INFINITELY MANY NODAL SOLUTIONS FOR ANISOTROPIC (p, q)-EQUATIONS

SERGIU AIZICOVICI, NIKOLAOS S. PAPAGEORGIOU, AND VASILE STAICU

Abstract

We consider an anisotropic ($p . q$)-Neumann problem with an indefinite potential term and a reaction which is only locally defined and odd. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of smooth nodal solutions which converge to zero in $C^{1}(\bar{\Omega})$.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2} - boundary $\partial \Omega$. In this paper we study the following anisotropic (p, q)-equation)

$$
\left\{\begin{array}{l}
-\Delta_{p(z)} u(z)-\Delta_{q(z)} u(z)+\xi(z)|u(z)|^{p(z)-2} u(z) \tag{1.1}\\
=f(z, u(z)) \text { in } \Omega \\
\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Given $s \in L^{\infty}(\Omega)$ with $1<s_{-} \leq s(z) \leq s_{+}<\infty$ for a.a. $z \in \Omega$, by $\Delta_{s(z)}$ we denote the $s(z)$-Laplacian defined by

$$
\Delta_{s(z)} u=\operatorname{div}\left(|D u|^{s(z)-2} D u\right) \text { for all } u \in W_{0}^{1, s(z)}(\Omega)
$$

Here we assume that the variable exponents $p(\cdot)$ and $q(\cdot)$ belong to $C^{1}(\bar{\Omega})$. This allows us to use the existing regularity theory for anisotropic problems. The potential function $\xi(\cdot) \in L^{\infty}(\Omega)$ and in general it is signchanging. The reaction function $f(z, x)$ is only locally defined, that is, $f(\cdot, \cdot)$ is defined on $\Omega \times[-\theta, \theta], \theta>0$ and it is a Carathéodory function (that is, for all $x \in[-\theta, \theta], z \mapsto f(z, x)$ is measurable and for a.a. $z \in \Omega, x \mapsto f(z, x)$ is continuous). We assume that for a.a. $z \in \Omega,\left.f(z, \cdot)\right|_{[-\theta, \theta]}$ is odd. In the boundary condition $n(\cdot)$ denotes the outward unit normal on $\partial \Omega$.

Using a version of the symmetric mountain pass theorem due to Kajikiya [8] (see Proposition 3), together with suitable truncations and comparison techniques, we show that there exists a whole sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq C^{1}(\bar{\Omega})$ of nodal solutions of (1.1), such that $u_{n} \rightarrow 0$ in $C^{1}(\bar{\Omega})$.

Elliptic equations with locally defined reaction, were first considered by Wang [18], who considered semilinear Dirichlet equations driven by the Laplacian and with a reaction of the form $\lambda|x|^{q-2} x+g(x, z)$ with $1<q<2$. So, the reaction has a parametric concave term (the function $\lambda|x|^{q-2} x$) and

[^0]a perturbation $g \in C(\Omega \times \mathbb{R})$ which is odd in $x \in \mathbb{R}$ for $|x|$ small and
$$
\lim _{x \rightarrow 0} \frac{g(z, x)}{|x|^{q-2} x}=0 \text { uniformly for a.a. } z \in \Omega
$$

No conditions are imposed on $g(z, \cdot)$ for $|x|$ big. So, the hypotheses on $g(z, \cdot)$ are local near zero. In this setting the author proves the existence of a sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq H_{0}^{1}(\Omega)$ of weak solutions. Later, Li-Wang [11] extended the work of [18] to Schroedinger equations and also showed that the solutions $\left\{u_{n}\right\}_{n \geq 1}$ are nodal.

Recently the aforementioned works were extended to Robin problems by Papageorgiou-Veltro-Veltro [15] (semilinear problems driven by the Laplacian plus an indefinite and unbounded potential) and by PapageorgiouRadulescu [12] (nonlinear nonhomogeneous equations).

For anisotropic equations there are no such results. Infinitely many solutions for $p(x)$-Laplacian-type equations were proved by Andrei [1], FanZhang [5] (Dirichlet problems with strictly positive potential terms) and by Boureanu-Preda [2], Liang-Zhang [9] (Neumnann problems with strictly positive potential terms). All these works have reactions which are globally defined and impose conditions on $f(z, \cdot)$ as $x \rightarrow \pm \infty$. Moreover, none of these works provide sign information for the solutions produced. We mention that Boureanu-Preda [2] use the fountain theorem to obtain weak solutions $\left\{u_{n}\right\}_{n \geq 1}$ such that $\left\|u_{n}\right\|_{W^{1, p(z)}(\Omega)} \rightarrow+\infty$ while Liang-Zhang [9] use the symmetric mountain pass theorem of Kajikiya [8] to show that $\left\|u_{n}\right\|_{W^{1, p(z)}(\Omega)} \rightarrow 0$.

2. Mathematical background

Let $M(\Omega)$ be the space of all measurable functions $u: \Omega \rightarrow \mathbb{R}$. As usual we identify two such functions which differ only on a set of zero measure. Also let

$$
L_{1}^{\infty}(\Omega)=\left\{p \in L^{\infty}(\Omega): 1 \leq \underset{\Omega}{\operatorname{essinf} p}\right\}
$$

Given $p \in L_{1}^{\infty}(\Omega)$, we define

$$
p_{-}=\underset{\Omega}{\operatorname{essinf}} p \text { and } p_{+}=\underset{\Omega}{\operatorname{esssup} p}
$$

and the variable exponent Lebesgue space

$$
L^{p(z)}(\Omega)=\left\{u \in M(\Omega): \int_{\Omega}|u|^{p(z)} d z<\infty\right\} .
$$

This space is furnished with the so called Luxemburg norm defined by

$$
\|u\|_{p(z)}=\inf \left\{\lambda>0: \int_{\Omega}\left(\frac{|u|}{\lambda}\right)^{p(z)} d z \leq 1\right\} .
$$

These spaces resemble the classical Lebesgue spaces. They are separable Banach spaces and they are reflexive if and only if $1<p_{-} \leq p_{+}<\infty$ (in fact they are uniformly convex) and simple and continuous functions with
compact support are dense in $L^{p(z)}(\Omega)$. If $p, q \in L_{1}^{\infty}(\Omega)$, then $L^{p(z)}(\Omega) \hookrightarrow$ $L^{q(z)}(\Omega)$ continuously if and only if $q(z) \leq p(z)$ for a.a. $z \in \Omega$.

Let $p, p^{\prime} \in L_{1}^{\infty}(\Omega)$ satisfy $\frac{1}{p(z)}+\frac{1}{p^{\prime}(z)}=1$ for a.a. $z \in \Omega$. Then $L^{p(z)}(\Omega)^{*}=$ $L^{p^{\prime}(z)}(\Omega)$ and we have the following Holder type inequality

$$
\int_{\Omega}|u v| d z \leq\left[\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right]\|u\|_{p(z)}\|v\|_{p^{\prime}(z)}
$$

for all $u \in L^{p(z)}(\Omega)$, all $v \in L^{p(z)}(\Omega)\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}=1\right)$. We can also define variable exponent Sobolev spaces by

$$
W^{1, p(z)}(\Omega)=\left\{u \in L^{p(z)}(\Omega):|D u| \in L^{p(z)}(\Omega)\right\}
$$

We equip $W^{1, p(z)}(\Omega)$ with the following norm

$$
\|u\|=\|u\|_{p(z)}+\||D u|\|_{p(z)}
$$

An equivalent norm of $W^{1, p(z)}(\Omega)$ is given by

$$
\|u\|^{\prime}=\inf \left\{\lambda>0: \int_{\Omega}\left[\left(\frac{|D u|}{\lambda}\right)^{p(z)}+\left(\frac{|u|}{\lambda}\right)^{p(z)}\right] d z \leq 1\right\}
$$

The space $W^{1, p(z)}(\Omega)$ is a separable Banach space and it is reflexive (in fact uniformly convex), if $1<p_{-} \leq p_{+}<\infty$. Also, we have $W^{1, p(z)}(\Omega) \hookrightarrow$ $W^{1, p_{-}}(\Omega)$ continuously.

We set

$$
p^{*}(z)=\left\{\begin{array}{ccc}
\frac{N p(z)}{N-p(z)} & \text { if } \quad p(z) \leq N \\
+\infty & \text { if } \quad N<p(z)
\end{array}\right.
$$

If $p, q \in C(\bar{\Omega}) \cap L_{1}^{\infty}(\Omega), p_{+}<N$ and $1 \leq q(z) \leq p^{*}(z)$ (resp. $1 \leq$ $\left.q(z)<p^{*}(z)\right)$ for all $z \in \bar{\Omega}$, then $W^{1, p(z)}(\Omega)$ is embedded continuously (resp. compactly) into $L^{q(z)}(\Omega)$.

Very useful for the analysis of these spaces and for the study of anisotropic boundary value problems, is the modular function of the space $L^{r(z)}(\Omega)$ with $r \in L_{1}^{\infty}(\Omega)$ defined by

$$
\rho_{r(z)}(u)=\int_{\Omega}|u|^{r(z)} d z
$$

There is a close relation between this function and the norm $\|\cdot\|_{p(z)}$.
Proposition 2.1. (a) For $u \in L^{r(z)}(\Omega), u \neq 0$, we have

$$
\|u\|_{r(z)} \leq \lambda \Longleftrightarrow \rho_{r(z)}\left(\frac{u}{\lambda}\right) \leq 1
$$

(b) $\|u\|_{r(z)}<1 \quad$ (resp. $\left.=1,>1\right) \Longleftrightarrow \rho_{r(z)}(u)<1 \quad($ resp $.=1,>1)$;
(c) $\|u\|_{r(z)}<1 \Longrightarrow\|u\|_{r(z)}^{r_{+}} \leq \rho_{r(z)}(u) \leq\|u\|_{r(z)}^{r_{-}}$and

$$
\|u\|_{r(z)}>1 \Longrightarrow\|u\|_{r(z)}^{r_{-}} \leq \rho_{r(z)}(u) \leq\|u\|_{r(z)}^{r_{+}}
$$

(d) $\left\|u_{n}\right\|_{r(z)} \rightarrow 0 \Longleftrightarrow \rho_{r(z)}\left(u_{n}\right) \rightarrow 0$;
(e) $\left\|u_{n}\right\|_{r(z)} \rightarrow+\infty \Longleftrightarrow \rho_{r(z)}\left(u_{n}\right) \rightarrow+\infty$.

A comprehensive treatment of variable exponent spaces can be found in the book of Diening-Harjulehto-Hästo-Rujicka [3]. Their use in the study of various anisotropic boundary value problems can be found in the book of Radulescu-Repovs [16].

Let $A_{r(z)}: W^{1, r(z)}(\Omega) \rightarrow W^{1, r(z)}(\Omega)^{*}$ be the nonlinear map defined by

$$
\left\langle A_{r(z)}(u), h\right\rangle=\int_{\Omega}|D u|^{r(z)-2}(D u, D h)_{\mathbb{R}^{N}} d z \text { for all } u, h \in W^{1, r(z)}(\Omega)
$$

The next proposition summarizes the main properties of this map (see, Gasinski-Papageorgiou ([6]).

Proposition 2.2. The map $A_{r(z)}: W^{1, r(z)}(\Omega) \rightarrow W^{1, r(z)}(\Omega)^{*}$ defined above is bounded (that is, maps bounded sets to bounded sets), continuous, monotone (hence maximal monotone, too), and of type $(S)_{+}$, that is, if for every sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, r(z)}(\Omega)$ such that $u_{n} \xrightarrow{w} u$ and

$$
\limsup _{n \rightarrow \infty}\left\langle A_{r(z)}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0
$$

one has

$$
u_{n} \rightarrow x \text { in } X \text { as } n \rightarrow \infty
$$

The anisotropic regularity theory (see Fan [4]) will lead us to the Banach space $C^{1}(\bar{\Omega})$. This is an ordered Banach space with a positive cone given by

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\}
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \bar{\Omega}\right\}
$$

If X is a Banach space and $\varphi \in C^{1}(X, \mathbb{R})$, then by K_{φ} we denote the critical set of φ, that is,

$$
K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\}
$$

We say that $\varphi(\cdot)$ satisfies the the Palais-Smale condition (the $P S$-condition, for short) if: every sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \in \mathbb{N}}$ is bounded and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow \infty$ admits a strongly convergent subsequence.

As we already mentioned in the Introduction, we will use a version of the symmetric mountain pass theorem due to Kajikiya [8]. More precisely, we will use the next proposition, which is a special case of Theorem 1 of Kajikiya [8].
Proposition 2.3. If X is a Banach space, $\varphi \in C^{1}(X, \mathbb{R})$ satisfies the satisfies the $P S$-condition, it is even, bounded below, $\varphi(0)=0$ and for every $n \in \mathbb{N}$ there exists an n-dimensional subspace $V_{n} \subseteq X$ and an $\rho_{n}>0$ such that

$$
\sup \left\{\varphi(u): u \in V_{n},\|u\|=\rho_{n}\right\}<0
$$

then there exists a sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq X$ such that

$$
\varphi\left(u_{n}\right) \leq 0 \text { for all } n \in \mathbb{N}, u_{n} \rightarrow 0 \text { in } X
$$

The hypotheses on the data of (1.1) are the following:
$\left(\mathbf{H}_{\mathbf{0}}\right): \xi \in L^{\infty}(\Omega), p, q \in C^{1}(\bar{\Omega})$ and $1<q_{-} \leq q(z) \leq q_{+}<p_{-} \leq p(z) \leq$ p_{+}。
$\left(\mathbf{H}_{\mathbf{1}}\right): f: \Omega \times[-\theta, \theta] \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) for a.a. $z \in \Omega,\left.f(z, \cdot)\right|_{[-\theta, \theta]}$ is odd and $f(z, x) x \geq 0$ for $a . a . z \in$ Ω, all $x \in[-\theta, \theta]$;
(ii) there exists $a_{\theta} \in L^{\infty}(\Omega)$ such that

$$
|f(z, x)| \leq a_{\theta}(z) \text { for } a . a . z \in \Omega, \text { all } x \in \mathbb{R} \text { with }|x| \leq \theta
$$

(iii)

$$
\lim _{x \rightarrow 0} \frac{f(z, x)}{|x|^{q_{-}-2} x}=+\infty \text { for a.a. } z \in \Omega
$$

Consider an even function $\beta \in C(\mathbb{R})$ such that:

$$
\begin{array}{r}
0 \leq \beta(x) \leq 1 \text { for all } x \in \mathbb{R},\left.\beta\right|_{[-\mu, \mu]} \equiv 1 \text { with } 0<\mu<\theta \\
\operatorname{supp} \beta \subseteq[-\theta, \theta]
\end{array}
$$

We introduce the following Carathéodory function defined on $\Omega \times \mathbb{R}$:

$$
\begin{equation*}
f_{0}(z, x):=\beta(x) f(z, x)+(1-\beta(x))|x|^{p(z)-2} x \tag{2.1}
\end{equation*}
$$

For a.a. $z \in \Omega$, the function $f_{0}(z,$.$) has the following properties$

$$
\begin{align*}
& f_{0}(z, .) \text { is odd, }\left.f_{0}(z, \cdot)\right|_{[-\mu, \mu]}=\left.f(z, \cdot)\right|_{[-\mu, \mu]} \text { and } \\
& f_{0}(z, x):=\xi(z)|x|^{p(z)-2} x \text { if }|x| \geq \theta . \tag{2.2}
\end{align*}
$$

In particular we have

$$
\begin{equation*}
f_{0}(z, \theta)=\xi(z) \theta^{p(z)-2} \text { and } f_{0}(z,-\theta)=-\xi(z) \theta^{p(z)-1} \text { for a.a. } z \in \Omega \tag{2.3}
\end{equation*}
$$

We can find $r \in C(\bar{\Omega})$ such that $p_{+}<r(z)<p^{*}(z)$ for all $z \in \bar{\Omega}$ and, for some $C_{1}>0$:

$$
\begin{equation*}
\left|f_{0}(z, x)\right| \leq C_{1}\left[1+|x|^{r(z)-1}\right] \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

(see hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)$ (ii) and (2.1)). On account of hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)$ (iii) and (2.4)) we see that given $\eta>0$, we can find $C_{2}=C_{2}(\eta)>0$ such that

$$
\begin{equation*}
f_{0}(z, x) x \geq \eta|x|^{q_{-}}-C_{2}|x|^{r(z)} \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

We set

$$
k(z, x)=\eta|x|^{q_{-}-2} x-C_{2}|x|^{r(z)-2} x \text { for all }(z, x) \in \bar{\Omega} \times \mathbb{R}
$$

Evidently $k \in C(\bar{\Omega} \times \mathbb{R})$.

3. Nodal solutions

Motivated by the unilateral growth estimate (2.5), we consider the following anisotropic Neumann problem

$$
\left\{\begin{array}{l}
-\Delta_{p(z)} u(z)-\Delta_{q(z)} u(z)+|\xi(z)||u(z)|^{p(z)-2} u(z) \tag{3.1}\\
=k(z, u(z)) \text { in } \Omega \\
\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Proposition 3.1. If hypotheses $\left(\mathbf{H}_{\mathbf{0}}\right)$ hold, then problem (3.1) has a unique positive solution $\bar{u} \in$ int C_{+}and since (3.1) is odd, $\bar{v}=-\bar{u} \in-i n t C_{+}$is the unique negative solution of (3.1).

Proof. We introduce the function $\widehat{k}(z, x)$ defined by

$$
\widehat{k}(z, x)= \begin{cases}k(z,-\theta)-\theta^{p(z)-1} & \text { if } \quad x<-\theta \tag{3.2}\\ k(z, x)+|x|^{p(z)-2} x & \text { if }-\theta<x<\theta \\ k(z, \theta)+\theta^{p(z)-1} & \text { if } \theta<x\end{cases}
$$

Evidently $\widehat{k} \in C(\bar{\Omega} \times \mathbb{R})$. We set $\widehat{K}(z, x)=\int_{0}^{x} \widehat{k}(z, s) d s$ and consider the C^{1}-functional $\widehat{\varphi}_{+}: W^{1, p(z)}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
& \widehat{\varphi}_{+}(u)=\int_{\Omega} \frac{1}{p(z)}|D u|^{p(z)} d z+\int_{\Omega} \frac{1}{q(z)}|D u|^{q(z)} d z \\
& +\int_{\Omega} \frac{|\xi(z)|+1}{p(z)}|u(z)|^{p(z)} d z-\int_{\Omega} \widehat{K}\left(z, u^{+}\right) d z
\end{aligned}
$$

for all $u \in W^{1, p(z)}(\Omega)$. From (2.5) it is clear that $\widehat{\varphi}_{+}(\cdot)$ is coercive. Also, using the compact embedding of $W^{1, p(z)}(\Omega)$ into $L^{p(z)}(\Omega)$, we see that $\widehat{\varphi}_{+}(\cdot)$ is sequentially weakly lower semicontinuous. So, by Weierstrass-Tonelli theorem, we can find $\bar{u} \in W^{1, p(z)}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{+}(\bar{u})=\inf \left\{\widehat{\varphi}_{+}(u): u \in W^{1, p(z)}(\Omega)\right\} \tag{3.3}
\end{equation*}
$$

Let $u \in \operatorname{int} C_{+}$and $t \in(0,1)$ small such that $t u(z) \leq \theta$ for all $z \in \bar{\Omega}$. Using (3.2) we have

$$
\begin{align*}
& \widehat{\varphi}_{+}(t u) \leq \frac{t^{p_{-}}}{p_{-}} \rho_{p(z)}(D u)+\frac{t^{q_{-}}}{q_{-}} \rho_{q(z)}(D u) \\
& +\frac{t^{p_{-}}}{p_{-}}\left[\|\xi\|_{\infty}+1\right] \rho_{p(z)}(u)-\frac{\eta}{q_{-}} t^{q_{-}}\|u\|_{q_{-}}^{q_{-}}+\frac{C_{2} t^{r_{-}}}{q_{-}} \rho_{r(z)}(u) \\
& \leq \frac{t^{p_{-}}}{p_{-}} \max \left\{\|u\|^{p_{-}},\|u\|^{p_{+}}\right\}+\frac{t^{q_{-}}}{q_{-}} \max \left\{\|u\|^{-},\|u\|^{q_{+}}\right\} \\
& +\frac{t^{p_{-}}}{p_{-}} C_{3} \max \left\{\|u\|^{p_{-}},\|u\|^{p_{+}}\right\}-\frac{\eta t^{q_{-}}}{q_{-}}\|u\|_{q_{-}}^{q_{-}} \tag{3.4}\\
& +\frac{t^{p_{-}}}{p_{-}} C_{3} \max \left\{\|u\|^{p_{-}},\|u\|^{p_{+}}\right\}-\frac{r t^{q_{-}}}{q_{-}}\|u\|_{q_{-}}^{q_{-}} \\
& \quad \text { for some } C_{3}, C_{4}>0
\end{align*}
$$

(see Proposition 2.1). In deriving the previous estimate, we have used also the continuous (in fact compact) embeddings $W^{1, p(z)}(\Omega) \hookrightarrow L^{p(z)}(\Omega)$ and $W^{1, p(z)}(\Omega) \hookrightarrow L^{r(z)}(\Omega)$.

Since $q_{-}<p_{-}<r_{-}$, choosing $\eta>0$ big (see hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)(i i i)$) it follows from (3.4) that by taking $t \in(0,1)$ even smaller if necessary, we have

$$
\widehat{\varphi}_{+}(t u)<0,
$$

hence

$$
\widehat{\varphi}_{+}(\bar{u})<0=\widehat{\varphi}_{+}(0)(\text { see }(3.3)),
$$

therefore

$$
\bar{u} \neq 0
$$

From (3.3) we have

$$
\widehat{\varphi}_{+}^{\prime}(\bar{u})=0,
$$

hence

$$
\begin{gather*}
\left\langle A_{p(z)}(\bar{u}), h\right\rangle+\left\langle A_{q(z)}(\bar{u}), h\right\rangle+\int_{\Omega}[|\xi(z)|+1]|\bar{u}|^{p(z)-2} \bar{u} h d z \\
=\int_{\Omega} \widehat{k}\left(z, \bar{u}^{+}\right) h d z \text { for all } h \in W^{1, p(z)}(\Omega) \tag{3.5}
\end{gather*}
$$

In (3.5) we choose $h=-\bar{u}^{-} \in W^{1, p(z)}(\Omega)$. Then

$$
\rho_{p(z)}\left(D u^{-}\right)+\rho_{q(z)}\left(D u^{-}\right)+\int_{\Omega}[|\xi(z)|+1]\left(\bar{u}^{-}\right)^{p(z)} d z=0
$$

(see (3.2)), hence

$$
\rho_{p(z)}\left(D u^{-}\right) \leq 0
$$

therefore

$$
\bar{u} \geq 0, \bar{u} \neq 0
$$

Also in (3.5) we choose $h=[\bar{u}-\theta]^{+} \in W^{1, p(z)}(\Omega)$. We obtain

$$
\begin{aligned}
& \left\langle A_{p(z)}(\bar{u}),[\bar{u}-\theta]^{+}\right\rangle+\left\langle A_{q(z)}(\bar{u}),[\bar{u}-\theta]^{+}\right\rangle \\
& +\int_{\Omega}[|\xi(z)|+1]|\bar{u}|^{p(z)-1}(\bar{u}-\theta)^{+} d z \\
= & \int_{\Omega}\left[k(z, \theta)+\theta^{p(z)-1}\right][\bar{u}-\theta]^{+} d z(\text { see }(3.2)) \\
= & \int_{\Omega}\left[\eta \theta^{q--1}-C_{2} \theta^{r(z)-1}+\theta^{p(z)-1}\right][\bar{u}-\theta]^{+} d z \\
\leq & \int_{\Omega}\left[f_{0}(z, \theta)+\theta^{p(z)-1}\right][\bar{u}-\theta]^{+} d z(\text { see }(2.5)) \\
\leq & \int_{\Omega}[|\xi(z)|+1] \theta^{p(z)-1}(\bar{u}-\theta)^{+} d z(\text { see }(2.3)) \\
& =\left\langle A_{p(z)}(\theta),[\bar{u}-\theta]^{+}\right\rangle+\left\langle A \theta,[\bar{u}-\theta]^{+}\right\rangle \\
+ & \int_{\Omega}[|\xi(z)|+1] \theta^{p(z)-1}(\bar{u}-\theta)^{+} d z(\text { see }(2.3))
\end{aligned}
$$

hence

$$
\bar{u} \leq \theta
$$

So, we have proved that

$$
\begin{equation*}
\bar{u} \in[0, \theta], \bar{u} \neq 0 \tag{3.6}
\end{equation*}
$$

From (3.6), (3.2) and (3.5) it follows
\bar{u} is a positive solution of (3.1).
From Proposition 3.1 of Gasinski-Papageorgiou [6], we have that $\bar{u} \in L^{\infty}(\Omega)$. Then, Theorem 1.3 of Fan [4] (see also Lieberman [10]), we have that $\bar{u} \in C_{+} \backslash\{0\}$. Finally the anisotropic maximum principle of Zhang [19], implies that

$$
\bar{u} \in i n t C_{+} .
$$

Next we show that this positive solution is unique. To this end we consider the integral functional $j: L^{1}(\Omega) \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ defined by

$$
j(u)= \begin{cases}\int_{\Omega \frac{1}{p(z)}\left|D u^{\frac{1}{q_{-}}}\right| d z+\int_{\Omega^{\prime}} \frac{1}{q(z)}\left|D u^{\frac{1}{q_{-}}}\right| d z} \begin{array}{ll}
\text { if } u \geq 0 \text { and } u^{\frac{1}{q_{-}}} \\
+\int_{\Omega} \frac{|\xi(z)|}{p(z)}\left(u^{\frac{1}{q_{-}}}\right) d z & \in W^{1, p(z)}(\Omega) \\
+\infty &
\end{array} \\
\text { otherwise }\end{cases}
$$

From Theorem 2.2 of Takac-Giacomoni [17], we know that the functional $j(\cdot)$ is convex.

Suppose that $\widetilde{u} \in W^{1, p(z)}(\Omega)$ is another solution of (3.1). Again we have $\widetilde{u} \in \operatorname{int} C_{+}$.

On account of Proposition 4.1.22, p.274, of Papageorgiou-Radulescu-Repovs [14], we have

$$
\frac{\bar{u}}{\widetilde{u}}, \frac{\widetilde{u}}{\bar{u}} \in L^{\infty}(\Omega)
$$

From Theorem 2.5 (and its proofs) of Takac-Giacomoni [17], we have

$$
\begin{aligned}
& j^{\prime}\left(\bar{u}^{q_{-}}\right)\left(\bar{u}^{q_{-}}-\widetilde{u}^{q_{-}}\right) \\
& =\int_{\Omega} \frac{-\Delta_{p(z)} \bar{u}(z)-\Delta_{q(z)} \bar{u}(z)+|\xi(z)||\bar{u}(z)|^{p(z)-1}}{\bar{u}^{q_{-}-1}}\left(\bar{u}^{q_{-}}-\widetilde{u}^{q_{-}}\right) d z \\
& j^{\prime}\left(\widetilde{u}^{q_{-}}\right)\left(\bar{u}^{q_{-}}-\widetilde{u}^{q_{-}}\right) \\
& =\int_{\Omega} \frac{-\Delta_{p(z)} \widetilde{u}(z)-\Delta_{q(z)} \widetilde{u}(z)+|\xi(z)||\widetilde{u}(z)|^{p(z)-1}}{\widetilde{u}^{q_{-}-1}}\left(\bar{u}^{q_{-}}-\widetilde{u}^{q_{-}}\right) d z
\end{aligned}
$$

The convexity of $j(\cdot)$ implies the monotonicity of $j^{\prime}(\cdot)$ and so we have

$$
0 \leq \int_{\Omega}-C_{2}\left[\bar{u}^{r(z)-q_{-}}-\widetilde{u}^{r(z)-q_{-}}\right]\left(\bar{u}^{q_{-}}-\widetilde{u}^{q_{-}}\right) d z \leq 0
$$

(since $q_{-}<p_{-}<r_{-}$), hence

$$
\bar{u}=\widetilde{u}
$$

This proves the uniqueness of positive solution $\bar{u} \in \operatorname{int} C_{+}$.
Since problem (3.1) is odd, $\bar{v}=-\bar{u} \in-i n t C_{+}$is the unique negative solution of (3.1).

We define

$$
\begin{gathered}
\mathcal{S}_{+}=\{u: u \text { is a positive solutions of (1.1) in }[0, \theta]\} \\
\mathcal{S}_{-}=\{v: v \text { is a negative solution of (1.1) in }[-\theta, 0]\}
\end{gathered}
$$

From Papageorgiou-Radulescu-Repovs [13] (see the proof of Proposition 7)

$$
\mathcal{S}_{+} \text {is downward directed }
$$

(that is, if $u_{1}, u_{2} \in \mathcal{S}_{+}$, then we can find $u \in \mathcal{S}_{+}$such that $u \leq u_{1}$ and $u \leq u_{2}$) and

$$
\mathcal{S}_{-} \text {is upward directed }
$$

(that is, if $v_{1}, v_{2} \in \mathcal{S}_{-}$, then we can find $v \in \mathcal{S}_{-}$such that $v_{1} \leq v$ and $v_{2} \leq v$).

Reasoning as in the first part of proof of Proposition 3.1, with $k(z, x)$ replaced by $f_{0}(z, x)$, we obtain the following result.

Proposition 3.2. If hypotheses $\left(\mathbf{H}_{\mathbf{0}}\right),\left(\mathbf{H}_{\mathbf{1}}\right)$ hold, then

$$
\varnothing \neq \mathcal{S}_{+} \subseteq[0, \theta] \cap i n t C_{+} \text {and } \varnothing \neq \mathcal{S}_{-} \subseteq[-\theta, 0] \cap\left(-i n t C_{+}\right)
$$

In the next proposition, we produce a lower bound for the elements of \mathcal{S}_{+} and an upper bound for the elements of \mathcal{S}_{-}.

Proposition 3.3. If hypotheses $\left(\mathbf{H}_{\mathbf{0}}\right),\left(\mathbf{H}_{\mathbf{1}}\right)$ hold, then

$$
\bar{u} \leq u \text { for all } u \in \mathcal{S}_{+} \text {and } v \leq \bar{v} \text { for all } v \in \mathcal{S}_{-} .
$$

Proof. Let $u \in \mathcal{S}_{+} \subseteq i n t C_{+}$. We introduce the following Carathéodory function

$$
\tau_{+}(z, x)=\left\{\begin{array}{lll}
\widehat{k}\left(z, x^{+}\right) & \text {if } \quad x \leq u(z) \tag{3.7}\\
\widehat{k}(z, u(z)) & \text { if } \quad u(z)<x
\end{array}\right.
$$

We set $T_{+}(z, x)=\int_{0}^{x} \tau_{+}(z, s) d s$ and consider the the $C^{1}-$ functional σ_{+}: $W^{1, p(z)}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\sigma_{+}(u) & =\int_{\Omega} \frac{1}{p(z)}|D u|^{p(z)} d z+\int_{\Omega} \frac{1}{q(z)}|D u|^{q(z)} d z \\
& +\int_{\Omega} \frac{|\xi(z)|+1}{p(z)}|u(z)|^{p(z)} d z-\int_{\Omega} T_{+}(z, u) d z
\end{aligned}
$$

for all $u \in W^{1, p(z)}(\Omega)$. From (3.7) it is clear that $\sigma_{+}(\cdot)$ is coercive. Also it is sequentially weakly lower semicontinuous. So, we can find $\widetilde{u} \in W^{1, p(z)}(\Omega)$ such that

$$
\sigma_{+}(\widetilde{u})=\inf \left\{\sigma_{+}(u): u \in W^{1, p(z)}(\Omega)\right\}<0=\sigma_{+}(0)
$$

(see the proof of Proposition 3.1). Hence

$$
\widetilde{u} \neq 0
$$

We have

$$
\sigma_{+}^{\prime}(\widetilde{u})=0
$$

hence

$$
\begin{gather*}
\left\langle A_{p(z)}(\widetilde{u}), h\right\rangle+\left\langle A_{q(z)}(\widetilde{u}), h\right\rangle+\int_{\Omega}[|\xi(z)|+1]|\widetilde{u}|^{p(z)-2} \widetilde{u} h d z \\
=\int_{\Omega} \sigma_{+}(z, \widetilde{u}) h d z \text { for all } h \in W^{1, p(z)}(\Omega) \tag{3.8}
\end{gather*}
$$

In (3.8) we choose $h=-\widetilde{u}^{-} \in W^{1, p(z)}(\Omega)$ and obtain

$$
\widetilde{u} \geq 0, \widetilde{u} \neq 0
$$

Next in (3.8) we choose $h=[\widetilde{u}-u]^{+} \in W^{1, p(z)}(\Omega)$. Then

$$
\begin{align*}
& \left\langle A_{p(z)}(\widetilde{u}),[\widetilde{u}-u]^{+}\right\rangle+\left\langle A_{q(z)}(\widetilde{u}),[\widetilde{u}-u]^{+}\right\rangle \\
& +\int_{\Omega}[|\xi(z)|+1]|\widetilde{u}|^{p(z)-1}(\widetilde{u}-u)^{+} d z \\
& =\int_{\Omega} \widehat{k}(z, u)(\widetilde{u}-u)^{+} d z(\text { see }(3.7)) \\
& =\int_{\Omega}\left(k(z, u)+u^{p(z)-1}\right)(\widetilde{u}-u)^{+} d z\left(\text { see }(3.2) \text { and recall that } u \in \mathcal{S}_{+}\right) \\
& =\int_{\Omega}\left(\beta(u) f(z, u)+u^{p(z)-1}\right)(\widetilde{u}-u)^{+} d z(\text { see }(2.5), \quad(2.1), \quad(2.2)) \tag{2.2}\\
& \leq \int_{\Omega}\left[f(z, u)+u^{p(z)-1}\right](\widetilde{u}-u)^{+} d z\left(\text { see hypothesis }\left(\mathbf{H}_{1}\right)(i)\right) \\
& =\left\langle A_{p(z)}(u),(\widetilde{u}-u)^{+}\right\rangle+\left\langle A_{q(z)}(u),(\widetilde{u}-u)^{+}\right\rangle \\
& +\int_{\Omega}[\xi(z)+1] u^{p(z)-1}(\widetilde{u}-u)^{+} d z\left(\text { since } u \in \mathcal{S}_{+}\right) \\
& \leq\left\langle A_{p(z)}(u),(\widetilde{u}-u)^{+}\right\rangle+\left\langle A_{q(z)}(u),(\widetilde{u}-u)^{+}\right\rangle \\
& +\int_{\Omega}[|\xi(z)|+1] u^{p(z)-1}(\widetilde{u}-u)^{+} d z
\end{align*}
$$

hence

$$
\widetilde{u} \leq u
$$

So, we have proved that

$$
\widetilde{u} \in[0, u], \widetilde{u} \neq 0
$$

hence

$$
\widetilde{u}=\bar{u} \in i n t C_{+}(\text {see }(3.7),(3.2) \text { and Proposition 3.1) }
$$

therefore

$$
\bar{u} \leq u \text { for all } u \in \mathcal{S}_{+}
$$

Similarly we show that

$$
v \leq \bar{v} \text { for all } v \in \mathcal{S}_{-}
$$

Using these bounds we can show the existence of extremal constant sign solutions, namely that \mathcal{S}_{+}has a smallest element $u_{*} \in \operatorname{int} C_{+}$(hence $u_{*} \leq u$ for all $u \in \mathcal{S}_{+}$) and \mathcal{S}_{-}has a biggest element $v_{*} \in-i n t C_{+}$(hence $v \leq v_{*}$ for all $v \in \mathcal{S}_{-}$). These extremal solutions will lead to nodal ones.

Proposition 3.4. If hypotheses $\left(\mathbf{H}_{\mathbf{0}}\right),\left(\mathbf{H}_{\mathbf{1}}\right)$ hold, then there exist extremal constant sign solutions of (1.1)

$$
u_{*} \in i n t C_{+} \text {and } v_{*} \in-i n t C_{+}
$$

Proof. Recall that the set \mathcal{S}_{+}is downward directed. So, according to Lemma 3.10 , p. 178, of Hu-Papageorgiou [7], we can find $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{S}_{+}$decreasing such that

$$
\inf _{n \geq 1} u_{n}=\inf \mathcal{S}_{+}
$$

We have

$$
\begin{align*}
& \left\langle A_{p(z)}\left(u_{n}\right), h\right\rangle+\left\langle A_{q(z)}\left(u_{n}\right), h\right\rangle+\int_{\Omega} \xi(z) u_{n}^{p(z)-1} h d z \tag{3.9}\\
& =\int_{\Omega} f\left(z, u_{n}\right) h d z \text { for all } h \in W^{1, p(z)}(\Omega), \text { all } n \in \mathbb{N}, \\
& \quad \bar{u} \leq u_{n} \leq u_{1} \text { for all } n \in \mathbb{N} \text { (see Proposition 3.3). } \tag{3.10}
\end{align*}
$$

Choosing $h=u_{n} \in W^{1, p(z)}(\Omega)$ in (3.9) and using (3.10) and hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)($ ii), we infer that

$$
\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq W^{1, p(z)}(\Omega) \text { is bounded. }
$$

So, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u_{*} \text { in } W^{1, p(z)}(\Omega) \text { and } u_{n} \rightarrow u_{*} \text { in } L^{p(z)}(\Omega) \text { as } \mathrm{n} \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

In (3.9) we choose $h=u_{n}-u_{*} \in W^{1, p(z)}(\Omega)$, pass to the limit as $\mathrm{n} \rightarrow \infty$ and use (3.11). We obtain

$$
\lim _{n \rightarrow \infty}\left\langle A_{p(z)}\left(u_{n}\right), u_{n}-u_{*}\right\rangle+\left\langle A_{q(z)}\left(u_{n}\right), u_{n}-u_{*}\right\rangle=0,
$$

hence

$$
\limsup _{n \rightarrow \infty}\left\langle A_{p(z)}\left(u_{n}\right), u_{n}-u_{*}\right\rangle+\left\langle A_{q(z)}\left(u_{*}\right), u_{n}-u_{*}\right\rangle \leq 0,
$$

from the monotonicity of $A_{q(z)}(\cdot)$, therefore

$$
\limsup _{n \rightarrow \infty}\left\langle A_{p(z)}\left(u_{n}\right), u_{n}-u_{*}\right\rangle \leq 0 .
$$

We conclude that

$$
\begin{equation*}
u_{n} \rightarrow u_{*} \text { in } W^{1, p(z)}(\Omega), \bar{u} \leq u_{*} \tag{3.12}
\end{equation*}
$$

(see Proposition 2.2 and (3.10)). Passing to the limit as $\mathrm{n} \rightarrow \infty$ in (3.9) and using (3.12) we conclude that

$$
u_{*} \in \mathcal{S}_{+} \text {and } u_{*}=\inf \mathcal{S}_{+}
$$

Similarly we produce the biggest negative solution

$$
v_{*} \in \mathcal{S}_{-} \text {and } v_{*}=\sup \mathcal{S}_{-} .
$$

Now let $\eta_{0}>\|\xi\|_{\infty}$ and consider the following Carathéodory function

$$
\tau_{0}(z, x)=\left\{\begin{array}{lll}
f_{0}\left(z, v_{*}(z)\right)+\eta_{0}\left|v_{*}(z)\right|^{p(z)-2} v_{*}(z) & \text { if } x<v_{*}(z) \tag{3.13}\\
f_{0}(z, x)+\eta_{0}|x|^{p(z)-2} x & \text { if } \quad v_{*}(z) \leq x \leq v_{*}(z) \\
f_{0}\left(z, u_{*}(z)\right)+\eta_{0} u_{*}(z)^{p(z)-1} & \text { if } \quad u_{*}(z)<x
\end{array}\right.
$$

Let

$$
T_{0}(z, x)=\int_{0}^{x} \tau_{0}(z, s) d s
$$

and consider the the C^{1}-functional $\varphi_{0}: W^{1, p(z)}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\varphi_{0}(u) & =\int_{\Omega} \frac{1}{p(z)}|D u|^{p(z)} d z+\int_{\Omega} \frac{1}{q(z)}|D u|^{q(z)} d z \\
& +\int_{\Omega} \frac{\xi(z)+\eta_{0}}{p(z)}|u(z)|^{p(z)} d z-\int_{\Omega} T_{0}(z, u) d z \text { for all } u \in W^{1, p(z)}(\Omega)
\end{aligned}
$$

The functional $\varphi_{0}(\cdot)$ is even (see hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)(i)$) and on account of (3.13), we have that $\varphi_{0}(\cdot)$ is coercive (recall that $\eta_{0}>\|\xi\|_{\infty}$), hence bounded below and satisfies the $P S$-condition (see Proposition 5.1.15, p. 369, of Papageorgiou-Radulescu-Repovs [14]).

Let $V \subseteq W^{1, p(z)}(\Omega)$ be a finite dimensional subspace
Proposition 3.5. If hypotheses $\left(\mathbf{H}_{\mathbf{0}}\right),\left(\mathbf{H}_{\mathbf{1}}\right)$ hold, then there exist $\rho_{V}>0$ such that

$$
\sup \left\{\varphi_{0}(u): u \in V,\|u\|=\rho_{V}\right\}<0 .
$$

Proof. Let $m_{*}=\min \left\{\min _{\bar{\Omega}} u_{*}, \min _{\bar{\Omega}}\left(-v_{*}\right)\right\}>0$ (recall $u_{*} \in \operatorname{int} C_{+}$and $\left.v_{*} \in-i n t C_{+}\right)$. On account of hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)(i i i)$, given any $\eta>0$, we can find $\delta=\delta(\eta) \in\left(0, m_{*}\right)$ such that

$$
\begin{equation*}
F(z, x) \geq \frac{\eta}{q_{-}}|x|^{q_{-}} \text {for a.a. } z \in \Omega, \text { all }|x| \leq \delta . \tag{3.14}
\end{equation*}
$$

Since V is finite dimensional, all norms are equivalent. Therefore we can find $\rho_{V} \in(0,1)$ such that

$$
\begin{equation*}
u \in V,\|u\| \leq \rho_{V} \Longrightarrow|u(z)| \leq \delta \text { for a.a. } z \in \Omega \tag{3.15}
\end{equation*}
$$

Therefore if $u \in V$ with $\|u\|=\rho_{V}$, then in view of (3.13), (3.14), (3.15), hypothesis $\left(\mathbf{H}_{\mathbf{1}}\right)(i)$ and Proposition 2.1, we have

$$
\begin{aligned}
\varphi_{0}(u) & \leq \frac{1}{p_{-}}\|u\|^{p_{-}}+\frac{1}{q_{-}}\left[\|u\|^{q_{-}}-\eta\|u\|_{q_{-}}^{q_{-}}\right] \\
& \leq \frac{1}{p_{-}}\|u\|^{p_{-}}+\frac{1}{q_{-}}\left[\|u\|^{q_{-}}-\eta C_{5}\|u\|^{q_{-}}\right] \text {for some } C_{5}>0 .
\end{aligned}
$$

(recall that on V all the norms are equivalent).
Choosing $\eta>\frac{1}{C_{5}}>0$, it follows that

$$
\varphi_{0}(u) \leq \frac{1}{p_{+}} \rho_{V}^{p_{-}}-C_{6} \rho_{V}^{q_{-}} \text {for some } C_{6}>0 .
$$

Since $\rho_{V} \in(0,1)$ and $q_{-}<p_{-}$, choosing $\rho_{V} \in(0,1)$ even smaller if necessary we conclude that

$$
\sup \left\{\varphi_{0}(u): u \in V,\|u\|=\rho_{V}\right\}<0 .
$$

Now we are ready for the main result of this work.
Theorem 3.6. If hypotheses $\left(\mathbf{H}_{\mathbf{0}}\right),\left(\mathbf{H}_{\mathbf{1}}\right)$ hold, then there exists a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq C^{1}(\bar{\Omega})$ of nodal solutions of (1.1) such that

$$
u_{n} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty .
$$

Proof. We use Proposition 2.3 and have a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subseteq K_{\varphi_{0}}$ such that

$$
\begin{equation*}
u_{n} \rightarrow 0 \text { in } W^{1, p(z)}(\Omega) \tag{3.16}
\end{equation*}
$$

Using (3.13) and the anisotropic regularity theory (see Fan [4]) we obtain that

$$
K_{\varphi_{0}} \subseteq\left[v_{*}, u_{*}\right] \cap C^{1}(\bar{\Omega}),
$$

therefore $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ are solutions of (1.1) when f is replaced by f_{0}.
Proposition 3.1 of Gasinski-Papageorgiou [6], implies that we can find $C_{7}>0$ such that

$$
\left\|u_{n}\right\|_{\infty}<C_{7} \text { for all } n \in \mathbb{N} .
$$

Then Theorem 1.3 of Fan [4] (see also Lieberman [10]) implies that we can find $\alpha \in(0,1)$ and $C_{8}>0$ such that

$$
\begin{equation*}
u_{n} \in C^{1, \alpha}(\bar{\Omega}),\left\|u_{n}\right\|_{C^{1, \alpha}(\bar{\Omega})}<C_{8} \text { for all } n \in \mathbb{N} . \tag{3.17}
\end{equation*}
$$

Then from (3.16), (3.17) and the compact embedding of $C^{1, \alpha}(\bar{\Omega})$ into $C^{1}(\bar{\Omega})$, we have

$$
\begin{equation*}
u_{n} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty . \tag{3.18}
\end{equation*}
$$

Let

$$
\widehat{\mu}=\min \left\{\mu, \min _{\bar{\Omega}} u_{*}, \min _{\bar{\Omega}}\left(-v_{*}\right)\right\}>0 .
$$

From (3.18) it follows that

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \geq n_{0}} \subseteq[-\widehat{\mu}, \widehat{\mu}] \text { for some } n_{0} \in \mathbb{N} \tag{3.19}
\end{equation*}
$$

Then from (3.19), (2.2) and the extremality of the solutions u_{*} and v_{*} we conclude that $\left\{u_{n}\right\}_{n \geq n_{0}}$ are nodal solutions of (1.1) and

$$
u_{n} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty .
$$

Acknowledgments. The third author acknowledges the partial support by the Portuguese Foundation for Science and Technology (FCT), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2019(CIDMA).

References

[1] I. Andrei. Existence of solutions for a p(x)-laplacian non-homogeneous equation. Electron J. Differential Eqations, 2009:1-12, 2009.
[2] M. M. Boureanu and F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nontrivial boundary conditions. Nonlinear Differential Equations App., 19:235-251, 2012.
[3] L. Diening, P. Harjulehto, P. Hästo, and M. Ruzicka. Lebesgue and Sobolev spaces with variable exponent. Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2017.
[4] X. Fan, $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form. J. Differential Equations, 235:397-417, 2007.
[5] X. Fan, and Q. Zhang, Existence of solutions for $p(x)$ Laplacian Dirichlet problem. Nonlinear Anal., 52:1843-1852, 2003.
[6] L. Gasinski, and N. S. Papageorgiou. Anisotropic nonlinear Neumann problems. Calc. Var., 41:323-354, 2011.
[7] S. Hu, and N. S. Papageorgiou. Handbook of Multivalued Analysis - Part I:Theory. Kluwer Academic Publishers, Doldrecht, The Netherland, 1997.
[8] R. Kajikya.A critical point theorem related to the symmetric mountain pass theorem and its applications to elliptic equations. J. Functional Anal., 225: 352-370, 2005.
[9] S. Liang, and J. Zhang.Infinitely many solutions for the $p(x)$-Laplacian operator with nolinear boundary conditions. Annali Mat. Pura Appl., 192:1-16, 2013.
[10] G. Lieberman.The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations. Comm. Partial Differential Equations., 16: 311361, 1991.
[11] Z. Li, and Z. Q. Wang. Schrödinger equations with concave and convex nonlinearities Z. Angew. Math. Phys., 56: 609-629, 2005.
[12] N. S. Papageorgiou and V. D. Radulescu. Infinitely many nodal solutions for nonlinear nonhomogeneous Robin problems. Adv. Nonlinear Studies, 16:287-299, 2016.
[13] N. S. Papageorgiou, V. D. Radulescu, and D. Repovs. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discr. Cont. Dyn. Systems, 37:2589-2618, 2017.
[14] N. S. Papageorgiou, V. D. Radulescu, and D. Repovs. Nonlinear Analysis - Theory and Methods. Springer, Switzerland, 2019.
[15] N. S. Papageorgiou, C. Vetro, and F. Vetro. Multiple nodal solutions for semilinear Robin problems with indefinite linear part and concave terms. Topol. Methods Nonlinear Anal., 50:269-286, 2017.
[16] V. D. Radulescu and D. Repovs. Partial differential equations with variable exponents: Variational methods and qualitative analysis. 2015.
[17] P. Takac and J. Giacomoni. A $p(x)$ - Laplacian extension of the Diaz-Saa inequality and some applications. Proc. Royal Soc. Edinburgh, 2019, DOI: 10.1017/prm.2018.91
[18] Z. Q. Wang. Nonlinear boundary value problems with concave nonlinearities near the origin. Nonlinear Diff. Equations Appl., 8:43-58, 2001.
[19] Q. Zhang. A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions. J. Math. Anal. Appl., 312:24-32, 2005.
(S. Aizicovici) Department of Mathematics, Ohio University, Athens, OH 45701, USA

Email address: aizicovs@ohio.edu
(N. S. Papageorgiou) Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

Email address: npapg@math.ntua.gr
(V. Staicu) CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Email address: vasile@ua.pt

[^0]: 2010 Mathematics Subject Classification. 35B51, 35J60, 35J92.
 Key words and phrases. Variable exponent space, extremal constant sign solutions, nodal solutions, truncation, regularity theory, maximum principle.

