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Kicks in charged black hole binaries
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We compute the emission of linear momentum (kicks) by both gravitational and electromagnetic
radiation in fully general-relativistic numerical evolutions of quasi-circular charged black hole bina-
ries. We derive analytical expressions for slowly moving bodies and explore numerically a variety
of mass ratios and charge-to-mass ratios. We find that for the equal mass case our analytical ex-
pression is in excellent agreement with the observed values and, contrarily to what happens in the
vacuum case, we find that in presence of electromagnetic fields there is emission of momentum
by gravitational waves. We also find that the strong gravitational kicks of binaries with unequal
masses affect the electromagnetic kicks, causing them to strongly deviate from Keplerian predic-
tions. For the values of charge-to-mass ratio considered in this work, we observe that magnitudes
of the electromagnetic kicks are always smaller than the gravitational ones.

I. INTRODUCTION

With the advent of gravitational-wave (GW) astron-
omy [I], the last decade has seen remarkable progress in
our ability to study strong-field gravity in highly dynam-
ical regimes. We can now monitor the GW-driven coales-
cence of compact binaries, paving the way to new tests of
General Relativity (GR) in the strong-field regime [2-4].
Some of these studies rely on the simplicity of black holes
(BHs) in GR, namely on the mathematical result that
asymptotically flat vacaum BH geometries must be pa-
rameterized by a small number of quantities (their mass,
angular momentum, and charge) [5H7]. Nevertheless, the
anticipated breakdown of classical GR in BH interiors
and our incomplete understanding of the matter content
of the Universe motivates the search for smoking-gun ev-
idence for beyond-standard-model physics in GW data.

While the search for new physics is complicated by our
nearly total ignorance of the ultimate theory of gravita-
tion, we can take guidance from robust aspects of specific
modified theories of gravity [3,8]. For instance, a generic
feature that arise when extra degrees of freedom are in-
volved is the dipole emission [9]. A specific example that
we will use as a prototype for modified gravity theories
with such effect is Einstein’s theory minimally coupled to
a massless vector field, known as Einstein-Maxwell’s the-
ory. In contrast to most beyond-standard-model theories,
Einstein-Maxwell admits a well-posed initial value prob-
lem [10], and hence is amenable to numerical integration.
In this theory, BHs can carry a conserved charge. While
this charge can be thought of as electric charge, astro-
physical BHs are expected to be electrically neutral to a

very good approximation. This is due to Schwinger-type
and Hawking radiation mechanisms, and the availabil-
ity of interstellar plasma, mechanisms that are effective
largely because of the huge charge-to-mass ratio of elec-
trons (see, e.g. [I1] and references therein). However, the
mathematical description for Einstein-Maxwell does not
only describe electric charge but can be applied to any
U(1) field. If the vector field is not a Maxwell field, it is
possible to envision scenarios where the charge-to-mass
ratio of fundamental particles is smaller, and where BHs
could be charged under such a field. It is also possible to
interpret the charge as magnetic in nature (possibly due
to primordial magnetic monopoles). Within this frame-
work, the existence of interaction and another channel
of radiation, in addition to the GW channel, changes
the dynamics of the compact binary, leading to poten-
tially observable signatures in the GWs. Indeed, the first
constraints on the charge and dipole moment of BH bina-
ries, using GW detection, have been placed [9, TTHI3] and
show that data is compatible with non-negligible amount
of charge. In other words, the Einstein-Maxwell theory
is a good proxy for more general theories of gravitation,
but also an attractive candidate for dark matter [I1] (for
theoretical scenarios where Einstein-Maxwell theory is
mathematically applicable, see, e.g., [12], 14 [15]).

One potentially important, but unexplored, conse-
quence of having charged objects is that EM radiation
will induce a recoil on the final object, in addition to
that induced by GW emission. The recoil induced by
GWs was studied extensively (see Refs. [16H27] for a
very incomplete list). This gravitational recoil, known as
the kick, has important implications on the structure of



galaxies and the formation of supermassive BHs [28-33]
and particularly due to the possibility that the resulting
BH might exceed the escape velocity of globular clusters,
or even galaxies, thus being ejected from them [34H38].

The rate of emission of momentum in GWs is caused
by the interaction between the quadrupole and the oc-
tupole of the energy distribution [19]. In gravity theories
with dipole emission, this suggests that the leading-order
effect giving rise to a kick would be a dipole-quadrupole
term, which can lead to qualitatively new features, po-
tentially surpassing the GW effect. The purpose of this
work is to explore this question. Since in GR the kick is
independent of the scale of the system, our study applies
to both stellar mass and supermassive BHs alike. If kicks
are detected in GW data [39] [40], additional constraints
on dipole emission can be placed when the GW model
accounts for the effects of dipole emission.

The paper is structured as follows: In Section [[] we es-
timate the kicks analytically assuming Keplerian circular
orbits. The numerical setup and code are explained in
Section [T} Section [[V] exposes the results of the sim-
ulations and compares them with the Keplerian esti-
mate. We conclude in Section [Vl We use units in which
G = ¢ = 1, where G is Newton’s constant and ¢ the
speed of light in vacuum. The conventions for the EM
fields are those of [4I]. We express results in terms of
the Arnowitt-Deser-Misner (ADM) mass of the system,
Mapas- Greek indices range from 0 to 3, and Latin ones
range from 1 to 3.

II. SLOW MOTION, WEAK FIELD
APPROXIMATION

We follow here an approach analogous to what Ref. [I§]
did for GW emission. We use a slow-motion, weak-field
approximation, and start by solving for the EM field A
in the Lorenz gauge, which leads to a wave equation with
source

OA*(x,t) = 4mJH. (1)
Here, x and ¢ are the space and time coordinates in flat

space, and J* is the EM current density. Using the
Green’s function of the d’Alembertian operator we get

A;L(X’ t) _ / J”(Xl,t - |X — XI‘)dV (2)
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with dV = d®x’. We will drop the primes from now on. A
straightforward manipulation yields, up to higher order
terms
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where n’ is the outward-pointing unit 3-vector, and we
define the electric dipole D*, the magnetic dipole M"
and the traceless electric quadrupole Q% as

D' = / JOztdV,
MY = / (z'J7 — 27 J")aV, (4)
QY = /JO(?)xiwj —r26)av.

At sufficiently large distances from the source, the fields
behave as a plane wave [42]. In this limit, by neglecting
the Coulomb term (o< 772) in front of the radiative term
(x r~1) the Poynting vector becomes simply

sz\Aan%. (5)

After a lengthy manipulation of , and integrating over
solid angle, we are left with the expression for the rate of
emission of linear momentum in the EM radiation
APy 1 i oo
T 15D Q DI Mt (6)
We see here that the dominant contribution to the mo-
mentum emission is a combination of electric dipole
and magnetic dipole, and electric dipole and quadrupole
terms. This formula is somewhat similar to its GW ana-
log, where the momentum emission arises from the inter-
action between the mass quadrupole and a combination
of mass octupole and angular momentum moments [I§].
For the particular case of point particles following Ke-
plerian circular orbits, we set [19]

2
JO =" gnd(x — xn(t)),
" (7)
T =) qnihd(x — xu (1),

with § being Dirac’s delta. If the particles have masses
my and msy, charges ¢; and ¢, and are at a distance
d of each other (distance dy and dy from the center of
mass), a direct modification of Kepler’s third law yields
an angular velocity

Q.= d_g/z\/(ml +m2) (1 - e ) : (8)
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where we also accounted for the EM interaction. Without
loss of generality, we may choose an instant of time where
both particles lie along the z-axis, with their velocity
vectors in the y direction. The only nonzero components
of the electric dipole and quadrupole tensor derivatives
are then

—(d1q1 — daq2)Q?,

9)
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and the magnetic dipole tensor is zero. Therefore
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Following [25], we assume that the total integrated mo-
mentum will have the same functional form. This result
predicts a zero kick for the cases Ay = A2 (when the
dipole vanishes) and Ay = —pAy (when the quadrupole
vanishes), in the center of mass frame. Note that the fac-

tor (1 — A\ )\2)5/2 is never zero in BHs since \; are strictly
less than 1. We will now use full nonlinear simulations
to compute the actual recoil imparted by EM radiation,
trying to make contact with this flat-space result.

III. SETUP

The action for the Einstein-Maxwell theory is

% - iF’“’FW> (14)

S = / d*z\/—g <
where R is the Ricci scalar, and the electromagnetic field
strength is defined as F,, = V, A, — V,A,. Variation
with respect to the metric tensor g,,,, and the electromag-
netic vector potential A, result, respectively, in

V, P =0, (15)

R, — %QWR =2F,,F)/ — %gm,Fp”FpU. (16)
To evolve these equations numerically we employ the
standard 341 decomposition to formulate the equations
of motion as a Cauchy problem under the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) scheme [43],44]. Our
numerical approach follows that of previous evolutions
of charged BHs [12] [15], 45H48]. Specifically, numerical
computations are performed using the EinsteinToolkit
(ET) code [49], within the Cactus framework [50] with
grid functions being computed on a Carpet adaptive-
mesh-refinement Cartesian grid [51]. To prepare initial

data and diagnose the spacetime we adopt the codes
TwoChargedPunctures and QuasiLocalMeasuresEM de-
veloped in [I4], which extend the TwoPunctures [52] and
QuasilocalMeasures [53] to the full Einstein-Maxwell
theory. These codes have been employed in [12] [I5]
48], where it was demonstrated how one can perform
long-term and stable quasi-circular charged BH numer-
ical evolutions. For a different approach to generat-
ing initial data, see [54]. Time evolution of the elec-
tromagnetic fields is performed with the massless ver-
sion of ProcaEvolve thorn [4I] within the Canuda li-
brary [55]. The spacetime is evolved with Lean [56],
also within Canuda. @ We employed the continuous
Kreiss-Oliger dissipation prescription introduced in [I5].
AHFinderDirect [57] is adopted for locating apparent
horizons. To save computational resources we impose
symmetry with respect to the orbital z = 0 plane.

We approximate the initial momenta of the BHs in a
quasi-circular inspiral by the 3.5 Post-Newtonian approx-
imation for neutral BHs, and rescaling it by a factor of
V1 — A1)y as explained in [15].

The emission of energy by EM and GWs can be com-
puted from the Newman-Penrose scalars [41], 58] ¥4 and
®,, respectively, as

dE 2 ¢ 2
o 2 f|[ ot o
dFE 2
2=t (8o do, (18)

where § indicates surface integration over a coordinate
sphere of radius r and df) = sin 0dfd¢ is the differential
solid angle.

The expressions for linear momentum emission are ob-
tained simply by adding a radially-pointing unit vector
7 inside the angular integral,

2
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The actual computation is done in terms of the multi-
pole decomposition coefficients of ¥4 and ®5 as explained
in Appendix [A] We use multipole moments up to order
Il = 8, and we start the time integration at a retarded
time of 40 computational units (about 39.2Mapy) in or-
der to avoid the “junk” radiation (spurious radiation,
arising from the way that initial data is specified). As
explained bellow, we then convert the linear momen-
tum to recoil velocity as v = P/Mp, where Mp is
the quasi-isolated mass of the final BH as computed by
QuasilLocalMeasuresEM.

Several sanity checks (such as the comparison to neu-
tral results of Ref. [25]) have been performed on the nu-
merical implementation of the equations, and are sum-
marized in Appendix [B] The computation of the kicks
from the multipole moments has been compared to the



direct integration of momentum emission over solid an-
gle, showing excellent agreement. The computation of
the Newman-Penrose scalars is implemented in the ET
NPScalars_Proca thorn [4I]. Each run has 8 refinement
levels (each one halving the previous grid spacing), with
outermost grid spacing of Ax = Ay = Az = 1.23Mapyy-
This corresponds to having at least 50 points across the
horizon in cases with p = 1, and at least 33 across the
diameter of the horizon of the smallest BH for p = 2.

TABLE I. Parameters used in the initial data generation, ex-
pressed in code units, for the first (top) and second (bottom)
series of runs.

Mapm mi m2 p=mi/ma A A2
1.02 0.52 0.52 1.00 0.19 -0.19
1.02 0.52 0.52 1.00 0.19 -0.10
1.03 0.52 0.52 1.00 0.19 0.00
1.03 0.52 0.52 1.00 0.19 0.10
1.02 0.52 0.52 1.00 0.19 0.19
1.02 0.68 0.35 1.94 0.19 -0.19
1.02 0.68 0.35 1.94 0.19 -0.09
1.02 0.68 0.35 1.94 0.19 0.00
1.02 0.68 0.35 1.94 0.19 0.09
1.02 0.68 0.35 1.94 0.19 0.19

We performed a sampling of a subset of the parame-
ters describing a binary BH. Namely, we use an initial
coordinate distance of d = 6.86 M spys, and we organize
the runs by “series” of fixed mass ratio p = my/ms and
A1 (p > 1). For each series, we vary A from —A; to A; in
intervals of 0.1. The construction of the initial data by
TwoChargedPunctures fixing the bare masses introduces
some small deviations from the target initial masses and
charges of the individual BHs, and also to the global
ADM mass of the system. This causes the mass ratios to
be slightly different from the exact values of p = 1,2, and
the charge-to-mass ratios A to vary between runs, as mea-
sured by QuasilocalMeasuresEM. Additionally, the fact
that Mapwm # 1 creates a discrepancy between the com-
putational code units and the geometric units in terms of
the total mass. For this reason, it is important to keep in
mind that for all plots and fitting functions that assume
constant quantities in several runs, this assumption is
only approximately satisfied. Also, waveforms extracted
at a fixed radius Rey in computational units will not cor-
respond exactly to the same physical distance, although
the difference is negligible compared to other sources of
error. Table [[] lists the ADM mass, physical masses of
each BH, charge-to-mass ratios and binary mass ratios
that we explored. The ADM mass is computed at the
level of initial data by surface integrals as in [59], and
the physical masses mq 2 refer to the values measured by
QuasilocalMeasuresEM as in [I4].

Fits to data were performed by the nonlinear least-
squares (NLLS) Marquardt-Levenberg algorithm imple-
mentation in Gnuplot, which also provides an estimate

of the asymptotic standard errors in the coefficients.

In Table [Tl we list the values of the kicks obtained for
each of the parameter configurations.

TABLE II. Values of the kicks for the first (top) and second

IV. RESULTS

(bottom) series of runs, all of them having A; = 0.19.

p = 1.00 A2 VEM (km/s) VGwW (km/s)
-0.19 0.00 &= 0.00 0.00 = 0.00
-0.10 4.73 £ 0.03 2.01 £ 0.09
0.00 6.25 &+ 0.04 2.62 £ 0.12
0.10 4.66 £ 0.03 1.93 & 0.09
0.19 0.00 & 0.00 0.00 &= 0.00
p=194 A2 vem (km/s) vaw (km/s)
-0.19 6.17 = 0.04 153.36 £ 6.9
-0.09 7.91 £ 0.05 149.54 £+ 6.7
0.00 7.76 £ 0.05 146.23 + 6.6
0.09 5.67 4 0.03 144.74 £ 6.5
0.19 1.75 £ 0.01 144.42 £ 6.5

Although Eq. assumes flat space and a circular
trajectory, it suggests a functional form for the EM kick.
We thus expect the rate of emission of EM momentum as
a function of Ay to be a curve close to a parabola, with
roots at Ao = A; (zero dipole) and at Ay = —A1/p (zero
quadrupole). As in Ref. [25], we conjecture that the total
integrated momentum (the kick) should follow the same
kind of dependence. Therefore, we fit a function of the
form

vEM = A (B = X2) (C + Ag) (1 — DXg)™2. (21)

Based on the Keplerian expression, we expect B = A1,
C = M\/pand D = X;. The constant A will depend
on the details of the decay of the orbital separation, and
is therefore not possible to extract it at a purely New-
tonian level. The actual numerical values for the EM
kicks for equal-mass BHs are depicted in Fig. We
define v = P/Mp, with Mg being the mass of the fi-
nal BH as measured by QuasilocalMeasuresEM. This
expression is appropriate in the regime under considera-
tion because the kicks are non relativistic (v < ¢). Note
that both P and Mg have units of mass, so the kick
magnitude is independent on the mass-scale of the sys-
tem. The fitted values from are A = 169.5 + 0.3
km/s, B = 0.192+2-107%, C = 0.192+2-10"* and
D = 0.03£0.01, giving excellent agreement for the zeros
of the kick, but a slightly more symmetric curve than the
predicted by . The uncertainties in the coefficients B
and C are of the same order as the variations of A\; be-
tween the runs used in the fit. Because of the symmetry
between the two BHs, we expect the GW kicks for equal
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FIG. 1. Emission of momentum in the EM channel as a func-
tion of time (top) and final kick (bottom), for equal-mass
binaries (p &~ 1.00) and A; &~ 0.192. The solid line is the fit-
ted function of the form (2I). The fit error is estimated to be
of about 0.6%.
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FIG. 2. Emission of momentum in the GW channel as a

function of time (top) and final kick (bottom), for equal-mass
binaries (p ~ 1.00) and A1 = 0.192. The solid line is the fitted
function of the form (2I). The fit error is estimated to be of
about 4.5%.

mass binaries to vanish for A\ = Ao, which is indeed ob-
served. For other values of Ay, however, small GW kicks
are produced as a consequence of the EM fields, as shown
in Fig. The profile of the GW kicks as a function
of Ay is again almost parabolic, with the fit from
giving A = 71.17 £ 0.03 km/s, B = 0.192 £ 5 - 107°,
C =0192+4-10"° and D = 0.085 £ 0.002.
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FIG. 3. EM kicks for mass ratio p ~ 1.94 and A1 ~ 0.195,
showing strong deviation from the prediction of 7 which
predicts the zeros to be at A2 = A2, —A2/p. The solid line is
the fitted function of the form . The error is estimated to
be of about 0.6%.

When moving to BH binaries with unequal masses,
the numerical results deviate strongly from the Keple-
rian prediction (see Fig. . In particular, the EM kicks
no longer vanish for the zero dipole (A2 = A1) and zero
quadrupole (Ay = —A3/p) configurations, and the maxi-
mum is displaced from the predicted position. We do not
have, at the present time, a clear explanation of the phys-
ical phenomena causing this deviation when p > 1. We
hypothesize, however, that the (much stronger) emission
of momentum by the GW channel is “jiggling” the system
and thus invalidating the assumptions of our derivation
and contaminating the EM signal. The GW kicks for
mass ratio p ~ 1.94, plotted in Fig. [f] can be fitted to be
approximately

VGW = UGW neutral + A + B(C' — Aa)?, (22)

with A = 129 £0.2 km/s, B = 70 £ 6 km/s and
C = 0.17 £ 0.02, signaling a quadratic dependence on
A — A2, VGW neutral &~ 131.5 km/s is the value of the
kick for a neutral binary with the same mass ratio as the
charged ones (p = 1.94). In order to parametrize the
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FIG. 4. Emission of momentum in the GW channel as a
function of time (top) and final kick (bottom), for mass ratio
p~ 1.94 and A1 ~ 0.195. The solid line is the fitted function
of the form . The error is estimated to be of about 4.5%.

effect of the gravitational emission of momentum on the
electromagnetic kicks, we fitted an empirical model which
adds to the Keplerian profile a contribution proportional
to the GW kick as

(1= A Ag)™?p2
(1+p)°
+28(1 — yA2)vaw.

VEM = O (A1 — A2) (A1 + pA2)

(23)

By using the results above, we obtain the dimensionless

coefficients o = (5.0+0.1)-10% km/s, 8 = 0.0194+3-10~*
and v = 3.5+ 0.2. The comparison of the model with
the actual numerical values of the EM kicks is shown
in Fig. [5, giving remarkable accuracy with a maximum
error of 0.3 km/s. For the smallest kicks, the relative
error can be large (about 13%). The physical meaning
of these parameters is unknown. In Fig. [6] the directions
of the EM and GW are displayed. It is interesting to
notice that for equal masses, the two channels seem to be
oriented roughly in opposite directions, while for higher
mass ratios the directions seem to be approximately the
same.

V. DISCUSSION

We computed in a full nonlinear setup the linear mo-
mentum carried by EM and GWs in charged BH bi-
naries in quasi-circular orbits, with varying mass ra-
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FIG. 5. Comparison between the EM kicks obtained by nu-
merical simulation and the empirical fitted model . The
maximum absolute error is of 0.3 km/s and the maximum
relative error (excluding the vanishing kicks) is 13 %.
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FIG. 6. Unit vectors showing the directions on the (z,y)
orbital plane of the EM and GW kicks for mass ratios 1 and 2.



tios and charges. Our results are motivated and also
described well by a simple weak-field slow motion ex-
pansion, Eq. . Note, however, that we fixed the
charge-to-mass ratio of one component, A;. Our fit is
not informed by general charge-to-mass ratios, hence it
doesn’t have a proper neutral limit (notice that when
A1 = A2 =0, Eq. predicts a nonsensical EM kick).
Our results are robust against changes in the initial or-
bital separation and small orbital eccentricity.

We observe that the presence of charge in equal mass
binaries can induce a small GW kick at the fully nonlinear
level, as long as |q1| # |g2|. For binaries with sufficiently
different masses, the EM kick is generally much weaker
than its gravitational counterpart for the explored val-
ues of the charges. This would make it a subdominant
effect in astrophysical scenarios unless the U(1) charge is
significantly larger.

For equal mass binaries, we observe a remarkable
agreement with the Keplerian prediction of the general
dependence of the EM kicks as a function of the charges.
The kick vanishes when either the electric dipole or the
electric quadrupole of the system is zero, and presents
a maximum close to the middle point between the two
roots. The v(A2) curve is however slightly more symmet-
rical than expected.

As soon as the masses differ, the v(Az) curve strongly
deviates from the Newtonian prediction, showing nonzero
kicks even at zero electric dipole and zero electric
quadrupole. We conjecture that this is due to jiggling
of the system by the much larger momentum of the grav-
itational radiation, and we fit a purely phenomenological
model that is able to approximately capture the behav-
ior.

The careful exploration of the origin of the deviation
is left for future work. The effect of the gravitational
momentum emission on the system during the late phases
of the inspiral must be further explored, possibly by post-
Newtonian approximations, in order to assess the physics
behind the numerical results.
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Appendix A: Multipolar Expansion

We extend to arbitrary spin weights the approach used
in [64] to express the energy and momentum emission in
terms multipole moments of the Newman-Penrose scalars
U, and ®,. Let ;Y5 (6, ¢) be the spin-weighted spheri-
cal harmonic with spin s and angular numbers [ and m,
we have that

LYE, ),

(A1)

I Mg 1 Mg

1 Yh™(6, ).

\|| M~ ; M~

1. Energy Emission

In this case, the solution is immediate thanks to the or-
thogonality relation between spin-weighted spherical har-
monics

%Syl,mslyl’,m’dﬂ = 555'5ll’5mm/7 (AZ)

where the bar over complex quantities denotes complex
conjugation. Therefore, equations and can be



simply rewritten as

dEaw . r2 ¢ . ,
= lim —— Al
dt roeo 167 l; /, .

dBgy . 1P I,m|2
dt _TE%E%:’B ™

2

b

(A3)

2. Momentum Emission

In this case, the derivation of the expressions is
slightly more involved due to the presence of the radially
outward-pointing unit vector n' in the integrals which
does not allow for direct application of the orthogonal-
ity relation. It can be simplified, however, by noticing
that n® can be written in terms of the ordinary spherical
harmonics (spin weight 0) as

2
n® = sinfcosp = 1/% [oY' ™ — Y],

2
nY =sinfsinp = iy/ ?ﬁ [OYl’*1 +0 Ylvl} ) (A4)

n® =cosf = 2\/§Y1’0,

and the calculation becomes even simpler in terms of

J

the complex quantity

8
nt=n"+inY = —\/?ﬂ- oYL,

Using the expression of the angular integral of a triple
product of spin-weighted spherical harmonics in terms of
the Wigner 3-Im symbols, and after some algebra, we can
define the spin-weighted coefficients

(A5)

VT m) T rmr1)
sflm = 78 (I +1) ’
b 1 I +s)(l=s)(I+m)(l+m—1)
sthm a1 (20—1)(20+1) ’

which lead to the final expressions for momentum emis-
sion

dpgw o L m ' Alm+1 ql—1,m+1 Al+1mA1Y 347
dt = rli{go 87’7'(' ZWL: [m AVt [m (—2al,mA + —le,—'rnA - —2bl+1,'m+1A ) dt ’

dPCZ;W — lim i Z /t Al’mdt/ /t (72Cl mAl,m + 72dl mAl—l,m + 72dl+1 mAl-{-l,m) dtl
dt r—oo 167 —~ oo oo ’ ’ ’ ’
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lm
dP§ .2 _ .
% — 71520 o ZBl,m [—lcl,mBlvm + —ldl7mBl Lm

lm

The time integrations are computed numerically using
the composite trapezoidal rule. See Section [[T]] for more
details.

Appendix B: Numerical Checks

1. Neutral Kicks

We performed consistency checks the numerical results
to quantify the quality of the simulations. First, we re-
produced established results in the context of kicks in
neutral BH. In [25], simulation data was used to esti-

Rl+1,
_ldl+17mB ’Tn:l .

(

mate the phenomenological trend for momentum lost by

GWs

vaw ~ 1.2 x 10%%/1 — 4n(1 — 0.937),

B1

n=p/(1+p)". By
Our simulations reproduce this result. Figure [7] shows
the real part of the (I,m) = (2,2) component of Uy
(multiplied by the extraction radius Rex) and the GW
kick of a neutral binary with p = 1.43 (as measured by
QuasilocalMeasuresEM). For this mass ratio, pre-
dicts a kick of 95.92 km/s. In Fig. |8 we obtain a value of
93.59 km /s. This is an error of 2.5% with respect to (B1)),
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FIG. 7. Multipolar [ = 2, m = 2 mode of R(¥4) and velocity
profiles as a function of extraction radius for a neutral binary
with mass ratio 1.43.

within the error bar given in [25].

Kick: 93.59 km/s

0.02 0.03 0.04

1/Rex [Mapm]

0.00 0.01

FIG. 8. Extrapolation to Rex — o0 to estimate the kick, via a

second order polynomial, for a neutral binary with mass ratio
1.43.

2. Convergence of the Multipolar Expansion

The kicks have been extracted from the multipolar ex-
pansion coefficients of the NP scalars, up to [ = 8, as
explained in Appendix[A] In Fig. [0 we show the value of
the extracted kick computed using different numbers of

140
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80— ; ; r
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FIG. 9. Value of the GW kick computed to different orders in
the multipole expansion, for a neutral binary with mass ratio
1.43. The extraction radius is Rex ~ 98Mapns.

multipole coefficients. Although the contribution to the
total kick is dominated by the (I, m) = (2,2) mode, the
value experiences significant changes until [ = 4. It is
possible to see from the plots that the waveform and the
velocity profiles converge as Royx get larger. The same
happens with the EM sector for charged binaries. More
quantitatively, we can plot the final kick as a function of
1/Rex and extrapolate to obtain the value as Rex — 0.

3. Self-Convergence Testing
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FIG. 10. Self-convergence testing on the (I, m) = (2,2) mode
of Newman-Penrose scalar 14; results are compatible with 4th
order convergence.



Figure [10] shows a self-convergence analysis performed
on equal-mass binary BHs with A\; = 0.2, Ao = 0, by us-
ing three different resolutions (fine, medium, and coarse).
Each run has 8 refinement levels (each one halving the
previous grid spacing), with outermost grid spacings of
he =147, hy, = 1.23 and hy = 0.99 in units of Mapas.
This produces the scaling factor of 1.87 for 4th order con-
vergence, computed from (h? — ht)/(hi — hjﬁ) ~ 1.87.
We observe high frequency noise as described in [12].

10
4. Initial Conditions

Starting the simulations with the orbiting BHs at a
finite (and small) distance will always introduce some
systematic error to the computation of the kicks, since
we are neglecting all emission from the system prior to
the computational starting time. Additionally, the ini-
tial momenta of a quasi-circular inspiral have to be es-
timated, and will also contain deviations from the mo-
menta that would be achieved at that distance when
inspiraling from an infinite distance. For this reason,
we perform a check by repeating one of the inspiral
cases in this paper (namely p ~ 1.94, \; = 0.195 and
A2 = —0.09), but starting at a distance of d = 7.84M ap s
instead of d = 6.86Mapps. This results in a difference
of 0.25% in the EM kick and 4% in the GW kick. This
is of the same order as the error found in the previous
section. We therefore estimate that our kicks have errors
of order few percent.
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