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ABSTRACT

Recent studies in neuroimaging show increasing interest in mapping the brain 

connectivity. It can be potentially useful as biomarkers in identifying neuropsychiatric 

diseases as well as tool for psychological studies. This study considers the problem of 

modeling high-dimensional brain connectivity using statistical approach and estimate 

the connectivity between functional magnetic resonance imaging (fMRI) time series 

data measured from brain regions. The high-dimension of fMRI data (N) corresponding 

to the number of brain regions, is typically much larger than sample size or the number 

of time points taken (T). In this setting, the conventional connectivity estimators such 

as sample covariance and least-square (LS) estimator are no longer consistent and 

reliable. In addition, the traditional analysis assumes the brain network to be time- 

invariant but recent neuroimaging studies show brain connectivity is changing over 

the experimental time course. This study developed a novel shrinkage approach to 

characterize directed brain connectivity in high-dimension. The shrinkage method is 

involved in incorporating shrinkage-based estimators (Ledoit-Wolf (LW) and Rao- 

Blackwell LW (RBLW)) in the covariance matrix and LS-based linear regression 

fitting of vector autoregressive (VAR) model, to reduce the mean squared error of 

estimates in both high-dimensional functional and effective connectivity. This allows 

better conditioned and invertible estimated matrix which is important to generate a 

reliable estimator. Then, the shrinkage-based VAR estimator has been extended to 

estimate time-evolving effective brain connectivity. The shrinkage-based methods are 

evaluated via simulations and applied to fMRI resting-state data. Simulation results 

show reduced mean squared error of estimated connectivity matrix in LW and RBLW- 

based estimators as compared to conventional sample covariance and LS estimators 

in both static and dynamic connectivity analysis. These estimators show robustness 

towards the increasing dimension. Result on real resting-state fMRI data showed 

that the proposed methods are able to identify functionally-related resting-state brain 

connectivity networks and evolution of connectivity states across time. It provides 

additional insights into human whole-brain connectivity during at rest as compared to 

previous finding particularly in the directionality of connectivity in high-dimensional 

brain networks.

vi



ABSTRAK

Kajian pengimejan neuro terkini menunjukkan peningkatan minat dalam 

pemetaan perhubungan rangkaian otak, ia berpotensi digunakan untuk mengenal pasti 

penyakit psikiatrik neurologi serta sebagai alat dalam kajian psikologi. Kaedah statistik 

digunakan dalam kajian ini untuk memodelkan dan menganggarkan perhubungan 

otak daripada data-data berdimensi tinggi yang diukur melalui pengimejan resonans 

magnet kefungsian (fMRI). Dimensi data fMRI (N) sepadan dengan bilangan kawasan 

otak, biasanya lebih besar dari ukuran sampel atau bilangan titik waktu diambil (T). 

Dalam tetapan ini, penganggar konvensional seperti sampel kovarians dan kuasa 

dua terkecil (LS) tidak konsisten dan tepat dalam anggaran. Selain itu, analisis 

tradisional menganggar data fMRI sebagai data yang statik tetapi kajian neuroimaging 

baru-baru ini menunjukkan perhubungan otak berubah sepanjang waktu eksperimen. 

Kaedah penyusutan dicadangkan untuk memodelkan perhubungan otak berarah yang 

berdimensi tinggi. Ia menggabungkan penaksir berasaskan penyusutan Ledoit-Wolf 

(LW) dan Rao-Blackwell LW (RBLW) dalam matriks sampel kovarians dan regresi 

berkadar langsung LS bawah model vektor autoregresif (VAR), untuk mengurangkan 

kesilapan persegi dalam anggaran sambungan fungsi dan efektif yang berdimensi 

tinggi. Ini memastikan anggaran matriks dalam keadaan yang baik dan boleh 

diubahsuai. Penganggar penyusutan ini kemudianya dilanjutkan untuk menganggarkan 

perhubungan otak efektif bagi tujuan merakam sifat dinamik isyarat otak. Kaedah 

penyusutan yang dicadangkan telah dinilai melalui simulasi dan diaplikasikan pada data 

fMRI yang berkeadaan rehat. Hasil simulasi menunjukkan pengurangan pada kesilapan 

persegi di matriks perhubungan yang dianggarkan oleh penganggar LW dan RBLW 

berbanding dengan penganggar sampel kovarians dan LS dalam analisis perhubungan 

statik dan dinamik. Penganggar-penggangar ini juga dapat memastikan ketepatan 

terhadap dimensi yang semakin meningkat. Aplikasi pada data fMRI yang berkeadaan 

rehat menunjukkan kaedah penyusutan dapat mengenal pasti perhubungan otak berehat 

yang berlainan fungsi dan perubahannya sepanjang masa. Ia memberikan gambaran 

berguna tentang perhubungan otak manusia semasa rehat berbanding dengan hasil 

kajian sebelumnya, terutamanya dalam perhubungan rangkaian otak yang berdimensi 

tinggi ini.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Conventional neuroimaging studies focused on structural analysis especially 

in white matter, grey matter and central nervous system. It has been a shift 

of research interest from human brain surface morphometry to functional and 

effective connectivity mapping of the brain, i.e. interactions between different brain 

regions as a network, thanks to the recent advances in neuroimaging technology 

available nowadays on medical devices such as magnetic resonance imaging (MRI), 

functional MRI (fMRI), diffusion tensor imaging (DTI), electroencephalogram (EEG), 

magnetoencephalography (MEG) etc [1]. The advances in neuroimaging technology 

and techniques developed have sparked new insights into the relationship between 

different brain regions during the performance of some tasks or respond to stimulus or 

even during a resting state.

Computational neuroscience is a multi-disciplinary study combining cognitive 

neuropsychology, biomedical engineering, statistics, physics, etc. One aim is to 

construct a brain activation map and also brain connectivity map for neuroimaging 

data [2]. The identified brain maps can reveal valuable information on the functional 

integration and segregation between different brain regions (hearing, motor, vision, 

sensory, smell etc.) of the human brain networks for the study of cognitive psychology 

and various neuropsychiatric disorder. Identifying the disruptions in the brain maps 

of patients with brain disorders relative to healthy subject is potentially useful for 

establishing bio-markers towards the development of reliable and robust diagnostic 

tools in clinical and pre-clinical settings.

Statistical models such as covariance matrix have been used to quantify 

functional brain connectivity. However, there are still challenges in developing more
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efficient techniques for modelling the complex and high-dimensional structure of the 

brain connectivity network.

This thesis developed a novel shrinkage-based approach that is capable of 

analyzing large-sized brain connectivity networks from high-dimensional fMRI data. 

The covariance matrix and least square estimator are widely applied in various studies 

especially in time series analysis, such as biomedical signals, financial time series 

and etc. However, these conventional estimators are no longer accurate when the 

dimension of the signals are larger than the sample size. This thesis addresses some 

of the important problems in functional and effective brain connectivity estimation. In 

this work, the research consider the problem of high-dimensional brain connectivity 

estimation for both the functional and effective brain connectivity and time-varying 

brain connectivity states by using fMRI data.

1.2 Problem Background

A report from the World Health Organization (WHO) addressed that 

neurological disorder ranging from epilepsy to dementia, from brain stroke to headache, 

has affected almost up to 1 billion people worldwide. Another report, Neurological 

disorders: Public health challenges, has reported the number of people who suffered 

from epilepsy worldwide has reached 50 million while 24 millions people have suffered 

from Alzheimer’s and other dementia problem. As for the fatal rate, an estimate of 6.8 

million people die every year due to neurological diseases [3]. Thus early detection of 

these diseases is crucial in reducing fatality, increase recovery rate as well as prevent 

recurrence of the same disease. Biomedical signal processing is useful for advance 

medical and clinical diagnostic for early detection and diagnostic. Brain signal is a 

type of biomedical signals that can measure neurological activity in the brain, collected 

in different modalities, e.g., electroencephalogram (EEG), computerized tomography 

(CT), positron emission transmission (PET), and fMRI.
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Magnetic Resonance Imaging (MRI) is one of the clinically recognized non- 

invasive diagnostic methods which is accepted extensively among experts in the medical 

field. This technique allows construction of brain images in both structural and 

functional way to study anatomical structure and physiology function of a particular 

organ and system. MRI scanners use strong magnetic fields, electric field gradients, 

and radio waves in generating images of joints, cartilage, muscle structure, tendons, 

ligaments and brain structure. The method is non-invasive and so far there is no evidence 

shows subjects are at risk for being exposed to radiation. Several available techniques 

from MRI machine are spin echo, gradient echo, inversion recovery, diffusion-weighted 

imaging (DWI), perfusion weighted imaging (PWI), functional MRI (fMRI), magnetic 

resonance angiography (MRA) and venography.

Since its introduction in 1991, functional MRI (fMRI) has been widely used 

in neuroscience research [4]. The principle of fMRI is based on blood oxygen level- 

dependent (BOLD) contrast to produce a 3-dimensions (3D) image of the subject. The 

acquired data contain information on both structural and functional data of the scanned 

body part. When applied in brain scanning, fMRI images can be used to map brain 

activation and brain connectivity.

Brain connectivity analysis is a multi-dimensional analysis where the 

researchers are interested in identifying any interconnections or inter-dependencies 

between different brain regions [5]. There are two types of brain connectivity 

commonly studied, i.e. functional connectivity and effective connectivity. Functional 

connectivity is the temporal correlation between spatially remote neurophysiological 

events, expressed as the deviation from statistical independence across these events 

in distributed neuronal groups and areas. Effective connectivity describes a network 

of directional influence of one neural element over another [5]. Research on brain 

connectivity could provide potential insights to the brain function and the identified 

brain connectivity pattern can be used as biomarkers of neuropsychiatric diseases such 

as Alzheimer’s, dementia and epilepsy [6] related to brain network of healthy subjects. 

Brain connectivity analysis is carried out on time series data extracted from fMRI 

images.
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Conventional statistical inference focuses on lower-dimensional data when the 

length of the time-series (T) is much larger than the number of brain sites studied (N), 

however, this is exactly the reverse of the situation in neuroimaging data. The number 

of functional magnetic imaging (fMRI) time series associated with the brain regions 

can be an order of ten thousand but observed in only hundreds of scans. It poses some 

statistical challenges, where relatively short time-series (due to limited time scans) are 

measured over thousands of voxels [7, 8]. The traditional covariance matrices and their 

inverses are playing big roles in the analysis of cross-sectional dependencies between 

multivariate data or time series. However, they are only consistent and invertible in 

low-dimensional condition although easy to construct and unbiased. Inferring and 

estimating the true covariance matrix from the high-dimensional neuroimaging data is 

a critical statistical problem. Sample covariance matrix, a commonly used estimator of 

the population covariance matrix, is no longer reliable when the dimension is very high 

compared to the sample size. Modern sciences and engineering commonly involve 

analysis of high-dimensional data. Thus, the problem of estimating high-dimensional 

covariance matrices and their precision matrices is addressed in this research. In 

particular, this thesis consider a class of shrinkage-based estimators for identifying 

high-dimensional functional and effective connectivity from fMRI data.

Multi-dimensional analysis is able to provide the information on how the 

brain regions are interconnected and inter-dependent to one another. Conventionally, 

univariate method such as autoregressive modeling [9, 10] has been used to infer 

temporal dependency in the brain signals. However, the univariate analysis neglects 

the spatial dependence between different signals measured from distinct locations of 

the brain [11, 12]. Instead of using univariate models, multivariate models are more 

favorable due to the process of univariate autoregressive only includes correlation 

in time precedence of a signal and the correlation between regions is not taken into 

account [13, 14]. The inter-regional connectivity is unable to be determined directly 

from univariate models. Therefore, generalization of univariate model to multivariate 

model is needed to characterize brain connectivity networks [15]. By incorporating 

multivariate model in the analysis, the inter-regional correlation could give additional 

information to discriminate between different brain conditions by measuring the 

synchronization between coupling regions and the coherency among them [16].
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Recent studies on brain connectivity analysis have reported on non-stationarity 

of brain connectivity network which stands on the statement of functional connectivity 

patterns changing over time, in both task-related fMRI data [17, 18, 19] and resting- 

state data [20, 21]. The time evolution of effective connectivity has been reported 

in task-related data [22, 23, 24]. These studies motivate the study of time-varying 

connectivity patterns in human brain over time. To address the problem of estimating 

non-stationary brain connectivity, this research adopt the approach of time-varying 

multivariate autoregressive model.

Windowing analysis is used for current studies of non-stationary signals [25, 26, 

27]. Selection of the window frame size is the limitation to the method itself because 

a small window frame is needed to achieve a good temporal resolution but it will be a 

destructive move to the frequency content of the signals. Applying large window frames 

will cause bad temporal resolution. This effect is known as spectral leakage problem 

[12]. To solve this, a time-varying autoregressive (TV-AR) model is proposed. Non- 

stationarity of brain signals was further demonstrated in recent studies [17, 18, 19] on 

brain connectivity analysis. These studies motivate researchers to analyze and quantify 

the temporal dynamics in connectivity pattern over time. The most commonly used 

approach to model dynamic causality network is multivariate autoregressive (MVAR) 

model [28, 29]. To date, MVAR is the most reliable modeling method for dynamic 

system under the assumption of the stationary inter-regional integration with manually 

determined time frame [30]. This is rather difficult to segregate the brain-conditions 

in resting-state data, but would not be a problem in the known simulation framework. 

Thus, the implementation of complex multivariate autoregressive model with the non- 

stationary assumption is critical in solving this problem.

1.3 Statement of Problems

In this thesis, the problems of estimating high dimensional connectivity of large 

size brain network from fMRI data are considered and summarized into four main 

issues as follows:

5



(a) fMRI time series data measured from distant brain regions are typically 

of large-dimensional due to the huge number of nodes in a brain network 

and hence a huge number of connectivity parameters to be estimated.

(b) The common approach to quantifying functional connectivity is by 

estimating the covariance matrix (cross-covariances between fMRI 

signal for every pair of brain regions). However, it poses a critical 

challenge when estimating a high-dimensional covariance matrix to 

characterize a large brain connectivity network. The dimension of the 

neuroimaging signals N  (referring to the number of brain regions) is 

usually comparable and higher than the sample size T  (i.e., the length 

of neuroimaging signal). To estimate a full-brain network from fMRI 

data, the dimension N  (referring to the number of voxels) can be in the 

order of 10,000 or above but then the number of scans T  is often only 

around few hundreds. In this high-dimensional setting, particularly 

when N  > T , the traditional covariance estimator, sample covariance 

matrix is no longer reliable, consistent and invertible. This will lead to 

low statistical power in detecting true brain network connections. Due 

to this limitation, most connectivity studies focus on the analysis of 

only a few specialized regions of interest (ROI) instead of whole brain 

connectivity.

(c) Similarly, for estimating the effective connectivity of large brain 

networks (a generalized of functional connectivity to quantify the 

directionality of connections between brain regions), the least squares 

estimator of a high-dimensional VAR model is no longer consistent, 

when the signal dimension is high, which renders the estimated directed 

brain connectivity not reliable.

(d) Existing studies have proposed various high-dimensional estimation 

methods for estimating large-scale brain connectivity network, which 

however focused mostly on static or stationary connectivity where 

interactions between brain regions are assumed to be constant across 

the time course of experiments. Thus there is a need to develop methods 

to model the time-varying connectivity patterns of large-scale dynamic 

brain network that are changing over time.
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1.4 Objectives of the Research

The main objectives of this research are as below:

(a) To propose a class of shrinkage-based estimators for estimating high

dimensional brain connectivity for fMRI data which improve the 

performance over conventional connectivity estimator (e.g. sample 

covariance matrix and least squares (LS) estimators) in terms of lower 

estimation error.

(b) To employ Ledoit-Wolf (LW) and Rao-Blackwell LW (RBLW)

shrinkage approach for estimating large-scale functional brain 

connectivity, which allows better-conditioned and invertible estimator 

of a high-dimensional covariance matrix.

(c) To introduce a novel high-dimensional VAR estimator based on

the shrinkage approach for estimating large scale effective brain 

connectivity by incorporating shrinkage-based estimators for the 

Gramian matrix in the LS-based linear regression fitting of VAR.

(d) To generalize the proposed shrinkage-VAR estimator to non-stationary

case based on the sliding window approach and K-means clustering 

in order to handle the time evolution in effective connectivity of large 

brain networks.

1.5 Scope of Work

The research scopes focused on two main directions which are the estimation of 

connectivity matrix for brain networks and visualization of the brain connecting map 

in the resting state human brain. The simulation and real data process application will 

be carried out on MATLAB and FSL software as a platform. The scope of this study 

are as follows:

7



(a) The fMRI dataset used is 25 healthy subjects in resting state with eyes 

open during the recording session. This dataset is publicly available at 

the NITRC website (http://www.nitrc.org/projects/trt).

(b) The connectivity analysis is conducted based on 96 regions of interest 

(ROI) automated anatomical labeling (AAL) atlas. The number of 

connectivity parameter, N  to be estimated is 96 x 96 = 9216 parameters, 

it is high compared to the total number of scans, T  is 197.

(c) The statistical analysis of brain connectivity is applied to fMRI time 

series data, extracted from image data by using a standard preprocessing 

pipeline through FSL software.

(d) This research focuses on the statistical approach to analyzing high­

dimensional brain connectivity, in particular the shrinkage-based 

approach.

(e) Under the statistical approach, shrinkage-based covariance matrix 

estimator is applied to functional brain connectivity while shrinkage- 

based least square estimator of VAR model is applied to effective brain 

connectivity.

(f) This study also investigates on dynamic brain connectivity analysis 

with the application of time-varying VAR (TV-VAR) model and 

shrinkage-based estimator to high-dimensional, dynamic effective brain 

connectivity.

1.6 Contributions of the Study

This study proposes a class of estimators for analyzing huge brain connectivity 

which is potentially useful for a better understanding of brain functions in healthy 

subjects and abnormality in neuropsychiatric disorders. Specifically, the research 

contributions are given as follows:
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(a) A class of shrinkage-based estimators has been proposed for the analysis 

of large-scale brain network, involving inference of the functional 

connectivity (statistical dependencies between large numbers of brain 

regions) or effective connectivity (causal interactions between brain 

regions), from high-dimensional neurological signals such as fMRI 

with small sample size.

(b) Two variants of shrinkage-based high-dimensional covariance estima­

tors that is Ledoit-Wolf (LW) and Rao-Blackwell LW (RBLW) (a 

generalization of LW as method) have been employed to identify large- 

scale functional connectivity more efficiently.

(c) A novel shrinkage-based estimator has been introduced for estimating 

high-dimensional VAR models with applications to estimating large- 

scale effective brain connectivity from fMRI data. It has also been 

demonstrated by simulation that the proposed estimators to give a 

more accurate estimator and minimized the mean squared error (MSE) 

relatively to ground truth as compared to typical LS linear regression 

fitting under the high-dimensional setting.

(d) A high-dimensional time-varying VAR shrinkage approach has been 

developed based on sliding window, which is able to efficiently capture 

the time evolution of the effective connectivity of large-scale brain 

networks. K-means clustering is then applied to identify distinct 

dynamic brain connectivity states in resting-state fMRI data.

(e) The developed methods above are generally applicable to a wide range 

of neuroimaging signals such as EEG, PET, and MRI.

1.7 Thesis Organization

In this thesis, chapter 1 presents the direction of the research namely problem 

statement, objective, research scopes and significant of the research. Chapter 2 covers 

the literature review for this research on the basic understanding of brain connectivity,
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fMRI time series data, and statistical models that are related to current brain connectivity 

research. Limitations of the current statistical model and research gaps are also 

discussed in this chapter. In chapter 3, this thesis describes the proposed methods 

for both functional and effective connectivity. Steps on preprocessing and statistical 

processing on fMRI data are also covered in this chapter, particularly in static functional 

and effective connectivity, and also dynamic effective connectivity. Chapter 4 shows 

the evaluation results obtained from simulation and application on real fMRI data with 

discussion, including preprocessing and statistical analysis as well as visualization on 

BrainNet Viewer. This thesis ends with a conclusion and future work in chapter 5.
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