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Abstract

In this work, we solve the ψ-Hilfer fractional relaxation-oscillation equation with a force term, where the

time-fractional derivatives are in the ψ-Hilfer sense. The solution of the equation is presented in terms of

bivariate Mittag-Leffler functions. An asymptotic analysis of the solution of the associated homogeneous

equation is performed.
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1 Introduction

The relaxation and oscillation processes are of great relevance in physics. From a mathematical point of view,

they are modelled by linear differential equations of first and second orders in time. In [2] the fractional relaxation

and oscillation equations with Caputo derivatives were studied separately. The simultaneous consideration

of time-fractional derivatives or first and second orders leads to the so-called fractional relaxation-oscillation

phenomena, that we study in this paper.

2 Preliminaries

In this section, we recall some basic definitions about ψ-Hilfer fractional derivatives, special functions, and the

ψ-Laplace transform, that are necessary for this work.

Definition 2.1 (cf. [4, Def. 4]) Let (a, b) be a finite or infinite interval on the real line R and α > 0. Also let

ψ be a monotone increasing and positive function on (a, b), having a continuous derivative ψ′ in (a, b). The left

Riemann-Liouville fractional integral of a function f with respect to another function ψ on [a, b] is given by(
Iα,ψa+ f

)
(t) =

1

Γ (α)

∫ t

a

ψ′ (w) (ψ (t)− ψ (w))
α−1

f (w) dw, t > a. (1)
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Next, we give the definition of the so-called ψ-Hilfer fractional derivative of a function f with respect to another

function.

Definition 2.2 (cf. [4, Def. 7]) Let α > 0 and m = [α] + 1, where [α] denotes the integer part of α. Let

also I = [a, b] be a finite or infinite interval on the real line and f, ψ ∈ Cm [a, b] two functions such that ψ is

a positive monotone increasing function and ψ′ (t) ̸= 0, for all t ∈ I. The left ψ-Hilfer fractional derivative
HDα,µ;ψ

a+ of order α and type µ ∈ [0, 1] is defined by(
HDα,µ;ψ

a+ f
)
(t) = I

µ(m−α),ψ
a+

(
1

ψ′ (t)

d

dt

)m
I
(1−µ)(m−α),ψ
a+ f (t) . (2)

We observe that when µ = 0 we recover the left Riemann-Liouville fractional derivative of a function with

respect to ψ (see [4, Def. 5]) and when µ = 1 we obtain the left Caputo fractional derivative of a function with

respect to ψ (see [4, Def. 6]). In Section 5 of [4] is presented a list of several fractional integrals and fractional

derivatives that can be obtained from (1) and (2), respectively, for different choices of µ and ψ. The solution

of the ψ-fractional relaxation-oscillation equation is presented in terms of the bivariate Mittag-Leffler function

which has the following double series representation:

E(a1,a2),b (z1, z2) =

+∞∑
l1=0

+∞∑
l2=0

(l1 + l2)!

l1! l2!

zl11 zl22
Γ (b+ a1l1 + a2l2)

. (3)

When z1 = −c1ta1 , z2 = −c2ta2 , with a1, a2, c1, c2, b, t > 0, we have the following asymptotic expansions near

the origin and at the infinity:

E(a1,a2),b (−c1 t
a1 ,−c2 ta2) ∼

1

Γ (b)
− c1 t

a1

Γ (b+ a1)
− c2 t

a2

Γ (b+ a2)
, t→ 0+, (4)

E(a1,a2),b (−c1 t
a1 ,−c2 ta2) ∼

t−a1

c1 Γ (b− a1)
, b ̸= a1, t→ +∞. (5)

The ψ-Laplace transform of a real valued function f (t) with respect to ψ is defined by (see [3, Def. 13])

Lψ {f (t)} (s) = f̃ψ (s) =

∫ +∞

0

e−sψ(t) ψ′ (t) f (t) dt, Re (s) ∈ C,

where ψ is a non negative monotone increasing function in R+
0 and such that ψ (0) = 0. The ψ-Laplace transform

may be written as the following composition operator involving the classical Laplace transform: Lψ = L◦Qψ−1

where
(
Qψ−1f

)
(t) = f

(
ψ−1 (t)

)
(cf. [3, Thm. 4]). As a consequence of the previous relation, if f is a function

whose classical Laplace transform is f̃ , the ψ-Laplace transform of f (ψ (t)) is also f̃ (s) (see [3, Cor. 2]), that

is,

L{f (t)} (s) = f̃ (s) ⇒ Lψ {f (ψ (t))} (s) = f̃ (s) .

We observe that the definition of the ψ-Laplace can be adapted fon any interval [a,+∞[⊆ R+
0 with ψ satisfying

ψ (a) = 0. This is important in our work in order to the ψ-Hilfer derivative encompasses the largest number of

fractional derivatives. When the ψ-Laplace transform is applied to the ψ-Hilfer derivative we obtain (see [3, Thm.

6])

Lψ
{
HDα,µ;ψ

a+ f (t)
}
(s) = sα f̃ψ (s)−

m−1∑
j=0

sm−µ(m−α)−1−j
(
I
(1−µ)(m−α)−j;ψ
t,a+ f

) (
a+

)
, (6)

where m = [α] + 1 and the initial-value terms
(
I
(1−µ)(m−α)−j,ψ
a+ f

)
(a+) are evaluated in the limit t→ a+. The

ψ-Laplace convolution operator of two functions is defined by (see [3, Def. 15])

(f ∗ψ g) (t) =

∫ t

0

f
(
ψ−1 (ψ (t)− ψ (w))

)
ψ′ (w) g (w) dw, t ∈ R+, (7)

and the correspondent Convolution Theorem is (see [3, Thm. 8])

Lψ {(f ∗ψ g) (t)} (s) = Lψ {f} (s) Lψ {g} (s) . (8)
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Moreover, from relation (17.6) in [1] we have that

Lψ

{
ψ (t)

α−γ
+∞∑
p=0

(
−aψ (t)

α−β
)p
Ep+1
α,α+(α+β)p−γ+1 (−b ψ (t)

α
)

}
(s) =

sγ−1

sα + asβ + b
, (9)

where Re (α) ,Re (β) ,Re (γ) ∈ R+,
∣∣∣ asβ

sα+β

∣∣∣< 1, and provided that the series in (9) is convergent.

3 ψ-Hilfer fractional relaxation-oscillation equation

In this section, we solve the ψ-Hilfer fractional forced damped oscillator modelled by the following fractional

differential equation

c2
HDα2,µ2;ψ

a+ u (t) + c1
HDα1,µ1;ψ

a+ u (t) + d2 u (t) = q (t) , (10)

and subject to the following initial conditions(
I
(1−µ1)(1−α1);ψ
t,a+ u

) (
a+

)
= κ1,

(
I
(1−µ2)(2−α2);ψ
t,a+ u

) (
a+

)
= κ2,

d

dt

[(
I
(1−µ2)(2−α2);ψ
t,a+ u

)] (
a+

)
= κ3, (11)

which are evaluated in the limit t → a+. Moreover, c2, c1, d, κ1, κ2, κ3 ∈ R, c2 ̸= 0, t ∈ I, with I = [a, b] being

a finite or infinite interval on R+, the partial time-fractional derivatives of orders α1 ∈ ]0, 1] and α2 ∈]1, 2], and
types µ1, µ2 ∈ [0, 1], respectively, are the ψ-Hilfer derivatives given by (2), q belongs to L1 (I) (when q (t) = 0

the solution of equation (10) corresponds to an unforced damped oscillator). We look for solutions u of our

problem in the space C2 (a, b).

When ψ (t) = t, with t ∈ R+, µ1 = µ2 = 1, and c2 = 0 or c1 = 0 in equation (10), we obtain, respectively, the

time-fractional relaxation/oscillation equations with Caputo fractional derivatives. These two equations were

studied separately in [2]. Moreover, equation (10) is a particular case of the time-fractional telegraph equation

with ψ-Hilfer derivatives studied in [5].
Now, we solve our relaxation-oscillation problem. Applying the ψ-Laplace transform to (10) and taking into

account (11), we get(
c2 s

α2 + c1 s
α1 + d2

)
ũψ (s)− c1 κ1 s

−µ1(1−α1) − c2 κ2 s
1−µ2(2−α2) − c2 κ3 s

−µ2(2−α2) = q̃ψ (s) . (12)

Solving the above equation in order to ũψ, we obtain:

ũψ (s) =
c1 κ1

c2
s−µ1(1−α1) + κ2 s

1−µ2(2−α2) + κ3 s
−µ2(2−α2)

sα2 + c1
c2

sα1 + d2

c2

+
1

c2
q̃ψ (s)

1

sα2 + c1
c2

sα1 + d2

c2

. (13)

Inverting the ψ-Laplace transform and taking into account (9), we have

u (t) =
c1 κ1
c2

ψ (t)
α2−1+µ1(1−α1)

+∞∑
p=0

(
−c1
c2
ψ (t)

α2−α1

)p
Ep+1
α2,α2+(α2−α1)p+µ1(1−α1)

(
−d

2

c2
ψ (t)

α2

)

+ κ2 ψ (t)
α2−2+µ2(2−α2)

+∞∑
p=0

(
−c1
c2
ψ (t)

α2−α1

)p
Ep+1
α2,α2+(α2−α1)p−1+µ2(2−α2)

(
−d

2

c2
ψ (t)

α2

)

+ κ3 ψ (t)
α2−1+µ2(2−α2)

+∞∑
p=0

(
−c1
c2
ψ (t)

α2−α1

)p
Ep+1
α2,α2+(α2−α1)p+µ2(2−α2)

(
−d

2

c2
ψ (t)

α2

)

+
1

c2
q (ψ (t)) ∗ψ

+∞∑
p=0

(
−c1
c2
ψ (t)

α2−α1

)p
ψ (t)

α2−1
Ep+1
α2,α2+(α2−α1)p

(
−d

2

c2
ψ (t)

α2

)
, (14)

where the ψ-convolution is given by (7). From the definition of the bivariate Mittag-Leffler function (see (3))
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we can rewrite (14) as

u (t) =
c1 κ1
c2

ψ (t)
α2−1+µ1(1−α1)E(α2,α2−α1),α2+µ1(1−α1)

(
−d

2

c2
ψ (t)

α2 ,−c1
c2
ψ (t)

α2−α1

)

+ κ2 ψ (t)
α2−2+µ2(2−α2)E(α2,α2−α1),α2−1+µ2(2−α2)

(
−d

2

c2
ψ (t)

α2 ,−c1
c2
ψ (t)

α2−α1

)

+ κ3 ψ (t)
α2−1+µ2(2−α2)E(α2,α2−α1),α2+µ2(2−α2)

(
−d

2

c2
ψ (t)

α2 ,−c1
c2
ψ (t)

α2−α1

)

+
1

c2
q (ψ (t)) ∗ψ

[
ψ (t)

α2−1
E(α2,α2−α1),α2

(
−d

2

c2
ψ (t)

α2 ,−c1
c2
ψ (t)

α2−α1

)]
. (15)

Therefore, the solution involves series of three-parameter Mittag-Leffler functions of one variable or just bivariate

Mittag-Leffler functions.

For the unforced case, the solution can be written as uh (t) = u1 (t) + u2 (t) + u3 (t) , where u1, u2, u3
corresponds to the first three terms in (15). These constitute a set of fundamental solutions of the homogeneous

equation. Let us study the behaviour of uh when t → a+ and t → +∞. From (4) we have the following

asymptotic behaviour near the starting point t = a

uh (t) ∼
κ2

Γ (α2 + µ2 (2− α2)− 1)
ψ (t)

α2+µ2(2−α2)−2
, t→ a+.

Moreover, from (5) we have the following asymptotic behaviour for large values of t

uh (t) ∼
κ1

Γ (α1 + µ1 (1− α1))
ψ (t)

µ1(1−α1)−1
, t→ +∞,

whenever µ2 (2− α2)− µ1 (1− α1) < 0, for µ1, µ2 ∈ [0, 1], α1 ∈]0, 1], and α2 ∈]1, 2].

4 Conclusions

In this work, we solved the ψ-Hilfer fractional relaxation-oscillation equation and we showed that the solution can

be expressed in terms of bivariate Mittag-Leffler functions. We studied the asymptotic behaviour of the solution

of the associated homogeneous equation. This is important to understand and classify the relaxation-oscillation

phenomena. Our results generalise those presented in Section 3 of [2].
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