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Abstract

In this work, we solve the 1-Hilfer fractional relaxation-oscillation equation with a force term, where the
time-fractional derivatives are in the i-Hilfer sense. The solution of the equation is presented in terms of
bivariate Mittag-Leffler functions. An asymptotic analysis of the solution of the associated homogeneous
equation is performed.
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1 Introduction

The relaxation and oscillation processes are of great relevance in physics. From a mathematical point of view,
they are modelled by linear differential equations of first and second orders in time. In [2] the fractional relaxation
and oscillation equations with Caputo derivatives were studied separately. The simultaneous consideration
of time-fractional derivatives or first and second orders leads to the so-called fractional relaxation-oscillation
phenomena, that we study in this paper.

2 Preliminaries

In this section, we recall some basic definitions about -Hilfer fractional derivatives, special functions, and the
i-Laplace transform, that are necessary for this work.

Definition 2.1 (cf. (4, Def. 4]) Let (a,b) be a finite or infinite interval on the real line R and o > 0. Also let
¥ be a monotone increasing and positive function on (a,b), having a continuous derivative 1" in (a,b). The left

Riemann-Liowville fractional integral of a function f with respect to another function 1 on [a,b] is given by
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Next, we give the definition of the so-called 1-Hilfer fractional derivative of a function f with respect to another
function.

Definition 2.2 (c¢f. [4, Def. 7]) Let o > 0 and m = [a] + 1, where [a] denotes the integer part of . Let
also I = [a,b] be a finite or infinite interval on the real line and f,¢ € C™ [a,b] two functions such that ¥ is
a positive monotone increasing function and ' (t) # 0, for all t € I. The left 1-Hilfer fractional derivative

HDZ‘f;w of order o and type p € [0,1] is defined by

(mses) ) =1 (S ) 1), @)

We observe that when p = 0 we recover the left Riemann-Liouville fractional derivative of a function with

respect to ¢ (see [4, Def. 5]) and when u = 1 we obtain the left Caputo fractional derivative of a function with
respect to 1 (see [4, Def. 6]). In Section 5 of |4] is presented a list of several fractional integrals and fractional
derivatives that can be obtained from and , respectively, for different choices of p and . The solution
of the y-fractional relaxation-oscillation equation is presented in terms of the bivariate Mittag-Leffler function
which has the following double series representation:
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When z1 = —c1t%, 29 = —cot®?, with aq,as,c¢1,c2,b,t > 0, we have the following asymptotic expansions near
the origin and at the infinity:
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The v-Laplace transform of a real valued function f (¢) with respect to ¢ is defined by (see |3, Def. 13])

- +00
%U@H$=M@=A ¢S ¥ O g (1) £ (1) dt, Re(s) € C,

where 1 is a non negative monotone increasing function in Ry and such that ¢ (0) = 0. The 9-Laplace transform
may be written as the following composition operator involving the classical Laplace transform: Ly = L0 Q-1
where (Qw—lf) t)=f (ﬁfl (t)) (cf. [3, Thm. 4]). As a consequence of the previous relation, if f is a function
whose classical Laplace transform is f, the 1-Laplace transform of f (¢ (t)) is also f (s) (see [3, Cor. 2]), that

LU =F6) = Lo{f@E)}6E)=1(s).

We observe that the definition of the 1-Laplace can be adapted fon any interval [a, +oo[C Ry with ¢ satisfying
¥ (a) = 0. This is important in our work in order to the i-Hilfer derivative encompasses the largest number of
fractional derivatives. When the 1-Laplace transform is applied to the 1-Hilfer derivative we obtain (see |3, Thm.

6])

m—1
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where m = [a] + 1 and the initial-value terms (Iﬁ:“ J(m—e) =i f) (a™) are evaluated in the limit ¢ — a™. The

1-Laplace convolution operator of two functions is defined by (see 3| Def. 15])

(f *y 9) (1) :/0 F @) =¥ W) ¢ (w) g(w) dw, teRT, (7)
and the correspondent Convolution Theorem is (see [3, Thm. 8])

Ly {(f*p 9) ()} (8) = Ly {f}(s) Ly {g} (s)- (8)



Moreover, from relation (17.6) in [1] we have that
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where Re (o) ,Re (8),Re (y) € RT,

‘ < 1, and provided that the series in @[) is convergent.

3 y-Hilfer fractional relaxation-oscillation equation

In this section, we solve the y-Hilfer fractional forced damped oscillator modelled by the following fractional
differential equation

e2"De2 " u (1) + e "D P (8) + P u () = q (1) (10)

and subject to the following initial conditions
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which are evaluated in the limit ¢ — a*. Moreover, ca,c1,d, k1, k2,53 € R, ¢ # 0, t € I, with I = [a,b] being
a finite or infinite interval on R, the partial time-fractional derivatives of orders a; €10, 1] and s €]1,2], and
types pi, pe € [0,1], respectively, are the -Hilfer derivatives given by , q belongs to Li (I) (when ¢ (t) =0
the solution of equation corresponds to an unforced damped oscillator). We look for solutions u of our
problem in the space C? (a,b).

When ¢ (t) = t, witht € R*, 1 = p = 1, and ¢3 = 0 or ¢; = 0 in equation , we obtain, respectively, the
time-fractional relaxation/oscillation equations with Caputo fractional derivatives. These two equations were
studied separately in [2]. Moreover, equation is a particular case of the time-fractional telegraph equation

with ¢-Hilfer derivatives studied in [5].
Now, we solve our relaxation-oscillation problem. Applying the y-Laplace transform to and taking into
account (11)), we get

(CQ 542 ¢y 81 + d2) ﬂ¢ (S) —c1 K1 sH1(l—a1) Cc2 K2 gl=H2(2—02) _ Cc2 K3 s—H2(2-a2) L7w (s). (12)
Solving the above equation in order to ., we obtain:
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Inverting the i-Laplace transform and taking into account @, we have
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where the t-convolution is given by (7). From the definition of the bivariate Mittag-Leffler function (see (3)))



we can rewrite (14]) as

u(t) =
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Therefore, the solution involves series of three-parameter Mittag-Leffler functions of one variable or just bivariate
Mittag-Leffler functions.

For the unforced case, the solution can be written as wup, (t) = wuy (t) + ua (t) + us (t), where uy, us, us
corresponds to the first three terms in . These constitute a set of fundamental solutions of the homogeneous
equation. Let us study the behaviour of u; when t — a* and t — +oo. From we have the following
asymptotic behaviour near the starting point t = a

k2 aztpz(2—az)—2 +
uh(t)NF(a2+p2(27a2)71)w(t> , t—a’.

Moreover, from we have the following asymptotic behaviour for large values of ¢

Up, (t) ~

K1
['(on + pa (1= a1))
whenever ps (2 — ag) — p1 (1 — aq) <0, for pg, uo € [0,1], aq €]0,1], and a5 €]1,2].

]

4 Conclusions

In this work, we solved the i-Hilfer fractional relaxation-oscillation equation and we showed that the solution can
be expressed in terms of bivariate Mittag-Leffler functions. We studied the asymptotic behaviour of the solution
of the associated homogeneous equation. This is important to understand and classify the relaxation-oscillation
phenomena. Our results generalise those presented in Section 3 of [2].
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