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ABSTRACT 

This thesis presents the development of rectifying circuits suitable for Radio 

Frequency (RF) energy harvesting application with dual-band capabilities. The main 

contribution of this thesis is the development of compact dual-band two-stage rectifier 

with high efficiency. Firstly, a voltage doubler rectifying circuit is designed to get a 

compact size. A source-pull simulation of matching circuit is used to find the optimal 

load impedance and enhance the conversion efficiency over the frequency range. The 

accuracy of the design has been justified by the simulation and measurement results. 

Secondly, a dual-band impedance matching network based on transmission line is 

developed. A short stub and general impedance transformer are designed to match 

different complex impedance at the two operating frequencies. Measurement results 

have fully demonstrated. Thirdly, a new rectifier circuit is proposed. It employs a 

dual-band multi resonant matching network and a high efficiency modified 

quadruplor rectifier for harvesting the ambient RF power at both 2.45 GHz Global 

System for Mobile Communications (GSM) and 5.8 GHz Wireless Local Area 

Network (WLAN). An attempt was made for matching network with a series of 

combination of a capacitor and inductor with a parallel LC tank. For rectifier circuit 

part, low power harvested from the RF is boosted up using two-stage of voltage 

multiplier and the input capacitor is rearranged to be in parallel connection to get 

smaller size and uniform pressure on diode. The prototypes are developed, and 

simulation results are obtained.  The proposed rectifier is proven to exhibit greatly 

higher output voltage and efficiency compared to the conventional circuit. The 

rectifier is designed on the FR-4 board. Its capability of working within two 

frequency bands at 2.45 GHz and 5.8 GHz is verified by measurement. The proposed 

rectifier has met the requirement of high conversion efficiency (79.1% and 78.4% at 

the respective 2.45 GHz and 5.8 GHz), and able to boost up to the maximum voltage 

level of 14V at 20 dBm input power. Hence, the aims of this research have been 

achieved and are practically suitable for the use in wireless sensor networks and low 

power devices. 
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ABSTRAK 

 

Tesis ini membentangkan reka bentuk litar penerus yang sesuai untuk aplikasi 

pengutipan tenaga Radio Frekuensi (RF) dengan keupayaan dwi-jalur. Sumbangan 

utama tesis ini adalah pembangunan penerus dwi-jalur dua-peringkat yang bersaiz 

kompak serta kecekapan yang tinggi. Pertama, litar penerus voltan berganda direka 

untuk mendapatkan saiz yang kompak. Satu simulasi litar source-pull digunakan 

untuk mencari galangan beban yang optimum dan meningkatkan kecekapan 

penukaran di keseluruhan julat frekuensi. Ketepatan model telah disahkan oleh 

persetujuan yang baik antara keputusan simulasi dan pengukuran. Kedua, rangkaian 

padanan galangan dwi-jalur berdasarkan talian penghantaran telah dibangunkan. 

Puntung pemintas dan pengubah galangan yang umum telah direka untuk dipadankan 

dengan galangan kompleks yang berbeza pada dua frekuensi operasi. Hasil 

pengukuran telah didemonstrasikan sepenuhnya. Ketiga, litar penerus baru telah 

diusulkan. Ia menggunakan rangkaian padanan berganda pada dwi-jalur dan penerus 

berkecekapan tinggi yang diubah suai untuk mengutip kuasa ambien RF di kedua-

dua sistem global untuk Komunikasi Frekuensi Mudah Alih (GSM) 2.45 GHz dan 

Rangkaian Kawasan Setempat Wayarles (WLAN) 5.8 GHz. Percubaan telah dibuat 

dengan kombinasi siri kapasitor dan induktor dengan tangki LC yang sejajar. Untuk 

bahagian litar penerus, kuasa rendah yang dituai dari RF didorong dengan 

menggunakan dua-peringkat pengganda voltan dan input kapasitor telah disusun 

semula secara selari bagi mendapatkan saiz yang lebih kecil dan tekanan yang 

seragam pada diod. Prototaip dibangunkan dan hasil simulasi diperolehi. Penerus 

yang diusulkan telah terbukti mempunyai output voltan dan kecekapan yang lebih 

tinggi berbanding dengan penerus tradisional. Penerus tersebut telah direka pada FR-

4. Keupayaannya bekerja dalam dua jalur frekuensi pada 2.45 dan 5.8 GHz disahkan 

oleh keputusan pengukuran. Penerus yang diusulkan telah memenuhi keperluan 

kecekapan penukaran yang tinggi (79.1% dan 78.4% pada masing-masing 2.45 GHz 

dan 5.8 GHz), dan mampu meningkatkan tahap voltan maksimum hingga 14V pada 

daya input 20 dBm. Oleh itu, matlamat penyelidikan ini telah dicapai dan secara 

praktikal sesuai untuk penggunaan dalam rangkaian sensor wayarles dan peranti 

berkuasa rendah. 
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INTRODUCTION 

 Research Background 

In recent few years, a lot of researches and efforts on energy harvesting have 

been conducted in order to find safer and greener energy resources. Many such 

sources of ambient energy are available for use by the mentioned consumer devices: 

solar energy, wind energy, kinetic energy conversion and recycled ambient 

electromagnetic (EM) or Radio Frequency (RF) energy, to name a few. Besides 

energy in earth, energy from space also can be harvested and transmitted through 

laser or microwave beams. The beam delivered by the laser has an advantage of 

having small beam divergence. The disadvantages of laser beam include low 

efficiencies in generating and converting the laser beam back into electrical energy 

compared with microwave [1], [2]. Also, it is difficult to use the solar directly on 

earth because of the irregular weather condition and low density. Therefore, the 

microwave beam power transmission is more appealing to researcher. Since it is 

unpractical for transmitting power from one place to another by traditional 

distribution and transmission system, the concept of beamed microwave power 

transmission is important. Microwave is the general term used to describe RF waves 

which cover all frequency that start from UHF to EHF (300 MHz-300 GHz). 

Ambient RF energy harvesting has become an attractive opportunity as a 

source node in Wireless Sensor Network (WSN). The idea of energy harvesting from 

inexhaustible and abundant RF, such as nearby mobile phones, wireless LANs, 

broadcast television signals and FM/AM radio signals has taken the interest of public 

for its advantage of availability in harsh environments which it is hard to deliver 

other power supplies. Recent work showed that in a typical office environment, 
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ambient levels of power down to -20 dBm (at the cable feedpoint of an 8 dBi patch 

antenna) are abundant in the 2.45 GHz ISM band in which Wi-Fi and Bluetooth 

devices operate. Meanwhile, the input power level to WPT front-end is typically 

between 1µW and 1 mW (-30 dBm to 0 dBm) [3]. The reliability and cost are the key 

elements that differentiate RF energy harvesting from other sources. As the 

reliability for continuous operation of sensors is of paramount importance for any 

sensor networks, it is essentials to make sure that enough energy can be harvested for 

each sensor at any location and any time within the operating range of the system. 

Use of dedicated RF sources in addition to the other RF energy sources available in 

most indoor and outdoor environments such as television, radio, cellular network, 

Wi-Fi, and Bluetooth signals among others can supplement the harvested energy 

therefore increases the likelihood of available of ambient energy. Furthermore, the 

ever-growing spread of commercial and personal wireless installations enable on the 

collection of ambient RF energy emanating from cellular base stations, Wi-Fi access 

points and dozens of other such sources.  

While in WPT the electromagnetic beams are clearly directed in the direction 

of the device to power up, in Electromagnetic Energy Harvesting, the main concept 

is to gather electromagnetic waves from the air and convert them into DC energy. It 

is mainly a question of harvesting it from the ambient as the energy is already there, 

while in WPT there is the need to generate RF power as explained above. The RF 

energy harvesting schemes has started to become viable as technology is moving 

towards battery-less paradigm. RF energy can benefit wireless sensor networks and 

low power devices such as watch, earphone, hearing aid and alarm sensor despite of 

the small amount of harvested power. So, the RF energy harvesting can be widely 

employed in various applications such as home and building automation, security 

and energy management. The number of consumer-oriented compact electronic 

devices also has been growing at exponential rates for several years. These can be 

realized by RF energy harvesting systems, which can be easily integrated to the 

existing antenna and also the rest of wireless sensor on a single chip. 

Furthermore, the application of energy harvesting offers a promising decrease 

of the ominous consequences of climate change and global warming. In Malaysia, 
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the government has taken the issue in hand through the launching of National Green 

Technology Policy[4]. Malaysia has massive amount of electromagnetic energy 

radiated in our environment and the number of this electromagnetic is keep growing 

with time to time. For example, Internet source from the city can be transmitted to 

rural area using 5.8 GHz point-to-point data transmission. Either it benefits for data 

transmission for wireless communication; it also can be used for energy harvesting 

application. Because of this, Malaysia is a potential place to be a rectenna site. 

The key element of wireless power transmission is rectenna, which consists 

of a rectifier and antenna to receive Radio Frequency (RF) energy in free space and 

transform it into Direct Current (DC) power. The RF energy is harvested by an 

antenna and the received RF power is converted into DC power by the rectifying 

diodes as shown in Fig. 1.1. The impedance of the antenna must be matched with the 

rectifier impedance. Without this matching network, higher harmonics will re-radiate 

from the antenna back to the free space and decrease the conversion efficiency. The 

conversion efficiency can be defined as a ratio of the output DC power to the 

incident wave collected by the antenna. It is an important performance parameter to 

evaluate rectenna efficiency. Therefore, all components have their applications to 

enhance efficiency. Low-power device is represented at the load because of small 

amount of energy available at the harvesting output port [5].   

 

Figure 1.1 Block Diagram of rectenna 

The important parameter of this development is the output voltage and 

efficiency of the RF front-ends. This is important as the minimum turn on voltage for 

low power devices is 3.3 Volts. Harvesting single frequency band however possess 

low dc output voltage. As the multiple RF energy sources of different frequency 

bands are available, thus from an ambient RF harvesting perspective, the output dc 

voltage could be increased when multiple frequency bands circuit is designed rather 
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than a single band. A wide-band energy harvester can also promise a high output 

voltage by accumulating the number of RF signals at a time. However, harvesting 

wide-band circuit could exhibits nonlinearity due to nonlinear behavior of the diode. 

For example, the input impedance may vary with the received RF power. Thus, it is 

quite difficult to retain the impedance match and high conversion efficiency over a 

wide frequency range [6]. On the other hand, it is necessary to achieve decent 

rectifier performance, even while attaining the size and weight reduction.  

As a summary, RF energy-harvesting technology is still progressing, which 

may explain the lack of solutions available to consumers at the time of this work's 

authoring. Reviewing recent literature on the subject, one might classify the 

incremental improvements into five major areas: novel antennas, impedance 

matching, different rectifying circuits and circuit miniaturization requirements.  

 Problem Statement 

The most significant problem found in conventional rectifier design is plenty 

of rectifiers has only one specific frequency band which limits the power available 

for harvesting. A small number of multiband frequencies in single rectifier have been 

invented and its optimal rectifying strategies need further exploration. Nevertheless, 

total size of the dual band rectifier design is increased which lead to the high 

assembly cost. 

The nonlinearity of elements such as diode in the rectifier resulted in 

challenging work in the impedance matching, particularly for broadband and 

multiband device. This is because the impedance will change as a function of 

frequency, input power, and load impedance.  

Besides, it is challenging to preserve high energy efficiency while reducing 

the rectifier size. The components should be small enough to be embedded in low 

power devices. A compact rectifier is needed to correlate with smaller device and 
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low cost fabrications. Additionally, it requires very high impedance loads to provide 

enough voltage output.  

 Objectives 

The foremost purpose of the research work is to design a rectifier which can 

be used for energy harvesting application with dual band capabilities. The specific 

objectives embark on the following: 

1. To design a dual band matching circuit at Industrial Scientific Medical (ISM) 

band (2.45 GHz and 5.8 GHz). 

2. To design a compact multiplier rectifier with high efficiency 

3. To evaluate and validate the performance and efficiency of the proposed 

rectifier. The simulated and fabricated results are stated in tabular form and 

represented in graph to easily evaluate the outcome of different designs. 

 Scope of Works 

The research begins with an extensive study on the basics of rectifier system, 

components, frequencies, and impedance matching. It is important to build a basic 

knowledge on designing the proposed rectifier and to identify the expected result in 

designing rectifier.  

The rectifier is designed at 2.45 GHz and 5.8 GHz unlicensed ISM band for 

WLAN and WPT. Both frequencies have comparably low atmospheric loss, cheap 

components availability, and reported high conversion efficiency. The scope of the 

research will be limited to the design, simulate and development of simple and 

compact rectifier as a front-end system to provide a platform for low-power wireless 

charging and harvesting energy from the ambient. The proposed system is required to 

provide high RF-DC conversion efficiency (>60%) from the transmitting antenna as 
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a source for low-power wireless charging and energy harvesting[7]. The high 

efficiency can be achieved by multiplication of the doubler which can boost up the 

DC output voltage. So far, the reviewed compact rectifiers were all based on classical 

approach, not concerning the compactness limit [8]. 

Computer software employed in this study include Advanced Design 

System(ADS) for harmonic balance and numeral computations, and the CST studio 

suite for return loss simulation of matching network and Matlab for complex numeral 

computations. The rectifier models are implemented on low cost Flame Resistant 

4(FR4) board with thickness of 1.6mm, relative permittivity 4.7 and loss tangent 

0.019. The rectifier will be given input power from signal generator, tested by using 

the network analyser and multimeter. The output power level of signal generator is 

programmed from –25 to 25 dBm in 5-dBm steps. Network analyser is used to 

determine the return loss and bandwidth of the rectifier as well as its operating 

frequency, while multimeter is used to measure the output DC voltage. All rectifier 

performance such as return loss, output voltage and efficiency were carefully 

compared and discussed. 

 Thesis Outline 

This thesis is organized with five chapters. Chapter 1 introduces the research 

work which includes the background, objective, scope, contribution of the research 

and problem statement.  

Chapter 2 cover the basic theory of the energy harvesting system, matching 

network, the voltage multiplier used and rectifier. Literature review from previous 

research related to dual band rectifier is also presented to ensure the proposed 

rectifier has some contribution to fill in the gap of other rectifier design.  

Chapter 3 discusses the steps taken to complete the design. This chapter will 

focus on the design stage using appropriate software. Then, the fabrication stage is 

explained, which involves software part, printing and hardware part. The final stage 
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of this chapter will include the measurement setup. This final stage can be used to 

determine either the fabricated rectifier is working at proposed frequency band.  

In Chapter 4, the design of the matching circuit and voltage doubler rectifier 

is discussed. Initially, one schottky diode rectifier without matching circuit is 

designed. Then, single stub matching circuit is added to the rectifier operated at 2.45 

GHz. One stage doubler was also presented. Simulation results were presented and 

discussed. Next, dual band matching circuit and two stage multiplier is proposed 

with enhancement in term of compactness and efficiency was presented. The 

experimental testing of the designed matching circuit and rectifier were presented. 

Lastly, Chapter 5 concludes this thesis and present the future works to be 

done. 
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