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Abstract 

Using a unique or common measure of energy poverty is very limited for the true 

classification of a household being in energy poverty. Thus, this study proposes a 

composite indicator, whose weights will be determined from the estimation of two 

relationships using a robust and stable methodology based on information theory. This 

work considers two regression models, where the two dependent variables are the gross 

domestic product and greenhouse gas, and the 12 energy poverty explanatory variables 

are based on those proposed by Recalde et al. (2019), for the period 2008-2018. Hence, 

the study presents a more comprehensive measurement with additional dimensions, 

weights, and indicators. Probably most important, in addition to the discussed proposal 

with a specific choice of models and variables, this work reveals a promising 

methodology that can be replicated in any other theoretical configuration. This approach 

is suitable for the discussion and design of new energy, environmental and social policies. 

Findings can be used to assess in advance the effectiveness of energy poverty measures, 

turning the model into a valuable policy tool. 
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1. Introduction 

Three major energy challenges are to be faced by countries all around the world 

(González-Eguino, 2015): energy security, climate change, and energy poverty. Energy 

poverty refers to a “level of energy consumption that is insufficient to meet certain basic 

needs” (González-Eguino, 2015, p. 379). Reddy (2000, p. 49) defines energy poverty as 

“the absence of sufficient choice in accessing adequate, affordable, reliable, high-quality, 

safe and environmentally benign energy services to support economic and human 

development”. Being a complete definition in our view, it will be the adopted definition 

in this paper as in González-Eguino (2015), provided the major contribution is the 

creation of an energy poverty index, which captures many, if not all, of these elements. 

As highlighted recently by Halkos and Gkampoura (2021), energy poverty represents 

a challenge to both the developing (Ozughalu and Ogwumike, 2019; Qurat-ul-Ann and 

Mirza, 2021) and the developed (Streimikiene et al., 2021; Castaño-Rosa et al., 2019) 

countries. Thus, energy poverty problems are faced by all countries and the European 

ones are no exception. Erasing it is essential for social welfare. Recently, in Europe, 

policy-makers are trying to address this issue, while facing climate change and pollution 

mitigation challenges. When fighting climate change, ensuring energy security, and 

supplying to face all the demand requirements in terms of energy, countries are realizing 

that energy poverty is increasing (Halkos and Gkampoura, 2021; Thomson et al., 2017), 

especially after an economic crisis. To be able to implement policies and strategies 

effectively, energy poverty should be measured and evaluated appropriately. Moreover, 

energy poverty could be the result of increased energy prices, fossil fuel prices rising 

worldwide, combined with low incomes and the older age of buildings and appliances 

turning these inadequate and inefficient to satisfy human needs of heating, comfort, and 

health (Halkos and Gkampoura, 2021; Thomson et al., 2017; González-Eguino, 2015). 

Additionally, inadequate tax systems, low energy infrastructure investments, and lack of 

awareness and knowledge regarding energy efficiency, all could be determinants of 

energy poverty. But how can we effectively measure energy poverty? The literature points 

to several measures (Lewis, 1982; Boardman, 1991; Leach, 1992), but including all these 

proxies individually may be inadequate (Recalde et al., 2019). Thus, the emergence of 

energy poverty indicators is necessary to create an adequate and efficient measure, 

gathering several dispersed pieces of information. With a unique index, it will be possible 

to infer the state of energy poverty in different contexts and also advise wisely policy-
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makers to implement the most correct strategies to reduce these numbers to a null 

existence. 

Energy poverty analysis in the European Union has been made using the Eurostat 

available information sources, such as the European Union Statistics on Income and 

Living Conditions (EU-SILC). However, this kind of metric based on expenses may be a 

vehicle for underestimation of the energy poverty incidence, by not being considered 

concrete situations of energy consumption privation in face of the physical needs of a 

household, in specific economic, environmental and social contexts. These limitations 

amplify the hardness in an international comparison of indicators based on the options 

expenses/income, even on a restricted scale as the European reality.  

The definition of energy poverty can be broad, as suggested by Day et al. (2016, p. 

260), who define energy poverty as “an inability to realize essential capacities as a direct 

or indirect result of insufficient access to reliable, safe and accessible energy services, 

and taking into account the reasonable alternatives available to realize these capacities”. 

What the authors call capacities were divided into secondary (e.g., washing clothes, 

access to information, use of machinery) and basic (e.g., education, health, access to 

energy resources, among others). In these basic capacities, for example, Rehman et al. 

(2012) noted that non-access to energy is an obstacle to economic development since 

there is a strong correlation between GDP and access to energy. Access to energy is a 

consequence of economic growth and a fair redistribution of wealth among the 

population. In this alignment, the study by Achour and Belloumi (2016) proposes that 

energy can be seen as the main driver of economic growth provided that access to services 

that energy ensures such as lighting, heat for cooking, heating, transport fuels, water 

pumping, and food grinding are essential for measuring energy poverty and the 

consequent effect on economic growth. 

In the EU Regulation 2018/1999, on the Governance of the Energy Union and Climate 

Action, the fundamental character of combating energy poverty as part of the fight against 

climate change is highlighted in several points. Day et al. (2016) consider that this 

approach to the concept of energy poverty, with the inclusion and subdivision of 

capacities, could be particularly useful in studies of energy poverty that are introduced in 

the context of climate change. From another perspective, Ürge-Vorsatz and Herrero 

(2012) justify the need to study the nexus between energy poverty and climate change 

(greenhouse gas emissions), admitting that this relationship can be analyzed from the 
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point of view of policies to combat climate change aimed at increasing energy prices, 

thereby increasing energy poverty. They also argue that social tariffs will serve as a 

disincentive to investment in energy efficiency at the household level, while they offer 

no benefit in terms of greenhouse gas emissions. Therefore, betting on energy efficiency 

is the best way to align the objectives of combating climate change and reducing energy 

poverty. In this alignment of the study by Ürge-Vorsatz and Herrero (2012), as suggested 

by Thomson et al. (2017), the measurement of energy poverty has broader implications 

when considering its interaction with other public policies and economic contexts in terms 

of their effects on energy poverty itself - as is the case, for example, of the effects of 

economic recessions and the economic policies that respond to them, or the recurring 

effects of environmental policies aimed at reducing polluting emissions. Additionally, 

Chakravarty and Tavoni (2013) conclude that universal access to modern energy 

increases energy demand, consumption, emissions, and global warming.  

There are two basic and different types of indicators usually used in the literature to 

measure energy poverty (objective and subjective measures), but still no consensus as to 

the best measurement. Llorca et al. (2020) mention that classifying households using 

subjective measures of energy poverty leads to different results than when objective 

measures are to be used. Therefore, the authors suggest a combination of the two 

measures to capture the adverse effect of fuel poverty on health. The measurement of 

energy poverty, mainly based on indicators, is not consensual, and several authors resort 

to the creation of specific indices to measure energy poverty (among others, Nussbaumer 

et al., 2012; Okushima, 2017; Recalde et al., 2019). In this study, we propose a composite 

indicator, whose weights will be determined from the estimation of two relationships 

using generalized maximum entropy and the corresponding normalized entropy measure. 

In these two relationships, energy poverty measures (or indicators) are related to 

economic growth on the one hand, and on the other hand, we consider that the same 

determinants of energy poverty are related to greenhouse gas emissions. 

According to the contributions referred to in the literature review on the importance of 

relating the determinants of energy poverty to economic growth and its implications for 

climate change, in our proposal, and to fulfill this objective, we consider, like Camarero 

et al. (2014), the gross domestic product (GDP; per capita) as an indicator of the added 

value of the productive activity, and as an indicator of environmental pressure, 

greenhouse gas emissions (GHG; per capita). Our selection of energy poverty indicators 
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was based on the study by Recalde et al. (2019), in which these authors propose an index 

of structural energy poverty vulnerability (SEPV), consisting of 13 energy poverty 

variables, categorized as variables referring to labor, with a total weight of 64.84%, to 

housing, with a total weight of 24.97%, or energy, with a total weight of 10.20%. Recalde 

et al. (2019) proposed this very recent index by using Principal Component Analysis 

(PCA) applied initially to 47 variables. After the PCA analysis, the authors highlight 13 

as being the most important in hierarchical terms, using these afterward to measure the 

structural vulnerability of energy poverty. It is over these variables that we set out for the 

analysis made in the present research work. Therefore, of the 13 variables that Recalde et 

al. (2019) used in the construction of the structural vulnerability index to energy poverty, 

the variables H16 (social rental stock as a percentage of the total housing stock) and E1 

(switching rate in electricity services) were not included because we were not able to find 

the appropriate information. Ideally, the most desirable approach would be to provide the 

broadest combination of indicators generated from causal aspects and impacts of the 

phenomenon, to have the most complete and informative picture possible, not conditioned 

by the limited and unavailable access to information.  

Thus, our main contribution as compared to Recalde et al.'s (2019) work is the novelty 

in the method used to create a weighted measure of energy poverty. Our theoretical 

reflection on the improvement of a mainstream of the metrics of energy poverty is the 

recognition that it is necessary to invest heavily in the production of statistical 

information, such as the proposal of a composite indicator that serves for international 

comparisons and that can be an instrument of specific analysis for decision-makers with 

political will in what is necessary for joint coordination to implement measures to combat 

energy poverty in the Member States.  

Recalde et al. (2019) choose 13 variables that best represent energy poverty, creating 

a structural energy poverty vulnerability index. The novelty in this paper is that we stick 

with some of these 13 “best-ranked indicators” and apply the normalized entropy measure 

to define weights from the information content of different models and different variables, 

without any exclusion of models or variables (model or variable selection is not the goal 

here). The interest is to identify weights for each variable to construct a weighted measure 

of energy poverty. So, in addition to the discussed proposal with a specific choice of 

models and variables, this work reveals a promising methodology that can be replicated 
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in any other theoretical configuration. Furthermore, the indicator framework used in this 

study is new, and it does have some unique characteristics. 

The rest of the article develops as follows. Section 2 provides a literature review on 

the topic of constructing energy poverty measures. Section 3 presents our data and 

methodology, while section 4 discusses and presents the achieved results. Finally, section 

5 concludes this work. 

 

2. Literature Review 

2.1 Definition and measurement 

Defining energy poverty is far from generating consensus in the literature. A survey 

of energy poverty definitions is provided by Moore (2012), exemplifying how the size of 

the problem depends on the definition and chosen threshold. More recently, Siksnelyte-

Butkiene et al. (2021) provide a recent systematic review and assessment of the available 

simple and composite indicators for measuring energy poverty, identifying a total of 71 

(composite) indicators to measure it. The Structural Energy Poverty Vulnerability Index, 

Fuel Poverty Index, and Energy Vulnerability Composite Index are identified as the more 

valuable indicators for measurement purposes. Villalobos et al. (2021) explore the 

consequences that different energy poverty definitions and measures might have for the 

identification of energy-poor, proposing first- and second-order energy poverty measures 

classification. Also, Herrero (2017) provides a critical review of energy poverty 

indicators methods. The paper's author advocates that single energy poverty indicators 

are not suitable, and presents evidence to support the need for multiple-indicator 

approaches. 

Energy poverty is also explored in the literature as fuel poverty or energy vulnerability, 

happening whenever a household experiences scarce levels of energy services (Thomson 

et al., 2017). It originates from low household income, high energy prices, bad warming 

and cooling conditions, and inefficient buildings and appliances (Ntaintasis et al., 2019). 

Its social consequences are well reported (social exclusion, disruption of social cohesion, 

degraded quality of life, damaging public health; Chakravarty and Tavoni, 2013; Llorca 

et al., 2020). Churchill and Smyth (2020) argue to be the first to study the impact of ethnic 

diversity on household energy poverty in Australia (using a panel setting composed of 12 

waves). Still, there is no generally applicable definition of energy poverty (Lin and Wang, 
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2020), nor a commonly accepted method for measuring it (Llorca et al., 2020), even if a 

correct energy poverty definition and measurement is relevant for policy formulation. 

Only with its correct measurement, it would be possible for policymakers to determine 

the scale and the nature of the problem, target a strategy, help reduce the energy poverty 

trap and monitor progress. Primc et al. (2021) published an article providing a 

bibliometric and network analysis of the past 30 years of research, summarizing the 

differences and similarities between the concepts of energy poverty and fuel poverty. 

Social aspects of the energy transition are identified as a useful future research gap. Gatto 

and Busato (2020) found that GDP is not a strong driver for energy vulnerability and that 

green OECD and non-OECD countries are less vulnerable, exploring and analyzing the 

global energy vulnerability index.    

Reduced access to modern energy is normally used as representative of energy poverty 

in developing countries (affordability and accessibility), while affordability is used in the 

context of developed countries (commonly known as fuel poverty). Despite being used 

interchangeably, energy poverty is associated with the scarce access to energy suppliers 

in developing countries, leading to economic, infrastructure, social equity, education, and 

health concerns. In opposition, those in fuel poverty refer to households suffering from 

insufficient monetary resources to pay for their basic energy needs. Still, consensus arises 

as to its possible classifications, which as well result in their measurement, namely, those 

in energy poverty are households unable to keep homes adequately warm (Lewis, 1982), 

delayed in the payment of utility bills (Boardman, 1991; Leach, 1992), and which live in 

defective dwellings.  

To measure energy poverty the literature traditionally uses objective and subjective 

approaches. The objective approach relates household income and energy expenditure 

using four basic measures. The first was proposed by Boardman (1991), the 10% rule, 

where households are in energy expenditure if they spent more than 10% of their income 

on fuel costs to keep an appropriate home temperature. The second (Hills, 2012) refers to 

the after fuel cost poverty considering a household in fuel poverty if its income is 60% 

lower than the median income of the representative household. The third respect to the 

Low Income-High Costs (LIHC) indicator proposed by Hills (2012), which considers 

households to be in fuel poverty if they have energy needs above the median of the 

representative household and simultaneously income below the 60% of the median of the 

representative household. Finally, the Minimum Income Standard (MIS) measure 
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considers that if the residual income after expenditure on energy and housing of the 

household is lower than or equal to the income after housing costs and expenditure on 

energy services (the MIS), then they are in fuel poverty. 

The subjective approach considers an individual's perceptions and usually refers to 

survey data. It collects individuals’ perceptions about their perceived capacity to keep 

houses at an appropriate temperature. Since they are based on questionnaires, these 

measures could be inappropriate and subjectively biased (Llorca et al., 2020). Therefore, 

objective measures turn out to be more accurate than subjective measures. Even so, some 

studies argue that subjective measures can capture households’ feelings of material 

deprivation (Thomson et al., 2017). Still, there is no generally accepted measure, since 

they do not coincide or lead to different results (Llorca et al., 2020) and it has been 

reported that using a single metric is problematic considering the heterogeneity of EU 

countries (Deller, 2018). Fizaine and Kahouli (2019) explore the use of several objective 

and subjective measures to categorize fuel poverty, highlighting differences in the profiles 

of the households depending on the measure and threshold used. They suggest the 

combination of standard indicators, to exclude thresholds from expenditure-based 

measures, and innovative strategies based on more appropriate conceptual frameworks of 

fuel poverty.  

Moreover, recently composite indicators have been reported in the literature, namely 

the multidimensional energy poverty index (MEPI), which combines both subjective and 

objective measures of energy poverty (see, for example, Koomson and Damquah, 2021). 

This MEPI was first proposed by Nussbaumer et al. (2012) that reviewed the relevant 

literature discussing the adequacy and applicability of existing instruments to measure 

energy poverty and propose a new composite index to measure energy poverty in Africa. 

To build the MEPI they resort to Monte Carlo methods for the computation of random 

weights. González-Eguino (2015) provides an overview of energy poverty, different ways 

of measuring it, and its implications, arguing that this concept cannot be dissociated from 

the general poverty definition. The present article proposes a new composite indicator (or 

measure) of energy poverty using methodologies from information theory. Based on 

previous findings of energy poverty indicators (Recalde et al., 2019), we build our 

framework and associate these with economic growth and greenhouse gas emissions, to 

define a weighted measure of energy poverty.  
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2.2 Different energy poverty measures 

Burinson et al. (2018) identify three dimensions of fuel poverty using three economic 

variables (income, housing costs, energy costs) applying a multidimensional logit 

framework to data from the English Housing Survey, based on the LIHC indicator. 

Churchill et al. (2020) use 13 waves of the Australian Household, Income, and Labor 

Dynamics to conclude that fuel poverty lowers subjective well-being. They provide 

estimates for the shadow cost of fuel poverty using the expenditure-income approach and 

the LIHC indicator. Recently, Karpinska and Smiech (2021) provide novel evidence on 

the Polish energy-poor profiles and explored interactions between energy poverty and 

general poverty. They combine objective and subjective measures employing Markov 

chains and logistic regressions. 

Meyer et al. (2018) follow O’Sullivan et al. (2015) and Dubois and Meier (2016) 

creating a composite measure of energy poverty combining objective and subjective 

measures, using data from Belgium and creating an energy poverty barometer (or an 

aggregation of indicators). Rehman et al. (2012) examine the accessibility of physical 

infrastructure, energy service delivery, and conformance to social goals in Asia and Sub-

Saharan Africa, highlighting the need for policymakers to reorient the subsidy regime and 

incorporate energy service delivery indicators in monitoring and reporting mechanisms. 

Papada and Kaliampakos (2018) developed a stochastic model of energy poverty using 

household-level data and allowing its transition to the country level through Monte Carlo 

simulation. They found that energy poverty reaches 70.4% of households in Greece. 

Romero et al. (2018) compare critically the different approaches to measuring energy 

poverty (objective versus subjective measures) using data from Spain and propose a new 

methodology, which is an MIS-based (minimum income standard) energy poverty 

indicator. Our methodology follows the developments and findings of Recalde et al. 

(2019) as stated previously. Recalde et al. (2019) created a structural energy poverty 

vulnerability index using principal component analysis (PCA) and ranking each of the 

EU-27 countries. A Poisson regression model was fitted to analyze the association 

between the proposed index and excess winter mortality. The proposed index allowed 

them to explore energy poverty geographically. They started with 47 indicators pre-

selected through meetings with experts. After Spearman correlation analysis, 29 

indicators were left and using PCA in the final stage only 13 indicators have been chosen. 
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We depart from some of these “13 best” indicators proposed by the authors to present and 

construct our energy poverty measure. 

Nussbaumer et al. (2012), Fizaine and Kahouli (2019), and Kelly et al. (2020) mention 

that although many composite indicators emerged in the literature there is still room for 

advancing energy poverty measures. This is because new proposals are still needed to 

surpass the drawbacks of previous proposals, due to their still lack of applicability to 

multiple countries and to surpass the simplicity of using single measures and gain by the 

over-simplification nature of the association of multiple variables into a single measure. 

Aimed at defining a new measure of hidden energy poverty in Italy, Betto et al. (2020) 

considered low income, inadequate housing, and energy efficiency. Kelly et al. (2020) 

built a composite index using 10 indicators to assess home-heating energy-poverty risk 

in Ireland (weighting heating requirements at 40%, building characteristics at 20%, and 

householder characteristics at 40%).  

Castaño-Rosa et al. (2019) provide a review of the concepts and indicators of fuel 

poverty across Europe. They also discuss how energy vulnerability issues fit fuel poverty 

situations highlighting that infrastructure aspects and comfort, energy efficiency, social 

and economic poverty, wellbeing, and wealth need to be considered jointly. They also 

discuss the need for a multiple-indicator, provided single indicators are not able to capture 

all possible factors at once to recognize the source of energy poverty in each EU member. 

Okushima (2017) developed a multidimensional energy poverty index composed of 

energy costs, income, and energy efficiency of housing for Japan proving the negative 

impact of energy price escalation on energy poverty, especially among vulnerable 

households and the elderly. Also, Sareen et al. (2020) reinforce that combining indicators 

at multiple scales is needed to capture the multi-dimensional aspects of energy poverty. 

However, challenges like database availability, coverage, and limited disaggregated 

resolution persist.  

Proposing a new method, Llera-Sastresa et al. (2017) define an index for household 

energy vulnerability and improve social housing management. The index methodology 

was based on the analytic hierarchy process, where the relative weight of each factor was 

computed based on the average values reported by specialists in interviews associated 

with dwellings, installations, bills, and households’ characteristics. Robles-Bonilla and 

Cedano (2021) consider the MEPI index as an energy service deprivation calculation and 

try to understand the regional nature of thermal comfort in Mexico. Previously, Pelz et al. 
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(2018) mentioned that despite recent efforts to capture the multidimensional nature of 

energy poverty, the current existent measures are complex to be applied at the global level 

and too prescriptive to be accepted in several heterogeneous national contexts.  

O´Meara (2016) reviewed the fuel poverty literature concerning definition and 

measurement, enhancing the impacts it has on health and well-being. The authors 

examine policy initiatives undertaken in Ireland to alleviate fuel poverty. Streimikiene et 

al. (2021), for Lithuania and Greece, develop indicators for assessing low carbon just 

energy transition. A framework of analysis is built to understand how climate change 

mitigation policies are affecting households' energy renovation in buildings, micro-

generation technologies, and others, in terms of energy poverty and vulnerability. For 

Pakistan, Qurat-ul-Ann and Mirza (2021) used a multidimensional energy poverty index 

with seven dimensions weighted based on their relative importance. Results point out that 

55% of the households are multi-dimensionally energy-deprived in 30% of the selected 

dimensions.   

Building on the work of Recalde et al. (2019) and their “13 best” identified indicators 

for energy poverty measurement through dimensionality reduction techniques (namely, 

PCA), in this work we have collected data for 11 of these variables (the available ones), 

joining another (using in total 12 indicators) and by applying generalized maximum 

entropy and normalized entropy, we inferred about the weight of each of these indicators 

and their contribution to building a general energy poverty measure. It was possible to 

infer that even if being the best indicators pointed out in Recalde et al. (2019), under our 

proposed methodology some have an almost null weight in the overall index (considering 

our two regression models). Therefore, it was found that even for these top 13 energy 

poverty representatives, some have an almost residual weight, finding that the correct 

weighting of each variable or indicator used in composite energy poverty indicators to be 

built needs to consider the different variable weights, which change in accordance to the 

models, periods or countries analyzed. As will be evidenced afterward, the socio-

economic dimensions were revealed to be those more related to energy poverty in the EU-

26 countries analyzed. Thus, the indicator framework used in this study is new, easily 

adapted to any other theoretical framework, and it does have some unique characteristics. 
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2.3 Energy poverty, income, and emissions 

Up to this moment, it was possible to infer that both macro and micro variables are 

used to infer energy poverty. More attention is paid to developed than developing 

countries mostly due to data scarcity, although recent research has placed increased 

attention on the developing group. Nussbaumer et al. (2013) apply the MEPI index to 

analyze energy poverty in developing countries reinforcing the need to develop 

appropriate tools to inform the development of interventions and keep progress tracking. 

Alem and Demeke (2020) use a dynamic probit estimator with data from Ethiopia to 

estimate the probability of being energy-poor and study the impact of energy price 

inflation on energy use and energy poverty. Karpinska and Smiech (2021) point out that 

to eliminate energy poverty there is the need to reinforce the employment, social, and 

building renovation policy, based on the EU-SILC data. Koomson and Danquah (2021) 

explore the financial inclusion-energy poverty nexus using data from Ghana and the 

MEPI index, using a linear probability model and the pooled ordinary least squares 

(OLS). 

Ürge-Vorsatz and Herrero (2012) explore the link between energy poverty alleviation 

and climate change mitigation, evidence that the two cannot be reached jointly. Day et al. 

(2016) conceptualize energy use from a capabilities perspective, which argues to bring 

advantages when tempting to address energy poverty in the context of climate change by 

controlling aggregate consumption. Reyes et al. (2019) study assessed socio-economic 

variables, energy consumption, and indoor environments in households in Chile. They 

recommend policymakers consider heterogeneity, social inequalities, and energy 

consumption to reduce both energy poverty and air pollution.  

Using the Johansen multivariate cointegration approach, impulse response functions, 

and variance decomposition methodologies, Achour and Belloumi (2016) studied the 

relationship between transportation infrastructure (when absent, another pointed in the 

literature indicator to measure energy poverty) on economic growth and the environment 

in Tunisia over the period 1971-2012. They show the need to invest in infrastructures to 

increase economic growth. Previously, Camarero et al. (2014) assessed convergence in 

eco-efficiency in greenhouse gas emissions in the EU using data envelopment analysis. 

Their results point to different clubs of convergence depending on the specific pollutant 

analyzed.  



13 
 

The association of energy poverty to economic growth and development as well as to 

emissions was already reported in the literature. Usually, we should not expect a reduction 

of energy poverty made at the expense of more growth and environmental improvements. 

In opposition, when fighting energy poverty, the literature reports that economic growth 

decreases and pollution increases (Alem and Demeke, 2020; Karpinska and Smiech, 

2021; Koomson and Danquah, 2021). Santillán et al. (2020) used the MEPI index to 

measure the intensity of energy poverty in different Latin American countries finding a 

clear negative correlation between MEPI and the Human Development Index. Mendoza 

Aguilar et al. (2019) created the compound energy poverty indicator revealing regional 

singularities and disparities in the Canary Islands. Thema and Vondung (2021) find that 

expenditure-based energy poverty indicators in the EU increase or decrease after an 

income change and energy expenditure depending on specific country-wise income at the 

macro level, as well on the energy expenditure distribution between households at the 

micro-level.   

Energy poverty is found to negatively impact income, education, life expectancy, and 

employment, but has a positive effect on poverty, income inequality, and sanitation risk. 

Renewable energy, on the other side, is found to exert exactly the opposite effects over 

these same measures (Adom et al., 2021). Moreover, energy poverty and economic 

vulnerability have mutual positive causalities (Nguyen and Thanh, 2022). Also, Ozughalu 

and Ogwumike (2019) found that the region of residence, household composition, age, 

gender, and education level of the household head to be determinants of extreme energy 

poverty. Zhao et al. (2022) explore how renewable energy alleviates energy poverty, 

finding it thus, assessing the energy poverty composite index across the globe. Churchill 

et al. (2020) found that being in fuel poverty lowers subjective well-being, being results 

robust to different measures of fuel poverty. Ehsamullah et al. (2021) estimate the nexus 

between energy insecurity and energy poverty using DEA and data for G7 countries. They 

combined individual indicators into a mathematical composite indicator to measure 

energy, economic, social, and environmental performance in what the authors called the 

EPI index. It is found that the USA has the lowest EPI average score of environmental 

vulnerability, despite its highest economic development.       

It is also found in the literature that energy-poor households are characterized by the 

interdependence of socio-demographic and housing characteristics, not alone being able 

to explain energy poverty by itself (Primc et al., 2019). Primc et al. (2019) point to energy 
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poverty as a structural issue arising from poor-energy-efficient buildings and labor market 

inefficiencies mostly. Zhao et al. (2021) found that energy poverty accelerates growth in 

CO2 emissions in China. For BRICS, Hassan et al. (2022) found that energy poverty 

intensifies the carbon emissions rate, but that education and globalization reduce pollution 

and improve energy poverty. Calvo et al. (2022) found that in Chile energy poverty 

conditions significantly reduce air quality policies' effectiveness. Apergis et al. (2022) 

found that education mitigates energy poverty in 30 developing countries. Raghutla and 

Chittedi (2022), for five emerging economies, found that access to electricity (lower 

energy poverty) promotes economic development. Rao et al. (2022) present some key 

influencing factors of energy poverty in N11 countries (emerging economies). For the 

effect, they combine 13 indicators capable of capturing energy availability, cleanability, 

and affordability dimensions, combining them via the GRA-SRA (Grey Relational 

Analysis – Sequential Relational Analysis) method. Results indicate that higher energy 

availability decreases energy poverty, which in turn lowers income inequality.   

However, different solutions have as well been reported up to date. Murthy et al. 

(1997) conclude for different sectors of the Indian economy that while we reduce poverty 

targets, CO2 emissions increase, only surpassed through energy efficiency. More recently, 

Baloch et al. (2020) analyze the relationship between poverty, income inequality, and 

CO2 emissions, finding that increased poverty and income inequality drive environmental 

pollution in Sub-Saharan African countries. Bonatz et al. (2019) developed an energy 

poverty index to compare China and Germany. They mention that the development of 

low carbon strategies is linked to energy efficiency and renewable energy, reducing 

energy poverty through the decrease of energy consumption and promoting access to 

high-quality energy carriers. Bilan et al. (2019) employ data from the 1995-2015 period 

of potential EU candidates, finding that renewable energy sources increase GDP that still 

needs to be fostered while reducing pollution. Finally, Galvin (2020) highlights that 

addressing the low-income determinant of UK energy poverty through progressive 

income redistribution would not distort tax rates nor even increase emissions. 

 

3. Data and Methodology 

3.1. Data 

This work considers two regression models, where the two dependent variables are the 

Gross Domestic Product (GDP; per capita) and Greenhouse Gas (GHG; per capita), and 
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the 12 explanatory variables were inspired by the ones identified by Recalde et al. (2019) 

(from the 13 identified by the authors we were able to collect that for 11 of these in total; 

adding the final electricity consumption) in the creation of a structural energy poverty 

vulnerability index:  

• long-term unemployment rate (X1; in %);  

• the median income (X2; in PPS – Purchasing Power Standard); 

• disposable income ratio S80/S20 (X3; in %);  

• young people neither in employment nor in education training (X4; in %);  

• the employment rate of recent graduates (X5; in %);  

• expenditure on social protection (X6; in PPS per inhabitant);  

• labor market policies - category 1 (X7; as % of GDP);  

• labor market policies - categories 2 to 7 (X8; as % of GDP);  

• tenants (X9; rent at market price, in %);  

• overcrowding rate (X10; in %);  

• final electricity consumption (X11; KWh per capita);  

• electricity prices for household consumers (X12; in PPS).  

Although most of them need no presentation, a detailed description can be found in 

Recalde et al. (2019). The data were collected from Eurostat and the countries considered 

are Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, 

France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, 

Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, and Sweden. 

Furthermore, and to improve the research work by making comparisons over different 

stages, three-time periods are considered: 2008-2018 (the entire period of the sample), 

2008-2012, and 2013-2018. The average value of the variables is considered for each 

country accordingly to each period. The analyzed database consists of a panel of 26 

European Union countries (where Croatia and the United Kingdom were excluded, due 

to data scarcity for some of the used variables), between 2008 and 2018, provided that 

only from 2008 onwards do we have complete data for all the mentioned variables. 

Although the logarithms of the values of the variables will be considered in the estimation 

procedure, Table 1 presents some descriptive statistics for the original values of the 

variables considered in the work. And, to simplify the presentation, the values refer to the 

entire panel (26 countries times 11 years; detailed statistics for each country, year or 
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period are available upon request to the authors). Using nominal values for GDP could be 

analyzed in future research. However, real GDP per capita (in Euro), is widely used for 

comparison of living standards within the European Union (Rodriguez-Alvarez et al., 

2021). Thus it makes more sense to use values deflated than nominal ones while assessing 

the effects of the proposed energy poverty index. Additionally, PPS is usually used in this 

context to remove the effect of exchange rate volatility and inflation (Che et al., 2021). 

The highest mean value presented is for GDP, presenting also the highest standard 

deviation. The lowest presented mean is from labor market policies – Cat.1, but the lowest 

standard deviation is that of electricity prices for household consumers. Data differences 

observed in Table 1 lead us to work with logarithm values in regression modeling.  

According to the Kyoto Protocol, developed countries were required to reduce their 

GHG by at least 5.2% compared to 1990 levels in the period 2008 and 2012 (also known 

as the “first commitment period”), as was described in the UNFCCC (2009) report, which 

is why we consider this separate period of 2008-2012 in our analysis. To comply with the 

imposed obligations, the European Union (EU) developed a measurement system for 

GHG emissions, as well as, implemented a trading system for emissions licenses, as 

mentioned by Brodny and Tutak (2020), so it is considered the “second commitment 

period”, 2013 to 2020, where the countries participating in the Kyoto agreement agreed 

on a 20% reduction compared to the base year (1990). Given that our analysis is reported 

up to 2018, we consider this second commitment period 2013-2018. We also include a 

period where the two Kyoto commitment periods are jointly included, namely the entire 

2008-2018 analysis time horizon. The goal is to observe changes in the weightings of 

each of the 12 energy poverty indicators considered in the analysis among the different 

periods. 
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Table 1. Some descriptive statistics. 

 Symbol Minimum Maximum Mean Std. Deviation 

GDP GDP 4990.00 83470.00 25412.87 16298.37 

GHG GHG 4665.59 18191.50 8561.81 3026.28 

Unemployment X1 0.50 19.50 4.05 3.14 

Median income X2 3062.00 29596.00 14300.48 5842.97 

Disposable income X3 3.04 8.33 4.85 1.17 

Young people neither 

employment/education 

X4 3.90 22.10 11.33 4.35 

Employment recent 

graduates 

X5 40.00 96.20 77.85 10.31 

Expenditure social 

protection 

X6 1635.91 15773.48 6622.62 3297.00 

Labor market policies 

– Cat. 1 

X7 0.01 0.52 0.13 0.11 

Labor market policies 

– Cat. 2 to 7 

X8 0.02 1.43 0.42 0.30 

Tenants X9 0.70 40.80 14.36 11.20 

Overcrowding X10 1.40 57.40 19.60 16.35 

Final electricity 

consumption 

X11 1839.85 15604.25 5937.82 2986.98 

Electricity prices 

household consumers 

X12 0.10 0.31 0.20 0.04 

Source: Own elaboration based on the data collected from Eurostat. 

 

3.2. Generalized maximum entropy and normalized entropy 

Considering a linear regression model defined as 

 𝒚 = 𝑿𝜷 + 𝒆, (1) 

where 𝒚 denotes a (𝑁 × 1) vector of observations, 𝑿 is a (𝑁 × 𝐾) matrix of explanatory 

variables, 𝜷 is a (𝐾 × 1) vector of parameters to be estimated and 𝒆 is a (𝑁 × 1) vector 

of errors, Golan et al. (1996) introduced a reformulation of the model in (1) as 

 𝒚 = 𝑿𝒁𝒑 + 𝑽𝒘, (2) 

where 𝜷 = 𝒁𝒑 and  𝒆 = 𝑽𝒘. In this reformulation of the linear regression model, 𝒁 is a 

(𝐾 × 𝐾𝑀) matrix of support spaces for the parameters, 𝑽 is a (𝑁 × 𝑁𝐽) matrix of support 

spaces for the errors, 𝒑, and 𝒘 are respectively a (𝐾𝑀 × 1) and a (𝑁𝐽 × 1) vectors of 

probabilities to be estimated. Moreover, each 𝛽𝑘, 𝑘 = 1,2, … , 𝐾, and each 𝑒𝑛, 𝑛 =
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1,2, … , 𝑁, are considered as expected values of discrete random variables 𝑧𝑘 and 𝑣𝑛 

respectively, with 𝑀 ≥ 2 and 𝐽 ≥ 2 possible outcomes, within the lower and upper 

bounds of the corresponding support spaces. Additional details can be found in Golan et 

al. (1996) and Golan (2018).   

Given the model in (1) and the corresponding reparameterization in (2), Golan et al. 

(1996) defined the generalized maximum entropy (GME) estimator as 

  argmax𝒑,𝒘{−𝒑′ ln 𝒑 − 𝒘′ ln 𝒘}, (3) 

subject to the model constraints,  

 𝒚 = 𝑿𝒁𝒑 + 𝑽𝒘, (4) 

the additivity constraints for 𝒑, 

  𝟏𝐾 = (𝑰𝐾 ⊗ 𝟏𝑀
′ )𝒑, (5) 

and the additivity constraints for 𝒘, 

 𝟏𝑁 = (𝑰𝑁 ⊗ 𝟏𝐽
′ )𝒘, (6) 

where ⊗ represents the Kronecker product. Thus, from the optimization problem in (3)-

(6) and through numerical optimization techniques, the GME estimator finds the optimal 

probability vectors that are used to obtain point estimates of the unknown parameters and 

errors, by 𝜷̂ = 𝒁𝒑̂ and  𝒆̂ = 𝑽𝒘̂. 

To measure the information content of the signal component of the model in (1) using 

the GME estimator, Golan et al. (1996) defined normalized entropy as 

 𝑆(𝒑̂) =
−𝒑̂′ ln 𝒑̂

𝐾 ln 𝑀
. (7) 

This measure lies between one (perfect uncertainty) and zero (no uncertainty). 

Concerning the information content of each specific variable, when all the 𝒛𝑘 in Z are 

defined uniformly and symmetrically around zero, then 𝑆(𝒑̂𝑘) ≈ 1 implies 𝛽𝑘 ≈ 0, 

because 𝒑̂𝑘 is uniformly distributed. Thus, when normalized entropy associated with a 

specific variable is approximately one, its information content is considered irrelevant. 

The information index, defined as 1 − 𝑆(𝒑̂), is a measure of uncertainty reduction and it 

is used in this work to establish the weights of each variable. It is important to note that 

no kind of judgment (including possible cut-off values; how irrelevant a variable is to 

justify its elimination from the model?) is used in this work to make a variable selection 

with normalized entropy; e.g., Macedo (2020). The novelty here is that the measure is 
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used to define weights from the information content of different models and different 

variables, without any exclusion of models or variables.   

Additional details on maximum entropy estimation and normalized entropy can be 

found in Golan et al. (1996), Jaynes (2003), Mittelhammer et al. (2013), and Golan 

(2018). 

 

3.3. A weighted measure of energy poverty 

The values of normalized entropy for each of the 12 explanatory variables, in the two 

regression models (with GDP and GHG as dependent variables) and each of the three 

time periods (2008-2018, 2008-2012, and 2013-2018), are first obtained.1 In step 1, the 

GME estimator is performed with four different supports (centered on zero and with five 

equally spaced points each): [-1000, 1000], [-100, 100], [-10, 10] and [-5, 5] for all the 

parameters. Four scenarios are considered in the work because there is no prior 

information available. For each error support (centered on zero and with three points 

each) is used the three-sigma rule, considering the standard deviation of the noisy 

observations (the use of a sample scale statistic is the usual procedure).2 It is important to 

note that just only one specific support could be considered in other problems, where this 

approach could be replicated with a possible different theoretical configuration if some 

prior information exists about the parameters of the model. 

Next, in step 2, the values of normalized entropy are obtained considering the average 

of the values obtained with the four support spaces for the parameters, instead of 

considering the information just from a single support (avoiding possible difficulties in 

this choice). Although the absolute values are different between supports, the average 

circumvents the impact caused by the greater or lesser contraction implied by different 

supports. Again, it is important to note that model or variable selection is not the goal 

here. The interest is to identify weights for each variable to construct a weighted measure 

of energy poverty. Naturally, if just only one support was used, the values of normalized 

entropy to be considered are the ones obtained with that support.   

                                                           
1 A MATLAB code to compute the GME and normalized entropy is available in Macedo (2017) and 

Macedo (2020). 
2 The supports are defined as closed and bounded intervals in which each parameter (or error) is restricted 

to belong. The number of points in the supports is usually between three and seven, since there is likely no 

significant improvement in the estimation with more points in the supports; e.g., Golan (2018). 
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In step 3, with the values of normalized entropy previously obtained, the information 

index is computed for each variable in the two regression models and each of the three-

time periods. In the final stage, step 4, the weights (𝑤𝑖) for each variable in each period 

are easily determined considering the two (one for each model) information indexes of 

each variable, weighted by the information index of each of the two regression models, 

such that the sum of the 12 weights is equal to one. This final stage can be seen as a 

normalization of the information indexes. And, since there are two models, the 

information index of each model is introduced to provide an adequate weight of the 

information content of each one. Again, in other problems where this approach could be 

replicated, if just one model is used, then only the normalization of the information 

indexes of each variable is needed. Table 2 presents the weights (𝑤𝑖) for each variable in 

each period (the original values are rounded to four decimals or presented as 

approximately zero when appropriate). 

Finally, a weighted measure of energy poverty (WMEP), based on the dimension 

indexes of the Human Development Index from the United Nations Development 

Programme (UNDP, 2020), is proposed as 

 

WMEPc = 1 − ∑ 𝑤𝑖

ln(X𝑖𝑐 + 1) − 𝑚𝑖𝑛 ln(X𝑖 + 1)

𝑚𝑎𝑥 ln(X𝑖 + 1) − 𝑚𝑖𝑛 ln(X𝑖 + 1)
 

12

𝑖=1

, (8) 

where 𝑐 represents the country, 𝑤𝑖 represents the weight of variable X𝑖 (𝑖 = 1, 2, … , 12), 

𝑚𝑖𝑛 ln(X𝑖 + 1) represents the minimum value of ln(X𝑖 + 1) in the sample of countries, 

and 𝑚𝑎𝑥 ln(X𝑖 + 1) represents the maximum value of ln(X𝑖 + 1) in the sample of 

countries. The interpretation is straightforward: a country with a higher value of WMEP 

has a lower performance on the explanatory variables considered, measured by 

ln(X𝑖𝑐 + 1), when compared to the performance in the sample of countries, implying a 

lower value of the sum component. The values of the variables should be used in the sense 

that the higher the value greater the performance. The two extremes scenarios for a 

specific country: ln(X𝑖𝑐 + 1) = 𝑚𝑖𝑛 ln(X𝑖 + 1), for all the variables X𝑖 (𝑖 = 1, 2, … , 12), 

implies WMEP = 1; ln(X𝑖𝑐 + 1) = 𝑚𝑎𝑥 ln(X𝑖 + 1), for all the variables X𝑖 (𝑖 =

1, 2, … , 12), implies WMEP = 0. This issue is illustrated in the next section.     

 

4. Results and Discussion 

Considering the two regression models, where GDP and GHG are the dependent 

variables, from Table 2 it is clear that some variables are considered irrelevant (e.g., X7, 
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X8, and X12), and others have a small contribution to the reduction of uncertainty (e.g., 

X1, X3, X4, and X9) in these models. The above strategy with a specific choice of models 

and variables represents a choice for simplicity over generality. It is intended to be 

possibly used upon replacing variables and models in any other possible theoretical 

configuration. 

 

Table 2. Weights (𝑤𝑖) for the 12 variables in each period. 

 Symbol 2008-2018 2008-2012 2013-2018 

Unemployment X1 0.0002 0.0004 0.0002 

Median income X2 0.5319 0.5036 0.5483 

Disposable income X3 0.0006 0.0004 0.0008 

Young people neither employment/education X4 0.0010 0.0012 0.0012 

Employment recent graduates X5 0.0817 0.0831 0.0831 

Expenditure social protection X6 0.2172 0.2028 0.2309 

Labor market policies – Cat. 1 X7 ≈ 0 ≈ 0 ≈ 0 

Labor market policies – Cat. 2 to 7 X8 ≈ 0 ≈ 0 ≈ 0 

Tenants X9 0.0013 0.0027 0.0005 

Overcrowding X10 0.0234 0.0332 0.0152 

Final electricity consumption X11 0.1427 0.1727 0.1197 

Electricity prices for household consumers X12 ≈ 0 ≈ 0 ≈ 0 

 Source: Own elaboration.   

 

These results seem to indicate that there are different impacts from these 12 variables. 

The importance of, for example, median income in economic growth and GHG mitigation 

seem consensual in the literature on the nexus between GDP and GHG. Additionally, it 

is also relevant the weight of expenditures on social protection. This result may induce 

that in the different European countries social policies related to expenditures with social 

protection must promote programs that contribute to poverty reduction through 

unemployment reduction, and simultaneously reduce vulnerability in economic growth 

differentials. The studies of Dubois and Meier (2016) and Bouzarovski and Tirado 

Herrero (2017) consider socio-economic factors to measure energy poverty, as well as 

the possible structural energy poverty proposed by Recalde et al. (2019).  

Besides, in the spectrum of energy poverty and economic growth, lower per capita 

income economies will have lower social and economic conditions to invest in energy 

efficiency and, consequently, will need to increase their emissions of polluting gases. As 



22 
 

such, in Europe, the vulnerabilities associated with energy poverty will be associated with 

the highest or lower level of economic growth and with the highest or lowest impact on 

mitigating emissions.  

Table 3 presents the results from the WMEP defined in (8) for the countries in the 

sample, for each period, and Table 5 presents some corresponding descriptive statistics. 

The first finding is that the mean and median values of WMEP increase from the first 

period (2008-2012) to the second (2013-2018), with the biggest increase being seen for 

the median value. The skewness value, although positive, is near zero (with a 

corresponding standard error of approximately 0.46). Naturally, the distributions of the 

WMEP values should have a strong positive asymmetry in this context, which is 

unfortunately not the case (e.g., Figure 1). 

 

Table 3. Results from the WMEP for the countries in the sample. 

2008-2018  2008-2012  2013-2018 

WMEP Country  WMEP Country  WMEP Country 

0.9244 Romania  0.9063 Romania  0.9350 Romania 

0.7732 Bulgaria  0.7620 Bulgaria  0.7805 Bulgaria 

0.7142 Latvia  0.7196 Latvia  0.7091 Latvia 

0.6768 Lithuania  0.6942 Lithuania  0.6702 Hungary 

0.6516 Hungary  0.6297 Hungary  0.6628 Lithuania 

0.6048 Poland  0.6231 Poland  0.6536 Greece 

0.5885 Estonia  0.6096 Estonia  0.5886 Poland 

0.5685 Greece  0.5776 Slovakia  0.5702 Estonia 

0.5678 Slovakia  0.5044 Portugal  0.5592 Slovakia 

0.5322 Portugal  0.4846 Greece  0.5511 Portugal 

0.4870 Czech Republic  0.4797 Czech Republic  0.4896 Czech Republic 

0.4158 Malta  0.4254 Malta  0.4376 Cyprus 

0.4156 Spain  0.3929 Spain  0.4337 Spain 

0.3991 Slovenia  0.3774 Slovenia  0.4158 Slovenia 

0.3932 Italy  0.3755 Italy  0.4098 Italy 

0.3920 Cyprus  0.3400 Cyprus  0.4037 Malta 

0.3315 Ireland  0.3236 Ireland  0.3386 Ireland 

0.2497 France  0.2603 Belgium  0.2424 France 

0.2471 Belgium  0.2556 France  0.2327 Belgium 

0.2313 Denmark  0.2429 Germany  0.2230 Netherlands 
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0.2274 Germany  0.2410 Denmark  0.2208 Denmark 

0.2244 Netherlands  0.2244 Netherlands  0.2122 Germany 

0.2046 Finland  0.2039 Finland  0.2025 Finland 

0.1877 Austria  0.1978 Austria  0.1841 Sweden 

0.1826 Sweden  0.1794 Sweden  0.1776 Austria 

0.0471 Luxembourg  0.0506 Luxembourg  0.0425 Luxembourg 

 Source: Own elaboration. WMEP stands for the weighted measure of energy poverty. 

 

It is also worth noting that the rankings are very similar in the three periods under 

analysis, where at the top always are the same three countries (Romania, Bulgaria, and 

Latvia), and Luxembourg is always the country at the bottom with the best performance. 

Given the structure of the WMEP defined in (8) and, for example, considering the three 

variables with more weights in Table 2, the results are not surprising when the four 

countries are compared (mean values for the period 2008-2018) in Table 4. For example, 

Luxembourg with greater values on these three variables, measured by ln(X𝑖𝑐 + 1), and 

thus closer to 𝑚𝑎𝑥 ln(X𝑖 + 1), implies a higher value of the sum component and, as a 

consequence, a lower value of WMEP. 

 

Table 4. A comparison of countries (with best and worst values of WMEP). 

 2008-2018 

Median income (X2) Romania 4179.00 

Bulgaria 6268.91 

Latvia 7507.73 

Luxembourg 27664.18 

Expenditure social protection (X6) Romania 2395.45 

Bulgaria 2308.73 

Latvia 2584.56 

Luxembourg 14263.87 

Final electricity consumption (X11) Romania 2110.82 

Bulgaria 3885.35 

Latvia 3178.38 

Luxembourg 11826.90 

 Source: Own elaboration. WMEP stands for the weighted measure of energy poverty. 
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When the periods 2008-2012 and 2013-2018 are compared it is observed that 12 

countries increase their values of the WMEP (the three biggest increases occurred for 

Greece, Cyprus, and Portugal) and 14 countries decrease their values of the WMEP (the 

three biggest decreases occurred for Estonia, Poland, and Lithuania).  

 

Table 5. Some descriptive statistics for the results from the WMEP. 

 2008-2018 2008-2012 2013-2018 

Mean 0.4322 0.4262 0.4364 

Median 0.4073 0.3852 0.4247 

Standard Deviation 0.2173 0.2138 0.2227 

Skewness 0.3515 0.4269 0.2897 

  Source: Own elaboration. WMEP stands for the weighted measure of energy poverty. 

 

 

 

 

 

Fig. 1 Box plots with WMEP values for the countries in the sample 

Source: Own elaboration. Figure 1 is created with MATLAB. 
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Fig. 2 Results from the WMEP for the countries in the sample 

Source: Own elaboration. Figure 2 is created with mapchart.net. 

 

Figure 2 illustrates the results from the WMEP defined in (8) using a greyscale, where 

Luxembourg corresponds to the lightest shade and Romania to the darkest shade, for the 

period 2008-2018. Countries with white color were not considered in the study.  

Tundys et al. (2021), considering their sample of 35 European countries, conclude that 

relatively poorer countries with higher levels of energy poverty are closing the gap faster 

over the years, mainly due to the implementation of effective energy policies, by shifting 

toward more environmentally friendly energy use.   

We consider that the differential values of energy poverty computed result from the 

aggregation of heterogeneous effects in the socio-economic variables included in the 

WMEP. Their weights may support and help political and governmental decision-makers 

in formulating social and economic policies that may contribute to the vulnerability of 

the vicious cycles of energy poverty. Tundys et al. (2021) assume differences in energy 

poverty between “old European Union countries” and “new European Union countries”, 

as also suggested through our results of energy poverty scores. 

To conclude, another weighted measure of energy poverty based on an updated 

science-wide author database of standardized citation indicators by Ioannidis et al. (2020) 
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was tested with similar results in terms of rankings, which provides additional support to 

the results discussed in this section. Details are available in the Appendix. 

 

5. Conclusions 

In the past, the literature used objective or subjective measures of energy poverty, 

using simple indicators. Afterward, multiple energy poverty indicators have been reported 

in the literature aiming at finding a reasonable measure for energy poverty, useful to be 

applied globally and considering as well national heterogeneities. This article builds upon 

the work of Recalde et al. (2019), where the authors choose 13 variables that best 

represent energy poverty, creating an index through principal component analysis, and 

afterward analyzing its impact on excess winter mortality. Using 11 of these variables, 

and adding another one, so 12 in total, provided data availability for 26 EU countries, we 

considered in the analysis the weightings of each of these variables across three specific 

periods using generalized maximum entropy estimation and normalized entropy. 

Therefore, this study contributes to the existent literature by proposing a new weighted 

measure of energy poverty (WMEP).  

In any attempt to build a universal composite indicator (or measure), the two key issues 

are the variables used and their corresponding weights in the indicator. The proposal 

discussed here addresses these two issues through a statistical formulation almost free of 

restrictive assumptions, by using concepts from information theory. It is a promising 

methodology that can be replicated in any other theoretical configuration, regardless of 

the specific choice of models and variables that can be tested by researchers in different 

empirical scenarios (e.g., developed vs. developing countries; warmer vs. colder regions). 

The novelty here is that the normalized entropy with generalized maximum entropy 

estimation is used to define weights from the information content of different models and 

different variables, without any kind of judgment to make variable or model selection. 

This technical feature allows statistical modeling in different empirical scenarios, 

maintaining the same structure of the proposed universal composite indicator. Given the 

advantages of generalized maximum entropy in the estimation of ill-posed problems 

(including collinearity, outliers, non-normal errors, micronumerosity), this new proposal 

acquires an increased relevance in real-world empirical studies.3  

                                                           
3 Golan et al. (1996), p. 3, mentioned that "[…] in applied mathematics, statistics and econometrics, ill-

posed inverse problems may be the rule rather than the exception." 
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Results point out that the rankings are very similar in the three periods under analysis 

(2008-2018; 2008-2012; 2013-2018), where at the top always are the same three countries 

(Romania, Bulgaria, and Latvia) and Luxembourg is always the country at the bottom 

with the best performance. When the periods 2008-2012 and 2013-2018 are compared it 

is observed that 12 countries increase their values of the WMEP (the three biggest 

increases occurred for Greece, Cyprus, and Portugal) and 14 countries decrease their 

values of the WMEP (the three biggest decreases occurred for Estonia, Poland, and 

Lithuania). 

Compared to previous research, the findings in this paper demonstrate that an 

alternative modeling strategy can be applied to better understand the various dimensions 

of energy poverty in EU countries. Policy measures could thus be designed by focusing 

on the variables of interest. For example, our results suggest that, from the policymaker's 

perspective, energy-related schemes could be targeted specifically at the private sector 

and/or households. Policies built upon energy efficiency are needed in the 26 EU 

countries analyzed, namely renewable energy source development to satisfy growing 

demand, ensure economic growth and development while decreasing GHG emissions, 

and improve pollution levels to fulfill the 2030 levels. Our tests also suggest that this 

approach could be applied across all the dimensions of fuel poverty.  

Policymakers could design income, housing, and energy-related schemes that target 

specific types of house tenures for each dimension of poverty. This could be a more 

efficient method to allocate funds aimed at alleviating the burden of relatively high energy 

costs. In the future, we propose to explore the impact of the weighted measure of energy 

poverty here proposed with economic growth, environmental efficiency, fossil fuel 

consumption, and renewable energy production to infer the impacts of energy poverty on 

the overall economy, for both developed as well as developing countries, considering as 

well hot and colder country temperatures.  

We have relied upon the 13 identified variables of Recalde et al. (2019) and this could 

be seen as a limitation of work. Indeed, future work should start with a large volume of 

potential predictors and the entire modeling process should be accomplished by 

maximum entropy procedures. Another possible limitation, that could turn into a new 

research opportunity, could be the use of the information obtained by the European Union 

Statistics on Income and Living Conditions. At this time, despite being a useful resource 

there are some possible shortcomings in the available information for some countries, 
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preventing its use. Finally, the use of interval-based indexes may also be useful for 

comparison and robustness purposes, and should be investigated in future research.  

 

Acknowledgments 

We would like to express our gratitude to the Editor and the anonymous referees for 

carefully reading the article. They offered extremely valuable suggestions for 

improvements. This work is supported by the Center for Research and Development in 

Mathematics and Applications (CIDMA), the Research Unit on Governance, 

Competitiveness and Public Policies (GOVCOPP), and the Research Unit in Business 

Science and Economics (NECE-UBI) through the Portuguese Foundation for Science and 

Technology (FCT – Fundação para a Ciência e a Tecnologia), references 

UIDB/04106/2020, UIDB/04058/2020 and UID/GES/04630/2021, respectively. 

 

References 

Achour, H., & Belloumi, M. (2016). Investigating the causal relationship between 

transport infrastructure, transport energy consumption and economic growth in Tunisia. 

Renew. Sust. Energy Rev. 56, 988-998. https://doi.org/10.1016/j.rser.2015.12.023. 

Adom, P.K.,  Amuakwa-Mensah, F., Agradi, M.P., & Nsabimana, A. (2021). Energy 

poverty, development outcomes, and transition to green energy. Renew Energy 178, 

1337-1352. https://doi.org/10.1016/j.renene.2021.06.120. 

Alem, Y., & Demeke, E. (2020). The persistence of energy poverty: A dynamic probit 

analysis. Energy Econ. 90, 104789. https://doi.org/10.1016/j.eneco.2020.104789. 

Apergis, N., Polemis, M., & Soursou, S.-E. (2022). Energy poverty and education: Fresh 

evidence from a panel of developing countries. Energy Econ 106, 105430. 

https://doi.org/10.1016/j.eneco.2021.105430. 

Baloch, M.A., Danish, Khan, S.U.-D., Ulucak, Z.S., & Ahmad, A. (2020). Analyzing the 

relationship between poverty, income inequality, and CO2 emission in Sub-Saharan 

African countries. Sci Total Environ. 740, 139867. 

https://doi.org/10.1016/j.scitotenv.2020.139867. 

Betto, F., Garengo, P., & Lorenzoni, A. (2020). A new measure of Italian hidden energy 

poverty. Energy Pol. 138, 111237, https://doi.org/10.1016/j.enpol.2019.111237. 

Bilan, Y., Streimikiene, D., Vasylieva, T., Lyulyov, O., Pimonenko, T., & Pavlyk, A. 

(2019). Linking between Renewable Energy, CO2 Emissions, and Economic Growth: 

Challenges for Candidates and Potential Candidates for the EU Membership. 

Sustainability 11, 6, 1528. https://doi.org/10.3390/su11061528. 

Boardman, B. (1991). Fuel Poverty: from Cold Homes to Affordable Warmth. Belhaven 

Press, London. 



29 
 

Bonatz, N., Guo, R., Wu, W., & Liu, L. (2019). A comparative study of the interlinkages 

between energy poverty and low carbon development in China and Germany by 

developing an energy poverty index. Energy Build. 183, 817-831. 

https://doi.org/10.1016/j.enbuild.2018.09.042. 

Bouzarovski, S., & Tirado Herrero, S. (2017). The energy divide: Integrating energy 

transitions, regional inequalities and poverty trends in the European Union. Europ. Urb. 

Reg. St. 24(1), 69–86. https://doi.org/10.1177/0969776415596449. 

Brodny, J., & Tutak, M. (2020). Analyzing Similarities between the European Union 

Countries in Terms of the Structure and Volume of Energy Production from Renewable 

Energy Sources. Energies 13, 4, 1-10. 

https://ideas.repec.org/a/gam/jeners/v13y2020i4p913-d321967.html. 

Burlinson, A., Giulietti, M., & Battisti, G. (2018). The elephant in the energy room: 

Establishing the nexus between housing poverty and fuel poverty. Energy Econ. 72, 135-

144. https://doi.org/10.1016/j.eneco.2018.03.036. 

Calvo, R., Álamos, N., Huneeus, N., & O'Ryan, R. (2022). Energy poverty effects on 

policy-based PM2.5 emissions mitigation in southern and central Chile. Energy Policy 

161, 112762. https://doi.org/10.1016/j.enpol.2021.112762. 

Camarero, M., Castillo-Giménez, J., Picazo-Tadeo, A.J., & Tamarit, C. (2014). Is eco-

efficiency in greenhouse gas emissions converging among European Union countries? 

Empir. Econ. 47, 143–168. https://doi.org/10.1007/s00181-013-0734-1. 

Castaño-Rosa, R., Solís-Guzmán, J., Rubio-Bellido, C., & Marrero, M. (2019). Towards 

a multiple-indicator approach to energy poverty in the European Union: A review. Energy 

Build. 193, 36-48. https://doi.org/10.1016/j.enbuild.2019.03.039. 

Castaño-Rosa, R., Solís-Guzmán, J., Rubio-Bellido, C., & Marrero, M. (2019). Towards 

a multiple-indicator approach to energy poverty in the European Union: A review. Energy 

Build. 193, 36-48. https://doi.org/10.1016/j.enbuild.2019.03.039. 

Chakravarty, S., & Tavoni, M. (2013). Energy poverty alleviation and climate change 

mitigation: Is there a trade off? Energy Econ. 40, 1, S67-S73. 

https://doi.org/10.1016/j.eneco.2013.09.022. 

Che, X., Jiang, M., & Fan, C. (2021). Multidimensional Assessment and Alleviation of 

Global Energy Poverty Aligned With UN SDG 7. Front Energy Res 9. 

DOI:10.3389/fenrg.2021.777244. 

Churchill, S.A., & Smyth, R. (2020). Ethnic diversity, energy poverty and the mediating 

role of trust: Evidence from household panel data for Australia. Energy Econ. 86, 104663. 

https://doi.org/10.1016/j.eneco.2020.104663. 

Churchill, S.A., Smyth, R., & Farrell, L. (2020). Fuel poverty and subjective wellbeing. 

Energy Econ 86, 104650. https://doi.org/10.1016/j.eneco.2019.104650. 

Churchill, S.A., Smyth, R., & Farrell, L. (2020). Fuel poverty and subjective wellbeing. 

Energy Econ. 86, 104650. https://doi.org/10.1016/j.eneco.2019.104650. 



30 
 

Day, R., Walker, G., & Simcock, N. (2016). Conceptualising energy use and energy 

poverty using a capabilities framework. Energy Pol. 93, 255-264. 

https://doi.org/10.1016/j.enpol.2016.03.019. 

Deller, D. (2018). Energy affordability in the EU: the risks of metric driven policies. 

Energy Pol. 119, 168–182. https://doi.org/10.1016/j.enpol.2018.03.033. 

Dubois, U., & Meier, H. (2016). Energy affordability and energy inequality in Europe: 

implications for policy making. Energy Res. Soc. Sci. 18, 21–35. 

https://doi.org/10.1016/j.erss.2016.04.015. 

Ehsanullah, S., Tran, Q.H., Sadiq, M., Bashir, S., Mohsin, M., & Iram, R. (2021). How 

energy insecurity leads to energy poverty? Do environmental consideration and climate 

change concerns matters. Environ Sci Pollut Res 28, 55041–55052. 

https://doi.org/10.1007/s11356-021-14415-2. 

Fizaine, F., & Kahouli, S. (2019). On the power of indicators: how the choice of fuel 

poverty indicator affects the identification of the target population. Applied Econ. 51, 11, 

1081-1110. https://doi.org/10.1080/00036846.2018.1524975. 

Galvin, R. (2020). Energy poverty research: A perspective from the poverty side, 

Editor(s): Ray Galvin, Inequality and Energy, Academic Press, 221-248. ISBN 

9780128176740, https://doi.org/10.1016/B978-0-12-817674-0.00010-2 

Gatto, A., & Busato, F. (2020). Energy vulnerability around the world: The global energy 

vulnerability index (GEVI). J Cleaner Prod 253, 118691. 

https://doi.org/10.1016/j.jclepro.2019.118691. 

Golan, A. (2018). Foundations of Info-Metrics: Modeling, Inference, and Imperfect 

Information. Oxford University Press, New York. 

Golan, A., Judge, G., & Miller, D. (1996). Maximum Entropy Econometrics: Robust 

Estimation with Limited Data. Wiley, Chichester. 

González-Eguino, M. (2015). Energy poverty: An overview. Renew. Sust. Energy Rev. 

47, 377-385. https://doi.org/10.1016/j.rser.2015.03.013. 

Halkos, G.E. & Gkampoura, E.-C. (2021). Evaluating the effect of economic crisis on 

energy poverty in Europe. Renew. Sust. Energy Rev. 144, 110981. 

https://doi.org/10.1016/j.rser.2021.110981. 

Hassan, S.T., Batool, B., Zhu, B., & Khan, I. (2022). Environmental complexity of 

globalization, education, and income inequalities: New insights of energy poverty. J 

Cleaner Prod 340, 130735. https://doi.org/10.1016/j.jclepro.2022.130735. 

Herrero, S. T. (2017). Energy poverty indicators: A critical review of methods. Indoor 

Built Environ. 26(7), 1018–1031. https://doi.org/10.1177/1420326X17718054. 

Hills, J. (2012). Getting the Measure of Fuel Poverty: Final Report of the Fuel Poverty 

Review. Department of Energy & Climate Change. www.gov.uk. 

http://www.gov.uk/


31 
 

Ioannidis, J.P.A., Boyack, K.W., & Baas, J. (2020). Updated science-wide author 

databases of standardized citation indicators. PLOS Biology 18, 10, e3000918. 

https://doi.org/10.1371/journal.pbio.3000918. 

Jaynes, E.T. (2003). Probability Theory - The Logic of Science. Cambridge University 

Press, Cambridge. 

Karpinska, L., & Śmiech, S. (2021). Breaking the cycle of energy poverty. Will Poland 

make it? Energy Econ. 94, 105063. https://doi.org/10.1016/j.eneco.2020.105063. 

Kelly, J.A., Clinch, J.P., Kelleher, L., & Shahab, S. (2020). Enabling a just transition: A 

composite indicator for assessing home-heating energy-poverty risk and the impact of 

environmental policy measures. Energy Pol. 146, 111791. 

https://doi.org/10.1016/j.enpol.2020.111791. 

Koomson, I., & Danquah, M. (2021). Financial inclusion and energy poverty: Empirical 

evidence from Ghana. Energy Econ. 94, 105085. 

https://doi.org/10.1016/j.eneco.2020.105085. 

Leach, G. (1992). The energy transition. Energy Pol. 20, 116–123. 

https://doi.org/10.1016/0301-4215(92)90105-B. 

Lewis, P. (1982). Fuel poverty can be stopped. National Right to Fuel Campaign, 

Bradford. 

Lin, B., & Wang, Y. (2020). Does energy poverty really exist in China? From the 

perspective of residential electricity consumption. Energy Pol. 143, 111557. 

https://doi.org/10.1016/j.enpol.2020.111557. 

Llera-Sastresa, E., Scarpellini, S., Rivera-Torres, P., Aranda, J., Zabalza-Bribián, I., & 

Aranda-Usón, A. (2017). Energy Vulnerability Composite Index in Social Housing, from 

a Household Energy Poverty Perspective. Sustainability 9, 5, 691. 

https://doi.org/10.3390/su9050691. 

Llorca, M., Rodriguez-Alvarez, A., & Jamasb, T. (2020). Objective vs. subjective fuel 

poverty and self-assessed health. Energy Econ. 87, 104736. 

https://doi.org/10.1016/j.eneco.2020.104736. 

Macedo, P. (2017). Ridge Regression and Generalized Maximum Entropy: an improved 

version of the Ridge-GME parameter estimator. Communic. Stat. – Sim. Comput. 46, 5, 

3527-3539. https://doi.org/10.1080/03610918.2015.1096378. 

Macedo, P. (2020). Freedman’s Paradox: A Solution Based on Normalized Entropy. In 

Valenzuela et al. (Eds.), Theory and Applications of Time Series Analysis, Contributions 

to Statistics, 239-252. Springer, Cham. https://doi.org/10.1007/978-3-030-56219-9_16. 

Mendoza Aguilar, J., Ramos-Real, F.J., & Ramírez-Díaz, A.J. (2019). Improving 

Indicators for Comparing Energy Poverty in the Canary Islands and Spain. Energies 12, 

11, 2135. https://doi.org/10.3390/en12112135. 



32 
 

Meyer, S., Laurence, H., Bart, D., Middlemiss, L., & Maréchal, K. (2018). Capturing the 

multifaceted nature of energy poverty: Lessons from Belgium. Energy Res. Soc. Sci. 40, 

273-283. https://doi.org/10.1016/j.erss.2018.01.017. 

Mittelhammer, R., Cardell, N.S., & Marsh, T.L. (2013). The data-constrained generalized 

maximum entropy estimator of the GLM: asymptotic theory and inference. Entropy 15, 

1756-1775. https://doi.org/10.3390/e15051756. 

Moore, R. (2012). Definitions of fuel poverty: implications for policy. Energy Pol. 49, 

19–26. https://doi.org/10.1016/j.enpol.2012.01.057. 

Murthy, N.S., Panda, M., & Parikh, J. (1997). Economic development, poverty reduction 

and carbon emissions in India. Energy Econ. 19, 3, 327-354. 

https://doi.org/10.1016/S0140-9883(96)01021-3. 

Nguyen, C.P., & Thanh, S.D. (2022) Nexus between energy poverty and economic 

vulnerability: Evidence from low and middle income economies. Energy Sour, Part B: 

Econ Plan Policy. DOI: 10.1080/15567249.2022.2056264. 

Ntaintasis, E., Mirasgedis, S., & Tourkolias, C. (2019). Comparing different 

methodological approaches for measuring energy poverty: Evidence from a survey in the 

region of Attika, Greece. Energy Pol. 125, 160-169. 

https://doi.org/10.1016/j.enpol.2018.10.048. 

Nussbaumer, P., Bazilian, M., & Modi, V. (2012). Measuring energy poverty: Focusing 

on what matters. Renew. Sust. Energy Rev. 16, 1, 231-243. 

https://doi.org/10.1016/j.rser.2011.07.150. 

Nussbaumer, P., Nerini, F.F., Onyeji, I., & Howells, M. (2013). Global Insights Based on 

the Multidimensional Energy Poverty Index (MEPI). Sustainability 5, 2060-2076. 

https://doi.org/10.3390/su5052060. 

O’Meara, G. (2016). A Review of the Literature on Fuel Poverty with a Focus on Ireland. 

Soc Indic Res 128, 285–303. https://doi.org/10.1007/s11205-015-1031-5. 

O’Sullivan, K.C., Howden-Chapman, P., & Fougere, G. (2015). Fuel poverty, policy, and 

equity in New Zeland: the promise of prepayment metering. Energy Res. Soc. Sci. 7, 99–

107. 

Okushima, S. (2017). Gauging energy poverty: A multidimensional approach. Energy 

137, 1159-1166. https://doi.org/10.1016/j.energy.2017.05.137. 

Ozughalu, U.M., & Ogwumike, F.O. (2019). Extreme Energy Poverty Incidence and 

Determinants in Nigeria: A Multidimensional Approach. Soc. Indic. Res. 142, 997–1014. 

https://doi.org/10.1007/s11205-018-1954-8. 

Papada, L., & Kaliampakos, D. (2018). A Stochastic Model for energy poverty analysis. 

Energy Pol. 116, 153-164. https://doi.org/10.1016/j.enpol.2018.02.004. 

Pelz, S., Pachauri, S., & Groh, S. (2018). A critical review of modern approaches for 

multidimensional energy poverty measurement. WIREs Energy Environ. 7(6), e304, 1-

16. https://doi.org/10.1002/wene.304. 



33 
 

Primc, K., Dominko, M., & Slabe-Erker, R. (2021). 30 years of energy and fuel poverty 

research: A retrospective analysis and future trends. J Cleaner Prod 301, 127003. 

https://doi.org/10.1016/j.jclepro.2021.127003. 

Primc, K., Slabe-Erker, R., & Majcen, B. (2019). Constructing energy poverty profiles 

for an effective energy policy. Energy Policy 128, 727-734. 

https://doi.org/10.1016/j.enpol.2019.01.059. 

Qurat-ul-Ann, AR., & Mirza, F.M. (2021). Multidimensional Energy Poverty in Pakistan: 

Empirical Evidence from Household Level Micro Data. Soc. Indic. Res. 155, 211–258 

(2021). https://doi.org/10.1007/s11205-020-02601-7. 

Raghutla, C., & Chittedi, K.R. (2022). Energy poverty and economic development: 

evidence from BRICS economies. Environ Sci Pollut Res 29, 9707–9721. 

https://doi.org/10.1007/s11356-021-16174-6. 

Rao, F., Tang, Y.M., Chau, K.Y., Iqbal, W., & Abbas, M. (2022). Assessment of energy 

poverty and key influencing factors in N11 countries. Sust Prod Cons 30, 1-15. 

https://doi.org/10.1016/j.spc.2021.11.002. 

Recalde, M., Peralta, A., Oliveras, L., Tirado-Herrero, S., Borrell, C., Palència, L., 

Gotsens, M., Artazcoz, L., & Marí-Dell’Olmo, M. (2019). Structural energy poverty 

vulnerability and excess winter mortality in the European Union: Exploring the 

association between structural determinants and health. Energy Pol. 133, 110869. 

https://doi.org/10.1016/j.enpol.2019.07.005. 

Reddy, A. (2000). Energy and social issues. In: World Energy Council and UNEP, 

editors. Energy and the challenge of sustainability. New York, NY. 

Rehman, I.H., Kar, A., Banerjee, M., Kumar, P., Shardul, M., Mohanty, J., & Hossain, I. 

(2012). Understanding the political economy and key drivers of energy access in 

addressing national energy access priorities and policies. Energy Pol. 47, 1, 27-37. 

https://doi.org/10.1016/j.enpol.2012.03.043. 

Reyes, R., Schueftan, A., Ruiz, C., & González, A.D. (2019). Controlling air pollution in 

a context of high energy poverty levels in southern Chile: Clean air but colder houses? 

Energy Pol. 124, 301-311. https://doi.org/10.1016/j.enpol.2018.10.022. 

Robles-Bonilla, T., & Cedano, K.G. (2021). Addressing Thermal Comfort in Regional 

Energy Poverty Assessment with Nussbaumer’s MEPI. Sustainability 13(1), 352. 

https://doi.org/10.3390/su13010352. 

Rodriguez-Alvarez, A., Llorca, M., & Jamasb, T. (2021). Alleviating energy poverty in 

Europe: Front-runners and laggards. Energy Econ 103, 105575. 

https://doi.org/10.1016/j.eneco.2021.105575. 

Romero, J.C., Linares, P., & López, X. (2018). The policy implications of energy poverty 

indicators. Energy Pol. 115, 98-108. https://doi.org/10.1016/j.enpol.2017.12.054. 



34 
 

Santillán, O.S., Cedano, K.G., & Martínez, M. (2020). Analysis of Energy Poverty in 7 

Latin American Countries Using Multidimensional Energy Poverty Index. Energies 

13(7), 1608. https://doi.org/10.3390/en13071608. 

Sareen, S., Thomson, H., Herrero, S.T., Gouveia, J.P., Lippert, I., & Lis, A. (2020). 

European energy poverty metrics: Scales, prospects and limits. Global Trans. 2, 26-36. 

https://doi.org/10.1016/j.glt.2020.01.003. 

Siksnelyte-Butkiene, I., Streimikiene, D., Lekavicius, V., & Balezentis, T. (2021). Energy 

poverty indicators: A systematic literature review and comprehensive analysis of 

integrity. Sust. Cities Soc. 67, 102756. https://doi.org/10.1016/j.scs.2021.102756. 

Streimikiene, D., Kyriakopoulos, G., Lekavicius, V., & Siksnelyte-Butkiene, I. (2021). 

Energy Poverty and Low Carbon Just Energy Transition: Comparative Study in Lithuania 

and Greece. Soc Indic Res 158, 319–371. https://doi.org/10.1007/s11205-021-02685-9. 

Thema, J., & Vondung, F. (2021). Expenditure-Based Indicators of Energy Poverty—An 

Analysis of Income and Expenditure Elasticities. Energies 14(1), 8. 

https://doi.org/10.3390/en14010008. 

Thomson, H., Bouzarovski, S., & Snell, C. (2017). Rethinking the measurement of energy 

poverty in Europe: a critical analysis of indicators and data. Indoor Built Environ. 26(7), 

889–890. https://doi.org/10.1177/1420326X17699260. 

Tundys, B., Bretyn, A., & Urbaniak, M. (2021). Energy Poverty and Sustainable 

Economic Development: An Exploration of Correlations and Interdependencies in 

European Countries. Energies 14(22), 7640. https://doi.org/10.3390/en14227640. 

UNDP (2020). Human Development Report 2020 by the United Nations Development 

Programme.  Available at: http://hdr.undp.org/sites/default/files/hdr2020.pdf. 

UNFCCC (2009). Report of the Conference of the Parties serving as the meeting of the 

Parties to the Kyoto Protocol on its fourth session, held in Poznan from 1 to 12 December 

2008. United Nations Framework Convention on Climate Change. 

FCCC/KP/CMP/2008/11/Add.2 19 March 2009. Available at: 

https://unfccc.int/resource/docs/2008/cmp4/eng/11a02.pdf. 

United Nations Environmental Programme (2019). Emissions Gap Report (2019). 

Executive summary. United Nations Environmental Programme, Nairobi. 

https://www.unenvironment.org/resources/emissions-gap-report-2019. 

Ürge-Vorsatz, D., & Herrero, S.T. (2012). Building synergies between climate change 

mitigation and energy poverty alleviation. Energy Pol. 49, 83-90. 

https://doi.org/10.1016/j.enpol.2011.11.093. 

Villalobos, C., Chávez, C., & Uribe, A. (2021). Energy poverty measures and the 

identification of the energy poor: A comparison between the utilitarian and capability-

based approaches in Chile. Energy Pol. 152, 112146. 

https://doi.org/10.1016/j.enpol.2021.112146. 



35 
 

Zhao, J., Dong, K., Dong, X., & Shahbaz, M. (2022). How renewable energy alleviate 

energy poverty? A global analysis. Renew Energy 186, 299-311. 

https://doi.org/10.1016/j.renene.2022.01.005. 

Zhao, J., Jiang, Q., Dong, X., & Dong, K. (2021). Assessing energy poverty and its effect 

on CO2 emissions: The case of China. Energy Econ 97, 105191. 

https://doi.org/10.1016/j.eneco.2021.105191. 

 

 

Appendix 

Resorting to the same data set as in the article, the weights were obtained through 

maximum entropy being as well the same but another index structure was used; that 

proposed by Ioannidis et al. (2020). Thus, a new weighted measure of energy poverty 

(WMEP), based on an updated science-wide author database of standardized citation 

indicators by Ioannidis et al. (2020), is tested as 

 

WMEPc = 1 − ∑ 𝑤𝑖

ln(X𝑖𝑐 + 1)

𝑚𝑎𝑥 ln(X𝑖 + 1)
 

12

𝑖=1

, (9) 

where 𝑐 represents the country, 𝑤𝑖 represents the weight of the variable X𝑖 

(𝑖 = 1, 2, … , 12), and 𝑚𝑎𝑥 ln(X𝑖 + 1) represents the maximum value of ln(X𝑖 + 1) in 

the sample of countries. Table A1 shows that the rankings of countries (ordered from 

highest to lowest value) obtained by the weighted measures in (8) and (9) are very similar. 

Table A.1 presents a comparison of rankings between both weighted measures and for 

the three periods (entire 2008-2018; and subsamples 2008-2012 and 2013-2018). 

Therefore, the weights may support and help political and governmental decision-makers 

in formulating social and economic policies that may contribute to the vulnerability of 

the vicious cycles of energy poverty, independently of the index structure used. This also 

indicates that independently of the indexes or variables used to construct the poverty 

index, we will reach the same results in terms of weightings and index structure, 

validating the proposed method here applied and presented. 
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Table A1. Comparison of rankings between weighted measures in (8) and (9). 

2008-2018  2008-2012  2013-2018 

Country by (8) Country by (9)  Country by (8) Country by (9)  Country by (8) Country by (9) 

Romania Romania  Romania Romania  Romania Romania 

Bulgaria Bulgaria  Bulgaria Bulgaria  Bulgaria Bulgaria 

Latvia Latvia  Latvia Latvia  Latvia Latvia 

Lithuania Lithuania  Lithuania Lithuania  Hungary Lithuania 

Hungary Hungary  Hungary Hungary  Lithuania Hungary 

Poland Poland  Poland Poland  Greece Greece  

Estonia Estonia  Estonia Estonia  Poland Poland 

Greece Slovakia  Slovakia Slovakia  Estonia Estonia 

Slovakia Portugal  Portugal Portugal  Slovakia Portugal 

Portugal Greece   Greece Malta  Portugal Slovakia 

Czech Republic Czech Republic  Czech Republic Czech Republic  Czech Republic Czech Republic 

Malta Malta  Malta Greece   Cyprus Cyprus 

Spain Spain  Spain Spain  Spain Spain 

Slovenia Cyprus  Slovenia Cyprus  Slovenia Malta 

Italy Slovenia  Italy Slovenia  Italy Slovenia 

Cyprus Italy  Cyprus Ireland  Malta Italy 

Ireland Ireland  Ireland Italy  Ireland Ireland 

France Belgium  Belgium Belgium  France Belgium 

Belgium Netherlands  France Netherlands  Belgium France 

Denmark France  Germany Germany  Netherlands Netherlands 

Germany Germany  Denmark France  Denmark Denmark 

Netherlands Denmark  Netherlands Denmark  Germany Germany 

Finland Finland  Finland Finland  Finland Finland 

Austria Austria  Austria Austria  Sweden Sweden 

Sweden Sweden  Sweden Sweden  Austria Austria 

Luxembourg Luxembourg  Luxembourg Luxembourg  Luxembourg Luxembourg 

  Source: Own elaboration. 

 

 


