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Abstract. We consider a nonlinear logistic equation of superdiffusive type driven by a nonhomogeneous
differential operator and a Robin boundary condition. We prove a multiplicity result for positive solutions
which is global with respect to the parameter λ > 0 (bifurcation-type theorem). We also demonstrate the
existence of a minimal positive solution u∗

λ
and determine the monotonicity and continuity properties of

the minimal solution map λ → u∗
λ
.
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1. INTRODUCTION

Let Ω ⊂ RN be a bounded domain with a C2− boundary ∂Ω. In this paper, we study the
following parametric nonlinear nonhomogeneous Robin problem{

−diva(Du(z))+ξ (z)u(z)p−1 = λg(z,u(z))− f (z,u(z)) in Ω,
∂u
∂na

+β (z)up−1 = 0 on ∂Ω, λ > 0, u≥ 0, 1 < p < ∞.
(Pλ )

The map a : RN → RN involved in the definition of the differential operator is continuous,
monotone (thus maximal monotone too), and satisfies certain other regularity and growth condi-
tions, listed in hypotheses (H0) (see Section 2). These hypotheses come from the global (that is,
up to the boundary) regularity theory of Lieberman [1] and are broad enough to incorporate in
our framework many differential operators of interest, such as the p−Laplacian and the (p,q)-
Laplacian (that is, the sum of a p−Laplacian and of a q-Laplacian, 1 < q < p). There is also
a potential term ξ (z)u(z)p−1 with ξ ∈ L∞ (Ω) , ξ (z) ≥ 0 for a.a. z ∈ Ω. In the reaction (right
hand side of (Pλ )), λ > 0 is a parameter and g(z,x) , f (z,x) are both Carathéodory functions
(that is, for all x∈R , z→ f (z,x) and z→ g(z,x) are measurable, and for a.a. z∈Ω, x→ f (z,x)
and x→ g(z,x) are continuous). Both g(z, ·) and f (z, ·) exhibit a (p−1)-superlinear growth as
x→ ∞ with f (z, ·) growing faster. So, the reaction of the problem has a structure of a logistic
reaction of superdiffussive type. Logistic equations arise in many physical applications, such as
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mathematical biology where they describe the dynamics of biological populations whose mo-
bility is density dependent. For such applications, we refer to the work of Gurtin-MacCamy
[2].

In the boundary condition, ∂u
∂na

denotes the conormal derivative of u corresponding to the map
a(.). If u ∈C1 (Ω) , then

∂u
∂na

= (a(Du) ,n)RN

where n(.) is the outward unit normal on ∂Ω. In general, the boundary condition is interpreted
using the nonlinear Green theorem (see [3, p.34]). The boundary coefficient β satisfies β ∈
C0,α (∂Ω) with 0 < α < 1, and β (z)≥ 0 for all z ∈ ∂Ω.

Using variational tools based on the critical point theory together with truncation and com-
parison techniques, we prove a multiplicity theorem for positive solutions, which is global in
the parameter λ > 0 (a bifurcation type result for large vales of the parameter). We also show
that for every admissible parameter λ > 0, problem (Pλ ) has a smallest positive solution u∗

λ
and

determine the monotonicity and continuity properties of the map λ → u∗
λ
.

To the best of our knowledge, this is the first global multiplicity result for positive solutions
of nonlinear, nonhomogeneous equations with general logistic reaction and Robin boundary
condition.

In the past, such results were proved primarily in the context of Dirichlet semilinear (driven
by the Laplacian) and nonlinear problems (driven by the p−Laplacian), with a reaction of a
particular (power) form.

We refer to the semilinear works of Afrouzi-Brown [4], Papageorgiou-Radulescu-Repovs
[5], Radulescu-Repovs [6], and the nonlinear works of Dong [7], Gasinski-Papageorgiou [8],
Papageorgiou-Radulescu-Repovs [9] (anisotropic problems), Takeuchi [10], [11]. We also men-
tion the work of Gasinski-O’Regan-Papageorgiou [12], where the differential operator is similar
to the one used here, but the aim there is to produce nodal solutions.

2. MATHEMATICAL BACKGROUND-HYPOTHESES

The main spaces in the analysis of problem (Pλ ) are the Sobolev space W 1,p(Ω), the Banach
space C1 (Ω), and the ”boundary” Lebesgue spaces Ls (∂Ω) (1≤ s < ∞).

By ‖.‖, we denote the norm of the Sobolev space W 1,p(Ω) defined by

‖u‖=
[
‖u‖p

p +‖Du‖p
p

] 1
p , for all u ∈W 1,p(Ω),

where ‖.‖p stands for the Lp-norm.
The Banach space C1 (Ω) is ordered with positive (order) cone

C+ =
{

u ∈C1 (
Ω
)

: u(z)≥ 0 for all z ∈Ω
}
.

This cone has a nonempty interior, given by

int C+ =
{

u ∈C1 (
Ω
)

: u(z)> 0 for all z ∈Ω
}
.

We also use another open cone in C1 (Ω) , namely

D+ =

{
u ∈C1 (

Ω
)

: u(z)> 0 for all z ∈Ω,
∂u
∂n
|∂Ω∩u−1(0)< 0

}
.
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On ∂Ω, we consider the (N−1)-dimensional Hausdorff (surface) measure σ (.) . Using this
measure, we can define in the usual way the ”boundary” Lebesgue spaces Ls (∂Ω) (1≤ s < ∞).

The theory of Sobolev spaces specifies that there exists a unique continuous linear map γ̂0 :
W 1,p(Ω)→ Lp (∂Ω), known as the ”trace operator”, such that

γ̂0 (u) = u |∂Ω for all u ∈W 1,p(Ω)∩C
(
Ω
)
.

So, the trace operator extends the notion of boundary values to all Sobolev functions.
In the sequel, for the sake of notational economy, we drop the use of the trace map γ̂0. All

restrictions of Sobolev functions to the boundary ∂Ω are understood in the sense of traces. Via
the trace map, we show that W 1,p(Ω) ↪→ Ls (∂Ω) compactly for all s ∈

[
1, (N−1)p

N−p

)
when p < N

and for all 1≤ s < ∞ when N ≤ p.
Let u : Ω → R be measurable. For every z ∈ Ω, we define u± (z) = max{±u(z) ,0} . If

u ∈W 1,p(Ω), then u± ∈W 1,p(Ω), |u|= u++u−, and u = u+−u−.
We set

p∗ =

{
N p

N−p if p < N,

+∞ if p≥ N

(the critical Sobolev exponent for p).
We now introduce the conditions on the map a(·) that appears in the differential operator in

(Pλ ) . Let d ∈C1 (0,∞) with d (t)> 0 for all t > 0, and assume that

0 <C ≤ d′ (t) t
d (t)

≤ Ĉ and C0t p−1 ≤ d (t)≤C1
[
tµ−1 + t p−1]

for all t > 0, some C0, C1 > 0, 1 < µ < p.

The hypotheses on the map a(.) are the following:
(H0) : a(y) = a0 (|y|)y, for all y ∈ RN with a0 (t)> 0 for all t > 0 and:

(i) a0 ∈C1 (0,∞), t→ a0 (t) t is strictly increasing on (0,∞),

a0 (t) t→ 0+ as t→ 0+and lim
t→0+

a′0 (t) t
a0 (t)

>−1;

(ii) there exists C2 > 0 such that

|∇a(y)| ≤C2
d (|y|)
|y|

for all y ∈ RN\{0} ;

(iii) for all y ∈ RN\{0} and all ξ ∈ RN , one has

(∇a(y)ξ ,ξ )RN ≥
d (|y|)
|y|
|ξ |2 .

Here and in what follows, |y| denotes the RN norm of y ∈ RN , and (·, ·)RN denotes the RN

inner product.

Remark 2.1. Hypotheses (H0) (i) , (ii), (iii) are motivated by the nonlinear regularity theory
of Lieberman [1] and the nonlinear maximum principle of Pucci-Serrin [13] (pp. 111, 120).
Similar conditions were also used by Aizicovici-Papageorgiou-Staicu [14] and Papageorgiou-
Radulescu [15].
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Let

Ĝ0 (t) =
t∫

0

a0 (s)s ds, for t ≥ 0.

Evidently the primitive Ĝ0 (·) introduced above is strictly increasing and strictly convex. We set

Ĝ(y) = Ĝ0 (|y|) , for all y ∈ RN .

It follows that Ĝ(·) is differentiable on RN\{0} , convex, Ĝ(0) = 0, and (by the chain rule)

∇Ĝ(y) = Ĝ
′
0 (|y|)

y
|y|

= a0 (|y|)y = a(y) for all y ∈ RN\{0} .

Thus Ĝ(.) is the primitive of the map a(.) . The convexity of Ĝ(.) in conjunction with Ĝ(0) = 0
implies that

Ĝ(y)≤ (a(y) ,y)RN for all y ∈ RN . (2.1)

The next lemma states the main properties of the map a(.), which follow from hypotheses
(H0) (see Papageorgiou-Radulescu [15]).

Lemma 2.1. If hypotheses (H0) (i) , (ii), and (iii) hold, then
(a) the map y→ a(y) is continuous and strictly monotone, hence maximal monotone too;
(b) |a(y)| ≤C3

(
|y|µ−1 + |y|p−1

)
for some C3 > 0, all y ∈ RN ;

(c) (a(y) ,y)RN ≥ C0
p−1 |y|

p for all y ∈ RN .

This lemma and (2.1) lead to the following bilateral growth restrictions for the primitive
G(.) :

Corollary 2.1. If hypotheses (H0) (i) , (ii), and (iii) hold, then

C0

p(p−1)
|y|p ≤ Ĝ(y)≤C4 (1+ |y|p) for some C4 > 0, all y ∈ RN .

Remark 2.2. Note that Ĝ(·) has balanced growth. As a consequence of this fact, we have a
global regularity theory (see Lieberman [1]).

The examples that follow show that these hypotheses provide a broad framework, which
incorporates many nonlinear operators of interest (see, e.g., [14, 15]).

Example 2.1. The following maps a(.) satisfy hypotheses (H0) :

(a) a(y) = |y|p−2 y with 1 < p < ∞.

This map corresponds to the p−Laplacian defined by

4pu = div
(
|Du|p−2 Du

)
, for all u ∈W 1,p (Ω) .

(b) a(y) = |y|p−2 y+ |y|q−2 y with 1 < q < p.
This map corresponds to the (p,q)−Laplacian defined by 4pu+4qu for all u ∈W 1,p (Ω)

Such operators arise in the mathematical modeling of many physical processes (see, Cherfils-
Ilyasov [16]).
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(c) a(y) =
(

1+ |y|2
) p−2

2
y with 1 < p < ∞.

This map corresponds to the generalized p− mean curvature differential operator defined by

div

((
1+ |Du|2

) p−2
2

Du

)
, for all u ∈W 1,p (Ω) .

(d) a(y) = |y|p−2 y
(

1+ 1
1+|y|p

)
with 1 < p < ∞.

This map corresponds to the following differential operator

4pu+div

(
|Du|p−2 Du
1+ |Du|p

)
, for all u ∈W 1,p (Ω) ,

which arises in plasticity theory (see Roubiceck [17]).

Let A : W 1,p (Ω)→W 1,p (Ω)∗ be the nonlinear operator defined by

〈A(u) ,h〉=
∫

Ω

(a(Du) ,Dh)RN dz for all u, h ∈W 1,p (Ω) . (2.2)

The properties of A(·) are summarized below (see [12]).

Proposition 2.1. If hypotheses (H0) (i) , (ii), and (iii) hold, then the operator A : W 1,p (Ω)→
W 1,p (Ω)∗ defined by (2.2) is bounded (that is, it maps bounded sets to bounded sets), contin-
uous, monotone (thus maximal monotone too) and of type (S)+ , that is, if {un}n≥1 ⊆W 1,p (Ω)

is such that un
w−→ u in W 1,p (Ω) and limsup

n→∞

〈A(un) ,un−u〉 ≤ 0, then un→ u in W 1,p (Ω) as
n→ ∞.

Here and in what follows, w−→ denotes the weak convergence, and 〈., .〉 designates the duality
pairing between W 1,p (Ω)∗ and W 1,p (Ω) .

Now, we introduce our conditions on the potential function ξ (.) and on the boundary coeffi-
cient β (.) .

(H1) : ξ ∈ L∞ (Ω) , ξ (z) ≥ 0 for a.a. z ∈ Ω, β ∈C0,α (∂Ω) with 0 < α < 1, β (z) ≥ 0 for all
z ∈ ∂Ω and ξ 6≡ 0 or β 6≡ 0.

Remark 2.3. The case β ≡ 0 corresponds to the Neumann problem.

In what follows, by γ : W 1,p (Ω)→ R, we denote the C1− functional defined by

γ (u) =
∫
Ω

G(Du(z))dz+
1
p

∫
Ω

ξ (z) |u(z)|p dz+
1
p

∫
∂Ω

β (z) |u(z)|p dσ

for all u ∈W 1,p (Ω) .

Also by γp : W 1,p (Ω)→ R, we denote the C1− functional defined by

γp (u) =
C0

p−1
‖Du‖p

p +
∫
Ω

ξ (z) |u(z)|p dz+
∫

∂Ω

β (z) |u(z)|p dσ

for all u ∈W 1,p (Ω) .
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Corollary 2.1 implies that
1
p

γp (u)≤ γ (u) for all u ∈W 1,p (Ω) . (2.3)

Also hypotheses (H1) together with Mugnai-Papageorgiou [18, Lemma 4.11] and Gasinski-
Papageorgiou [19, Proposition 2.4] imply that

C5 ‖u‖p ≤ γp (u) for some C5 > 0, all u ∈W 1,p (Ω) . (2.4)

Finally, we introduce our hypotheses on the two nonlinearities g and f involved in the reaction
of (Pλ ) .

(H2) : g : Ω×R→R is a Carathéodory function such that g(z,0) = 0 for a.a. z ∈Ω and:
(i) for every ρ > 0, there exists aρ ∈ L∞ (Ω) such that

g(z,x)≤ aρ (z) for a.a. z ∈Ω,all 0≤ x≤ ρ;

(ii) there exists τ ∈ (p, p∗) such that

0 < η∞ ≤ liminf
x→+∞

g(z,x)
xτ−1 ≤ limsup

x→+∞

g(z,x)
xτ−1 ≤ η̂∞

uniformly for a.a. z ∈Ω;

(iii) with s ∈ (p,τ] , we have

0 < η0 ≤ liminf
x→0+

g(z,x)
xs−1 ≤ limsup

x→0+

g(z,x)
xs−1 ≤ η̂0

uniformly for a.a. z ∈Ω,

and for every θ > 0, there exists δθ > 0 such that

δθ ≤ g(z,x) for a.a. z ∈Ω, all x≥ θ .

Remark 2.4. Since we are looking for positive solutions and all of the above hypotheses con-
cern the positive semiaxis R+=[0,+∞), without any loss of generality, we may assume that

g(z,x) = 0 for a.a. z ∈Ω, all x≤ 0. (2.5)

(H3) : f : Ω×R→R is a Carathéodory function such that f (z,0) = 0 for a.a. z ∈Ω and:
(i) | f (z,x)| ≤ â(z)

(
1+ xr−1) for a.a. z∈Ω,all x≥ 0 with â∈ L∞ (Ω) , τ < r < p∗ (see

hypothesis (H2)(ii));
(ii) limx→+∞

f (z,x)
xτ−1 =+∞ uniformly for a.a. z ∈Ω and with τ ∈ (p, p∗) as in hypothesis

(H2)(ii) ;
(iii) with s ∈ (p,τ] as in hypothesis (H2)(iii) , we have

liminf
x→0+

f (z,x)
xs−1 = 0 uniformly for a.a. z ∈Ω.

Remark 2.5. Without any loss of generality, we may assume that

f (z,x) = 0 for a.a. z ∈Ω, all x≤ 0. (2.6)

Also, we point out that no sign condition is imposed on f (z, .) , which may change sign.
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(H4) : For any ρ > 0 and for every λ > 0, there exists ξ̂ λ
ρ > 0 such that for a.a. z ∈ Ω, the

function
z→ λg(z,x)− f (z,x)+ ξ̂

λ
ρ xp−1

is nondecreasing on [0,ρ] .

Example 2.2. The following pairs of functions satisfy hypotheses (H2) and (H3). For the sake
of simplicity, we drop the z− dependence.

(a) g1 (x) = (x+)τ−1 and f1 (x) = (x+)r−1with τ < r < p∗.
This pair corresponds to the classical superdiffussive reaction which we encounter in

most works in the literature; see, e.g., Takeuchi [10, 11];
(b)

g2 (x) =

{
(x+)s−1 if x≤ 1
xτ−1 if 1 < x

with p < s < τ;

f2 (x) =

{
(x+)θ−1 if x≤ 1
xτ+1 [lnx+1] if 1 < x

with θ > τ;

(c)

g3 (x) =

{
2(x+)s−1− (x+)θ−1 if x≤ 1
xτ−1 if 1 < x

with p < s≤ τ < θ ;

f3 (x) =

{
(x+)µ−1−2(x+)θ−1 if x≤ 1
xr−1−2xτ−1 if 1 < x

with τ < µ < θ ;τ < r < p∗.

We point out that f3 (.) is sign-changing.

We next introduce the following two sets

L = {λ > 0 : problem (Pλ ) admits a positive solution} ,

and
S (λ ) = the set of positive solutions for problem (Pλ ) .

We set
λ
∗ = infL .

3. POSITIVE SOLUTIONS

We start by showing that L 6=∅ and by determining the regularity properties of the positive
solutions of (Pλ ) .

Proposition 3.1. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold, then L 6= ∅ and for
all λ > 0, S (λ )⊆ int C+.
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Proof. Let G(z,x) =
x∫

0

g(z,s)ds and F (z,x) =
x∫

0

f (z,s)ds. On account of hypotheses (H2)(i)

and (ii) , we have

0≤ G(z,x)≤C6 [1+ xτ ] for a.a. z ∈Ω, all x≥ 0, some C6 > 0. (3.1)

Similarly, from hypotheses (H3)(i) and (ii) , we see that, for given η > 0, we can find Cη > 0
such that

ηxτ −Cη ≤ F (z,x) for a.a. z ∈Ω, all x≥ 0. (3.2)

Let ϕλ : W 1,p (Ω)→ R be the energy functional for problem (Pλ ) defined by

ϕλ (u) = γ (u)+
∫
Ω

F (z,u)dz−λ

∫
Ω

G(z,u)dz for all u ∈W 1,p (Ω) .

We have ϕλ ∈C1 (W 1,p (Ω)
)

and

ϕλ (u)≥
1
p

γp (u)+ [η−λC6]
∥∥u+

∥∥τ

τ
−C7

for some C7 =C7 (η ,λ )> 0 (see (2.3) , (3.1) , and (3.2)). Choosing η > λC6, we have

ϕλ (u)≥
1
p

γp (u)−C7 ≥C5 ‖u‖p−C7 (see (2.4) ).

Thus ϕλ is coercive. Also, using the Sobolev embedding theorem and the compactness of
the trace map, we see that ϕλ (.) is sequentially weakly lower semicontinuous. Invoking the
Weierstrass-Tonelli theorem, we can find uλ ∈W 1,p (Ω) such that

ϕλ (uλ ) = inf
{

ϕλ (u) : u ∈W 1,p (Ω)
}
. (3.3)

Let u≡ θ ∈ (0,∞) . Then

ϕλ (θ)≤
θ p

p

[
‖ξ‖1 +‖β‖L1(∂Ω)

]
+
∫
Ω

F (z,θ)dz−λ

∫
Ω

G(z,θ)dz

≤C8−λC9 for some C8 =C8 (θ)> 0, C9 =C9 (θ)> 0.

Then, for λ > 0 big, we have ϕλ (θ)< 0. Hence ϕλ (uλ )< 0 = ϕλ (0) (see (3.3)). Thus uλ 6= 0
(when λ > 0 is big). From (3.3) , we have ϕ ′

λ
(uλ ) = 0, and hence

〈A(uλ ) ,h〉+
∫
Ω

ξ (z) |uλ |p−2 uλ hdz+
∫

∂Ω

β (z) |uλ |p−2 uλ hdσ

=
∫
Ω

[λg(z,uλ )− f (z,uλ )]hdz for all h ∈W 1,p (Ω) .
(3.4)

In (3.4) , we choose h =−u−
λ
∈W 1,p (Ω) . Then, using Lemma 2.1, (2.5) and (2.6) , we obtain

γp
(
u−

λ

)
≤ 0, which implies that uλ ≥ 0, uλ 6= 0 (see (2.4) . From (3.4) , we have

−diva(Duλ (z))+ξ (z)uλ (z)
p−1

= λg(z,uλ (z))− f (z,uλ (z)) in Ω,
∂uλ

∂na
+β (z)up−1

λ
= 0 on ∂Ω.

(3.5)
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From (3.5) and Papageorgiou-Radulescu [20, Proposition 2.10], we have uλ ∈ L∞ (Ω) . Then the
nonlinear regularity theory of Lieberman ([1, p.320]) implies that uλ ∈C+\{0} . Let ρ = ‖uλ‖∞

and let ξ̂ λ
ρ as postulated by hypothesis (H4) . We have

−diva(Duλ (z))+
(

ξ (z)+ ξ̂
λ
ρ

)
uλ (z)

p−1 ≥ 0 in Ω,

and hence
diva(Duλ (z))≤

(
‖ξ‖

∞
+ ξ̂

λ
ρ

)
uλ (z)

p−1 in Ω

(see hypotheses (H0)). Thus uλ ∈ int C+ (see Pucci-Serrin [13], pp. 111, 120). So we have
proved that when λ > 0 is big, λ ∈ L 6= ∅. Moreover, for any λ > 0, we have S (λ ) ⊆
int C+. �

Proposition 3.2. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold, then λ∗ > 0.

Proof. Hypotheses (H2) imply that, for p∗> µ > τ and given ε > 0, we can find C10 =C10 (ε)>
0 such that

0≤ g(z,x)≤ εxµ−1 +C10xτ−1 for a.a. z ∈Ω, all x≥ 0. (3.6)

Similarly, hypotheses (H3) imply that, given ε > 0, we can find θ = θ (ε)> 0 such that

f (z,x)≥ θxτ−1− εxµ−1 for a.a. z ∈Ω, all x≥ 0. (3.7)

Using (3.6) and (3.7), we obtain

λg(z,x)− f (z,x)≤ (λ +1)εxµ−1− (θ −λC10)xτ−1

for a.a. z ∈Ω, all x≥ 0.
(3.8)

Let λ ∈
(

0, θ

C10

)
, and suppose that λ ∈ L . Then we can find uλ ∈ S (λ ) ⊆ int C+ (see

Proposition 3.1). We have

〈A(uλ ) ,h〉+
∫
Ω

ξ (z)up−1
λ

hdz+
∫

∂Ω

β (z)up−1
λ

hdσ

=
∫
Ω

[λg(z,uλ )− f (z,uλ )]hdz

≤ (λ +1)ε
∫
Ω

uµ−1
λ

hdz for all h ∈W 1,p (Ω) , h≥ 0

(3.9)

(see (3.8) and recall that 0 < λ < θ

C10
). In (3.9), we choose h = uλ ∈ int C+ to derive

γp (uλ )≤ (λ +1)ε ‖uλ‖µ

µ
,

and hence C5 ‖uλ‖p ≤ (λ +1)εC11 ‖uλ‖µ for some C11 > 0 (see (2.4) and recall that W 1,p (Ω)
↪→ Lµ (Ω) continuously). Thus 1 ≤ (λ +1)εC12 ‖uλ‖µ−p for some C12 > 0. Since ε > 0 is
arbitrary, we let ε → 0+ to arrive at a contradiction. So, λ /∈L and we haveλ∗ ≥ θ

C10
> 0.

�

The next proposition shows that L is an upper half line.

Proposition 3.3. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold, λ ∈L , uλ ∈S (λ )⊆
int C+ and η > λ , then η ∈L and we can find uη ∈S (η)⊆ int C+ such that uη −uλ ∈ D+.
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Proof. We consider the following truncation of the reaction of problem (Pη) :

kη (z,x) =

{
ηg(z,uλ (z))− f (z,uλ (z)) if x≤ uλ (z) ,
ηg(z,x)− f (z,x) if uλ (z)< x.

(3.10)

This is a Carathéodory function. We set Kη (z,x) =
x∫

0

kη (z,s)ds and consider the C1− func-

tional ψη : W 1,p (Ω)→ R defined by

ψη (u) = γ (u)−
∫
Ω

Kη (z,u)dz for all u ∈W 1,p (Ω) .

Using (3.1) , (3.2) and (3.10), we infer that ψη (·) is coercive. Also, the Sobolev embedding
theorem and the compactness of the trace map imply that ψλ (.) is sequentially weakly lower
semicontinuous. Thuswe can find uη ∈W 1,p (Ω) such that

ψη (uη) = inf
{

ψη (u) : u ∈W 1,p (Ω)
}
.

Thenψ ′η (uη) = 0, and

〈
A(uη) ,h

〉
+
∫
Ω

ξ (z)
∣∣uη

∣∣p−2 uηhdz+
∫

∂Ω

β (z)
∣∣uη

∣∣p−2 uηhdσ

=
∫
Ω

kη (z,uη)hdz for all h ∈W 1,p (Ω)
(3.11)

In (3.11) , we choose h = [uλ −uη ]
+ ∈W 1,p (Ω) . It follows that〈

A(uη) , [uλ −uη ]
+〉+ ∫

Ω

ξ (z)
∣∣uη

∣∣p−2 uη [uλ −uη ]
+ dz

+
∫

∂Ω

β (z)
∣∣uη

∣∣p−2 uη [uλ −uη ]
+ dσ

=
∫
Ω

[ηg(z,uλ )− f (z,uλ )] [uλ −uη ]
+ dz (see (3.10) )

≥
∫
Ω

[λg(z,uλ )− f (z,uλ )] [uλ −uη ]
+ dz (since λ < η , g≥ 0)

=
〈
A(uλ ) , [uλ −uη ]

+〉+ ∫
Ω

ξ (z)up−1
η [uλ −uη ]

+ dz

+
∫

∂Ω

β (z)up−1
λ

[uλ −uη ]
+ dσ (since uλ ∈S (λ ) ),

and hence

uλ ≤ uη (3.12)

(see Proposition 2.1 and hypotheses (H1)). It follows from (3.10) , (3.11), and (3.12) that

uη ∈S (η)⊆ int C+, and so η ∈L .
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Let ρ =
∥∥uη

∥∥
∞

and set ξ̂ρ = max
{

ξ̂ λ
ρ , ξ̂ η

ρ

}
(see hypotheses (H4)). We have

−diva(Duλ )+
(

ξ (z)+ ξ̂ρ

)
up−1

λ

= λg(z,uλ )− f (z,uλ )+ ξ̂ρup−1
λ

= ηg(z,uλ )− f (z,uλ )+ ξ̂ρup−1
λ

+(η−λ )g(z,uλ )

≤ ηg(z,uη)− f (z,uη)+ ξ̂ρup−1
η

(see (3.12) , hypotheses (H4) and recall that g≥ 0)

=−diva(Duη)+
(

ξ (z)+ ξ̂ρ

)
up−1

η .

(3.13)

Since uλ ∈ int C+, we have 0 < θλ = min
Ω

uλ , and hence

(η−λ )g(z,uλ )≥ (η−λ )δθλ
> 0

(see hypothesis (H2)(iii)). Then, from (3.13) and Aizicovici-Papageorgiou-Staicu [14, Propo-
sition 3], we conclude that uη −uλ ∈ D+. This completes the proof. �

For λ > λ∗, we have multiple positive solutions.

Proposition 3.4. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold and λ > λ∗, then λ ∈
L , and problem (Pλ ) has at least two positive solutions u0, û ∈ int C+.

Proof. On account of Proposition 3.3, we have λ ∈ L . Let µ ∈ (λ∗,λ ) . Then µ ∈L and we
can find uµ ∈S (µ)⊂ int C+. Truncating the reaction of problem (Pλ ) at uµ (z) and reasoning
as in the proof of Proposition 3.3, via the direct method of the Calculus of Variations on the
resulting C1−functional ψλ , we produce u0 ∈W 1,p (Ω) such that

u0 ∈S (λ )⊂ int C+ and u0−uµ ∈ D+. (3.14)

Let [
uµ

)
=
{

u ∈W 1,p (Ω) : uµ (z)≤ u(z) for a.a. z ∈Ω
}
.

Then, from (3.10) , we see that

ϕλ |[uµ)= ψλ |[uµ) +ξ
∗ with ξ

∗ ∈ R. (3.15)

From (3.14) and (3.15), it follows that u0 is a local C1 (Ω)− minimizer of ϕλ (·) , and hence

u0 is a local W 1,p (Ω) minimizer of ϕλ (·) (3.16)

(see Papageorgiou-Radulescu [20]). On account of hypothesis (H2)(iii) and (H3)(iii), given
ε > 0, we can find δ̂ = δ̂ (ε) ∈ (0,1) such that

G(z,x)≤ η̃0xs−1 for a.a. z ∈Ω, all 0≤ x≤ δ̂ with η̃0 > η̂0,

F (z,x)≥−εxs−1 for a.a. z ∈Ω, all 0≤ x≤ δ̂ .

So, if u ∈C1 (Ω) satisfies ‖u‖C1(Ω) ≤ δ̂ , then

ϕλ (u)≥
1
p

γp (u)− (λη̃0 + ε)‖u‖s
s (see (2.3) )

≥C5 ‖u‖p− (λη̃0 + ε)C13 ‖u‖s (for some C13 > 0)

≥
[
C5− (λη̃0 + ε)C14δ̂

s−p
]
‖u‖p (for some C14 > 0)
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(recall that s > p). Choosing δ̂ ∈ (0,1) even smaller if necessary, we see that

ϕλ (u)≥ 0 = ϕλ (0) for all u ∈C1 (
Ω
)
, ‖u‖C1(Ω) ≤ δ̂ .

So, we infer that u = 0 is a local C1 (Ω)− minimizer of ϕλ (·) , and hence

u = 0 is a local W 1,p (Ω) minimizer of ϕλ (·) (3.17)

If Kϕλ
=
{

u ∈W 1,p (Ω) : ϕ ′
λ
(u) = 0

}
is the critical set of ϕλ , then Kϕλ

⊂ int C+ ∪{0} (see
(3.5) and (3.13)), and we may assume that

Kϕλ
is finite. (3.18)

Otherwise we already have an infinity of positive smooth solutions for problem (Pλ ) and so, we
are done. Also, we may assume that

0 = ϕλ (0)≤ ϕλ (u0) . (3.19)

The reasoning is similar if the opposite inequality holds using this time (3.17) instead of (3.16) .
By (3.16) , (3.18) and using Papageorgiou-Radulescu-Repovs [3, Theorem 5.7.6], we can find
ρ ∈ (0,1) small such that

ϕλ (u0)< inf{ϕλ (u) : ‖u−u0‖= ρ}= mλ , ρ < ‖u0‖ . (3.20)

Recall that ϕλ (·) is coercive. So, from Papageorgiou-Radulesci-Repovs [3, Proposition 5.1.15],
it follows that

ϕλ (·) satisfies the PS-condition. (3.21)
Then, (3.20) and (3.21) permit the use of the mountain pass theorem. So, we can find û ∈
W 1,p (Ω) such that ϕ ′

λ
(û) = 0 and 0 < mλ ≤ ϕλ (û) (see (3.19) and (3.20)). Hence

û ∈S (λ )⊂ int C+ and û /∈ {0,u0} .
Therefore û ∈ int C+ is a second positive solution of (Pλ ) , distinct from u0. �

Next we prove the admissibility of the critical parameter λ∗ > 0.

Proposition 3.5. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold, then λ∗ ∈L .

Proof. Let {λn}n∈N be such that λn ↓ λ∗. We can find un ∈S (λn)⊂ int C+ such that

〈A(un) ,h〉+
∫
Ω

ξ (z)up−1
n hdz+

∫
∂Ω

β (z)up−1
n hdσ

=
∫
Ω

[λng(z,un)− f (z,un)]hdz for all h ∈W 1,p (Ω) .
(3.22)

Hypotheses (H2)(i) , (ii) imply that there exists C15 > 0 such that

0≤ g(z,x)≤C15
[
1+ xτ−1] for a.a. z ∈Ω, all x≥ 0. (3.23)

Similarly, hypotheses (H3)(i) and (ii) imply that, for given η > 0, we can find Ĉη > 0 such that

f (z,x)≥ ηxτ−1−Ĉη for a.a. z ∈Ω, all x≥ 0. (3.24)

In (3.22) ,we choose h = un ∈W 1,p (Ω). Using (3.23) , (3.24), and Lemma 2.1, we obtain

γp (un)≤ [λnC15−η ]‖un‖τ

τ
+C16 for some C16 > 0, all n ∈ N. (3.25)

Since η > 0 is arbitrary, we choose η > λ1C15 ≥ λnC15 for all n ∈ N. From (3.25) and (2.4) ,
we infer that {un}n∈N ⊆W 1,p (Ω) is bounded. We conclude that {un}n∈N ⊆ L∞ (Ω) is bounded
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(see Papageorgiou-Radulescu [20, Proposition 2.10]). Then, from Lieberman [1], it follows that
there exists α ∈ (0,1) such that

un ∈C1,α (
Ω
)
, ‖un‖C1,α(Ω) ≤C17 for some C17 > 0,all n ∈ N.

Exploiting the compact embedding of C1,α (Ω) into C1 (Ω) , we say (at least for a subsequence)
that

un→ u∗ in C1 (
Ω
)
. (3.26)

If, in (3.22), we pass to the limit as n→ ∞ and use (3.26) , then

〈A(u∗) ,h〉+
∫
Ω

ξ (z)up−1
∗ hdz+

∫
∂Ω

β (z)up−1
∗ hdσ

=
∫
Ω

[λ∗g(z,u∗)− f (z,u∗)]hdz for all h ∈W 1,p (Ω) ,

and u∗ ∈S (λ∗) . So, we need to show that u∗ 6= 0. Arguing by contradiction, we suppose that
u∗ = 0. Then

un→ 0 in C1 (
Ω
)
. (3.27)

Let
yn =

un

‖un‖
, n ∈ N.

Then ‖yn‖= 1, yn ≥ 0 for all n ∈N. In (3.22), we choose h = un ∈W 1,p (Ω) and multiply with
‖un‖−p . Using Lemma 2.1, we obtain

γp (yn)≤
∫

Ω

[
λn

g(z,un)

‖un‖p−1 −
f (z,un)

‖un‖p−1

]
yndz for all n ∈ N,

and hence

C5 ≤
∫

Ω

[
λn

g(z,un)

‖un‖p−1 −
f (z,un)

‖un‖p−1

]
yndz for all n ∈ N (3.28)

(see (2.4) and recall that ‖yn‖ = 1). On account of hypotheses (H2)(iii)and, (H3)(iii) (recall
s > p) and of (3.27), we have∫

Ω

[
λn

g(z,un)

‖un‖p−1 −
f (z,un)

‖un‖p−1

]
yndz→ 0 as n→ ∞,

a contradiction (see (3.28)). Therefore u∗ 6= 0 and so u∗ ∈S (λ∗)⊂ int C+, λ∗ ∈L . �

So, summarizing our findings for the positive solutions of problem (Pλ ) , we can state the
following multiplicity theorem, which is global with respect to the parameter (bifurcation-type
theorem).

Theorem 3.1. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold, then there exists λ∗ > 0
such that

(a) for all λ > λ∗, problem (Pλ ) has at least two positive solutions u0, û ∈ int C+, u0 6= û;
(b) for λ = λ∗, problem (Pλ ) has at least one positive solutions u∗ ∈ int C+;
(c) for all λ ∈ (0,λ∗) , problem (Pλ ) has no positive solutions.
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4. MINIMAL POSITIVE SOLUTION

In this section, we show that for every λ ∈L = [λ∗,∞) problem (Pλ ) has a smallest positive
solution u∗

λ
, and we study the monotonicity and the continuity properties of the map λ → u∗

λ
.

Proposition 4.1. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold and λ ∈L = [λ∗,∞) ,
then problem (Pλ ) has a smallest positive solution u∗

λ
∈S (λ )⊂ int C+, that is, u∗

λ
≤ u for all

u ∈S (λ ) .

Proof. From the proof of the Proposition 7 in Papageorgiou-Radulescu-Repovs [21], we know
that S (λ ) is downward directed (that is, if u1, u2 ∈ S (λ ) , then there is u ∈ S (λ ) such
that u ≤ u1 and u ≤ u2). Then, invoking Hu-Papageorgiou [22, Lemma 3.10], we can find
{un}n∈N ⊆S (λ )⊂ int C+ decreasing such that

infS (λ ) = inf{un : n ∈ N} .
We have

〈A(un) ,h〉+
∫
Ω

ξ (z)up−1
n hdz+

∫
∂Ω

β (z)up−1
n hdσ

=
∫
Ω

[λg(z,un)− f (z,un)]hdz for all h ∈W 1,p (Ω) , all n ∈ N,
(4.1)

0≤ un ≤ u1 for all n ∈ N. (4.2)
In (4.1) , we choose h = un ∈W 1,p (Ω) and use (4.2) and hypotheses (H2)(i) , (H3)(i) to con-
clude that {un}n∈N ⊆W 1,p (Ω) is bounded. From this and the nonlinear regularity theory, it
follows that at least for a subsequence un→ u∗

λ
in C1 (Ω) . As in the proof of Proposition 3.5

(see the part of the proof after (3.26)), via a contradiction argument, we show that u∗
λ
6= 0, and

hence u∗
λ
∈S (λ )⊂ int C+ and u∗

λ
= infS (λ ) . �

Consider the minimal solution map χ : (λ∗,∞)→C1 (Ω) defined by χ (λ ) = u∗
λ
. We say that

χ (·) is strictly increasing on (λ∗,∞) if

λ∗ < λ < µ =⇒ u∗η −u∗
λ
∈ D+. (4.3)

Proposition 4.2. If hypotheses (H0) , (H1) , (H2) , (H3), and (H4) hold, then the minimal solu-
tion map χ : (λ∗,∞)→C1 (Ω) is

(a) strictly increasing (see (4.3));
(b) left continuous.

Proof. (a) Let λ∗ < µ < λ < η . We have

−diva
(
Du∗η (z)

)
+ξ (z)u∗η (z)

p−1 ≥ λg
(
z,u∗η (z)

)
− f

(
z,u∗η (z)

)
in Ω, (4.4)

−diva
(

Du∗µ (z)
)
+ξ (z)u∗µ (z)

p−1 ≤ λg
(

z,u∗µ (z)
)
− f

(
z,u∗µ (z)

)
in Ω, (4.5)

We introduce the following truncation of the reaction of problem (Pλ )

θλ (z,x) =


λg
(

z,u∗µ (z)
)
− f

(
z,u∗µ (z)

)
if x < u∗µ (z)

λg(z,x)− f (z,x) if u∗µ (z)≤ x≤ u∗η (z)
λg
(
z,u∗η (z)

)
− f

(
z,u∗η (z)

)
if u∗η (z)< x.

(4.6)

This is a Carathéodory function. We set

Θλ (z,x) =
∫ x

0
θλ (z,s)ds
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and consider the C1−functional τ̂λ : W 1,p (Ω)→ R defined by

τ̂λ (u) = γ (u)−
∫

Ω

Θλ (z,x)dz for all u ∈W 1,p (Ω) .

From (4.6), it is clear that τ̂λ (·) is coercive. Also it is sequentially weakly lower semicontinu-
ous. So, we can find ũλ ∈W 1,p (Ω) such that

τ̂λ (ũλ ) = inf
{

τ̂λ (u) : u ∈W 1,p (Ω)
}
.

Then
τ̂
′
λ
(ũλ ) = 0,

hence 〈
τ̂
′
λ
(ũλ ) ,h

〉
= 0 for all h ∈W 1,p (Ω) . (4.7)

Choosing in (4.7) h =
(
ũλ −u∗η

)+ ∈W 1,p (Ω) and h =
(

u∗µ − ũλ

)+
∈W 1,p (Ω) and using (4.4)

and (4.5) , we show that

u∗µ (z)≤ ũλ (z)≤ u∗η (z) for a.a. z ∈Ω. (4.8)

From (4.6), (4.7) , and (4.8) , it follows that ũλ ∈S (λ ) ⊂ int C+. Moreover, as in the proof
of Proposition 3.3, using [14, v], we show that u∗η − ũλ ∈ D+, hence u∗η − u∗

λ
∈ D+. Thus

χ : (λ∗,∞)→C1 (Ω) is strictly increasing.
(b) Suppose that {λn}n∈N ⊂ L and assume that λn ↑ λ . We haveu∗

λ1
≤ u∗

λn
= u∗n ≤ u∗

λ
for

all n ∈ N (see part (a)). Hence the nonlinear regularity theory (see Lieberman [1]) implies that
there exist α ∈ (0,1) and C18 > 0 such that

u∗n ∈C1,α (
Ω
)

and ‖un‖C1,α(Ω) ≤C18 for all n ∈ N.

On account of the compact embedding of C1,α (Ω) into C1 (Ω) and of the monotonicity of {u∗n}
(see (a)), we conclude that

u∗n→ û∗
λ

in C1 (
Ω
)
. (4.9)

Suppose that û∗
λ
6= u∗

λ
. Thus there exists z0 ∈ Ω such thatu∗

λ
(z0) < û∗

λ
(z0) , hence u∗

λ
(z0) <

u∗n (z0) for all large n (see (4.9) ), which contradicts (a) . Therefore û∗
λ
= u∗

λ
and so, χ (·) is left

continuous. �
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