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In this paper, we present several possible anomaly free implementations of the Branco-Grimus-Lavoura
(BGL) model with two Higgs doublets and one singlet scalar. The model also includes three generations of
massive neutrinos that get their mass via a type-I seesaw mechanism. A particular anomaly free realization,
which we dub νBGL-1 scenario, is subjected to an extensive phenomenological analysis, from the
perspective of flavor physics and collider phenomenology.
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I. INTRODUCTION

With the discovery of the Higgs boson at the LHC in
2012 [1,2], the entire particle spectrum of the Standard
Model (SM) has been observed and experimentally vali-
dated. However, despite its remarkable success, there is
experimental evidence for the existence of Dark Matter
(DM) and neutrino masses, while the observed hierarchical
structure that characterizes the fermion sector finds no
explanation in the SM. With a plethora of New Physics
(NP) extensions that aim at offering solutions to the
aforementioned phenomena, the vast majority of them come
in the form of extended scalar sectors. One of the most
popular and thoroughly exploredmultiscalar scenarios is the
two-Higgs doublet model (THDM), as first proposed by
T.D. Lee [3]. The introduction of a new complex scalar
doublet, in addition to the one that is already present in the
SM, results in an extended particle spectrum with a new
electrically charged scalar and two new neutral ones, one of

which is even while the other is odd under discrete CP
(charge times parity) transformations.
This type of model provides a rich breeding ground for

phenomenological studies, with the possibility of having a
suitable DM candidate in its spectrum [4–9], spontaneous
CP-violation [10–14], and generation of flavor-changing
neutral currents (FCNCs) mediated by the new neutral
scalars [15,16]. However, the presence of FCNCs can be
troublesome since they are very constrained experimen-
tally, and in the models we are discussing they can
manifest themselves already at tree-level, whereas equiv-
alent processes in the SM are of pure radiative origin, thus
highly suppressed. As such, one either requires FCNCs
couplings to be fine-tuned or rather there should exist an
underlying symmetry that naturally mitigates the effect of
these interactions. A concrete mechanism for symmetry-
suppressed FCNCs has been proposed by Branco, Grimus,
and Lavoura [17] where, due to the presence of an Abelian
flavor symmetry such as Z2 or U(1), FCNC couplings are
kept under control by making such interactions propor-
tional to off-diagonal elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. Such a class of models is
commonly dubbed as Branco-Grimus-Lavoura (BGL)
models.
A natural extension of the THDM-BGL framework can

emerge in the form of a gauge U(1) symmetry, which
necessarily requires a further enlargement of the scalar
sector with a new electroweak (EW) singlet, thus falling in
the family of next-to-minimal THDM (or NTHDM) for
short. Recently, a complete list of all possible anomaly free
implementations of the gauged NTHDM with two families
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of right-handed neutrinos and a type-I seesaw mechanism
was introduced in Ref. [18], while a generalization to three
neutrino generations was discussed in Ref. [19]. For
previous phenomenological considerations in a set of
THDMs featuring the absence of tree-level FCNCs and
accommodating a seesaw mechanism for neutrino mass
generation, see Ref. [20]. Among all allowed textures in the
Yukawa sector one of them replicates the BGL structure.
The model explored in this article is inspired by such a
scenario but for the case of a global Uð1Þ0 flavor symmetry.
The latter is explicitly broken via soft terms in the scalar
potential as well as by the vacuum expectation value (VEV)
in the real component of the complex singlet scalar field. As
a result, in addition to a SM-like Higgs boson candidate,
five new physical scalars emerge, including an electrically
charged one, H�, two CP-even neutral ones, H2 and H3,
and two pseudoscalars, A2 and A3. Note that in the context
of the gauge Uð1Þ0 flavor symmetry [18,19] one of those
pseudoscalars, as a pure Goldstone particle, becomes a
longitudinal polarization mode of a Z0 vector boson. In
turn, tight constraints imposed by direct searches at the
LHC [21–26] on new gauge bosons imply a rather large
Uð1Þ0 breaking scale, of at least a few TeV, naturally
inducing masses of the same order to the new scalars,
unless a certain degree of fine-tuning is in place. Our
current goal is to study the impact of the extended scalar
sectors not too far from the EW scale. For this purpose, a
global version of the BGL scenario instead of the gauged
one proposed in Ref. [18,19] is considered in this work.
We test the viability of the scalar sector against

phenomenological observables, in particular, by making
sure that FCNCs obey current experimental constraints
and that there exists one CP-even neutral scalar that
replicates the properties of the SM Higgs boson, defined
as H1 in this article. For a rigorous analysis we employ
widely used open-source software, namely, SARAH [27],
for model implementation, and SPheno [28], to
numerically calculate masses and interaction vertices,
which are then used to interface with HiggsBounds and
HiggsSignals [29,30], where the viability of the Higgs
sector is verified, and FLAVIO [31], where flavor observ-
ables are calculated.
The paper is organized as follows. In Sec. II we introduce

the model, with the focus on the Yukawa and scalar sectors
of the theory that obey the BGL structure. In Sec. III we
detail the method by which one can obtain anomaly free
models, as first discussed in Ref. [19], highlighting the
possible textures in the lepton sector. In Sec. III E we show
all possible anomaly free implementations of the consid-
ered class of NTHDM scenarios. In Sec. IV we discuss the
particular version of the model considered in this article,
with a discussion on the neutrino masses and mixings. In
Sec. V we describe the methodology behind the phenom-
enological studies and present the numerical results that
follow. In Sec. VI we confront our results with direct scalar

searches at the LHC. In Sec. VII we conclude with a
summary of our findings.

II. A GENERIC NTHDM WITH A BGL
STRUCTURE

In this work, we extend the SM with a flavor nonuni-
versal Uð1Þ0 global symmetry alongside three generations
of right-handed neutrinos ν1;2;3R , a scalar singlet S and a
second Higgs doublet1 Φ2. In addition, we demand that the
singlet and at least one of the doublets transform non-
trivially under Uð1Þ0 such that at least two VEVs contribute
to the breaking of the flavor symmetry.
The Yukawa interactions that define the model to be

discussed read as

−LYukawa¼ q0LΓaΦad0Rþq0LΔaΦ̃au0Rþl0
LΠaΦae0R

þl0
LΣaΦ̃aν0Rþ

1

2
νc0R ðAþBSþCS�Þν0RþH:c:;

ð2:1Þ

where Γ, Δ, Π, and Σ are the 3 × 3 Dirac-like down
quark, up quark, charged lepton, and neutrino Yukawa
coupling matrices, respectively. The index a runs over the
two scalar doublets (with implicit summation) and, as
usual, Φ̃≡ iσ2Φ�. While B and C are the Majorana-like
Yukawa matrices involving right-handed neutrinos and the
scalar singlet, A is a Majorana mass term written in the
flavor basis, defined by the fields expressed with the 0
superscript. To comply with a BGL structure the trans-
formation laws of the different fields under the Uð1Þ0 global
symmetry are chosen so that the quark Yukawa textures are
given as

Γ1∶

0
B@

× × ×

× × ×

0 0 0

1
CA; Γ2∶

0
B@

0 0 0

0 0 0

× × ×

1
CA;

Δ1∶

0
B@

× × 0

× × 0

0 0 0

1
CA; Δ2∶

0
B@

0 0 0

0 0 0

0 0 ×

1
CA: ð2:2Þ

Note that this choice of textures implies that tree-level
FCNCs will appear only in the down quark sector, since the
up-quark Yukawa matrices can be diagonalized simulta-
neously. Indeed, this represents the more conservative
scenario, since down-type FCNCs are more tightly con-
strained by experiment when compared to those in the up-
sector. Of course, one can also extend the BGL mechanism
to the lepton sector, as first proposed in Ref. [33], which is
beyond the scope of the present work.

1The BGL model versions discussed in this article were first
introduced in the Appendix of [32].
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In Eq. (2.1), the scalar fields can be expanded as

Φa ≡ 1ffiffiffi
2

p
� ffiffiffi

2
p

ϕþ
a

vaeiφa þ Ra þ iIa

�
;

S≡ 1ffiffiffi
2

p ðvSeiφS þ ρþ iηÞ; ð2:3Þ

where v1;2 and vS denote the doublet and singlet VEVs,
respectively. As the scalar fields have, in general, different
Uð2ÞY × Uð1Þ0 charge assignment, we can choose two of
the VEVs real, for example v1 and v2, i.e. φ1;2 ¼ 0. In
multi-Higgs SM extensions there is a possibility to trigger
spontaneous CP breaking via complex VEVs. For the
purposes of this work, however, we are only focused on a
CP conserving scalar phase. CP violation will emerge via
the CKMmatrix as in the SM, due to the fact that the entries
of the Yukawa matrices of Eq. (2.2) are complex.
Once the two doublets acquire VEVs, both the quarks

and the charged leptons obtain tree-level masses which are
given by

M0
u ≡ 1ffiffiffi

2
p ðv1Δ1 þ v2Δ2Þ;

M0
d ¼

1ffiffiffi
2

p ðv1Γ1 þ v2Γ2Þ;

M0
e ¼

1ffiffiffi
2

p ðv1Π1 þ v2Π2Þ: ð2:4Þ

One can rotate the spectrum to the mass basis via biunitary
transformations of the form

Df ¼ U†
fLM

0
fUfR; ð2:5Þ

withDf a diagonal mass form with ordered fermion masses
and where UfL;R are unitary matrices with the subscript f
indicating the fermion flavor, i.e. f ¼ e, u, d. Following the
standard notation, one can define the following matrices:

N0
u ¼

1ffiffiffi
2

p ðv2Δ1−v1Δ2Þ N0
d ¼

1ffiffiffi
2

p ðv2Γ1−v1Γ2Þ; ð2:6Þ

whose off-diagonal elements are responsible for
inducing tree-level FCNC interactions. The key feature
of the BGL model is that such matrices can be reexpressed
solely in terms of quark masses, CKM mixing elements
Vij ≡P

kðUuLÞikðU†
dLÞkj, with i, j, k ¼ 1, 2, 3, and the

ratio tβ ≡ tan β≡ v1=v2 as follows:

ðNuÞij ¼ ðtβδij − ðtβ þ t−1β Þδijδj3Þmuj;

ðNdÞij ¼ ðtβδij − ðtβ þ t−1β ÞV�
3iV3jÞmdj; ð2:7Þ

such that the down-specific FCNCs are controlled by the
smallness of the off-diagonal CKM mixing elements V3i.

For the charged lepton sector, the generic coupling
combinations can be found in complete analogy with the
quarks, i.e.

M0
e¼

1ffiffiffi
2

p ðv1Π1þv2Π2Þ; N0
e¼

1ffiffiffi
2

p ðv2Π1−v1Π2Þ: ð2:8Þ

Last but not least, the neutrino sector is equipped with a
seesaw mechanism of type-I, as soon as the singlet S
develops a VEV. In particular, defining

n0L ≡
�
ν0L
νcR

�
; ð2:9Þ

one can recast the neutrino mass Lagrangian as

−Lmass
ν ¼ 1

2
n0LMn0;cL þ H:c:; ð2:10Þ

where

M≡
�

0 mD

mT
D MR

�
; ð2:11Þ

and with the Dirac and Majorana neutrino masses given by

mD ≡ 1ffiffiffi
2

p ðv1Σ1 þ v2Σ2Þ;

MR ≡ Aþ vSffiffiffi
2

p ðBþ CÞ; ð2:12Þ

respectively. Here, we have also considered that the singlet
VEV is real. At low energies, in the limit ofMR ≫ mD=mT

D,
the effective Lagrangian for the light active neutrinos takes
the form

−Leff
ν ≡ 1

2
ν0Lmνν

0;c
L þ H:c:; ð2:13Þ

with

mν ≡ −mDM−1
R mT

D: ð2:14Þ

The numerical analysis performed in this study relies on an
inversion procedure analogous to that developed in [34]. In
particular, for the quark sector, one uses their physical
masses as well as the CKM mixing elements as input
parameters. However, due to a rich neutrino content, one
cannot analytically invert the entire lepton sector. Instead,
while electron, muon and tau masses are given as input
parameters, one performs a numerical fit to neutrino masses
alongside an extended version of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, as it is discussed
in Sec. IV.
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The most generic form of the scalar potential can be
written as

V ¼ V0 þ V1 ð2:15Þ

with

V0 ¼ μ2i jΦij2 þ λijΦij4 þ λ3jΦ1j2jΦ2j2 þ λ4jΦ†
1Φ2j2

þ μS
2jSj2 þ λ01jSj4 þ λ02jΦ1j2jSj2 þ λ03jΦ2j2jSj2 and

V1 ¼ μ23Φ
†
2Φ1 þ

1

2
μ2bS

2 þ a1Φ
†
1Φ2Sþ a2Φ

†
1Φ2S†

þ a3Φ
†
1Φ2S2 þ a4Φ

†
1Φ2S†2 þ H:c: ð2:16Þ

While in V0 we adopt the usual notation where μi;S
represents quadratic mass parameters and λi, λ0i are the
quartic couplings, in V1 a1;2 denote cubic couplings
between the Higgs doublets and the singlet while a3;4
are the quartic couplings between the two Higgs doublets
and the scalar singlet field. Given that the singlet S carries a
nontrivial Uð1Þ0 charge XS, then, out of the four a1;2;3;4
terms, only one is allowed in the limit of an exact Uð1Þ0.
However, both a1 and a2, as well as μ2b, can be introduced
to softly break the flavor symmetry and are allowed to
coexist with either a3 or a4 [18,19].

III. ANOMALY FREE BGL
IMPLEMENTATION

The transformation properties of the quark and
scalar fields under the Uð1Þ0 flavor symmetry are given,
as usual, by

Ψi → eiθXΨiΨi; ð3:1Þ

where Ψi ⊂ ðq0L; u0R; d0R;Φ1;Φ2; SÞ, and where XΨi

are the corresponding Uð1Þ0 charges with θ a global phase
parameter. It then follows that the Yukawa matrices trans-
form as

ðΓaÞij ¼ eiθðXqi
−Xdj

−XΦa ÞðΓaÞij;
ðΔaÞij ¼ eiθðXqi

−Xuj
þXΦa ÞðΔaÞij; ð3:2Þ

such that textures on ðΓaÞij result from a set of linear
constraints that read as

ðΓaÞij ¼ any if Xqi − Xdj ¼ XΦa
;

ðΓaÞij ¼ 0 if Xqi − Xdj ≠ XΦa
: ð3:3Þ

The same can be done in the up-quark sector by
trading ðΓaÞij→ðΔaÞij, Xdj→Xuj , and XΦa

→−XΦa
. Among

many possible solutions found in Refs. [19] and [18], the

well-known quark BGL textures [see Eq. (2.2)], that are
used in this work, satisfy the following 36 constraints:

Xq1;2 − Xd1;2;3 ¼ XΦ1
; Xq3 − Xd1;2;3 ≠ XΦ1

;

Xq3 − Xd1;2;3 ¼ XΦ2
; Xq1;2 − Xd1;2;3 ≠ XΦ2

;

Xq1;2 − Xu1;2 ¼ −XΦ1
; Xq3 − Xu1;2;3 ≠ −XΦ1

;

Xq1;2 − Xu3 ≠ −XΦ1
; Xq3 − Xu3 ¼ −XΦ2

;

Xq1;2 − Xu1;2;3 ≠ −XΦ2
; Xq3 − Xu1;2 ≠ −XΦ2

: ð3:4Þ

Focusing now on the lepton and neutrino sectors, one must
consider all possible textures of the Dirac-like Πa and Σa
and Majorana-like B and C Yukawa matrices, as well as on
the A mass matrix. To do so one considers that

(i) there are no massless charged leptons yield-
ing detMe ≠ 0;

(ii) there are three generations of massive neutrinos such
that2 detMν ≠ 0;

(iii) there is a nonzero complex phase in the PMNS
matrix which implies that det½MeM

†
e� ≠ 0 and

det½MνM
†
ν�≠ 0.

Notice that the second condition is the only one differing
from those first introduced in Ref. [19] and [18]. For a
type-I seesaw mechanism such a condition also translates
into MR and MD being 3 × 3 matrices with nonzero
determinant. Note also that any two models that can be
mapped from one another via a permutation are equivalent
as it would simply correspond to a relabeling of flavor
indices. Defining the new primed Yukawa and mass
matrices as

Γ0
1;2¼PT

i Γ1;2Pj; Δ0
1;2¼PT

i Δ1;2Pk;

Π0
1;2¼PT

l Π1;2Pm; Σ0
1;2 ¼PT

l Σ1;2Pn;

A0 ¼PT
nAPn; B0 ¼PT

nBPn; C0 ¼PT
nCPn; ð3:5Þ

with P being a three-dimensional representation of the
permutation group S3, with all indices running from one to
six, one excludes all such additional textures that can be
obtained by permutations in the flavor space.

A. Majorana neutrino sector

In total, there are 11 minimal textures for A, B, andC that
fulfil the constraint of MR being a 3 × 3 symmetric matrix
with a nonzero determinant. These are

2Note that there exists no anomaly free implementation of the
BGL textures with two generations of massive neutrinos, as
shown in Ref. [18].

P. M. FERREIRA et al. PHYS. REV. D 106, 075017 (2022)

075017-4



ð1Þ A∶

0
B@

× 0 0

0 0 ×

0 × 0

1
CA; B∶0; C∶0;

ð2Þ A∶

0
B@

× 0 0

0 0 0

0 0 0

1
CA; B∶

0
B@

0 0 0

0 0 ×

0 × 0

1
CA; C∶0;

ð3Þ A∶

0
B@

× 0 0

0 0 0

0 0 0

1
CA; B∶

0
B@

0 0 0

0 × 0

0 0 0

1
CA; C∶

0
B@

0 0 0

0 0 0

0 0 ×

1
CA;

ð4Þ A∶

0
B@

0 × 0

× 0 0

0 0 0

1
CA; B∶

0
B@

0 0 ×

0 0 0

× 0 0

1
CA; C∶

0
B@

0 0 0

0 0 ×

0 × 0

1
CA; ð3:6Þ

where textures (1) and (2) come in three and six versions,
respectively, taking into account all possible permutations
of A, B, and C. For textures (3) and (4), on the other hand,
we only need to consider those shown above as permuta-
tions of rows and columns solely correspond to a relabeling
of flavor indices. In the presence of the Uð1Þ0 flavor
symmetry one must also consider the transformation laws

Aij ¼ eiαðXνi
þXνj

ÞAij;

Bij ¼ eiαðXνi
þXνj

þXSÞBij;

Cij ¼ eiαðXνi
þXνj

−XSÞCij: ð3:7Þ

Therefore, texture (1) implies that

2Xν1 ¼ 0; Xν2 þ Xν3 ¼ 0; ð3:8Þ

while texture (4) results in

Xν1 þ Xν2 ¼ 0; Xν1 þ Xν3 ¼ XS;

Xν2 þ Xν3 ¼ −XS; ð3:9Þ

and so on. In addition to this, one of the following four
conditions (see Ref. [18]):

XS ¼ �ðXΦ1
− XΦ2

Þ; XS ¼ � 1

2
ðXΦ1

− XΦ2
Þ; ð3:10Þ

can be extracted from the scalar potential V1 depending on
which of the a1;2;3;4 terms is invariant under the flavor Uð1Þ0
symmetry. However, if only A has a nonzero texture then S
is neutral under the flavor symmetry and the four con-
ditions above are all automatically valid. In that case the
cubic a1;2 and quartic a3;4 can simultaneously coexist.

B. Charged lepton sector

For the charged lepton sector, the same minimal textures
already discussed in Ref. [19] and [18] apply, i.e.

ð1Þ Π1∶

0
B@

× 0 0

0 × 0

0 0 ×

1
CA; Π2∶

0
B@

0 0 0

0 0 0

0 0 0

1
CA;

ð2Þ Π1∶

0
B@

× 0 0

0 × 0

0 0 0

1
CA; Π2∶

0
B@

0 0 0

0 0 0

0 0 ×

1
CA;

ð3Þ Π1∶

0
B@

× 0 0

0 0 0

0 0 0

1
CA; Π2∶

0
B@

0 0 0

0 × 0

0 0 ×

1
CA;

ð4Þ Π1∶

0
B@

0 0 0

0 0 0

0 0 0

1
CA; Π2∶

0
B@

× 0 0

0 × 0

0 0 ×

1
CA: ð3:11Þ

C. Dirac neutrino sector

For the Dirac neutrino textures, permutation
of rows and columns are no longer independent from
those in the charged lepton and Majorana neutrino
sectors. As a result, besides fulfilling the constraint
of MD having a nonzero determinant, we must also
consider textures that are equivalent up to permutations.
In total, this amounts to six possible minimal combined
textures,

PHENOMENOLOGY OF A FLAVORED MULTISCALAR BRANCO- … PHYS. REV. D 106, 075017 (2022)

075017-5



1∶

0
B@
× 0 0

0 × 0

0 0 ×

1
CA; 2∶

0
B@
× 0 0

0 0 ×

0 × 0

1
CA; 3∶

0
B@

0 × 0

× 0 0

0 0 ×

1
CA;

4∶

0
B@

0 × 0

0 0 ×

× 0 0

1
CA; 5∶

0
B@

0 0 ×

× 0 0

0 × 0

1
CA; 6∶

0
B@

0 0 ×

0 × 0

× 0 0

1
CA;

which in turn corresponds to 48 possible textures for
Σ1;2—eight for each of the textures displayed above; 111,
112, 121, 211, 122, 212, 221, and 222, where the
numbers indicate the corresponding nonzero entry in
Σ1 or Σ2. As an example, the eight possibilities for texture
number 2 are given by

ð111Þ Σ1∶

0
B@

× 0 0

0 0 ×

0 × 0

1
CA; Σ2∶

0
B@

0 0 0

0 0 0

0 0 0

1
CA;

ð112Þ Σ1∶

0
B@

× 0 0

0 0 ×

0 0 0

1
CA; Σ2∶

0
B@

0 0 0

0 0 0

0 × 0

1
CA;

ð121Þ Σ1∶

0
B@

× 0 0

0 0 0

0 × 0

1
CA; Σ2∶

0
B@

0 0 0

0 0 ×

0 0 0

1
CA;

ð211Þ Σ1∶

0
B@

0 0 0

0 0 ×

0 × 0

1
CA; Σ2∶

0
B@

× 0 0

0 0 0

0 0 0

1
CA;

and so on for 122, 212, 221, 222.

D. Anomaly cancellation conditions

While global anomalies are typically regarded as benign,
one must recall that the work previously developed in
[19,32], which this article is based on, considers a local
Uð1Þ0 symmetry where gauge anomalies must necessarily
be forbidden. With this in mind, and with the purpose of
making the considered model consistent with a gauged
version (to be studied elsewhere), one must also include a
set of restrictions that incorporate the Uð1Þ0 charges in the
following triangle anomalies:

½Uð1Þ0�3; Uð1Þ0½Gravity�2;
Uð1Þ0½Uð1ÞY�2; Uð1Þ0½SUð2ÞL�2;

Uð1Þ0½SUð3ÞC�2; ½Uð1Þ0�2Uð1ÞY: ð3:12Þ

As the right-handed neutrinos are solely charged under
Uð1Þ0, confer Table II, the only anomalies altered in
comparison to [19] are those coming from ½Uð1Þ0�3 and
Uð1Þ0½Gravity�2, i.e.

AUð1Þ0Uð1Þ0Uð1Þ0 ≡
X3
i¼1

ð6X3
qi þ 2X3

li
− 3X3

ui

− 3X3
di
− X3

ei − X3
νiÞ ¼ 0;

AggUð1Þ0 ≡
X3
i¼1

ð6Xqi þ 2Xli − 3Xui

− 3Xdi − Xei − XνiÞ ¼ 0; ð3:13Þ

where g denotes gravitational interactions while AX;Y;Z ∝
Tr½TXfTY;TZg� with T being the generators of the corre-
sponding Lie Algebra. The remaining anomaly cancellation
conditions are given in Eq. (A1). Overall, this results in a
series of equations for anomaly cancellation, restricting the
possible values of XΨi

from where one can extract all
viable, anomaly free model versions.

E. Anomaly free solutions

Focusing on the solutions compatible with the BGL
model, there are in total three anomaly free possibilities
equipped with a type-I seesaw mechanism. These are
denoted as νBGL-I, νBGL-IIa, and νBGL-IIb, being
characterized by their lepton sector textures as follows:
(1) νBGL-I Scenario

Π1;Σ1;B¼

0
B@
× × 0

× × 0

0 0 0

1
CA; Π2;Σ2¼

0
B@
0 0 0

0 0 0

0 0 ×

1
CA;

A¼ 0; C¼

0
B@

0 0 ×

0 0 ×

× × 0

1
CA: ð3:14Þ

(2) νBGL-IIa Scenario

Π1;Σ1¼

0
B@
× 0 0

0 × 0

0 0 0

1
CA;

Π2¼

0
B@

0 0 0

× 0 0

0 0 ×

1
CA; Σ2¼

0
B@
0 × 0

0 0 0

0 0 ×

1
CA

A¼

0
B@
× 0 0

0 0 0

0 0 0

1
CA; B¼

0
B@
0 0 0

0 0 ×

0 × 0

1
CA; C¼0:

ð3:15Þ
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(iii) νBGL-IIb Scenario

A¼

0
B@
0 0 0

0 0 ×

0 × 0

1
CA; B¼

0
B@
× 0 0

0 0 0

0 0 0

1
CA; C¼ 0;

ð3:16Þ

where what distinguishes the νBGL-IIa and νBGL-IIb
scenarios are the textures in the Majorana neutrino sector.
Last but not least we show in Table I the generic Uð1Þ0
charges for each of the BGL scenarios.

IV. CHOSEN SCENARIO

In what follows we will focus on the νBGL-I scenario,
whose allowed charges are constrained by the first column
in Table I. We make this choice after having investigated
the other possibilities available within this model and
verified that the νBGL-I scenario is the one for which
our numerical analysis and parameter space scans were
more efficient. This, of course, does not exclude the
possible interest of the other scenarios, but our main goal
is to understand the typical phenomenology of this class of
models. Thus, for νBGL-I, choosing x ¼ 1 and y ¼ 1=3 the
model considered in this article is then defined by the
quantum numbers in Table II.
Notice that the assigned quantumnumbers for the up-type

quarks can also be flipped in such away that there are in total
three variations of the νBGL-I scenario. This depends, in
practice, on the choice of up-type quark associated with the
Δ2 matrix in Eq. (2.2) and the designation of the model is
typically associated with that, i.e. variation u, c, or t. In the
reminder of this article we focus on variation t.
As already stated, one of the novel features of the model

considered is the presence of three generations of right-
handed neutrinos. In order to comply with experimental
data a realistic lepton mixing and neutrino mass hierarchy
must be assured. Both the charged neutral sectors can be
rotated to the mass basis via biunitary matrices, that is,

Mdiag
L ¼ U†

LMLUR;

Mdiag
ν ¼ U†

νMνUν; ð4:1Þ

where ML is a 3 × 3 matrix expressed in the basis
fe1L; e2L; e3Lg ⊗ fe1R; e2R; e3Rg as usual, while Mν is a 6 × 6

TABLE I. Allowed charges for the various models. For
model νBGL-I and IIa we have xtL ¼ −7xþ 2y and
xtR ¼ −16xþ 5y. Model νBGL-IIb has xtL ¼ ð−13xþ 4yÞ=3
and xtR ¼ ð−32xþ 11yÞ=3. In order for the BGL textures to be
preserved, we additionally require that y ≠ 4x.

Charges νBGL-I νBGL-IIa νBGL-IIb

qL
" x

x
xtL

# � � � � � �

uR
" y

y
xtR

# � � � � � �

dR
"
2x − y
2x − y
2x − y

# � � � � � �

lL
" −3x

−3x
21x − 6y

# " x − y
−7xþ y
21x − 6y

#
1
3

" −x − 2y
−17xþ 2y
39x − 12y

#

eR
" −2x − y
−2x − y
30x − 9y

# "
2x − 2y
−6x

30x − 9y

#
1
3

"
2x − 5y
−14x − y
58x − 19y

#

νR
" −4xþ y

−4xþ y
12x − 3y

# "
0

−8xþ 2y
12x − 3y

#
1
3

" −4xþ y
−20xþ 5y
20x − 5y

#

Φ
�

−xþ y
−9xþ 3y

� �
−xþ y
−9xþ 3y

�
1
3

�
3ð−xþ yÞ
−19xþ 7y

�
S 8x − 2y −4xþ y 8x−2y

3

TABLE II. Charge assignments of the SU(2) scalar doublets and SM fermions under the flavor symmetry Uð2Þ0 and the SM gauge
group, SUð3ÞC × SUð2ÞL × Uð1ÞY . The corresponding Uð1Þ0 charges are computed using the formulas from the first column of Table I
taking x ¼ 1 and y ¼ 1=3.

Φ1 Φ2 S q1 q2 q3 uR1
uR2

uR3
dR1

dR2
dR3

Uð1ÞY 1=2 1=2 0 1=6 1=6 1=6 2=3 2=3 2=3 −1=3 −1=3 −1=3
SUð2ÞL 2 2 1 2 2 2 1 1 1 1 1 1
SUð3ÞC 1 1 1 3 3 3 3 3 3 3 3 3
Uð1Þ0 −2=3 −8 22=3 1 1 −19=3 1=3 1=3 −43=3 5=3 5=3 5=3

l1 l2 l3 eR1
eR2

eR3
νR1

νR2
νR3

Uð1ÞY −1=2 −1=2 −1=2 −1 −1 −1 0 0 0
SUð2ÞL 2 2 2 1 1 1 1 1 1
SUð3ÞC 1 1 1 1 1 1 1 1 1
Uð1Þ0 −3 −3 19 −7=3 −7=3 27 −11=3 −11=3 11
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matrix written in the basis fν1L; ν2L; ν3L; ν1R; ν2R; ν3Rg. On the
other hand, UL, UR, and Uν are unitary matrices. We can
then define the PMNS matrix as

VP¼U†
LPUν¼ðVSM

PMNS OP Þ; P¼ð13×3j03×3 Þ; ð4:2Þ

where VP is a 3 × 6 matrix with the first 3 × 3 entries
encoding the SM charged-lepton and neutrinos inter-
actions, and OP contains the interactions between leptons
and the heavy neutrinos. In our analysis we require
OP < 10−5 such that charged currents involving active
and Beyond Standard Model (BSM) neutrinos are sup-
pressed. Also, we require the masses of such active
neutrinos to be between ½0; 10−9� GeV while their heavy
counterparts have masses around the TeV scale. While an
in-depth study of neutrino physics is beyond the scope of
this work, we have performed a fit to the light neutrinos
masses in order to respect the normal hierarchy [35],

M2
ν2 −M2

ν1 ≈ 10−5 eV2;

M2
ν3 −M2

ν2 ≈ 10−3 eV2: ð4:3Þ

This was numerically required for all points that pass the
theoretical and experimental constraints, as it will be
discussed in upcoming sections. Although a full fit was
not done across the entirety of the parameter space, and
given that our studies of the scalar and quark sectors are
independent of neutrino physics, we have confirmed and
can safely argue that the discussed model is compatible
with neutrino data.

A. Inversion procedure for the scalar sector

Following the same methodology used previously
in [34], our goal is to provide the physical masses
and mixing angles as inputs and then search for valid
regions in the parameter space. In the considered νBGL-I
scenario the scalar potential is given in Eq. (2.16) with a3,
a4 ¼ 0. Selecting a vacuum configuration with real VEVs
ðv1; v2; vSÞ, one obtains the following minimization
conditions:

μ21 ¼−
�
v21λ1þ

v2Sλ
0
2

2
þ v2μ̂
2v1

�
;

μ22 ¼−
�
v22λ2þ

v2Sλ
0
3

2
þ v1μ̂
2v2

�
;

μ2S ¼−
ffiffiffi
2

p
v1v2ða1þa2ÞþvSðv21λ02þv22λ

0
3þ 2v2Sλ

0
1þ 2μ2bÞ

2vS
;

ð4:4Þ

where one defines

μ̂ ¼ vS
ffiffiffi
2

p
ða1 þ a2Þ þ v1v2ðλ3 þ λ4Þ þ 2μ23: ð4:5Þ

The physical scalar spectrum contains three CP-even
scalars H1;2;3, two pseudoscalars A2;3, and one charged
Higgs boson H�. In a configuration close to the vacuum
alignment in one of the Higgs doublets, the corresponding
CP-even scalar corresponds to the SM Higgs boson with
mass 125.09 GeV and with SM-like interactions to the
gauge bosons and fermions. Notice that, if such interactions
coincide with the SM ones, one often refers to it as the exact
alignment limit. However, direct searches for new scalars
[36–41] still keep a window opened for possible off-
alignment deviations that we consider in our analysis
below. In order to keep the physical parameters of the
theory under control one performs an inversion procedure
analogous to that developed in [34], expressing the param-
eters of the scalar potential in Eq. (4.4) in terms of physical
masses, mixing angles (including the Higgs alignment
parameter) and VEVs as we discuss in what follows.
First, the matrix Oβ, which rotates the gauge

eigenstates into the Higgs basis,3 is introduced

Oβ ¼

0
B@

cosβ sinβ 0

−sinβ cosβ 0

0 0 1

1
CA¼

0
B@

v1=v v2=v 0

−v2=v v1=v 0

0 0 1

1
CA; ð4:6Þ

where one defines

v1 ¼ v cos β;

v2 ¼ v sin β;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v12 þ v22

q
≈ 246 GeV: ð4:7Þ

Starting with the scalar potential in Eq. (2.15) and expand-
ing it using the field definitions in Eq. (2.3), the CP-odd
sector mass matrix can be obtained as

1

2
ð I1 I2 η ÞMS

2

0
B@

I1
I2
η

1
CA: ð4:8Þ

Using Oβ one can rotate M2
S to the Higgs basis, where it

acquires a block-diagonal form

MS
2 ¼ OβM2

SO
T
β : ð4:9Þ

We can further diagonalize MS
2 via an additional rotation

matrix Oγ as

3The Higgs basis corresponds to a redefinition of the physi-
cally equivalent doublets so that only one of them contains
a VEV.
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0
B@

0 0 0

0 MA2

2 0

0 0 MA3

2

1
CA ¼ OγMS

2Oγ
T ¼ OγOβM2

SO
T
βOγ

T;

ð4:10Þ

where one defines

Oγ ¼

0
B@

1 0 0

0 cos γ1 − sin γ1
0 sin γ1 cos γ1

1
CA: ð4:11Þ

Notice that while the neutral CP-odd Goldstone boson can
be gauged away from the particle spectrum and gets
absorbed as the longitudinal polarization of the Z0 boson,
one of the two physical pseudoscalars is in fact a pseudo-
Goldstone state that emerges due to both spontaneous and
explicit breaking of the global Uð1Þ0 symmetry.
Similarly, the CP-even states can be rotated to the mass

basis as

0
B@

MH1

2 0 0

0 MH2

2 0

0 0 MH3

2

1
CA ¼ OαOβM2

HO
T
βOα

T; ð4:12Þ

with

Oα ¼ R3 · R2 · R1 ð4:13Þ

and

R1 ¼

0
B@

cos α1 − sin α1 0

sin α1 cos α1 0

0 0 1

1
CA;

R2 ¼

0
B@

cos α2 0 sin α2
0 1 0

− sin α2 0 cos α2

1
CA;

R3 ¼

0
B@

1 0 0

0 cos α3 sin α3
0 − sin α3 cos α3

1
CA: ð4:14Þ

The presence of a CP-even state behaving as a SM-like
Higgs boson is ensured not only requiring that

MH1
¼ 125.09 GeV; ð4:15Þ

but also that the couplings to fermions and gauge bosons of
this particle closely reproduce the SM predictions, which
are controlled by the coupling modifier

½OαOβ�12 ¼ − cos α2 sin δ with δ≡ α1 − β; ð4:16Þ

such that the coupling of the 125 GeV Higgs boson to the
electroweak gauge bosons can be expressed as

λ0hVV ¼ −λSMhVV cos α2 sin δ; ð4:17Þ

with λSMhVV denoting the SM Higgs boson coupling to gauge
bosons, V ¼ Z, W in the SM. This means that the align-
ment condition concerning Higgs gauge interactions is
governed not by a single angle but instead two angular
parameters, δ and α2. Furthermore, as the LHC has been
putting stringent limits on deviations from the SM, one
expects that cos α2 sin δ ∼Oð1Þ, i.e. δ must not be far from
π=2 while α2 must be small. Note also that Eq. (4.16)
ensures that the interactions of the SM-like Higgs boson are
dominantly inherited from the second doublet which is the
one that couples to the top-quark. Further conditions for
alignment will be obtained from the Higgs’ interactions
with fermions. For instance, given that the top mass in this
model comes only from the matrix Δ2, it will be propor-
tional to v2 and therefore the coupling modifier for the
Higgs-top interactions will be

λ0htt̄ ¼ −λSMhtt̄
cos α2 sin δ

sin β
: ð4:18Þ

With sin δ ¼ sinðα1 − βÞ ∼Oð1Þ as mentioned earlier, we
see that a further condition for alignment is cosα2≃−sinβ≃
−cosα1. Additional conditions would be obtained from
analyzing the remaining Higgs-fermion interactions.
Notice that the minus signs present in Eqs. (4.16) and
(4.18) are not necessarily meaningful. We know, from the
measured Higgs diphoton branching ratio at the LHC, that
the relative sign of λ0htt̄ and λ0hWW ought to be the same as
that of λSMhtt̄ and λ

SM
hWW . An overall minus sign affecting both

couplings can therefore be physically meaningless. In our
numerical analysis of the next section, however, we took
into account all possible relative signs, and compared the
predicted Higgs branching ratios and production cross
sections with the known experimental values, thus ensuring
that, whatever relative signs there may be between Higgs
couplings in this model, the LHC constraints are satisfied.
Last but not least, the charged Higgs sector contains only

one physical scalar as the charged Goldstone boson is
gauged away from the particle spectrum and plays a role of
the longitudinal polarization of the W� boson. In particular,
the mass form reads as

�
0 0

0 MH�2

�
¼ O0

γO0
βM

�O0
β
TO0

γ
T ð4:19Þ

with
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O0
β ¼

�
cosβ sinβ

−sinβ cosβ

�
; O0

γ ¼
�

cosγ2 sinγ2
−sinγ2 cosγ2

�
:

ð4:20Þ

The inversion procedure described above is applied to
the scalar sector with the purpose of trading the quartic
couplings for physical masses and mixing angles. The
corresponding analytical formulas are lengthy and can be
found in Appendix B. In our numerical analysis, the
physical masses MH1

;MH2
;MH3

;MA2
;MA3

;MH� , the
angles β; α1; α2; α3; γ1; γ2, and the cubic couplings a1,
a2, a3 are then used as input parameters limited to be
randomly sampled within physically reasonable ranges as
detailed below in Sec. V.

V. PARAMETER SPACE AND
PHENOMENOLOGICAL CONSTRAINTS

The parameter space scan discussed in this section relies
on the inversion procedure described previously, where
both scalar masses and mixing angles are used as input,
allowing one to determine the gauge eigenbasis couplings
of the Higgs potential in Eq. (2.16). The ranges used in the
scan can be found in Table III. According to the discussion
below Eq. (4.17), the chosen scanning ranges for δ are
centered around π=2 where sin δ ¼ 1. While α2 must be
small, we let it range between −π and π in order to let
cos α2 capture both positive and negative values.
Furthermore, the somewhat large ranges set for both δ

and α2 were deliberately picked in order to ensure that the
allowed off-alignment regions are entirely covered in the
numerical analysis, as we discuss further ahead. It is also
worth mentioning that the SM-like Higgs boson was
chosen to be the lightest of the CP-even scalars and the
absolute value of the cubic couplings is such that ja2j ≤ 1.
Using the inversion procedure we then extract the

Lagrangian parameters and feed them to SPheno [28] in
order to calculate both the STU electroweak precision
observables (or oblique parameters) as well as Higgs decay
widths and branching fractions. The most up to date electro-
weak fit for the STU parameter [42] can be summarized as

S ¼ −0.01� 0.10

T ¼ 0.03� 0.12

U ¼ 0.02� 0.11

; ρij ¼

0
B@

1 0.92 −0.80
0.92 1 −0.93
−0.80 −0.93 1

1
CA;

ð5:1Þ
with ρij denoting a 92% correlation between S and T, while
U-S and U-Tare 80% and −93% anticorrelated, respectively.
For the purpose of this analysis, we required Δχ2 < 7.815,
which translates into a 95% confidence level (CL) agreement
with the electroweak fit, where

Δχ2¼
X
ij

ðΔOi−ΔOð0Þ
i Þ½ðσ2Þ−1�ijðΔOj−ΔOð0Þ

j Þ; ð5:2Þ

with ½σ2�ij ≡ σiρijσj the covariance matrix and σi the
standard deviations in Eq. (5.1). The notation employed here

is such that ΔOð0Þ
i indicates the S, T, U experimental fit

values, while ΔOi denotes the S, T, U calculated values in
SPheno. In Fig. 1 we show the points that pass the STU
restrictions with a CL of, at least, 95% (blue shades) in
comparisonwith the points that are excluded (gray). The color
bar represents theΔχ2 values. Themajority of points thatwere
simulated are rejected due to large T values, as anticipated.
However, one of the benefits of 2HDM-like models is that

TABLE III. Parameter intervals used in numerical scans.

Parameter α2; α3; γ1 tan β δ a3; a4
Range ½−π; π� [0.5, 30] ½π

2
− 1; π

2
þ 1� 0

Parameter MA2
;MH� MA3

MH2
;MH3

a2
Range (GeV) [0.5, 1600] [30, 2000] [126, 1800] ½−1; 1�

FIG. 1. Electroweak precision observables for all simulated points. The colored points are those who pass the STU analysis with a
confidence level (CL) of at least 95%. Gray points are excluded by precision EW fit data.
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there are parameter space regions for which all constraints on
the oblique parameters are satisfied, as is the case here. While
the STU analysis offers a strong razor of the parameter space,
it is still necessary to match these points to both Higgs and
flavor observables. First, let us focus on the impact of Higgs
physics leaving the flavor analysis for later. In Fig. 2, we show
the allowed regions in the δ-α2 plane that survive not only the
EW precision tests but also that comply with the properties of

a SM-like Higgs boson and are not excluded by direct
searches for new scalars at the LHC. As usual, this is done
by using the SPheno output SLHA files as input cards to
HiggsSignals (HS) and HiggsBounds (HB) [29,30] for every
single point that passes the STU test.
The points that survive both HS and HB are shown in red

and were found to pile in a region around that of the exact
alignment limit where δ ¼ π=2 and α2 ¼ −π; 0; π. In

FIG. 2. Angles entering in the Higgs coupling modifier of Eq. (4.17). Gray points are excluded by EW precision observables while
orange ones pass the STU Δχ2 test but fail Higgs physics constraints. Red points pass all restrictions and represent the regions where the
Higgs boson is closely aligned with a SM-like one.

FIG. 3. Mass of the charged Higgs versus the masses of the pseudoscalars A2 and A3 (left panels) and of the CP-even scalars H2 and
H3 (right panels). Gray points are excluded by the oblique STU parameters, orange points are excluded either by HB or HS, while
simultaneously passing the STU restrictions. Red points pass all constraints.
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particular, we found that deviations from an exact align-
ment are primarily driven by the δ angle which can vary in a
wider range, whereas α2 is tightly constrained in the
aforementioned regions, with 0.60 < − cos α2 sin δ < 1.0
for the upper red island, 0.60 < cos α2 sin δ < 0.99 in
the middle region, and 0.60 < − cos α2 sin δ < 0.98 at
the α2 ¼ −π line. In Fig. 3 we show the dependence of the
charged Higgs boson mass MH� in terms of the masses of
the A2 and A3 pseudoscalars (left panels) as well as of the
masses of the non-SM CP-even states H2 and H3 (right
panels). The color scheme is the same as in Fig. 2 and, as
the red region demonstrates, we have obtained valid points
that cover a wide range of masses for new scalars. In
particular, there are viable solutions with charged Higgs
bosons that can be as light as approximately 100 GeV
extending all the way up to about 1.6 TeV, the light
pseudoscalar is limited to the range that goes from
100 GeV up to 1.5 TeV while its heavy counterpart is
heavier than 300 GeV but lighter than 1.8 TeV. For the CP-
even sector, besides a SM-like state with mass 125.09 GeV,
one finds thatH2 is sharply limited from below at the Higgs
boson mass, i.e. 125.09 GeV, allowing valid solutions up to
approximately 1.4 TeV, while its heavy partner mass ranges
between 200 GeVand approximately 1.7 TeV. Note that the
limits above must be understood in the context of a search
of the parameter space dedicated to find light scalars. In
fact, the low mass region is particularly interesting from the
collider physics perspective and can potentially be tested in
the near future.
Besides electroweak and Higgs physics constraints, one

also has to confront the generated data with quark flavor
violation (QFV) observables. According to the textures of
the chosen νBGL-I scenario, the most stringent constraints
are on the down-type quark sector rather than in the up-
quark or charged lepton ones. Notice also that the most
stringent QFV restrictions are indeed coming from proc-
esses involving down-type quarks, in particular those
shown in Table IV. We show in Fig. 4 the individual
impact that each of the considered QFVobservable poses to
the points that have survived the electroweak and Higgs
physics constraints. The color scheme is identical to that in

Figs. 2 and 3 with the inclusion of green points that
represent points simultaneously allowed by EW, Higgs, and
QFV observables. It is promptly noticeable that both ϵK ,
panel (c), and BRðB → χsγÞ, panel (a), represent the
weaker flavor physics constraints on the parameter space
in such a way that all of the points that have survived the
EWand Higgs physics constraints are also compatible with
these two QFVobservables. On the other hand, ΔMs, panel
(b), ΔMd, panel (e), and BRðBs → μμÞ, panel (d), place a
noticeable veto on the allowed parameter space. ΔMs is the
main culprit, with the lowest number of allowed points that
survive such a constraint. We also note that both ΔMd and
ΔMs limit the mass to be below 1 TeV for the A2

pseudoscalar. Indeed, the low mass regime is where the
vast majority of the allowed points tend to accumulate. For
a cleaner analysis we show in the histograms of Fig. 5 the
number of points that are allowed byΔMs,ΔMd, BRðBs →
μμÞ and combinations of them, in bins of the lightest
pseudoscalar mass. We also show in Table V the acceptance
ratio, defined as the percentage of the initial sample
consistent with EW and Higgs physics that also survives
a certain QFV cut, for each of the considered QFV
observables as well as the three combinations in Fig. 5.
Our results reveal that the sharpest razor of the parameter
space is the combination of BRðBs → μμÞ and ΔMs with a
very low acceptance ratio of only 9.39%, while their
individual contributions are 35% and 26%, respectively.
This combination of observables also prefers pseudoscalar
masses to be in a range between 125 GeV and 1300 GeV.
However, such a limited range must not be regarded as a
particular feature of the νBGL-I model but merely as a
result of the numerical scan, which is only efficient if all
scalar masses are sufficiently light.4 Indeed, it is well
known that multi-Higgs models typically observe a decou-
pling limit when the masses of the new scalars tend to

TABLE IV. Most relevant quark flavor violation (QFV) observables. The first column represents the prediction of the SM for each
observable, the second column indicates the 1σ error of the SM theoretical calculation, the third column is the measured experimental
value, the fourth is the 1σ experimental error, and the last column is this measured deviation between the SM prediction and the observed
value from experiment.

Channel OSM σSM OExp σExp σ

BRðB → χsγÞ 3.29 × 10−4 1.87 × 10−5 3.32 × 10−4 0.16 × 10−4 0.075

BRðBs → μμÞ 3.66 × 10−9 1.66 × 10−10 2.80 × 10−9 0.06 × 10−9 0.038
ΔMd (GeV) 3.97 × 10−13 5.07 × 10−14 3.33 × 10−13 0.013 × 10−13 0.11
ΔMs (GeV) 1.24 × 10−11 7.08 × 10−13 1.17 × 10−11 0.0014 × 10−11 0.054
ϵK (GeV) 1.81 × 10−3 2.00 × 10−4 2.23 × 10−3 0.011 × 10−3 0.14

4When using an inversion procedure that receives as input
parameters only physical masses and mixing angles, large
hierarchies between the Higgs boson mass and the remaining
scalars often result in unacceptably large values for the quartic
couplings, which can be as large as several tenths of thousands.
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infinity. Therefore, the study of parametric regions with
large scalar masses requires a different strategy to increase
the acceptance ratio as, e.g. it was done in [34] by forcing
the exact alignment limit and providing only the Higgs
boson mass as input. For a closer inspection we show in
Fig. 6 two of the QFVobservables of Table IV in terms of
the charged Higgs and heavier pseudoscalar masses. For a
moment we ignore the EW and Higgs physics constraints
and show in gray the points that are excluded by at least one
QFV observable while the colored points are simultane-
ously allowed by all the QFV restrictions. Note that, even

considering the entire universe of sampled points there are
only two points outside the �2σ uncertainty band (dashed
lines) that would fail BRðB → χsγÞ (right panel) while
BRðBs → μμÞ is visibly rather more restrictive (left panel).
It is also clear that larger scalar masses tend to relax the
QFV constraints as expected.
Last but not least, we show in Fig. 7 the combination of

all EW, Higgs, and flavor physics constraints. We have
considered the four mostly stringent QFV observables in
Table IV, leaving out only ϵK as it adds the least amount of
constraints to our model. It is clear that the majority of

FIG. 4. Mass of the charged Higgs versus the mass of the lightest pseudoscalar A2. Gray points are excluded by STU observables,
orange points are excluded by HS or HB while still passing STU, and red points pass STU, HS,and HB constraints. In green, we
showcase the points that pass a given QFVobservable, namely, we have (a) B → χSγ, (b) ΔMS, (c) ϵK , (d) BS → μμ, and (e) ΔMd, while
passing STU, HB, and HS constraints.
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sampled points fall in the dark gray area where at least one
of the considered QFV observables lies beyond the 2σ
uncertainty range limited by the blue dashed lines. As one
can also see, flavor physics plays the major role in strongly
reducing the allowed parameter space. In particular, for
points complying with a 2σ uncertainty of all QFV
observables (within the two blue dashed curves), we note
that the majority of allowed cases also prefer the charged
Higgs boson mass to be in a range between 400 GeV and
1.4 TeV. If we further demand that all QFVobservables are
simultaneously reproduced within their 1σ bound, then the
viable region, identified by the cyan points, tends to be
further compressed. Once again, it is important to mention
that our scan was optimized to the low mass region,
becoming increasingly inefficient with increasing scalar

masses. Therefore one cannot extract bold conclusions
about the high mass regime. On the contrary, what is
important to retain as a key result of this article is that the
νBGL-I model is compatible with the current EW, Higgs,
and QFVobservables in the limit where new scalar masses
are near the EW-scale. This opens up the possibility for
testing the model in a foreseeable future, potentially already
at the LHC run-III, as discussed below.

VI. PHENOMENOLOGY AT THE LHC

In this section we compare the points that have survived
all constraints with current direct searches for neutral
scalars at the LHC, focusing on ττ [43], ZZ [40] and
WW [44] final states. An interface between SPheno and
MadGraph [45] allows one to determine the neutral scalar
production cross section times its decay branching ratio to a
given final state.
In Fig. 8 we show the latest ATLAS limits for scalar and

pseudoscalar searches in the ditau final state and confront
them with our prediction for the lighter BSM Higgs bosons
H2 and A2. The green (cyan) points have the same meaning
as in Fig. 7, i.e. they are points for which the measured
values of the considered QFV observables are reproduced
in our calculation within a 2σ (1σ) uncertainty. As one can
observe, all points comfortably sit within the bounds set
after the ATLAS run-II search. One may also take note that
the calculated cross sections in the νBGL-I model can
become fairly small, even for masses close to the EW scale,
although various points with sizable cross sections are

FIG. 5. Histograms containing points that survive STU, HS, HB, and a given QFV (or pair of) in bins of the A2 mass. The most
restrictive is colored in blue.

TABLE V. Acceptance ratio for each QFV (first five rows) and
for pairs of QFV variables (last three rows). The most restrictive
set is marked in blue.

Set of QFV observables Acceptance ratio

BRðB → χsγÞ 100.0%
BRðBs → μμÞ 35.0%
ΔMd (GeV) 48.0%
ΔMs (GeV) 26.0%
ϵK (GeV) 100.0%
BRðBs → μμÞ & ΔMs 9.39%
BRðBs → μμÞ & ΔMd 22.21%
ΔMs & ΔMd 25.57%
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present. For the H2 gluon-fusion production mechanism
(Fig. 8), a point with the largest signal strength was found
to be 0.083 pb, which can be probed in future LHC runs.
An estimation of the expected number of events at the high-
luminosity (HL) phase of the LHC, with L ¼ 3000 fb−1,
leads to N ¼ σL ∼ 249078, whereas for run-III luminos-
ities one expects N ∼ 24907. This suggests that the low H2

mass regime can potentially be tested already with run-III
data in the ditau final state, as well as in the HL phase. For
the case of gluon-fusion production in association with a bb̄
pair (Fig. 8), we obtain slightly smaller values for σ · BR,
where, the point with the highest cross section is the same
as in the previous process, with a mass of 132.27 GeV and
with the signal rate of σ · BR ¼ 0.0097 pb, which, at the

FIG. 7. Summary plots for the QFV variables. Dark gray points are excluded for at least one QFVobservable in Table IV while light
gray points do not pass the EW precision tests. Orange points are excluded either by HB or HS and green (cyan) points are compatible
with EW and Higgs physics as well as all QFV constraints at a 2σ (1σ) level.

FIG. 6. Plots of the ratio between the BR for the decays BS → μþμ− (on the left) and B → Xsγ (on the right) computed in the νBGL-I
model and in the SM versus the mass of the charged scalar. In the color bar, we showcase the mass of the heaviest pseudoscalar A3. Gray
points are excluded from at least one QFVobservable from IVat a 2σ uncertainty. Dashed blue lines indicate the 2σ bound and full blue
lines indicate the 1σ limit.
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(run III) HL phase, corresponds to an expected number of
events of around N ∼ ð2910Þ29100. As such, one can test
this channel at both run-III and HL-LHC. A better picture is
expected for the pseudoscalar production as one can see in
the bottom panels of Fig. 8, where one can find cross
sections I to 2 orders of magnitude larger when compared to
the analogous H2 productions and decay channels.

The small signal strengths found for the ditau final states
are, to a large extent, a result of the small branching
fractions generically observed for H2 → τþτ− decays.
Indeed, as one can see in Table VI, for a selection of five
benchmark points, the values of BRðH2 → τþτ−Þ are
always subdominant, with the exception of benchmarks
with sizable cross sections.

(a) (b)

(c) (d)

FIG. 8. The signal strength for production of a CP-even (top panels) and a CP-odd (bottom panels) scalar via the gluon-gluon fusion
mechanism (a), (c) times its branching ratio to ττ̄, and (b), (d) with associated production of a bb̄-pair times its branching fraction to ττ̄,
as a function of the lightest CP-even mass, MH2

(top panels) and lightest pseudoscalar mass MA2
(bottom panels). Green points satisfy

QFVobservables within 2 standard deviations, whereas blue ones pass QFV constraints at 1σ. Green and yellow error bands correspond
to the limits set by the ATLAS experiment [43] including run-II data collected at

ffiffiffi
s

p ¼ 13 TeV.

TABLE VI. A selection of five benchmark points (BP) that respect all QFV, electroweak, Higgs, and theoretical constraints. All
masses are given in GeVand cross sections in pb. These correspond toH2 early discovery scenarios that maximize the signal strength to
dibosons (BP1,BP2), and to later H2 and A2 discovery cases that maximize the ditau channel (BP4) and again (BP2), respectively. The
(BP3) represents the second lightest MH2

scenario while (BP5) was chosen to represent scenarios with heavier H2 which preferably
decay to A2Z0. Ditau final states are showcased while in the last column we provide the dominant decay mode with the respective
branching ratio.

ϕ ID Mass (GeV) BRðϕ → τþτ−Þ σðgg → ϕÞ · BR (pb) σðgg → b̄bϕÞ · BR (pb) Maximum BR

H2 BP1 160.21 4.99 × 10−3 0.007354 8.01 × 10−4 BRðWþW�Þ ¼ 0.881
BP2 347.99 6.65 × 10−7 3.25 × 10−8 3.67 × 10−9 BRðH1H1Þ ¼ 0.611
BP3 129.26 0.0127 3.59 × 10−4 4.3 × 10−5 BRðWþW�Þ ¼ 0.377
BP4 132.27 0.0357 0.0830 0.00967 BRðbb̄Þ ¼ 0.590
BP5 668.49 6.14 × 10−6 7.42 × 10−8 1.01 × 10−8 BRðA2Z0Þ ¼ 0.75

A2 BP1 194.99 0.0336 0.0546 0.00532 BRðbb̄Þ ¼ 0.553
BP2 173.55 0.0264 0.0874 0.008249 BRðbb̄Þ ¼ 0.432
BP3 1077.21 2.65 × 10−5 1.0 × 10−6 1.62 × 10−7 BRðtt̄Þ ¼ 0.711
BP4 937.61 3.49 × 10−5 6.36 × 10−9 8.66 × 10−10 BRðtt̄Þ ¼ 0.918
BP5 126.74 2.48 × 10−3 3.2 × 10−5 3.0 × 10−6 BRðcc̄Þ ¼ 0.922
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Similar conclusions are obtained for the pseudoscalar
case as one can see in the bottom plots of Fig. 8 and in the
lower half of Table VI. However, as mentioned above, A2

production cross sections with subsequent decay into taus
tend to be greater when compared to H2, with the largest
value encountered reaching 0.087 pb for a pseudoscalar
with mass 174 GeV.
The benchmark points BP4 and BP2 in Tables VI and

VII summarize the discussion of the previous two para-
graphs, which were selected as the ones offering the larger
H2 and A2 production and decay cross sections, respec-
tively. For various displayed benchmarks, while for the H2

field one finds multiple final states worth exploring, for the
A2 we note that quark decays are typically preferred. For
the pseudoscalar case, we highlight benchmarks BP4 and
BP5, which result in a final state with two tops and two
charm quarks, respectively. In the later case, it would result
in a final state with two light jets in the detector, whereas for
the former case, one would expect at least two b-jets plus
two W bosons in the final state, following the decay of the
top quarks.
Besides some points in the low-mass region, the small

branching ratios are generically obtained for the scalar
and pseudoscalar decays into a pair of taus, and as such
one might wonder what then the dominant channels are.
The answer is in part given in the last column of Table VI,
where we have found thatH2 mostly decays to bb̄ andWW
pairs, as well as into A2Z0 and two Higgs bosons, H1H1.
The first would result in a signature with two b-jets at the
LHC while the second either in a pair of jets or a pair of
leptons or even a jet and a lepton, together with missing
energy. Note that theH2 → A2Z0 decay channel results in a
interesting signature with at least four jets or two
jetsþ two leptons, where we assume that the A2 scalar

mostly decays into c-jets, according to the discussion
above. A more detailed analysis of this channel deserves
special attention and its collider phenomenology is being
the subject of a separate study currently in preparation.
Notice that the H2 → A2Z0 decay channel becomes
increasingly important for heavier CP-even scalars as
opposed to lighter H2 scenarios where the pure SM decays
dominate. One must also mention that H2 can decay in a
pair of Higgs bosons. Such a possibility is rather interesting
as it can lead to a final state with 4b-jets (via the chain
pp → H2 → H1H1 → bb̄bb̄). Indeed, both ATLAS and
CMS have searched for Higgs boson pairs in the four b-jets
final state [46–48].
In Table VII one can also see that, even when not the

dominant contributions, the decay of CP-even scalars into
diboson final states offer larger branching ratios than those
of the tau channel. Recall that, in this article, we do not
assume an exact Higgs alignment limit. Instead, we allow
for small deviations from it, while still guaranteeing a SM-
like Higgs candidate to have its mass and interactions
within experimental bounds. In turn, the new CP-even
scalars can couple to both Z0 and W� bosons and
constraints arising from LHC direct searches, considering
the ϕ→WþW− and ϕ → Z0Z0 channels, with ϕ ¼ H2; H3,
become relevant to our analysis. The results are summa-
rized in the plots of Fig. 9, for both the H2 (left panels) and
H3 (right panels). As expected, all points remain below the
experimental bounds but with larger signal strengths in
comparison with the ditau channel. In fact, most of points
shown on panels a) and c) can be at the reach of the LHC
run-III or its HL phase. In particular, we have found that
for the diboson channel with Z0Z0, a big portion of the
allowed points comes close to the lower bound set by
experiment, with the largest allowed cross sections being

TABLE VII. A selection of five benchmark points (BP) that respect all QFV, electroweak, Higgs, and theoretical constraints. All
masses are given in GeVand cross sections in pb. The benchmark points are the same as in Table VI. Diboson final states are showcased
while in the last column we provide the dominant decay mode with the respective branching ratio.

ϕ ID
Mass
(GeV) BRðϕ→WþW−Þ BRðϕ → Z0Z0Þ

σðgg→ϕ→WþW−Þ
(pb)

σðgg→ϕ→Z0Z0Þ
(pb) Maximum BR

H2 BP1 160.21 0.881 0.0210 1.0032 0.00054 BRðWþW�Þ ¼ 0.881
BP2 347.99 0.129 0.0589 0.00722 0.003319 BRðH1H1Þ ¼ 0.611
BP3 129.26 0.377 0.0449 3.0 × 10−6 1.0 × 10−6 BRðWþW�Þ ¼ 0.377
BP4 132.27 0.239 0.0299 0.00366 0.001426 BRðbb̄Þ ¼ 0.590
BP5 668.49 0.416 0.203 0.00506 0.00244 BRðA2Z0Þ ¼ 0.75

H3 BP1 929.20 0.124 0.0616 0.00341 0.00167 BRðH1H1Þ ¼ 0.456
BP2 823.89 0.0922 0.0455 1.36 × 10−4 6.7 × 10−5 BRðA2A2Þ ¼ 0.228
BP3 1093.01 0.166 0.0824 0.002964 0.001468 BRðH1H1Þ ¼ 0.531
BP4 1156.49 0.0598 0.0297 0.000192 9.4 × 10−5 BRðtt̄Þ ¼ 0.617
BP5 754.64 0.0517 0.0254 8.4 × 10−4 4.1 × 10−4 BRðtt̄Þ ¼ 0.591
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of the order of Oð10−1Þ and Oð10−3Þ pb. Therefore, it is
possible the upcoming measurements would be capable of
probing the allowed parameter space of the model. Note
that for these two cases, the decay into a pair of W bosons
is indeed the dominant channel. These points are very
close to the ATLAS limit marking them as interesting
benchmarks for an early probing, already with run-III
data. It is also worth mentioning that, by virtue of a
sizeable branching ratio to a W boson pair, the signal
strength for the heavy CP-even state H3 is comparable to
those obtained for the lighter H2 state. Finally, let us
comment that, for the case of pseudoscalars, only the tau
channel is considered given that tree-level couplings of A2

to vector bosons are forbidden. Radiative effects where
such processes can be induced are beyond the scope of our
discussion in this article.

VII. CONCLUSIONS

We have discussed anomaly free implementations of a
NTHDM-BGLmodel containing three generations of right-
handed neutrinos, imbuing masses to the active left-handed
neutrinos via a Type-I seesaw mechanism. We have
specialized our numerical analysis on a version denoted
as νBGL-I where flavor violation processes are expected
only on the down-type quarks sector. We have constrained
the allowed parameter space of the model upon imposing
electroweak precision, Higgs, and flavor physics con-
straints and scouted the parameter space in a search for
phenomenologically valid regions. We have successfully

assessed the viability of the low mass region and found that
even for a number of scenarios with new scalars at, or at
least very close to the EW scale, the νBGL-I model remains
unconstrained. On the other hand, the majority of the
excluded scenarios met their fate due to a combined effect
of the ΔMs and BRðBs → μμÞ QFV observables, which
have eliminated approximately 90.61% of the sampled
points.
For the points that have survived all constraints we have

confronted our results with existing direct searches at the
LHC. We have found that new CP-even scalars are largely
favoring final states with a pair of W bosons for masses not
far from the EW scale. However, as their mass grows, the
decay channel H2 → A2Z0 becomes dominant, thus a
preferable option for further searches at the LHC run-III
or HL phases. Last but not least, while our results confirm
that the ditau channel is well suited for pseudoscalar
searches, their decay branching ratios to a pair of quarks
is in general largely dominant.
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APPENDIX A: ANOMALY CONDITIONS AND
CHARGE ASSIGNMENT

The anomaly cancellation conditions independent of the
neutrino flavor charges read as

AUð1ÞYUð1ÞYUð1Þ0 ≡
X3
i¼1

ðXqi þ3Xli −8Xui −2Xdi −6XeiÞ¼0;

AUð1ÞYUð1Þ0Uð1Þ0 ≡
X3
i¼1

ðX2
qi −X2

li
−2X2

ui þX2
di
þX2

eiÞ¼0;

ASUð2ÞLSUð2ÞLUð1Þ0 ≡
X3
i¼1

ð3Xqi þXliÞ¼0;

ASUð3ÞCSUð3ÞCUð1Þ0 ≡
X3
i¼1

ð2Xqi −Xui −XdiÞ¼0; ðA1Þ

with the AXYZ factor already defined in the main text
below Eq. (3.13).

APPENDIX B: ANALYTICAL EQUATIONS FOR
THE LAGRANGIAN PARAMETERS

a1 ¼ a2 þ
ðM2

A2
−M2

A3
Þ sin ð2γ1Þffiffiffi

2
p

v
;

μ23 ¼
M2

A3
sin2ðγ1Þðcotðγ1ÞvS − v sinðβÞ cosðβÞÞ −M2

A2
cos2ðγ1Þðtanðγ1ÞvS þ v sinðβÞ cosðβÞÞ

v
−

ffiffiffi
2

p
a2vS;

μ2b ¼ −
1

2vS
ð

ffiffiffi
2

p
a2v2 sinðβÞ cosðβÞ þM2

A3
cosðγ1Þðcosðγ1ÞvS − v sinðβÞ cosðβÞ sinðγ1ÞÞ

þM2
A2
sinðγ1Þðsinðγ1ÞvS þ v sinðβÞ cosðβÞ cosðγ1ÞÞÞ;

λ1 ¼
1

4v2
ðsec2ðβÞð−sin2ðβÞððM2

A2
−M2

A3
Þ cosð2γ1Þ þM2

A2
þM2

A3
Þ þ sinðα2Þ sinð2α3ÞðM2

H2
−M2

H3
Þ sinð2ðα1 − βÞÞ

þ 2cos2ðβ − α1Þðcos2ðα2ÞM2
H1

þ sin2ðα2Þðsin2ðα3ÞM2
H2

þ cos2ðα3ÞM2
H3
ÞÞ

þ 2sin2ðβ − α1Þðsin2ðα3ÞM2
H3

þ cos2ðα3ÞM2
H2
ÞÞÞ;

λ2 ¼
1

4v2
ðcsc2ðβÞð−2cos2ðβÞðM2

A3
sin2ðγ1Þ þM2

A2
cos2ðγ1ÞÞ þ sinðα2Þ sinð2α3ÞðM2

H3
−M2

H2
Þ sinð2ðα1 − βÞÞ

þ 2cos2ðα2ÞM2
H1
sin2ðβ − α1Þ þ 2sin2ðα2Þsin2ðβ − α1Þðsin2ðα3ÞM2

H2
þ cos2ðα3ÞM2

H3
Þ

þ 2cos2ðβ − α1Þðsin2ðα3ÞM2
H3

þ cos2ðα3ÞM2
H2
ÞÞÞ;

λ3 ¼
1

2v2
ðcscðβÞ secðβÞð2

ffiffiffi
2

p
ða1 þ a2ÞvS − sinð2ðα1 − βÞÞðcos2ðα2ÞM2

H1
þ cos2ðα3Þðsin2ðα2ÞM2

H3
−M2

H2
ÞÞ

þ sinðα2Þ sinð2α3ÞðM2
H2

−M2
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Þ cosð2ðα1 − βÞÞ þ 4μ23Þ þ 2M2

A3
sin2ðγ1Þ þ 2M2

A2
cos2ðγ1Þ þ 4M2

Hpm

þ sin2ðα3Þ cscð2βÞ sinð2ðα1 − βÞÞðcosð2α2ÞM2
H2

−M2
H2

þ 2M2
H3
ÞÞ;

λ4 ¼ −
cscðβÞ secðβÞð ffiffiffi

2
p ða1 þ a2ÞvS þ sinð2βÞM2

H� þ 2μ23Þ
v2

;

λ01 ¼
1

2v3S
ðv sinðβÞ cosðβÞð

ffiffiffi
2

p
a2vþ ðM2

A2
−M2

A3
Þ sinðγ1Þ cosðγ1ÞÞ þ sin2ðα2ÞM2

H1
vS
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λ02¼−
1

vvS
ðsecðβÞðsinðβÞð

ffiffiffi
2

p
a2vþðM2

A2
−M2

A3
Þsinðγ1Þcosðγ1ÞÞþ cosðα2Þðsinðα2Þcosðβ−α1Þðsin2ðα3ÞM2
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þ cos2ðα3ÞM2
H3

−M2
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Þ− sinðα3Þcosðα3ÞðM2

H2
−M2
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λ03¼−
1

vvS
ðcscðβÞðcosðβÞð
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2

p
a2vþðM2

A2
−M2

A3
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For completeness, in the case of a model with a neutral singlet [that is, with a Uð1Þ0 charge of zero], all a1, a2, a3, and a4
would be simultaneously allowed, resulting in modified expressions for the parameters of the scalar potential apart from λ03.
These are

a4 ¼
1

2vvS
ðð−M2

A2
þM2

A3
Þ sin 2γ1 þ

ffiffiffi
2
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A2
cos2γ1 þM2

A3
sin2γ1Þ

þ ðM2
H1
cos2α2 þM2

H2
sin2α2sin2α3Þsin2δþ cos2αðM2

H2
cos2δþMH3

sin2a2sin2δÞ
þ ð−MH2

þM2
H3
Þ cos α3 sin α2 sin α3 sin 2δÞ;

λ3 ¼
1

8v2
ð−4ðM2

A2
þM2

A3
− 4M2

H�Þ þ 4ð−M2
A2

þM2
A3
Þ cos 2γ1

þ csc β sec βð4ðM2
H2

−M2
H3
Þ cos 2δ sin α2 sin 2α3 þ ð2ð−2M2

H1
þM2

H2
þM2

H3
Þcos2α2

− ðM2
H2

−M2
H3
Þð−3þ cos 2α2Þ cos 2α3Þ sin 2δÞÞ;

λ4 ¼
1

v2
ðM2

A2
þM2

A3
− 2M2

H� þ ðM2
A2

−M2
A3
Þ cos 2γ1Þ;

λ01 ¼
1

4v3S
ð2vsðM2

H1
sin2α2 þ cos2α2ðM2

H3
cos2α3 þM2

H2
sin2α3ÞÞ þ

ffiffiffi
2

p
v2 cos βSinβða1 þ a2ÞÞ;

λ02 ¼
1

vvS
ðcos α2 sec βðcos δ sin α2ðM2

H1
−M2

H3
cos2α3 −M2

H2
sin2α3Þ

þ ð−M2
H2

þM2
H3
Þ cos α3 sin α3 sin δÞ þ ðM2

A2
−M2

A3
Þ cos γ1 sin γ1 tan β − vð

ffiffiffi
2

p
a1 þ 2vSa3Þ tan βÞ;

and where the minimization conditions only modify μ2S and μ̂ as

μ2S ¼ −
ffiffiffi
2

p
v1v2ða1 þ a2Þ þ vSðv1ð2v2ða3 þ a4Þ þ v1λ02Þ þ v22λ

0
3 þ 2ðv2Sλ01 þ μ2bÞÞ

2vS

and

μ̂ ¼ vS½
ffiffiffi
2

p
ða1 þ a2Þ þ vSða3 þ a4Þ� þ v1v2ðλ3 þ λ4Þ þ 2μ23:
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