liang-Zhang [9]

use the symmetric mountain pass theorem of Kajikiya [8] to show that
‖un‖W 1,p(z)(Ω) → 0.

2. Mathematical background

Let M (Ω) be the space of all measurable functions u : Ω→ R. As usual
we identify two such functions which differ only on a set of zero measure.
Also let

L∞1 (Ω) =

{
p ∈ L∞ (Ω) : 1 ≤ essinf

Ω
p

}
.

Given p ∈ L∞1 (Ω) , we define

p− = essinf
Ω

p and p+ = esssup
Ω

p

and the variable exponent Lebesgue space

Lp(z) (Ω) =

u ∈M (Ω) :

∫
Ω

|u|p(z) dz <∞

 .

This space is furnished with the so called Luxemburg norm defined by

‖u‖p(z) = inf

λ > 0 :

∫
Ω

(
|u|
λ

)p(z)
dz ≤ 1

 .

These spaces resemble the classical Lebesgue spaces. They are separable
Banach spaces and they are reflexive if and only if 1 < p− ≤ p+ < ∞ (in
fact they are uniformly convex) and simple and continuous functions with
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compact support are dense in Lp(z) (Ω) . If p, q ∈ L∞1 (Ω) , then Lp(z) (Ω) ↪→
Lq(z) (Ω) continuously if and only if q (z) ≤ p (z) for a.a. z ∈ Ω.

Let p, p′ ∈ L∞1 (Ω) satisfy 1
p(z) + 1

p′(z) = 1 for a.a. z ∈ Ω. Then Lp(z) (Ω)∗ =

Lp
′(z) (Ω) and we have the following Holder type inequality∫

Ω

|uv| dz ≤
[

1

p−
+

1

p′−

]
‖u‖p(z) ‖v‖p′(z)

for all u ∈ Lp(z) (Ω) ,all v ∈ Lp(z) (Ω)
(

1
p−

+ 1
p′−

= 1
)
. We can also define

variable exponent Sobolev spaces by

W 1,p(z) (Ω) =
{
u ∈ Lp(z) (Ω) : |Du| ∈ Lp(z) (Ω)

}
.

We equip W 1,p(z) (Ω) with the following norm

‖u‖ = ‖u‖p(z) + ‖|Du|‖p(z) .

An equivalent norm of W 1,p(z) (Ω) is given by

‖u‖′ = inf

λ > 0 :

∫
Ω

[(
|Du|
λ

)p(z)
+

(
|u|
λ

)p(z)]
dz ≤ 1

 .

The space W 1,p(z) (Ω) is a separable Banach space and it is reflexive (in

fact uniformly convex), if 1 < p− ≤ p+ < ∞. Also, we have W 1,p(z) (Ω) ↪→
W 1,p− (Ω) continuously.

We set

p∗ (z) =

{
Np(z)
N−p(z) if p (z) ≤ N
+∞ if N < p (z) .

If p, q ∈ C
(
Ω
)
∩ L∞1 (Ω) , p+ < N and 1 ≤ q (z) ≤ p∗ (z) (resp. 1 ≤

q (z) < p∗ (z)) for all z ∈ Ω, then W 1,p(z) (Ω) is embedded continuously

(resp. compactly) into Lq(z) (Ω) .
Very useful for the analysis of these spaces and for the study of anisotropic

boundary value problems, is the modular function of the space Lr(z) (Ω) with
r ∈ L∞1 (Ω) defined by

ρr(z) (u) =

∫
Ω

|u|r(z) dz.

There is a close relation between this function and the norm ‖·‖p(z) .

Proposition 2.1. (a) For u ∈ Lr(z) (Ω) , u 6= 0, we have

‖u‖r(z) ≤ λ⇐⇒ ρr(z)

(u
λ

)
≤ 1;

(b) ‖u‖r(z) < 1 (resp. = 1, > 1) ⇐⇒ ρr(z) (u) < 1 (resp. = 1, > 1);

(c) ‖u‖r(z) < 1 =⇒ ‖u‖r+r(z) ≤ ρr(z) (u) ≤ ‖u‖r−r(z) and

‖u‖r(z) > 1 =⇒ ‖u‖r−r(z) ≤ ρr(z) (u) ≤ ‖u‖r+r(z) ;

(d) ‖un‖r(z) → 0⇐⇒ ρr(z) (un)→ 0;

(e) ‖un‖r(z) → +∞⇐⇒ ρr(z) (un)→ +∞.
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A comprehensive treatment of variable exponent spaces can be found in
the book of Diening-Harjulehto-Hästo-Rujicka [3]. Their use in the study of
various anisotropic boundary value problems can be found in the book of
Radulescu-Repovs [16].

Let Ar(z) : W 1,r(z) (Ω)→W 1,r(z) (Ω)∗ be the nonlinear map defined by〈
Ar(z) (u) , h

〉
=

∫
Ω
|Du|r(z)−2 (Du,Dh)RN dz for all u, h ∈W 1,r(z) (Ω) .

The next proposition summarizes the main properties of this map (see,
Gasinski-Papageorgiou ([6]).

Proposition 2.2. The map Ar(z) : W 1,r(z) (Ω)→W 1,r(z) (Ω)∗ defined above
is bounded (that is, maps bounded sets to bounded sets), continuous, mono-
tone (hence maximal monotone, too), and of type (S)+, that is, if for every

sequence {un}n≥1 ⊆W 1,r(z) (Ω) such that un
w−→ u and

lim sup
n→∞

〈
Ar(z) (un) , un − u

〉
≤ 0,

one has
un → x in X as n→∞.

The anisotropic regularity theory (see Fan [4]) will lead us to the Banach
space C1

(
Ω
)
. This is an ordered Banach space with a positive cone given

by
C+ =

{
u ∈ C1

(
Ω
)

: u (z) ≥ 0 for all z ∈ Ω
}
.

This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u (z) > 0 for all z ∈ Ω

}
,

If X is a Banach space and ϕ ∈ C1 (X,R) , then by Kϕ we denote the critical
set of ϕ, that is,

Kϕ =
{
u ∈ X : ϕ′ (u) = 0

}
We say that ϕ (·) satisfies the the Palais-Smale condition (the PS-condition,

for short) if: every sequence {un}n≥1 ⊆ X such that {ϕ (un)}n∈N is bounded

and ϕ′ (un)→ 0 in X∗as n→∞ admits a strongly convergent subsequence.
As we already mentioned in the Introduction, we will use a version of

the symmetric mountain pass theorem due to Kajikiya [8]. More precisely,
we will use the next proposition, which is a special case of Theorem 1 of
Kajikiya [8].

Proposition 2.3. If X is a Banach space, ϕ ∈ C1 (X,R) satisfies the sat-
isfies the PS−condition, it is even, bounded below, ϕ (0) = 0 and for every
n ∈ N there exists an n−dimensional subspace Vn ⊆ X and an ρn > 0 such
that

sup {ϕ (u) : u ∈ Vn, ‖u‖ = ρn} < 0,

then there exists a sequence {un}n≥1 ⊆ X such that

ϕ (un) ≤ 0 for all n ∈ N, un → 0 in X.

The hypotheses on the data of (1.1) are the following:

(H0) : ξ ∈ L∞ (Ω) , p, q ∈ C1
(
Ω
)

and 1 < q− ≤ q (z) ≤ q+ < p− ≤ p (z) ≤
p+.
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(H1) : f : Ω× [−θ, θ]→R is a Carathéodory function such that f (z, 0) = 0
for a.a. z ∈ Ω and
(i) for a.a. z ∈ Ω, f (z, ·) |[−θ,θ] is odd and f (z, x)x ≥ 0 for a.a.z ∈

Ω, all x ∈ [−θ, θ] ;
(ii) there exists aθ ∈ L∞ (Ω) such that

|f (z, x)| ≤ aθ (z) for a.a.z ∈ Ω, all x ∈ R with |x| ≤ θ;

(iii)

lim
x→0

f (z, x)

|x|q−−2 x
= +∞ for a.a. z ∈ Ω;

Consider an even function β ∈ C (R) such that:

0 ≤ β (x) ≤ 1 for all x ∈ R, β |[−µ,µ]≡ 1 with 0 < µ < θ,

suppβ ⊆ [−θ, θ] .

We introduce the following Carathéodory function defined on Ω× R :

f0 (z, x) := β (x) f (z, x) + (1− β (x)) |x|p(z)−2 x. (2.1)

For a.a. z ∈ Ω, the function f0 (z, .) has the following properties

f0 (z, .) is odd, f0 (z, ·) |[−µ,µ]= f (z, ·) |[−µ,µ] and

f0 (z, x) := ξ (z) |x|p(z)−2 x if |x| ≥ θ.
(2.2)

In particular we have

f0 (z, θ) = ξ (z) θp(z)−2 and f0 (z,−θ) = −ξ (z) θp(z)−1 for a.a.z ∈ Ω. (2.3)

We can find r ∈ C
(
Ω
)

such that p+ < r (z) < p∗ (z) for all z ∈ Ω and, for
some C1 > 0 :

|f0 (z, x)| ≤ C1

[
1 + |x|r(z)−1

]
for a.a. z ∈ Ω, all x ∈ R (2.4)

(see hypothesis (H1) (ii) and (2.1)). On account of hypothesis (H1) (iii) and
(2.4)) we see that given η > 0, we can find C2 = C2 (η) > 0 such that

f0 (z, x)x ≥ η |x|q− − C2 |x|r(z) for a.a. z ∈ Ω, all x ∈ R. (2.5)

We set

k (z, x) = η |x|q−−2 x− C2 |x|r(z)−2 x for all (z, x) ∈ Ω× R.

Evidently k ∈ C
(
Ω× R

)
.

3. Nodal solutions

Motivated by the unilateral growth estimate (2.5) , we consider the fol-
lowing anisotropic Neumann problem −∆p(z)u (z)−∆q(z)u (z) + |ξ (z)| |u (z)|p(z)−2 u (z)

= k (z, u (z)) in Ω,
∂u
∂n = 0 on ∂Ω

(3.1)

Proposition 3.1. If hypotheses (H0) hold, then problem (3.1) has a unique
positive solution u ∈ int C+ and since (3.1) is odd, v = −u ∈ −intC+ is the
unique negative solution of (3.1) .
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Proof. We introduce the function k̂ (z, x) defined by

k̂ (z, x) =


k (z,−θ)− θp(z)−1 if x < −θ

k (z, x) + |x|p(z)−2 x if −θ < x < θ

k (z, θ) + θp(z)−1 if θ < x.

(3.2)

Evidently k̂ ∈ C
(
Ω× R

)
. We set K̂ (z, x) =

∫ x

0
k̂ (z, s) ds and consider the

C1−functional ϕ̂+ : W 1,p(z) (Ω)→ R defined by

ϕ̂+ (u) =

∫
Ω

1

p (z)
|Du|p(z) dz +

∫
Ω

1

q (z)
|Du|q(z) dz

+

∫
Ω

|ξ (z)|+ 1

p (z)
|u (z)|p(z) dz −

∫
Ω
K̂
(
z, u+

)
dz

for all u ∈W 1,p(z) (Ω) . From (2.5) it is clear that ϕ̂+ (·) is coercive. Also, us-

ing the compact embedding of W 1,p(z) (Ω) into Lp(z) (Ω) , we see that ϕ̂+ (·)
is sequentially weakly lower semicontinuous. So, by Weierstrass-Tonelli the-
orem, we can find u ∈W 1,p(z) (Ω) such that

ϕ̂+ (u) = inf
{
ϕ̂+ (u) : u ∈W 1,p(z) (Ω)

}
. (3.3)

Let u ∈ intC+ and t ∈ (0, 1) small such that tu (z) ≤ θ for all z ∈ Ω. Using
(3.2) we have

ϕ̂+ (tu) ≤ tp−
p−
ρp(z) (Du) + tq−

q−
ρq(z) (Du)

+ tp−
p−

[‖ξ‖∞ + 1] ρp(z) (u)− η
q−
tq− ‖u‖q−q− + C2t

r−
r−

ρr(z) (u)

≤ tp−
p−

max {‖u‖p− , ‖u‖p+}+ tq−
q−

max {‖u‖q− , ‖u‖q+}

+ tp−
p−
C3 max {‖u‖p− , ‖u‖p+} − ηtq−

q−
‖u‖q−q−

+ tp−
p−
C3 max {‖u‖p− , ‖u‖p+} − ηtq−

q−
‖u‖q−q−

for some C3, C4 > 0

(3.4)

(see Proposition 2.1). In deriving the previous estimate, we have used also

the continuous (in fact compact) embeddings W 1,p(z) (Ω) ↪→ Lp(z) (Ω) and

W 1,p(z) (Ω) ↪→ Lr(z) (Ω) .
Since q− < p− < r−, choosing η > 0 big (see hypothesis (H1) (iii)) it

follows from (3.4) that by taking t ∈ (0, 1) even smaller if necessary, we have

ϕ̂+ (tu) < 0,

hence

ϕ̂+ (u) < 0 = ϕ̂+ (0) (see (3.3) ),

therefore

u 6= 0.

From (3.3) we have

ϕ̂′+ (u) = 0,
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hence〈
Ap(z) (u) , h

〉
+
〈
Aq(z) (u) , h

〉
+

∫
Ω

[|ξ (z)|+ 1] |u|p(z)−2 uhdz

=

∫
Ω
k̂ (z, u+)hdz for all h ∈W 1,p(z) (Ω)

(3.5)

In (3.5) we choose h = −u− ∈W 1,p(z) (Ω) . Then

ρp(z)
(
Du−

)
+ ρq(z)

(
Du−

)
+

∫
Ω

[|ξ (z)|+ 1]
(
u−
)p(z)

dz = 0

(see (3.2)), hence

ρp(z)
(
Du−

)
≤ 0,

therefore

u ≥ 0, u 6= 0.

Also in (3.5) we choose h = [u− θ]+ ∈W 1,p(z) (Ω) . We obtain〈
Ap(z) (u) , [u− θ]+

〉
+
〈
Aq(z) (u) , [u− θ]+

〉
+

∫
Ω

[|ξ (z)|+ 1] |u|p(z)−1 (u− θ)+ dz

=

∫
Ω

[
k (z, θ) + θp(z)−1

]
[u− θ]+ dz (see (3.2) )

=

∫
Ω

[
ηθq−−1 − C2θ

r(z)−1 + θp(z)−1
]

[u− θ]+ dz

≤
∫

Ω

[
f0 (z, θ) + θp(z)−1

]
[u− θ]+ dz (see (2.5) )

≤
∫

Ω
[|ξ (z)|+ 1] θp(z)−1 (u− θ)+ dz (see (2.3) )

=
〈
Ap(z) (θ) , [u− θ]+

〉
+
〈
Aθ, [u− θ]+

〉
+

∫
Ω

[|ξ (z)|+ 1] θp(z)−1 (u− θ)+ dz (see (2.3) ),

hence

u ≤ θ.

So, we have proved that

u ∈ [0, θ] , u 6= 0. (3.6)

From (3.6) , (3.2) and (3.5) it follows

u is a positive solution of (3.1) .

From Proposition 3.1 of Gasinski-Papageorgiou [6], we have that u ∈ L∞ (Ω) .
Then, Theorem 1.3 of Fan [4] (see also Lieberman [10]), we have that
u ∈ C+\ {0} . Finally the anisotropic maximum principle of Zhang [19],
implies that

u ∈ intC+.
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Next we show that this positive solution is unique. To this end we consider
the integral functional j : L1 (Ω)→ R = R∪{+∞} defined by

j (u) =



∫
Ω

1
p(z)

∣∣∣∣Du 1
q−

∣∣∣∣ dz +

∫
Ω

1
q(z)

∣∣∣∣Du 1
q−

∣∣∣∣ dz
+

∫
Ω

|ξ(z)|
p(z)

(
u

1
q−

)
dz

if u ≥ 0 and u
1
q−

∈W 1,p(z) (Ω)

+∞ otherwise

From Theorem 2.2 of Takac-Giacomoni [17], we know that the functional
j (·) is convex.

Suppose that ũ ∈W 1,p(z) (Ω) is another solution of (3.1) . Again we have
ũ ∈ intC+.

On account of Proposition 4.1.22, p.274, of Papageorgiou-Radulescu-Repovs
[14], we have

u

ũ
,
ũ

u
∈ L∞ (Ω) .

From Theorem 2.5 (and its proofs) of Takac-Giacomoni [17], we have

j′ (uq−) (uq− − ũq−)

=

∫
Ω

−∆p(z)u (z)−∆q(z)u (z) + |ξ (z)| |u (z)|p(z)−1

uq−−1 (uq− − ũq−) dz,

j′ (ũq−) (uq− − ũq−)

=

∫
Ω

−∆p(z)ũ (z)−∆q(z)ũ (z) + |ξ (z)| |ũ (z)|p(z)−1

ũq− − 1
(uq− − ũq−) dz.

The convexity of j (·) implies the monotonicity of j′ (·) and so we have

0 ≤
∫

Ω
− C2

[
ur(z)−q− − ũr(z)−q−

]
(uq− − ũq−) dz ≤ 0,

(since q− < p− < r−), hence
u = ũ.

This proves the uniqueness of positive solution u ∈ intC+.
Since problem (3.1) is odd, v = −u ∈ −intC+ is the unique negative

solution of (3.1) . �

We define

S+ = {u : u is a positive solutions of (1.1) in [0, θ]}
S− = {v : v is a negative solution of (1.1) in [−θ, 0]} .

From Papageorgiou-Radulescu-Repovs [13] (see the proof of Proposition 7)

S+ is downward directed

(that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such that u ≤ u1 and
u ≤ u2) and

S− is upward directed

(that is, if v1, v2 ∈ S−, then we can find v ∈ S− such that v1 ≤ v and
v2 ≤ v).
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Reasoning as in the first part of proof of Proposition 3.1, with k (z, x)
replaced by f0 (z, x) , we obtain the following result.

Proposition 3.2. If hypotheses (H0) , (H1) hold, then

∅ 6= S+ ⊆ [0, θ] ∩ intC+ and ∅ 6= S− ⊆ [−θ, 0] ∩ (−intC+) .

In the next proposition, we produce a lower bound for the elements of S+

and an upper bound for the elements of S−.

Proposition 3.3. If hypotheses (H0) , (H1) hold, then

u ≤ u for all u ∈ S+ and v ≤ v for all v ∈ S−.

Proof. Let u ∈ S+ ⊆ intC+. We introduce the following Carathéodory func-
tion

τ+ (z, x) =

{
k̂ (z, x+) if x ≤ u (z)

k̂ (z, u (z)) if u (z) < x.
(3.7)

We set T+ (z, x) =

∫ x

0
τ+ (z, s) ds and consider the the C1−functional σ+ :

W 1,p(z) (Ω)→ R defined by

σ+ (u) =

∫
Ω

1

p (z)
|Du|p(z) dz +

∫
Ω

1

q (z)
|Du|q(z) dz

+

∫
Ω

|ξ (z)|+ 1

p (z)
|u (z)|p(z) dz −

∫
Ω
T+ (z, u) dz

for all u ∈ W 1,p(z) (Ω) . From (3.7) it is clear that σ+ (·) is coercive. Also it

is sequentially weakly lower semicontinuous. So, we can find ũ ∈W 1,p(z) (Ω)
such that

σ+ (ũ) = inf
{
σ+ (u) : u ∈W 1,p(z) (Ω)

}
< 0 = σ+ (0) .

(see the proof of Proposition 3.1). Hence

ũ 6= 0.

We have

σ′+ (ũ) = 0,

hence〈
Ap(z) (ũ) , h

〉
+
〈
Aq(z) (ũ) , h

〉
+

∫
Ω

[|ξ (z)|+ 1] |ũ|p(z)−2 ũhdz

=

∫
Ω
σ+ (z, ũ)hdz for all h ∈W 1,p(z) (Ω)

(3.8)

In (3.8) we choose h = −ũ− ∈W 1,p(z) (Ω) and obtain

ũ ≥ 0, ũ 6= 0.
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Next in (3.8) we choose h = [ũ− u]+ ∈W 1,p(z) (Ω) . Then〈
Ap(z) (ũ) , [ũ− u]+

〉
+
〈
Aq(z) (ũ) , [ũ− u]+

〉
+

∫
Ω

[|ξ (z)|+ 1] |ũ|p(z)−1 (ũ− u)+ dz

=

∫
Ω
k̂ (z, u) (ũ− u)+ dz (see (3.7) )

=

∫
Ω

(
k (z, u) + up(z)−1

)
(ũ− u)+ dz (see (3.2) and recall that u ∈ S+)

=

∫
Ω

(
β (u) f (z, u) + up(z)−1

)
(ũ− u)+ dz (see (2.5) , (2.1) , (2.2) )

≤
∫

Ω

[
f (z, u) + up(z)−1

]
(ũ− u)+ dz (see hypothesis (H1) (i) )

=
〈
Ap(z) (u) , (ũ− u)+〉+

〈
Aq(z) (u) , (ũ− u)+〉

+

∫
Ω

[ξ (z) + 1]up(z)−1 (ũ− u)+ dz (since u ∈ S+),

≤
〈
Ap(z) (u) , (ũ− u)+〉+

〈
Aq(z) (u) , (ũ− u)+〉

+

∫
Ω

[|ξ (z)|+ 1]up(z)−1 (ũ− u)+ dz

hence

ũ ≤ u.
So, we have proved that

ũ ∈ [0, u] , ũ 6= 0.

hence

ũ = u ∈ intC+ (see (3.7) , (3.2) and Proposition 3.1)

therefore

u ≤ u for all u ∈ S+.

Similarly we show that

v ≤ v for all v ∈ S−.

�

Using these bounds we can show the existence of extremal constant sign
solutions, namely that S+ has a smallest element u∗ ∈ intC+ (hence u∗ ≤ u
for all u ∈ S+) and S− has a biggest element v∗ ∈ −intC+ (hence v ≤ v∗
for all v ∈ S−). These extremal solutions will lead to nodal ones.

Proposition 3.4. If hypotheses (H0) , (H1) hold, then there exist extremal
constant sign solutions of (1.1)

u∗ ∈ intC+ and v∗ ∈ −intC+

Proof. Recall that the set S+ is downward directed. So, according to Lemma
3.10, p. 178, of Hu-Papageorgiou [7], we can find {un}n∈N ⊆ S+ decreasing
such that

inf
n≥1

un = inf S+.
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We have 〈
Ap(z) (un) , h

〉
+
〈
Aq(z) (un) , h

〉
+

∫
Ω
ξ (z)u

p(z)−1
n hdz

=

∫
Ω
f (z, un)hdz for all h ∈W 1,p(z) (Ω) , all n ∈ N,

(3.9)

u ≤ un ≤ u1 for all n ∈ N (see Proposition 3.3). (3.10)

Choosing h = un ∈ W 1,p(z) (Ω) in (3.9) and using (3.10) and hypothesis
(H1) (ii) , we infer that

{un}n∈N ⊆W
1,p(z) (Ω) is bounded.

So, we may assume that

un
w−→ u∗ in W 1,p(z) (Ω) and un → u∗ in Lp(z) (Ω) as n→∞. (3.11)

In (3.9) we choose h = un − u∗ ∈ W 1,p(z) (Ω) , pass to the limit as n→ ∞
and use (3.11) . We obtain

lim
n→∞

〈
Ap(z) (un) , un − u∗

〉
+
〈
Aq(z) (un) , un − u∗

〉
= 0,

hence

lim sup
n→∞

〈
Ap(z) (un) , un − u∗

〉
+
〈
Aq(z) (u∗) , un − u∗

〉
≤ 0,

from the monotonicity of Aq(z) (·) , therefore

lim sup
n→∞

〈
Ap(z) (un) , un − u∗

〉
≤ 0.

We conclude that

un → u∗ in W 1,p(z) (Ω) , u ≤ u∗ (3.12)

(see Proposition 2.2 and (3.10)). Passing to the limit as n→∞ in (3.9) and
using (3.12) we conclude that

u∗ ∈ S+ and u∗ = inf S+.

Similarly we produce the biggest negative solution

v∗ ∈ S− and v∗ = supS−.

�

Now let η0 > ‖ξ‖∞ and consider the following Carathéodory function

τ0 (z, x) =


f0 (z, v∗ (z)) + η0 |v∗ (z)|p(z)−2 v∗ (z) if x < v∗ (z)

f0 (z, x) + η0 |x|p(z)−2 x if v∗ (z) ≤ x ≤ v∗ (z)

f0 (z, u∗ (z)) + η0u∗ (z)p(z)−1 if u∗ (z) < x

(3.13)
Let

T0 (z, x) =

∫ x

0
τ0 (z, s) ds



INFINITELY MANY NODAL SOLUTIONS FOR ANISOTROPIC (p, q)-EQUATIONS 12

and consider the the C1−functional ϕ0 : W 1,p(z) (Ω)→ R defined by

ϕ0 (u) =

∫
Ω

1

p (z)
|Du|p(z) dz +

∫
Ω

1

q (z)
|Du|q(z) dz

+

∫
Ω

ξ (z) + η0

p (z)
|u (z)|p(z) dz −

∫
Ω
T0 (z, u) dz for all u ∈W 1,p(z) (Ω) .

The functional ϕ0 (·) is even (see hypothesis (H1) (i)) and on account
of (3.13) , we have that ϕ0 (·) is coercive (recall that η0 > ‖ξ‖∞), hence
bounded below and satisfies the PS−condition (see Proposition 5.1.15, p.
369, of Papageorgiou-Radulescu-Repovs [14]).

Let V ⊆W 1,p(z) (Ω) be a finite dimensional subspace

Proposition 3.5. If hypotheses (H0) , (H1) hold, then there exist ρV > 0
such that

sup {ϕ0 (u) : u ∈ V, ‖u‖ = ρV } < 0.

Proof. Let m∗ = min

{
min

Ω
u∗, min

Ω
(−v∗)

}
> 0 (recall u∗ ∈ intC+ and

v∗ ∈ −intC+). On account of hypothesis (H1) (iii), given any η > 0, we can
find δ = δ (η) ∈ (0,m∗) such that

F (z, x) ≥ η

q−
|x|q− for a.a. z ∈ Ω, all |x| ≤ δ. (3.14)

Since V is finite dimensional, all norms are equivalent. Therefore we can
find ρV ∈ (0, 1) such that

u ∈ V, ‖u‖ ≤ ρV =⇒ |u (z)| ≤ δ for a.a. z ∈ Ω. (3.15)

Therefore if u ∈ V with ‖u‖ = ρV , then in view of (3.13) , (3.14) , (3.15),
hypothesis (H1) (i) and Proposition 2.1, we have

ϕ0 (u) ≤ 1

p−
‖u‖p− +

1

q−

[
‖u‖q− − η ‖u‖q−q−

]
≤ 1

p−
‖u‖p− +

1

q−
[‖u‖q− − ηC5 ‖u‖q− ] for some C5 > 0.

(recall that on V all the norms are equivalent).
Choosing η > 1

C5
> 0, it follows that

ϕ0 (u) ≤ 1

p+
ρ
p−
V − C6ρ

q−
V for some C6 > 0.

Since ρV ∈ (0, 1) and q− < p−, choosing ρV ∈ (0, 1) even smaller if necessary
we conclude that

sup {ϕ0 (u) : u ∈ V, ‖u‖ = ρV } < 0.

�

Now we are ready for the main result of this work.

Theorem 3.6. If hypotheses (H0) , (H1) hold, then there exists a sequence
{un}n∈N ⊆ C1

(
Ω
)

of nodal solutions of (1.1) such that

un → 0 in C1
(
Ω
)

as n→∞.
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Proof. We use Proposition 2.3 and have a sequence {un}n∈N ⊆ Kϕ0 such
that

un → 0 in W 1,p(z) (Ω) . (3.16)

Using (3.13) and the anisotropic regularity theory (see Fan [4]) we obtain
that

Kϕ0 ⊆ [v∗, u∗] ∩ C1
(
Ω
)
,

therefore {un}n∈N are solutions of (1.1) when f is replaced by f0.
Proposition 3.1 of Gasinski-Papageorgiou [6], implies that we can find

C7 > 0 such that
‖un‖∞ < C7 for all n ∈ N.

Then Theorem 1.3 of Fan [4] (see also Lieberman [10]) implies that we can
find α ∈ (0, 1) and C8 > 0 such that

un ∈ C1,α
(
Ω
)
, ‖un‖C1,α(Ω) < C8 for all n ∈ N. (3.17)

Then from (3.16) , (3.17) and the compact embedding of C1,α
(
Ω
)

into

C1
(
Ω
)
, we have

un → 0 in C1
(
Ω
)

as n→∞. (3.18)

Let

µ̂ = min

{
µ, min

Ω
u∗, min

Ω
(−v∗)

}
> 0.

From (3.18) it follows that

{un}n≥n0
⊆ [−µ̂, µ̂] for some n0 ∈ N. (3.19)

Then from (3.19) , (2.2) and the extremality of the solutions u∗ and v∗ we
conclude that {un}n≥n0

are nodal solutions of (1.1) and

un → 0 in C1
(
Ω
)

as n→∞.
�
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