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Abstract
Weprove that variable exponentMorrey spaces are closely embedded between variable
exponent Stummel spaces. We also study the boundedness of the maximal operator in
variable exponent Stummel spaces as well as in vanishing variable exponent Stummel
spaces.
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Muckenhoupt weights

Mathematics Subject Classification 46E30 · 42B35

1 Introduction

The classical Stummel spaces Sp,λ(Rn), defined by the norm

‖ f ‖Sp,λ := sup
x∈Rn

( ∫
Rn

| f (y)|p

|x − y|λ dy

)1/p

, 1 ≤ p < ∞, 0 < λ < n,
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appeared for the first time in [31] in the case p = 2. These spaces are known to
be used in applications to PDEs, see for instance [22–24]. The class of functions in
Stummel space (p = 1) was also studied in [11, 27]. For p = 1 and λ = n − 2 it
is also called Stummel–Kato class. Generalized Stummel spaces Sp,w(Rn), with the
function |x |λ replaced by a more general weight function w(x), were used in [2, 26,
30] in embedding results for global Morrey spaces.

The goal of the paper is twofold: on the one hand, to study the two-sided embeddings

Sp(·),ϕ(·,·)(Rn) ↪→ L p(·),ϕ(·,·)(Rn) ↪→ S
p(·), ϕ(·,·)

w(·,·) (Rn), (1.1)

between Stummel and Morrey spaces as defined in (3.1) and (3.3); and on the other
hand, to prove the boundedness of theHardy–Littlewoodmaximal operator in Stummel
type spaces; viz

M : Sp(·),λ(·)(Rn) ↪→ Sp(·),λ(·)(Rn).

It isworth noting that such boundedness resultswere never studied, even in the constant
exponent Stummel spaces, to the best of the authors’ knowledge. This goal requires, in
particular, to obtain refinedquantitative estimates related toweighted norm inequalities
for the maximal operator. Those estimates provide uniform bounds for a family of
Muckenhoupt weights.

The two-sided embeddings (1.1) show that variable exponent generalized Morrey
spaces are closely embedded between variable exponent generalized Stummel spaces.
The latter spaces are introduced in Definition 3.1, while the former have been consid-
ered by several authors in diverse forms, e.g., [1, 14, 15, 25].

The paper is organized as follows. After some notations and preliminaries on vari-
able exponent Lebesgue spaces, in Sect. 3 we introduce generalized Stummel spaces
and prove the aforementioned two-sided embeddings. In Sect. 4, we prove several cru-
cial quantitative results dealing with variable exponent Muckenhoupt weights, which
play a key part in the proof of the main boundedness result. Finally, in Sect. 5 we study
the boundedness of the maximal operator in variable exponent Stummel space and in
the vanishing variable exponent Stummel spaces.

Notation

– 1E denotes the characteristic function of E ;
– τh f (x) := f (h − x);
– B(x, r) stands for the open ball centered at x ∈ R

n and radius r > 0;
– B0 := B(0, 1);
– T : X ↪→ Y means that T is a continuous mapping from X into Y .

2 Preliminaries

We refer to the books [5, 8] for the basics on the theory of variable exponent Lebesgue
spaces. For applications of variable exponent type spaces to integral operators, see
[16, 17].
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Let � ⊂ R
n be a measurable set. We define P(�) as the class of all bounded

measurable functions (usually called variable exponents) p : � → [1,∞). For p ∈
P(�) we denote

p−
� := ess inf x∈� p(x) and p+

� := ess supx∈� p(x).

If � = R
n we simply write p− and p+ instead of p−

Rn and p+
Rn , respectively. By p′

we denote the conjugate exponent function of p given by p′(x) = p(x)
p(x)−1 , x ∈ �. The

following relations hold

(p+
�)′ = (p′)−�, (p−

�)′ = (p′)+�. (2.1)

We say that a function g : � → R is locally log-Hölder continuous if there exists
clog(g) > 0 such that

|g(x) − g(y)| ≤ clog(g)

log(e + 1/|x − y|) , for all x, y ∈ �. (2.2)

The function g is said to satisfy the log-Hölder continuity condition at infinity, also
known as the decay condition, if there exist g∞ ∈ R and c∗

log(g) > 0 such that

|g(x) − g∞| ≤ c∗
log(g)

log(e + |x |) , for all x ∈ �, (2.3)

which is equivalent to

|g(x) − g(y)| ≤ C∗
log(g)

log(e + |x |) , for all x, y ∈ � with |y| > |x |. (2.4)

Usually, we say that g is log-Hölder continuous when it satisfies conditions (2.2)
and (2.3) simultaneously. Condition (2.3) is of interest only when � is unbounded.
We denote by P log(�) the class of all exponents p ∈ P(�) which are log-Hölder
continuous.

The next two lemmas emphasize the important role played by the log-Hölder con-
tinuity conditions, which are crucial tools when dealing with variable exponents. The
first one is due to Diening [7], while the second one to Capone, Cruz-Uribe and
Fiorenza [3].

Lemma 2.1 If p ∈ P log(Rn) satisfies (2.2), then there exists C > 0 such that

|B|p−
B −p+

B ≤ C,

for every ball B in R
n.
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Lemma 2.2 Let G be a given set, μ a non-negative measure, and r and s two variable
exponents such that

|r(y) − s(y)| ≤ c∗

log(e + |y|)
for some c∗ > 0 and all y ∈ R

n. Then for every t ≥ 1 there exists C = C(t, c∗) such
that for all functions g with |g| ≤ 1,

∫
G

|g(y)|s(y)dμ(y) ≤ C
∫

G
|g(y)|r(y)dμ(y) +

∫
G

dμ(y)

(e + |y|)tnr−
G

. (2.5)

Remark 2.3 An analysis of the proof of [3,Lemma 2.7] shows that the constant in (2.5)
is C = etnc∗

.

For our further purposes, we need a yet another result.

Lemma 2.4 Let p ∈ P log(Rn) and α|y| ≤ |z| ≤ β|y|, where 0 < α < 1 < β are
fixed real numbers. Then

|z|p(y)−p(z) ≤ C, |y|p(y)−p(z) ≤ C, (2.6)

where C only depends on α, β, clog(p), c∗
log(p), p+, and p−.

Proof We need to consider the following two cases.
Case 1: α|y| ≥ e. It suffices to prove the estimates in (2.6) when p(y) − p(z) ≥ 0.
From the hypothesis of the lemma, we have

a|y||p(y)−p(z)| ≤ |z||p(y)−p(z)| ≤ b|y||p(y)−p(z)|,

for appropriate a, b ∈ R+, depending only on α, β, p+, and p−. The result now
follows using the decay condition (2.4).
Case 2: β|y| < 1/2. We only need to address the case p(y) − p(z) < 0. Using the
elementary estimates

|z − y| ≤ |z|(1 + 1/a), |z − y| ≤ |y|(1 + b),

we obtain

|y|−|p(y)−p(z)| ≤ |z − y|−|p(y)−p(z)|, |z|−|p(y)−p(z)| ≤ |z − y|−|p(y)−p(z)|. (2.7)

From the local logarithmic condition (2.2) and (2.7), we get (2.6). ��
The variable exponent Lebesgue space, denoted by L p(·)(�), with p ∈ P(�), is

the space of all measurable functions f on � such that

	p(·),�( f ) :=
∫

�

| f (x)|p(x)dx < ∞.
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Equipped with the norm

‖ f ‖p(·),� := inf

{
η > 0 : 	p(·)

(
f

η

)
≤ 1

}
, (2.8)

L p(·)(�) is a Banach function space. We shall omit the set � in the notation when we
deal with the whole space � = R

n .
From the definition of the norm, we have the equality

‖ f ‖p(·) = ‖τh f ‖(τh p)(·), (2.9)

as well as the following inequalities for � ⊂ R
n and p ∈ P(Rn):

‖ f 1�‖p+
�

p(·) ≤ 	p(·)( f 1�) ≤ ‖ f 1�‖p−
�

p(·), for all f with ‖ f 1�‖p(·) ≤ 1,

(2.10)

and

‖ f 1�‖p−
�

p(·) ≤ 	p(·)( f 1�) ≤ ‖ f 1�‖p+
�

p(·), for all f with ‖ f 1�‖p(·) ≥ 1.

(2.11)

Hölder’s inequality holds in the form

‖ f g‖1 ≤ 2 ‖ f ‖p(·)‖g‖p′(·).

By L p(·)
w (Rn) we mean the weighted L p(·) space normed by

‖ f ‖
L p(·)

w
:= ‖ f w‖p(·).

As usual, by a weight we mean a measurable function w on Rn such that 0 < w(x) <

∞ almost everywhere.

3 Embedding Results

In this section we compare variable exponent generalizedMorrey spaces with variable
exponent generalized Stummel spaces.

Recall that, for p ∈ P(Rn), the Morrey space L p(·),ϕ(·,·)(Rn) is defined as the set
of measurable functions f such that

‖ f ‖L p(·),ϕ(·,·) := sup
x∈Rn ,r>0

1

ϕ(x, r)
‖ f 1B(x,r)‖p(·) < ∞, (3.1)
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where ϕ is assumed to be a measurable function satisfying

inf
x∈Rn

ϕ(x, t) > 0 for every t > 0. (3.2)

We introduce variable exponent generalized Stummel spaces as follows:

Definition 3.1 For p ∈ P(Rn) and a function ϕ satisfying (3.2), we define the vari-
able exponent generalized Stummel spaces Sp(·),ϕ(·,·)(Rn) as the set of measurable
functions f such that

‖ f ‖Sp(·),ϕ(·,·) := sup
x∈Rn

∥∥∥∥ f

ϕ(x, |x − ·|)
∥∥∥∥

p(·)
< ∞. (3.3)

Remark 3.2 Stummel classes appeared for the first time in the literature in [31] in
connection toPDEswithϕ(x, t) = ϕ(t) = tλ, see also [22–24].As spaces of functions,
Stummel spacesSp,ϕ(Rn) were used in [2, 26, 30] in the study of embedding results
involving Morrey spaces, with constant p and ϕ only depending on t .

We start with the observation that generalized Morrey spaces are not, in general,
embedded into Lebesgue spaces. For example, taking

f0(x) = |x |− n
p ϕ(0, |x |)

we have that f0 ∈ L p,ϕ(·,·)(Rn) but f0 /∈ L p(Rn) if ϕ satisfies the following assump-
tions:

t → ϕ p(0, t) is almost increasing, (3.4)

t → ϕ p(0, t)

tε
is almost increasing, (3.5)

for some ε > 0,

t → ϕ p(0, t)

tn
is almost decreasing, (3.6)

and

ϕ(0, t)

ϕ(x, t)
≤ C, (3.7)

where C does not depend on x ∈ R
n or t > 0. Detailed calculations can be found in

[2] (see the proof of Lemma 2.1).

Remark 3.3 The function ϕ p(x, t) = tλ(x,t), with λ(x, t) given by

λ(x, t) =
{

(n − δ)s(x), |x | > t > 1,

(n − δ)s(0), otherwise,
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satisfies the conditions listed above, where δ > 0 is a small real number and s is
a function satisfying |s(x) − s(0)| log(e + |x |) ≤ C , with C independent of x , and
0 < (n − δ)s(0) < n.

For the embedding results between Morrey and Stummel spaces we need to intro-
duce the following monotonicity conditions.

We say that t → ϕ(x, t) is x-almost uniformly increasing in the interval (a, b) if,
for all a < t < s < b, we have

ϕ(x, t) ≤ Cϕ(x, s),

whereC > 0 does not depend on x, t or s. The notion of x-almost uniformly decreasing
is introduced similarly with natural modifications. The function t → ϕ(x, t) satisfies
the x-uniform doubling condition if

ϕ(x, 2s) ≤ Cϕ(x, s),

where C > 0 does not depend on x or s.

Theorem 3.4 Let t → ϕ(x, t) be x-almost uniformly increasing, t → w(x, t)
be x-almost uniformly increasing in (0, rx ) and x-almost uniformly decreasing in
(rx ,∞), for some rx > 0. Assume, moreover, that supx∈Rn

∫ ∞
0

w(x,t)
t dt < ∞,

t → w(x, t)/ϕ(x, t) is x-almost uniformly decreasing, and t → ϕ(x, t) satisfies
the x-uniform doubling condition. Then

Sp(·),ϕ(·,·)(Rn) ↪→ L p(·),ϕ(·,·)(Rn) ↪→ S
p(·), ϕ(·,·)

w(·,·) (Rn). (3.8)

Proof Fix x ∈ R
n and r > 0. Since t → ϕ(x, t) is x-almost uniformly increasing, we

have

∥∥∥∥ 1

ϕ(x, r)
f 1B(x,r)

∥∥∥∥
p(·)

≤ C

∥∥∥∥ 1

ϕ(x, |x − ·|) f 1B(x,r)

∥∥∥∥
p(·)

≤ C

∥∥∥∥ 1

ϕ(x, |x − ·|) f

∥∥∥∥
p(·)

which yields, after taking supremum, the left-hand side embeddding in (3.8).
On the other hand, for fixed x ∈ R

n , take rx the monotony inflection point of the
function w(x, t) and Ak(x):=B(x, 2k+1rx ) \ B(x, 2krx ). Since t → w(x, t)/ϕ(x, t)
is x-almost uniformly decreasing and t → ϕ(x, t) satisfies the x-uniform doubling
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condition, we have

∥∥∥∥ f
w(x, |x − ·|)
ϕ(x, |x − ·|)

∥∥∥∥
p(·)

=
∥∥∥∥∥
∑
k∈Z

f
w(x, |x − ·|)
ϕ(x, |x − ·|) 1Ak (x)

∥∥∥∥∥
p(·)

≤
∑
k∈Z

∥∥∥∥ f
w(x, |x − ·|)
ϕ(x, |x − ·|) 1Ak (x)

∥∥∥∥
p(·)

≤ C
∑
k∈Z

w(x, 2krx )

ϕ(x, 2krx )

∥∥ f 1B(x,2k+1rx )

∥∥
p(·)

≤ C
∑
k∈Z

w(x, 2krx )‖ f ‖L p(·),ϕ(·,·) .

(3.9)

From the sum-to-integral Lemma 5.5 and the condition on w(x, t), we have

∑
k∈Z

w(x, 2krx ) =
0∑

k=−∞
w(x, 2krx ) +

∞∑
k=1

w(x, 2krx )

≤ C

( ∫ rx
2

0

w(x, t)

t
dt +

∫ ∞
rx
2

w(x, t)

t
dt

)
≤ C,

(3.10)

since supx∈Rn

∫ ∞
0

w(x,t)
t dt < ∞. The right-hand side embedding in (3.8) follows now

from (3.9) and (3.10). ��

4 Variable Exponent MuckenhouptWeights

4.1 Weighted Norm Inequalities for theMaximal Operator

It is well-known that the classical Muckenhoupt class Ap, 1 < p < ∞, governs the
boundedness of the (Hardy–Littlewood) maximal operator M ,

M f (x) = sup
r>0

1

rn

∫
B(x,r)

| f (y)|dy, (4.1)

on weighted L p-spaces. More precisely, M is bounded on L p
w(Rn), 1 < p < ∞, if

and only if w ∈ Ap (cf. [10, 13]). Recall that w ∈ Ap if

‖w1B‖p ‖w−11B‖p′ ≤ c |B| (4.2)

for every ball B (this includes the case p = 1). The Ap constant of w, denoted by
[w]Ap , is the smallest constant c ≥ 1 for which (4.2) holds. This definition considers
the weight as a multiplier. If one treats the weight as a measure then we use the class
Ap instead, where w ∈ Ap if [w]Ap := [w1/p]p

Ap
< ∞.
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For later use, observe that w ∈ A1 if

[w]A1 := sup
B

|B|−1 ess supx∈B w(x)−1
∫

B
w(x)dx < ∞,

or, equivalently, if Mw(y) ≤ c w(y) almost everywhere in Rn . The smallest c ≥ 1 in
the previous inequality gives [w]A1 , the A1 constant of w. Recall that

A1 ⊂ Ap ⊂ Aq , if 1 < p < q.

For an account on the theory of Muckenhoupt weights, we refer the reader to [13].
Weighted norm inequalities for the maximal operator on variable Lebesgue spaces

have been investigated in various papers, e.g., [4, 6, 9, 18–21, 28] and in the mono-
graph [8,Section 5.8]. One can find different formulations in the literature (not always
equivalent) for corresponding Muckenhoupt classes for variable exponents. We refer
to [4] for a detailed comparison among such classes.

Treating the weight as a measure, in [9] the authors introduced the class Ap(·)
consisting of all weights w such that

‖w1B‖1 ‖w−11B‖ p′(·)
p(·)

≤ c |B|pB

for some constant c > 0 and all balls B in R
n , where pB is the harmonic mean of

p on B, i.e., p−1
B := |B|−1

∫
B p(x)−1dx (in the case p′(·)/p(·) ∈ (0, 1), the quasi-

norm ‖·‖p′(·)/p(·) is defined as in (2.8)). Note that Ap(·) coincides with the classical
Muckenhoupt class Ap when p(x) ≡ p is constant. As observed in [4,p. 364], for
p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞,

w ∈ Ap(·) if and only if ‖w1/p(·)1B‖p(·) ‖w−1/p(·)1B‖p′(·) ≤ c |B| (4.3)

for some c > 0 and all balls B in Rn .
We have

A1 ⊂ Ap− ⊂ Ap(·) ⊂ Ap+

for p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞. Moreover, under the same assumptions
on p, the maximal operator is bounded on L p(·)

w1/p(·) (R
n) if and only ifw ∈ Ap(·). These

properties were proved in [9].
For our purposes, we prefer to treat weights as multipliers and follow the notation

from [4]. Given p ∈ P(Rn), we say that a weight w belongs to the class Ap(·) if

[w]Ap(·) := sup
B

|B|−1 ‖w1B‖p(·) ‖w−11B‖p′(·) < ∞,

where the supremum is taken over all balls B in R
n . Note that w−1 ∈ Ap′(·) if and

only if w ∈ Ap(·) with [w−1]Ap′(·) = [w]Ap(·) , 1 < p− ≤ p+ < ∞.
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In view of (4.3), we have

w ∈ Ap(·) ⇐⇒ w(·)p(·) ∈ Ap(·)

for all exponents p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞.
The following result is taken from [4,Theorem 1.3].

Proposition 4.1 Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞. If w ∈ Ap(·), then there
exists CM > 0 such that

‖(M f ) w‖p(·) ≤ CM ‖ f w‖p(·), (4.4)

for all f ∈ L p(·)
w (Rn).

Remark 4.2 The embedding constant in (4.4) depends on n, p andw. A careful inspec-
tion of the long proof given in [4] allows us to highlight the dependence of CM on the
weight w. In fact, CM may be taken as follows:

CM = c(n, p, s, u, v) × [1]Au(·) × [1]Av(·) × [1]Ap(·) × [
w1/s]s

Asp(·) × [
w−1/s]s

Asp′(·)

with the intermediate constant c(n, p, s, u, v) > 0 depending only on the dimension
n, the exponent p, and the auxiliary parameters s, u and v. Here s is chosen in the
interval (min{1/p−, 1/(p′)−}, 1), thus depending only on p, and u, v ∈ P log(Rn) are
given in terms of p and s:

1

u′(x)
= s − 1

p(x)
and

1

v(x)
= s − 1

p′(x)
, x ∈ R

n .

Therefore, we can rewrite the constant as

CM = c(n, p) × [
w1/s]s

Asp(·) × [
w−1/s]s

Asp′(·)

= c(n, p) × [
w1/s]s

Asp(·) × [
w1/s]s

A(sp′)′(·)

(4.5)

for some c(n, p) > 0 depending on n and p only.

4.2 Quantitative Results andWeight Dependence

In this section, we present some weighted estimates involving special A1 weights. The
dependence of the constants appearing in such estimates on the weight is crucial for
our goals.
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Lemma 4.3 Let p ∈ P(Rn) and w be a weight such that w(·)p(·) ∈ A1. For every ball
B the following inequality holds

‖w−11B‖p′(·) ≤ [w(·)p(·)]A1 |B| max

{
	p(·)(w1B)

− 1
p+

B , 	p(·)(w1B)
− 1

p−
B

}
.

(4.6)

Proof By the A1 condition,

‖w−11B‖p′(·) ≤ [w(·)p(·)]A1 |B| 	p(·)(w1B)−1‖w p(·)−11B‖p′(·). (4.7)

On the other hand, by (2.10), (2.11) and (2.1), we have

‖w p(·)−11B‖p′(·) ≤ max

{
	p(·)(w1B)

1
(p+

B )′ , 	p(·)(w1B)

1
(p−

B )′
}

.

Using this estimate in (4.7), we get (4.6) ��
Lemma 4.4 Let p ∈ P(Rn) and w be a weight such that w(·)p(·) ∈ A1. Then

|E |
|B| ≤ 2 [w(·)p(·)]A1

‖w 1E‖p(·)
min

{
	p(·)(w 1B)1/p+

B , 	p(·)(w 1B)1/p−
B
} (4.8)

for any ball B and any measurable set E ⊂ B.

Proof For a fixed ball B and a measurable set E ⊂ B, Hölder’s inequality yields

|E | =
∫
Rn

w(x)1E (x)w(x)−11B(x)dx ≤ 2 ‖w1E‖p(·)‖w−11B‖p′(·).

Combining this with (4.6) we get (4.8). ��
The following lemma gives a weighted version of Diening’s result (cf. Lemma

2.1) for some special weights. Estimate (4.9) is given in [6,Lemma 3.3] for weights
w ∈ Ap(·). The novelty in our result is the explicit form of the constant given in (4.10),
which will be useful later on. For reader’s convenience, we give details in order to
show how the successive constants depend on the weight w.

Lemma 4.5 Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞ and let w be a weight such
that w(·)p(·) ∈ A1. Then there exists C0 ≥ 1 such that

‖w 1B‖p−
B −p+

B
p(·) ≤ C0, (4.9)

for all balls B. The involved constant has the form

C0 = cn,p [w(·)p(·)]p+−p−
A1

(
1 + 	p(·)(w1B0)

−1)p+−p−
, (4.10)
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with cn,p > 0 depending only on n and p.

Proof For short we use the notation W := w(·)p(·) and B0 = B(0, 1) as before.
Let B = B(x0, r0) be an arbitrary (but fixed) ball. It suffices to consider

‖w 1B‖p(·) ≤ 1 (otherwise the inequality is obvious with C0 = 1). We consider
three different cases. In all of them we use Lemma 4.4 properly.

Case 1: r0 ≤ 1 and |x0| ≤ 2. Since B ⊂ B(0, 3) = 3B0, Lemma 4.4 yields

|B| ≤ 2 |3B0| [W ]A1 ‖w 1B‖p(·)
(
1 + 	p(·)(w 1B0)

−1).
Putting the factors in the right position, raising to the power p+

B − p−
B and using Lemma

2.1, we get

‖w 1B‖p−
B −p+

B
p(·) ≤ |B|p−

B −p+
B

(
2 |3B0| [W ]A1

(
1 + 	p(·)(w 1B0)

−1))p+
B −p−

B

≤ cn,p

(
[W ]A1

(
1 + 	p(·)(w 1B0)

−1))p+−p−
,

since [W ]A1 ≥ 1.
Case 2: r0 ≥ 1 and |x0| ≤ 2r0. In this case we have B, B0 ⊂ B(x0, 1+2r0) =: B ′.

As in the previous case (now with B ′ playing the role of 3B0), and observing that
	p(·)(w 1B0) ≤ 	p(·)(w 1B′), we get

‖w 1B‖−1
p(·) ≤ 2 [W ]A1 |B ′| |B|−1(1 + 	p(·)(w 1B0)

−1). (4.11)

This gives the desired estimate since |B ′| |B|−1 ≤ 3n .
Case 3: |x0| ≥ 2max{1, r0}. Nowwe have B, B0 ⊂ B(0, 2|x0|) =: B ′′. Proceeding

as in Case 2, we obtain an estimate like (4.11) with |B ′′| in place of |B ′|. Hence, it
remains to show that both powers

|B|p−
B −p+

B and |B ′′|p+
B −p−

B

are bounded by a constant independent of r0 and x0. The first follows from Lemma
2.1. The bound for the power involving B ′′ can be obtained directly from the decay
condition (2.3).
Since p is continuous there are y1, y2 ∈ B for which p(y1) = p−

B and p(y2) = p+
B .

On the other hand, |y1|, |y2| ≥ |x0|
2 . Hence, by (2.3) we get

p+
B − p−

B ≤ |p(y2) − p∞| + |p(y1) − p∞| ≤ 2 c∗
log(p)

log(e + |x0|/2) .

Thus

log
(|B ′′|p+

B −p−
B
) ≤ 2 c∗

log(p)

log(e + |x0|/2) log |B ′′| ≤ cn,p,
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with cn,p depending only on n and p. ��

Remark 4.6 The estimate (4.9) corresponds to the result given in [6,Lemma 3.3] for
weights w ∈ Ap(·). Our statement here refines such a result from [6], since now we
make explicit the dependence of the constant on the weight w, under the assumption
w(·)p(·) ∈ A1.

The following result will be useful in the proof of the proposition below. It is taken
from [6,Lemma 3.6], but the formulation in [6] is rough for our purposes. Again,
we need to know how the involved constant depends on the weight and since this
information is not available in [6] we give details for reader’s convenience.

Lemma 4.7 Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞. If w is a weight such that
w(·)p(·) ∈ A1, then there exists C1 ≥ 1 such that for every ball B with ‖w 1B‖p(·) ≥ 1,
the following inequality holds

‖w 1B‖p(·) ≤ C1 	p(·)(w 1B)
1

p∞ . (4.12)

The involved constant has the form

C1 = cn,p [w(·)p(·)]
p+
p∞
A1

(
1 + 	p(·)(w 1B0)

) p+
p∞ . (4.13)

Proof Let us denote W := w(·)p(·). Since ‖w 1B‖p(·) ≥ 1, an application of Lemma
2.2 (complementedwithRemark 2.3)with dμ(y) = W (y)dy, g ≡ ‖w 1B‖−1

p(·), s(y) =
p(y) and r(y) = p∞, yields

1 = 	p(·)
(‖w 1B‖−1

p(·)w 1B
) =

∫
B

‖w 1B‖−p(y)

p(·) W (y)dy

≤ etnc∗
log(p)

∫
B

‖w 1B‖−p∞
p(·) W (y)dy +

∫
B

W (y)

(e + |y|)tnp− dy

for every t ≥ 1. As claimed in the proof of [6,Lemma 3.4], the second integral above
is at most 1/2 if t is taken large enough. This claim gives the desired result since then
we have

‖w 1B‖p∞
p(·) ≤ 2 etnc∗

log(p)
	p(·)(w 1B) (4.14)

(for large t). However, the choice of t depends on the weight w, so we shall provide
some details here in order to see how that dependence works.
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We have

∫
Rn

W (y)

(e + |y|)tnp− dy ≤ e−tnp−
∫

B0

W (y) dy +
∫
Rn\B0

(2
√
e|y|)−tnp− W (y) dy

= e−tnp−	p(·)(w 1B0 ) + (2
√
e)−tnp−

∞∑
k=1

∫
2k−1≤|y|<2k

|y|− tnp−
2 W (y) dy

≤ e−tnp−	p(·)(w 1B0 ) + (2e)−
tnp−
2

∞∑
k=1

2−k tnp−
2 	p(·)(w 1Bk ),

where Bk := B(0, 2k). By Lemma 4.4 and the fact that ‖ · ‖p(·) ≤ 1 + 	p(·)(·), we
have

	p(·)(w 1Bk ) ≤ (
2(k+1)n[W ]A1(1 + 	p(·)(w 1B0)

)p+ =: 2knp+
C ′(n, p, w).

So, the series above can be estimated as

C ′(n, p, w)

∞∑
k=1

2−k(
tnp−
2 −np+) ≤ C ′(n, p, w) × 1

if we choose t > 2p+/p− large enough, say t ≥ t0 for some fixed t0 depending only
on n and p. Therefore, we have

∫
Rn

W (y)

(e + |y|)tnp− dy ≤ e− tnp−
2

(
	p(·)(w 1B0) + C ′(n, p, w)

)

≤ 2 e− tnp−
2 C ′(n, p, w).

The right-hand side in the above estimate is at most 1/2 for t satisfying

e
tnp−
2 ≥ 4C ′(n, p, w).

Finally, choosing such a t (also bigger than t0) we see that (4.14) can be written as

‖w 1B‖p∞
p(·) ≤ cn,p [W ]p+

A1

(
1 + 	p(·)(w 1B0)

)p+
	p(·)(w 1B)

with cn,p depending only on n and p. This gives (4.13). ��

In contrast to Ap(·), theAp(·) classes are notmonotone. Belowwe give amonotonic-
ity type result for A1 weights of the form w(·)p(·). Again, we control the dependence
of the embedding constant with respect to the weight.



Journal of Fourier Analysis and Applications            (2022) 28:50 Page 15 of 24    50 

Proposition 4.8 Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞. If w(·)p(·) ∈ A1, then
w ∈ Ap(·) and

[w]Ap(·) ≤ cn,p(·) [w(·)p(·)]1+2(p+/p−)
A1

[
1 + 	p(·)(w1B0) + 	p(·)(w1B0)

−1]2(p+/p−)
.

(4.15)

Proof It is easy to see that w ∈ Ap(·), since A1 ⊂ Ap(·). For any ball B, using (4.6)
we obtain

|B|−1 ‖w1B‖p(·) ‖w−11B‖p′(·)

≤ [w(·)p(·)]A1 ‖w1B‖p(·) max

{
	p(·)(w1B)

− 1
p+

B , 	p(·)(w1B)
− 1

p−
B

}
.

We consider two separate cases.

The case ‖w1B‖p(·) ≤ 1: By (2.10), (2.11) we have 1 ≥ 	p(·)(w1B) ≥ ‖w1B‖p+
B

p(·).
From (4.6) we derive

|B|−1 ‖w1B‖p(·) ‖w−11B‖p′(·) ≤ [w(·)p(·)]A1 ‖w1B‖p(·) 	p(·)(w1B)
− 1

p−
B

≤ [w(·)p(·)]A1 ‖w1B‖
p−

B −p+
B

p−
B

p(·)

≤ [w(·)p(·)]A1 C

1
p−

B
0

for any ball B with ‖w1B‖p(·) ≤ 1, where C0 ≥ 1 is the constant given in (4.10).
Since C0 ≥ 1, we get the estimate

|B|−1 ‖w1B‖p(·) ‖w−11B‖p′(·) ≤ [w(·)p(·)]A1 C
1

p−
0 . (4.16)

The case ‖w1B‖p(·) ≥ 1: By (4.7), have

|B|−1 ‖w1B‖p(·) ‖w−11B‖p′(·) ≤ [w(·)p(·)]A1 ‖w1B‖p(·) 	p(·)(w 1B)−1 ‖w p(·)−11B‖p′(·).

Noticing that p′ ∈ P log(Rn), (p′)∞ = (p∞)′ and 	p′(·)
(
w p(·)−11B

) = 	p(·)(w 1B) ≥
1 (cf. (2.11)), we apply Lemma 4.7 to both norms on the right-hand side of the estimate
above and get

|B|−1 ‖w1B‖p(·) ‖w−11B‖p′(·) ≤ C2
1 [w(·)p(·)]A1 	p(·)(w 1B)

1
p∞ −1+ 1

(p′)∞

= C2
1 [w(·)p(·)]A1 (4.17)

with C1 ≥ 1 independent of B.
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The inequality (4.15) follows now from (4.16) and (4.17) combinedwith the expres-
sions in (4.10) and (4.13). ��

For our goals, we need to obtain a uniform estimate, in ξ ∈ R
n , for the A1 condition

of the family of weights x → |x |−γ (ξ−x).

Lemma 4.9 Let γ be a function satisfying (2.2), (2.3), and 0 ≤ γ − ≤ γ + < n. For
wγ (x) := |x |−γ (x), we have that wγ ∈ A1 with

[wγ ]A1 ≤ C

n − γ + , (4.18)

where C > 0 only depends on the characteristics of the function γ (i.e.,
clog(γ ), c∗

log(γ ), γ +, and γ −).

Proof Let 0 �= y ∈ R
n and r > 0 be fixed. We split the proof in three cases.

Case 1: r < |y|/2. When z ∈ B(y, r) we have |y|
2 ≤ |z| ≤ 3|y|

2 . Taking Lemma 2.4
into account, since the proof of this Lemma only used (2.2) and (2.3), we obtain

∫
B(y,r)

|z|−γ (z)dz ≤ C |y|−γ (y)

∫
B(y,r)

|y|γ (y)−γ (z)dz ≤ Crn|y|−γ (y),

with C independent of r and y.
Case 2: |y|/2 < r < 2|y|. We decompose the integral

∫
B(y,r)

|z|−γ (z)dz as

∫
B(y,r)

|y|<|z|<3|y|
|z|−γ (z)dz +

∫
B(y,r)

1<|z|<|y|
|z|−γ (z)dz +

∫
B(y,r)

|z|<|y|∧|z|<1
|z|−γ (z)dz =: I1 + I2 + I3.

The estimate for I1 follows the same lines as Case 1.
We now estimate I2. Since |z| < |y|, we have |z||γ (y)−γ (z)| ≤ C by the condition

(2.4). Taking also into consideration that B(y, r) ⊂ B(0, r + |y|) and using polar
coordinates, we obtain

I2 ≤
∫

B(y,r)

1<|z|<|y|
|z|−γ (y)|z||γ (y)−γ (z)|dz

≤ C
∫

B(y,r)

1<|z|<|y|
|z|−γ (y)dz

≤ C
∫

B(0,r+|y|)
|z|−γ (y)dz

≤ C

(n − γ +)
rn|y|−γ (y),

where the constant C does not depend on r and y.
For I3, taking into account that |B(y, r)| ≈ |y|n we have |y|γ −(B(y,r))−γ +(B(y,r)) ≤

C by (2.2). Therefore, using again polar coordinates and studying the cases |y| < 1
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and |y| ≥ 1 separately,

I3 ≤
∫

B(y,r)

|z|≤|y|
|z|−γ +(B(y,r))dz ≤ C

n − γ + rn|y|−γ +(B(y,r)) ≤ C

n − γ + rn|y|−γ (y),

with C independent of r and y.
Case 3: r > 2|y|. Splitting the ball B(y, r), we have

∫
B(y,r)

|z|−γ (z)dz ≤
∫

B(y,2|y|)
|z|−γ (z)dz +

∫
B(y,r)\B(y,2|y|)

|z|−γ (z)dz

=: J1 + J2.

The integral J1 is analogous to the Case 2, but now studying the cases r < 1 and
r ≥ 1 separately. To estimate J2, note that, for 2|y| < |z − y| < r , we have |z| ≥ |y|.
Defining � := B(y, r) \ B(y, 2|y|), we have

J2 ≤
∫

�|y|≥1
|z|−γ (z)dz +

∫
�|z|≤1

|z|−γ (z)dz +
∫

�|y|≤1∧|z|≥1
|z|−γ (z)dz

=: A1 + A2 + A3.

Using the decay condition (2.4) and the inequality |y| ≤ |z|, we estimate A1 by

A1 ≤ |y|−γ (y)

∫
B(y,r)

|y||γ (y)−γ (z)|dz ≤ Crn|y|−γ (y),

with C not depending on γ , r , or y.
For A2, we have that |z − y| < 2, then

A2 ≤
∫

B(y,r)

|y|−γ +(B(y,2))dz ≤ C |y|−γ (y)rn,

where we use the fact that |y|γ (y)−γ +(B(y,2)) ≤ C , which follows from (2.4).
The case of A3 is estimated, taking into account that |z| ≥ 1 and |y| < 1, as

A3 ≤
∫

B(y,r)

dz ≤ Crn|y|−γ (y),

where C does not depend on γ , r , or y. The lemma now follows. ��
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5 Boundedness of theMaximal Operator

We introduce yet another Stummel type space. BySp(·),φ(·,·,·)(Rn) we denote the set
of measurable functions for which

‖ f ‖Sp(·),φ(·,·,·) := sup
x∈Rn

∥∥∥∥ f

φ(x, ·, |x − ·|)
∥∥∥∥

p(·)
< ∞, (5.1)

where φ is an appropriate function. We are interested in just the following cases:

Sp(·),λ(·)(Rn) := Sp(·),φ(·,·,·)(Rn)

∣∣∣
φ(x,y,t):=tλ(y)

. (5.2)

5.1 Stummel Spaces

Our main result in this subsection is Theorem 5.2, which deals with the boundedness
of the maximal operator in variable exponent Stummel spaces. Since the proof of this
result in non-variable Stummel spaces can be simplified, we provide a streamlined
version of it in Theorem 5.1.

Theorem 5.1 Let 1 < p < ∞ and 0 ≤ λ < n. Then

M : Sp,λ(Rn) ↪→ Sp,λ(Rn).

Proof Under the condition 0 ≤ λ < n, we have | · |−λ ∈ A1. Observing that

1

rn

∫
B(y,r)

(τh f )(ξ)dξ = 1

rn

∫
B(h−y,r)

f (z)dz

it follows that

M(τh f ) = τh(M f ). (5.3)

By (5.3) and the Fefferman-Stein inequality (see [12]), we have

∫
Rn

M f (y)p|x − y|−λdy ≤ C
∫
Rn

| f (y)|p M
(|x − ·|−λ

)
(y)dy

= C
∫
Rn

| f (y)|p M
(| · |−λ

)
(x − y)dy

≤ C
∫
Rn

| f (y)|p|x − y|−λdy,

where the constants C > 0, in the previous chain of inequalities, do not depend on x .
The result now follows. ��
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Theorem 5.2 Let p ∈ P log(Rn) with 1 < p− ≤ p+ < ∞, λ satisfies (2.2), (2.3) with
λ− ≥ 0, and (λp)+ < n. Then

M : Sp(·),λ(·)(Rn) ↪→ Sp(·),λ(·)(Rn).

Proof By (2.9), (5.3), and Proposition 4.1, we have

∥∥∥∥ M f

|x − ·|λ(·)

∥∥∥∥
p(·)

=
∥∥∥∥ τx (M f )

| · |λ(x−·)

∥∥∥∥
(τx p)(·)

=
∥∥∥∥ M(τx f )

| · |λ(x−·)

∥∥∥∥
(τx p)(·)

≤ CM

∥∥∥∥ τx f

| · |λ(x−·)

∥∥∥∥
(τx p)(·)

= CM

∥∥∥∥ f

|x − ·|λ(·)

∥∥∥∥
p(·)

,

the applicability of Proposition 4.1 being justified by the fact that | · |−τx λ(·) ∈ A(τx p)(·)
since | · |−τx λ(·)τx p(·) ∈ A1, where the membership into the A1 class follows from
Lemma 4.9 and the hypotheses on the function λ.

The proof is completed by showing that CM is uniformly bounded for x ∈ R
n .

Taking w(y) = |y|−τx λ(y), from (4.4) and (4.5), we have

CM ≤ c(n, p) × [
w1/s]s

As(τx p)(·) × [
w1/s]s

A(s(τx p)′)′(·)
,

with s independent of x , since (τx p)+ = p+ and (τx p)− = p−.
Using (4.15) it follows that

[
w1/s]

As(τx p)(·)

≤ cn,p(·) [| · |−τx λ(·)τx p(·)]1+2(p+/p−)
A1

(
1 + 	s(τx p)(·)(w1B0 ) + 	s(τx p)(·)(w1B0 )

−1
)2(p+/p−)

.

(5.4)

The A1 condition in (5.4) is bounded, using Lemma 4.9, by C/(n − (λp)+) with the
constant C not depending on x . From the estimates

	s(τx p)(·)(w1B0) ≤
∫

|y|<1
|y|−(λp)+dy

and

	s(τx p)(·)(w1B0) ≥
∫

|y|<1
dy,

we obtain that
[
w1/s

]s
As(τx p)(·) is uniformly bounded in x .
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To estimate the constant
[
w1/s

]
A(s(τx p)′)′(·)

as in (5.4), note that

(s(τx p)′)′(y) = s(τx p)(y)

s(τx p)(y) − (τx p)(y) + 1
.

Since we can choose s as close to 1, from the left, as needed, then we can find s such
that

	 s(τx p)(·)
s(τx p)(·) − τx p(·) + 1

(w1B0) ≤
∫

|y|<1
|y|− n+(λp)+

2 dy,

	 s(τx p)(·)
s(τx p)(·) − τx p(·) + 1

(w1B0) ≥
∫

|y|<1
dy,

and
⎡
⎢⎣| · |

− τxλ(·)τx p(·)
s(τx p)(·) − (τx p)(·) + 1

⎤
⎥⎦

A1

≤ C

n − n+(λp)+
2

= C

n − (λp)+
,

where C does not depend on x , using Lemma 4.9. Indeed, due to the assumptions on

λ and p, the choice 1 > s >
2(λp)+

p+(n+(λp)+)
+ 1 − 1

p+ is enough. This completes the
proof. ��

5.2 Vanishing Stummel Spaces

We introduce the variable exponent generalized vanishing Stummel space, denoted by
V0S

p(·),λ(·)(Rn), as the collection of all f ∈ Sp(·),λ(·)(Rn) such that

lim
r→0

sup
x∈Rn

∥∥∥∥ f

|x − ·|λ(·) 1B(x,r)

∥∥∥∥
p(·)

= 0. (5.5)

Theorem 5.3 Under the condition of Theorem 5.2, we have

M : V0S
p(·),λ(·)(Rn) ↪→ V0S

p(·),λ(·)(Rn).

Proof The boundedness of M acting from V0S
p(·),λ(·)(Rn) intoSp(·),λ(·)(Rn) follows

fromTheorem 5.2. It remains to show that M preserves the vanishing property defining
(5.5).

For fixed x and r , we take f1(y) := f (y)1B(x,2r)(y) and f2 := f (y) − f1(y).
Thus,

M f (y) ≤ M f1(y) + M f2(y).
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Estimation for M f1. Using the boundedness of M in the weighted Lebesgue space
and the fact that t → ‖ f ‖L p(·)(B(x,t)) is non-decreasing, we have for fixed α > 0

∥∥∥∥ M f1
|x − ·|λ(·)

∥∥∥∥
p(·)

≤ C

∥∥∥∥ f

|x − ·|λ(·) 1B(x,2r)

∥∥∥∥
p(·)

≤ Crα

∫ ∞

r
t−α−1

∥∥∥∥ f

|x − ·|λ(·) 1B(x,t)

∥∥∥∥
p(·)

dt

≤ C
∫ ∞

1
t−α−1

∥∥∥∥ f

|x − ·|λ(·) 1B(x,r t)

∥∥∥∥
p(·)

dt,

thus

sup
x∈Rn

∥∥∥∥ M f1
|x − ·|λ(·)

∥∥∥∥
p(·)

≤ C
∫ ∞

1
t−α−1 sup

x∈Rn

∥∥∥∥ f

|x − ·|λ(·) 1B(x,r t)

∥∥∥∥
p(·)

dt . (5.6)

Estimation for M f2. For z ∈ B(x, r), we have

M f2(z) ≤ C
∫
Rn\B(x,2r)

| f (y)|
|y − z|n dy ≤ C

∫
Rn\B(x,r)

| f (y)|
|x − y|n dy. (5.7)

From (5.7), we have for fixed β > 0

∥∥∥∥ M f2
|x − ·|λ(·) 1B(x,r)

∥∥∥∥
p(·)

≤ C

∥∥∥∥ 1B(x,r)

|x − ·|λ(·)

∥∥∥∥
p(·)

∫
Rn\B(x,r)

| f (y)|
|x − y|n dy

≤ Cr
n

p(x)
−λ(x)

∫
Rn\B(x,r)

| f (y)|
|x − y|n dy

≤ Cr
n

p(x)
−λ(x)

∫
Rn\B(x,r)

| f (y)|
|x − y|n−β

dy
∫ ∞

|x−y|
ds

sβ+1

≤ Cr
n

p(x)
−λ(x)

∫ ∞

r

ds

sβ+1

∫
r≤|x−y|<s

| f (y)|
|x − y|n−β

dy

≤ Cr
n

p(x)
−λ(x)

∫ ∞

r

1

sβ+1

∥∥∥∥ f

|x − ·|λ(·) 1B(x,s)

∥∥∥∥
p(·)

∥∥∥∥ 1B(x,s)

|x − ·|n−β−λ(·)

∥∥∥∥
p′(·)

ds

≤ Cr
n

p(x)
−λ(x)

∫ ∞

r
sλ(x)− n

p(x)

∥∥∥∥ f

|x − ·|λ(·) 1B(x,s)

∥∥∥∥
p(·)

ds

s

≤ C
∫ ∞

1
sλ(x)− n

p(x)

∥∥∥∥ f

|x − ·|λ(·) 1B(x,rs)

∥∥∥∥
p(·)

ds

s
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from which it follows

sup
x∈Rn

‖ M f2
|x − ·|λ(·) 1B(x,r)‖p(·) ≤ C

∫ ∞

1
s

(λp)+−n
p− sup

x∈Rn

∥∥∥∥ f

|x − ·|λ(·) 1B(x,rs)

∥∥∥∥
p(·)

ds

s
.

(5.8)

By the Lebesgue dominated convergence theorem, estimates (5.6) and (5.8), and the
fact that f ∈ V0S

p(·),λ(·)(Rn), we have

lim
r→0

sup
x∈Rn

∥∥∥∥ M f

|x − ·|λ(·) 1B(x,r)

∥∥∥∥
p(·)

= 0,

which proves the theorem. ��

The boundedness of the maximal operator on vanishing Stummel spaces, given in
Theorem 5.2, seems to be new even in the constant exponent case.

Corollary 5.4 Let 1 < p < ∞ and 0 ≤ λ < n. Then

M : V0S
p,λ(Rn) ↪→ V0S

p,λ(Rn).

Appendix

Variants of the sum-to-integral lemma are known and scattered in the literature, see
e.g. [2, 29]. For a proof of Lemma 5.5 see [26,Lemma 3.1].

Lemma 5.5 (sum-to-integral) Let α, β : R+ → R+ be functions such that α is almost
decreasing and β is almost increasing. Then

∞∑
k=0

α(2k+1r)β(2kr) ≤ C
∫ ∞

r
α(t)β(t)

dt

t
, 0 < r < ∞, (5.9)

and

0∑
k=−∞

α(2k+1r)β(2kr) ≤ C
∫ 2r

0
α(t)β(t)

dt

t
, 0 < r < ∞. (5.10)
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