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Abstract
We study the time evolution of spherical, excited (i.e. nodeful) boson star
(BS) models. We consider a model including quartic self-interactions, con-
trolled by a coupling Λ. Performing non-linear simulations of the Einstein-
(complex)–Klein–Gordon system, using as initial data equilibrium BSs solu-
tions of that system, we assess the impact of Λ in the stability properties of
the BSs. In the absence of self-interactions (Λ = 0), we observe the known
behaviour that the excited stars in the (candidate) stable branch decay to a non-
excited star without a node; however, we show that for large enough values of
the self-interactions coupling, these excited stars do not decay (up to timescales
of about t ∼ 104). The stabilization of the excited states for large enough self-
interactions is further supported by evidence that the nodeful states dynamically
form through the gravitational cooling mechanism, starting from dilute initial
data. Our results support the healing power (against dynamical instabilities)
of self-interactions, recently unveiled in the context of the non-axisymmetric
instabilities of spinning BSs.

Keywords: boson stars, numerical relativity, compact objects, general relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

Elementary quantum mechanics describes how the hydrogen atom has different states, or
orbitals, for an electron—see e.g. [1]. There is, however, only one ground state, which is
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dynamically stable: the 1s orbital. All other orbitals are excited states and if the electron is
excited into one of the latter, it ends up decaying to the ground state, unless an external forcing
is present. Some excited states (ns orbitals, with n > 1) are also spherical, just as the ground
state, but, unlike the latter, the wave function has radial nodes.

Boson stars (BSs) [2, 3] are static, horizonless, localized solutions of the Einstein-(complex,
massive) Klein–Gordon system—see also e.g. [4–9]. There is some parallelism between these
BSs and atomic orbitals [10], but with some key differences. Firstly, whereas the Schrödinger
orbitals emerge due to the potential well created by the Coulomb potential of a nucleus with the
opposite electric charge of the electron, BSs create their own potential well, due to their self-
gravity. This is possible due to the non-linearities of general relativity. Secondly, whereas the
Schrödinger orbitals are rightfully interpreted as a probability amplitude of a single (fermionic)
particle, BSs are superpositions of many bosons in the same state (i.e. with the same frequency
and multipolar distribution), so that a classical description is justified. Thirdly, each hydrogen
orbital has a single frequency, whereas BSs with a certain symmetry (say, spherical) have an
interval range of possible frequencies.

Similarly to atomic orbitals, there are different types of BSs, one of which is the fundamental
ground state, hence analogous to the 1s hydrogen orbital. This is the spherical solution for
which the scalar field has no nodes; for a certain frequency range, hereafter dubbed the stable
branch, such BSs are dynamically stable against small perturbations and remain dynamically
robust in fully non-linear numerical evolutions [11]. Then, there are different types of excited
states [10], the simplest of which are also spherical BSs but for which the scalar field has
radial nodes, which are counted by an excitation integer number n, hence analogous to the
hydrogen ns-orbital (n > 1). Such stars decay, when slightly perturbed, to the fundamental
state (or black holes) [12]. The goal of this paper is to inquire whether self-interactions can
stabilize such excited (i.e. nodeful) spherical BSs.

The motivation for the last question comes from recent studies of spinning BSs, where it was
shown that a certain non-axisymmetric instability of these stars found in [13] can be mitigated
[14], or even quenched [15], by introducing appropriate self-interactions in the scalar field
model. Since spinning stars can be faced as an excited state, within the family of BSs [16],
where the excitation quantum number is m ∈ Z, the azimuthal harmonic index, then, one may
ask if, by the same token, such self-interactions could improve the dynamical robustness of
nodeful excited states, for which the excitation number is n ∈ N, the number of radial nodes.

In this paper we provide numerical evidence that this is indeed the case, and that self-
interactions can stabilize radially excited BSs. By performing numerical evolution of the fully
non-linear Einstein-(complex)–Klein–Gordon system, and using as initial data equilibrium
BSs solutions (with nodes) of that system, we assess the impact of a parameter Λ, that con-
trols the self-interactions, in the stability properties of the nodeful BSs. In the absence of
self-interactions (Λ = 0), we recover the result first discussed in [12] that the excited stars
in the (candidate) stable branch [17] decay to a non-excited star without a node. Cranking up
Λ, however, we observe that for large enough values these excited stars do not decay (up to
timescales of about t ∼ 104).

To provide a different test to this stabilization mechanism of the excited stars, for large
enough self-interactions, we also analyse the possible formation of nodeful states dynami-
cally, through the gravitational cooling mechanism, starting from dilute initial data. Again we
observe a sharp contrast depending on Λ. For Λ = 0, nodeful initial data collapses by gravi-
tational cooling to form a BS that has no nodes; but for large Λ we observe that the compact
star that forms, albeit still undergoing an asymptotic relaxation process, retains the nodeful
structure.
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This paper is organized as follows. In section 2 we describe the excited states of spherical
BSs, as solutions of the appropriate Einstein–Klein–Gordon model. In section 3 we discuss
the framework for the numerical evolutions, and their main results both in the stability and
formation scenarios. Finally, in section 4 we provide our conclusions and final remarks.

2. The model

2.1. The action and field equations

We consider a model with the following action, for Einstein’s gravity minimally coupled to a
massive, complex, self-interacting scalar field Φ

S =

∫
d4x

√
−g

[
R

16π
− 1

2
∂μΦ

∗∂μΦ− 1
2

U(|Φ|2)

]
. (1)

The resulting field equations are:

Rμν −
1
2

gμνR = 8πTμν , �Φ =
dU

d|Φ|2 Φ, (2)

where

Tμν = ∂(μΦ
∗∂ν)Φ− 1

2
gμν[∂αΦ∗∂αΦ + U(|Φ|2)], (3)

is the energy–momentum tensor of the scalar field. In this work we choose the scalar field
potential to have the following form

U(|Φ|2) = μ2|Φ|2 + λ

2
|Φ|4, (4)

where μ is the scalar field mass and λ is the parameter controlling the quartic self-interactions.
This model has been considered, in the context of BSs, in a number of previous works,
including [18–20].

2.2. The ansatz

We are interested in spherical BS solutions with radial nodes. These are described by static,
spherically symmetric geometries and represent excited states of the fundamental (nodeless)
spherical BSs. The quartic term, moreover, generalizes the usual mini-boson stars, found for
λ = 0.

The spacetime geometry is described by the following metric ansatz in isotropic coordinates

ds2 = −e2F0(r) dt2 + e2F1(r)
(
dr2 + r2

[
dθ2 + sin2 θ dϕ2

])
, (5)

in terms of two metric radial functions F0,1. Also, (r, θ,ϕ) are spherical coordinates with the
usual range (in particular 0 � r < ∞) and t is the time coordinate.

The scalar field Φ has the standard form for BSs

Φ = φ(r)e−iωt, (6)

where ω > 0 is the field’s oscillating frequency. Here, φ is the field’s amplitude and it is a
real function. One can easily shown that the field ansatz (6) leads to a spherically symmetric
energy–momentum tensor, thus compatible with the line element (5).
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Figure 1. The frequency vs mass diagram is shown for BSs with one node for the
model with: (left panel) Λ = 100, 75, 50, 25, 0; (right panel) Λ = 100, 0, showing also
the frequency vs Noether charge diagram.

Below we shall sometimes use the areal radius R, defined as R ≡ reF1(r), that has a clear
geometrical significance, and therefore it is a more meaningful coordinate when comparing
radial profiles of different solutions.

2.3. The boundary conditions

In this setting, obtaining BS solutions reduces to solving a set of three3 ordinary differential
equations (ODEs), for the metric functions F0,1 and the scalar amplitude φ. These ODEs are
subject to the following set of boundary conditions. At r = 0 one imposes (from an expansion
of the equations of motion near the origin),

∂rF0,1 = 0 , ∂rφ = 0. (7)

At infinity, asymptotic flatness requires that all functions vanish,

F0,1 = φ = 0. (8)

The numerical evaluation of the equations of motion (via a shooting method) is done in units
with μ = 1, such that the only input parameter of the model is λ. Also, following [20], we
define

Λ :=
λ

4π
. (9)

In the remaining of this paper, Λ is the parameter that shall be used to discuss the impact of
the self-interactions.

2.4. The solutions

Solving the equations of motion, a discrete set of families of solutions are found, label by n, the
number of nodes of the scalar amplitude φ. For n = 0 we have the fundamental family—see
e.g. [21] for a description of its properties. Here, let us briefly discuss the properties of the first
excited state—the one-node solutions, n = 1, for different values of Λ.

3 There is also one constraint equation which is used to monitor the accuracy of the numerical results.
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Figure 2. Radial profile (in terms of the areal radius) of the Komar energy density/scalar
field amplitude (main panels/insets) for Λ = 0, 25, 50, 75, 100 and ω = 0.94 (top left
panel) or ω = 0.86 (top right panel).

Such BSs exist forωmin < ω < μ, where the valueωmin depends on the node number n (with
ωmin � 0.8149 for n = 1). Then, fixing n and Λ, one finds that the solutions sit on a spiralling
curve, when plotted in an ADM mass (M) vs frequency (ω) diagram. Some examples of this
spiralling curve are displayed in figure 1 (left panel), for different values of Λ. One observes
that the picture familiar from the fundamental spherically symmetric mini-boson stars is recov-
ered for general Λ, with the (ω, M) curve spiralling towards a central region of the diagram
where the numerics become increasingly challenging. In the case of the fundamental n = 0
BSs, the stable branch is the one between the maximal frequency ω = μ and the maximum of
the ADM mass. By analogy we shall call the candidate stable branch the corresponding region
for these solutions with n = 1. In the right panel of figure 1 we can see both the ADM mass vs
frequency curve as well as the Noether charge vs frequency curve for the illustrative cases of
Λ = 0, 100. The Noether charge Q is a global charge due to the U(1) global symmetry of the
complex scalar field model, and it can be interpreted as a measure of the number of scalar par-
ticles in the BS (a notion made precise upon quantization). If Q < Mμ this means that the star
has excess energy (rather than binding energy), and therefore the stars become energetically
unstable against fission—see e.g. [21]. The plot shows this only occurs, when moving along
the spiral starting from the maximal frequency, near the minimum frequency, and therefore
away from the candidate stable branch.

In the dynamical analyses of the next section we shall be interested in examining sequences
of solutions for fixed ω and varying Λ. In figure 2 we show the radial profile of the scalar
field amplitude for Λ = 0, 25, 50, 75, 100 and ω = 0.94 (inset left panel) and ω = 0.86 (inset
right panel). One observes that: (i) the solutions always have one radial node; (ii) for fixed ω,
increasing Λ, the radial node occurs at a larger r coordinate; (iii) for fixed ω, increasing Λ, the
amplitude of values of φ between its maximum and minimum, Δφ = φmax − φmin decreases;
(iv) for fixed Λ, decreasing ω, the solutions become more ‘compact’, with the node occurring
at smaller r and with a higher Δφ.

One can also analyse the Komar energy density profiles, for the same models as in the pre-
vious paragraph. Since for a stationary, asymptotically flat spacetime admitting an everywhere
timelike Killing vector field k = ∂t the ADM mass M coincides with the Komar mass at infinity,
we can write the standard Komar mass expression as

M = − 1
8π

∮
dSαβ Dαkβ =

∫
dr dθ dϕ(T − 2Tt

t )
√
−g, (10)
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Figure 3. Compactness as a function of Λ and ω. The black (red) points correspond to
the solutions for which an instability (no instability) is seen in the evolutions of the next
section.

where T ≡ Tα
α . The radial profile of Komar energy density,

ρK := T − 2Tt
t , (11)

is exhibited in figure 2 (main panels) leading to similar conclusions as the analysis of the scalar
field amplitude.

Finally, in figure 3 we exhibit the compactness of the BSs, defined as

C :=
2M99

R99
, (12)

where R99 is the areal radius R that encloses 99% of mass of the BS. One can appreciate
that: (i) for fixed Λ the compactness increases when decreasing ω (within the candidate stable
branch); (ii) for fixed ω the compactness increases when increasing Λ. Thus, increasing the
self-interactions makes the BSs more compact in the sequences of fixed ω solutions analysed
in the next section.

3. Numerical evolutions

Having constructed the n = 1 spherical BSs of the model defined by the action (1) we shall
proceed to analyse their dynamical stability. Thus, in this section we discuss the non-linear
evolutions of the static models described above and the possible dynamical formation of these
excited BSs.

3.1. Basic equations

The spacetime metric can be written as

ds2 = gαβ dxα dxβ = −α2 dt2 + γi j(dxi + βidt)(dx j + β j dt), (13)

6
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where α and βi are the lapse and shift functions, respectively, and γi j the spatial metric. For
numerical evolutions, the spatial line element in spherical symmetry is given by

dl2 = e4χ
[
a(t, r)dr2 + r2 b(t, r)dΩ2

]
, (14)

where dΩ2 = dθ2 + sin2 θ dϕ2 and a(t, r) and b(t, r) are two non-vanishing conformal met-
ric functions. They are related to physical metric by the conformal decomposition γi j =
e4χγ̂ i j, with eχ = (γ/γ̂)1/12, where χ is the conformal exponent, and with γ and γ̂ being
the determinants of the physical and conformal three-metrics, respectively. We use the
Baumgarte–Shapiro–Shibata–Nakamura (BSSN) formalism to solve Einstein’s equations [22,
23] (see [24–26] for further details). The explicit form of the evolution equations for the
gravitational field can be found in equations (9)–(11) and (13)–(15) in reference [26].

As in previous works [20, 27], we solve the Klein–Gordon equation by introducing first-
order variables defined as

Π := nα∂αφ =
1
α

(∂tφ− βr∂rφ) , (15)

Ψ := ∂rφ. (16)

with nα = (1/α,−βi/α), the future-pointing unit normal vector to the spatial hypersurfaces of
the spacetime foliation. We obtain the following system of first-order equations for the scalar
field:

∂tφ = βr∂rφ+ αΠ , (17)

∂tΠ = βr∂rΠ+
α

ae4χ

[
∂rΨ+Ψ

(
2
r
− ∂ra

2a
+

∂rb
b

+ 2∂rχ

)]

+
Ψ

ae4χ
∂rα+ αKΠ− α

(
μ2 + λφ2

)
φ , (18)

where K is the trace of the extrinsic curvature, Ki j. The matter source terms contained in the
right-hand sides of the gravitational field evolution equations, denoted by E , Sa, Sb and jr, are
components of the energy–momentum tensor and are given by

E := nαnβTαβ =
1
2

(
|Π|2 + |Ψ|2

ae4χ

)
+

1
2
μ2|φ|2 + 1

4
λ |φ|4, (19)

jr := − γα
r nβTαβ = −1

2

(
Π∗Ψ+Ψ∗Π

)
, (20)

Sa := Tr
r =

1
2

(
|Π|2 + |Ψ|2

ae4χ

)
− 1

2
μ2|φ|2 − 1

4
λ |φ|4 , (21)

Sb := Tθ
θ =

1
2

(
|Π|2 − |Ψ|2

ae4χ

)
− 1

2
μ2|φ|2 − 1

4
λ |φ|4. (22)

Finally, the Hamiltonian and momentum constraints are given by the following two equations:

H ≡ R − (A2
a + 2A2

b) +
2
3

K2 − 16πE = 0 , (23)

7
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Figure 4. (Top left panel) Time evolution of the minimum value of the lapse for different
models with Λ = {0, 25, 50} and ω = 0.96, 0.92, 0.88. (Top right panel) Radial profile
of the scalar field magnitude at different times for the model with ω = 0.96 and Λ = 75.
(Bottom left panel) Time evolution of the minimum value of the lapse for models with
Λ = 75. (Bottom right panel) Radial profile of the scalar field magnitude at different
times for three models with Λ = 75.

Mr ≡ ∂rAa −
2
3
∂rK + 6Aa∂rχ+ (Aa − Ab)

(
2
r
+

∂rb
b

)
− 8π jr = 0 , (24)

where Ai j is the traceless part of the conformal extrinsic curvature with Aa ≡ Ar
r and Ab ≡ Aθ

θ.

3.2. Stability

We solve the above equations using a numerical-relativity code that assumes spherical symme-
try and spherical coordinates, described in [20, 25, 26, 28–30]. The BSSN and Klein–Gordon
coupled equations are solved using a second-order partially implicity Runge–Kutta scheme
[31, 32]. The evolutions are performed in a logarithmic grid described in [33], with a maxi-
mum resolution of Δr = 0.05, a time step of Δt = 0.3Δr, and the outer boundary placed at
rmax = 10 000.

We study the non-linear stability of excited BS solutions with different values of the cou-
pling, namely Λ = {0, 25, 50, 65, 75, 85, 100}. The spirals corresponding to Λ = {65, 85} are
not explicitly shown in figure 1 (left panel), but one may easily guess their approximate location
by interpolation.

The mini-boson star case (Λ = 0) has been extensively investigated and found to be unstable
(for the excited states) even in the candidate stable branch, which occurs before the maximum

8
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Figure 5. (Top left panel) Radial profile of the scalar field magnitude |φ| at different
times for three different models with Λ = 100. (Top right panel) Time evolution of the
amplitude of the real part of the scalar field extracted at r = 3 for three different models.
(Bottom left panel) Radial profile of the scalar field magnitude at different times for the
unstable model with ω = 0.84. (Bottom right panel) Time evolution of the amplitude of
the real part of the scalar field extracted at r = 3 and the minimum value of the lapse for
the model with ω = 0.84.

ADM mass model [12]. Numerical evolutions showed that the excited states decay to the funda-
mental solution without nodes. Since the maximum mass of the excited states is larger than that
of the fundamental mini-boson stars, a large part of the sequence of equilibrium configurations
collapse to a black hole after decaying. This behaviour is shown in the top left panel of figure 4,
where we plot the time evolution of the minimum value of the lapse, α, for three different val-
ues of Λ = {0, 25, 50} and a sample of three different frequencies (ω = 0.88, 0.92, 0.96). The
smallest mass of the models with Λ = 0 we have considered is M = 1.024, corresponding to
ω = 0.96, while the maximum mass of the mini-boson stars is Mmax = 0.633; therefore, taking
into account that in the collapse little mass is dispersed away, all these configurations must col-
lapse to a black hole (cannot become a fundamental BS). Indeed this is verified in the top left
panel of figure 4, which is diagnosed from the fact the minimum value of the lapse becomes
zero for all models with Λ = 0 (red lines).

Increasing the value of Λ to 25 or 50 leads to another possible outcome for the same
value of ω. Now, only the most compact model (with the highest mass), corresponding to
ω = 0.88 collapses to a black hole. But the two models with less mass and less compactness
(ω = 0.92, 0.96), do not; rather the minimum value of the lapse oscillates around a non-zero
value, diagnosing a relaxation to a new equilibrium state. This is possible because the max-
imum mass of the fundamental branch also increases with Λ. The fate of the models that do
not collapse into a black hole, is illustrated in the top right panel of figure 4, for the case

9
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Table 1. Fate of the excited BSs with different values of the self-interacting coupling Λ
and oscillation frequency ω.

ω 0.86 0.88 0.90 0.92 0.94 0.96

Λ = 0 BH formation BH formation BH formation BH formation BH formation BH formation

Λ = 25 BH formation BH formation BH formation Nodeless BS Nodeless BS Nodeless BS

Λ = 50 BH formation BH formation BH formation Nodeless BS Nodeless BS Nodeless BS

Λ = 65 BH formation BH formation BH formation Nodeless BS Nodeless BS Nodeless BS

Λ = 75 BH formation BH formation Excited BS Excited BS Nodeless BS Nodeless BS

Λ = 85 BH formation Excited BS Excited BS Excited BS Excited BS Nodeless BS

Λ = 100 Excited BS Excited BS Excited BS Excited BS Excited BS Excited BS

with Λ = 50 and ω = 0.96, where we show the radial profile of the scalar field magnitude,
|φ| =

√
Re(φ)2 + Im(φ)2, at different times. One observers that at the end of the simulation

(indigo line) there is no node in the radial profile, confirming that the evolution led to the decay
of the excited (nodeful) star to a fundamental (nodeless) star.

A qualitatively different behaviour is first seen when we further increase the self-interactions
parameter toΛ = 75. Whereas low-compactness models, withω � 0.96, 0.94, are still unstable
and quickly decay to the nodeless solution (see bottom left and right panels of figure 4), fairly
compact models with lower ω (ω � 0.92, 0.90) become stable at least up to t = 10 000; even
when explicitly perturbed by multiplying by a few percent the scalar field φ(r) → xφ(r) at the
initial time, where x is a numerical factor close to 1 [34], such excited solutions remain stable.
There is, however, an additional turning point around ω � 0.88, which is also unstable, losing
the node and collapsing to a black hole. We emphasise all these solutions are in the candidate
stable branch, before the maximum mass of the model.

Increasing further the self-interaction coupling to Λ = 100 we find that all models in the
candidate stable branch remain in the excited state. This is illustrated in the top panels of
figure 5, where the time evolution of the radial profile of |φ| and the amplitude of the real part
of the scalar field for three values of ω is exhibited.

These results indicate that the addition of the self-interaction term can quench the decay to
the fundamental branch, complementing previous findings on the stability of rotating BSs with
self-interaction potentials. Moreover, it is interesting to point out the correlation between the
self-interaction potentials and the stabilization mechanism described in [15].

For completeness, we have also evolved a couple of models in the unstable branch (beyond
the maximum ADM mass) with Λ = 100 (see bottom panels of figure 5). As expected these
stars collapse to a black hole, but during the process they do not lose the node. Therefore,
the collapse is related to the linear instability of the equilibrium configurations and not to the
transition to the fundamental state.

As a summary of the result in this section, table 1 shows the fate of the excited state of several
BSs with different self-interaction coupling and oscillation frequency ω. As shown above, the
larger is Λ, the larger is the space of parameter in which excited states become dynamically
robust. Interestingly, there is not a threshold compactness after which excited BSs are stable, as
it is manifest in figure 3, but rather a region of the parameter space that grows with increasingΛ.
A different (and approximate) physical criterion for instability will be suggested in section 4.

3.3. Dynamical formation

To complement the stability studies we have just reported, we have also studied the possible
dynamical formation of excited (nodeful) BSs with Λ = 100. Here, the rationale is to start with
a spherically symmetric dilute Gaussian distribution of the scalar field with one node, of the

10
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Figure 6. Radial profile of the scalar field magnitude |φ| at different times in the forma-
tion scenario with Λ = 0 (top left panel) and Λ = 100 (top right panel). Time evolution
of the amplitude of the real part of the scalar field and of the minimum value of the lapse
with Λ = 0 (bottom left panel) and Λ = 100 (bottom right panel). The black dashed line
gives the minimum value of the lapse of the static model.

form:

φ(t = 0, r) = φ0

[
e−(r−r0)/σ2 − 0.9 e−(r−r0)/(1.2σ)2

]
, (25)

where r0 is the position of the maximum, σ the width, and φ0 is the amplitude at t = 0. As
illustrative values, we take r0 = 0, σ = 60, and φ0 = 8.5 × 10−3 for Λ = 100 (φ0 = 5.0 ×
10−3 for Λ = 0) in the simulations exhibited here.

We solve the Hamiltonian constraint, equation (23), as described in previous works [26,
28–30, 35]. The time evolution of the cloud is shown in figure 6 and, for comparison, we
show the case with Λ = 0 (left panels) and Λ = 100 (right panels). In both cases, the dilute
cloud becomes more compact during the evolutions, approaching an equilibrium BS solution,
and ejecting the excess energy via gravitational cooling. However, whereas in the Λ = 0 case
the initial node of the cloud is lost, and at late times the radial profile of the scalar field is
monotonically decreasing, for the Λ = 100 this is not so. One can see that although the star
is still vibrating, as it is relaxing towards equilibrium, and thus it does not show the node at
all times, it always keeps the second maximum in its relaxation process. In fact, in the top
right panel of figure 6 we plot a fiducial static model (thick black line) with similar mass
(M = 1.092) and ω = 0.975 for comparison, and we observe that the star that is forming from
the gravitational cooling mechanism appears to oscillate around the profile of this fiducial
model.
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Although it is not possible in the evolutions within this formation scenario to get to very
final state, one can clearly appreciate the dependence on Λ of the evolutions, and the fact that
sufficiently high values of Λ keep the shell structure of the energy density, even starting far off
from an excited equilibrium solution, whereas for Λ = 0 the scalar field naturally reorganizes
itself into a fundamental BS profile.

4. Conclusions

In this work we have investigated the stability of excited BSs with quartic self-interaction.
We found that, as previously shown in the rotating case, when taking a large self-interaction
coupling, the instability of these objects can be quenched up to long computational times.
Although in this paper we have focussed on the excited spherical BSs with n = 1, it is plau-
sible (and can be checked by dedicated simulations) that n > 1 solutions may be stabilized in
a similar way. Of course, numerical evolutions as the ones done here cannot demonstrate sta-
bility. Yet, there the numerical evidence we have presented clearly shows the ‘healing’ power
of self-interactions of the type we have considered. Considering a potential demonstration of
stability for large self-interactions, it would be interesting to attempt to tackle it in the large Λ
limit using approximations such as the ones studied in [18].

Let us comment that another way to stabilize excited spherical BSs was studied in the litera-
ture [36] (see also [30]). Here the idea was to study a multi-field model, with one field being left
in the fundamental (nodeless) state, and a second field composing an excited (nodeful) state.
The resulting spherical BSs were shown to be stable if the population of the fundamental state
was large enough, for a fixed population of the excited state. On the other hand, in the case of
multi-field, but not spherically symmetric solutions in [16], it was found that the criterion for
stability was associated to the energy density peak of the composed system becoming shifted
towards the origin (see also [37]). Thus, in both cases stability requires some dominance of the
central component, either in terms of Noether charge or energy density.

Attempting to find an interpretation, or at least a physical diagnosis of stability/instability,
in the study presented here of spherical excited states with n = 1, it is convenient to face
these stars as a central bosonic ball surrounded by an exterior bosonic shell. Then, we have
observed a suggestive correlation with the relative energy distributions of the central sphere
and the surrounding shell. This is illustrated in figure 7, where we plot the ratio of the Komar
energy density (11) at the local maximum which occurs away from the origin (at r = rm) over
the Komar energy density at the local maximum at the origin. Figure 7 suggest that stability
(roughly) requires the second radial maximum of the energy to be sufficiently large as com-
pared to the first one. Interestingly, this seems to follow the opposite trend to the one discussed
above for the multi-field stabilization: here there must be a sufficiently large energy peak away
from the origin for stability.

Bosonic stars have been proposed as dark matter constituents. Moreover, if they do not
interact (or interact very weakly) with the electromagnetic field, they could mimic part of the
phenomenology of black holes, see e.g. [38], and could also change the properties of fermion
stars [29, 30, 39, 40]. Such objects are still theoretical and have not been observed to date.
However, a recent work [41] found that the head-on collision of vector BSs (also known as
Proca stars) can fit the real gravitational-wave event GW190521, slightly better than the vanilla
black hole binary merger. Studying their non-linear stability is, therefore, important in order
to check if they are viable dark objects that could account for part of dark matter, but also may
help to understand and make predictions about the stability of similar objects (neutron stars
or other exotic compact objects), since interesting parallelisms between neutron stars and BSs
can be drawn, for instance in the development of the bar-mode instability [14, 42, 43], despite
being described by completely different types of matter.
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Figure 7. Ratio of the Komar energy density at the shell radius rm over that at the origin.
This ratio increases as Λ increases for each value of ω. One can see that stable models
only occur above a certain threshold.
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[40] Valdez-Alvarado S, Becerril R and Ureña-López L A 2020 Fermion–boson stars with a quartic
self-interaction in the boson sector Phys. Rev. D 102 064038

[41] Calderón Bustillo J, Sanchis-Gual N, Torres-Forné A, Font J A, Vajpeyi A, Smith R, Herdeiro C,
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