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ABSTRACT 

 

 

 

 

 

 

Automated surveillance systems often identify shadows as parts of a moving 

object which jeopardized subsequent image processing tasks such as object 

identification and tracking. In this thesis, an improved shadow elimination method 

for an indoor surveillance system is presented. This developed method is a fusion of 

several image processing methods. Firstly, the image is segmented using the 

Statistical Region Merging algorithm to obtain the segmented potential shadow 

regions. Next, multiple shadow identification features which include Normalized 

Cross-Correlation, Local Color Constancy and Hue-Saturation-Value shadow cues 

are applied on the images to generate feature maps. These feature maps are used for 

identifying and removing cast shadows according to the segmented regions. The 

video dataset used is the Autonomous Agents for On-Scene Networked Incident 

Management which covers both indoor and outdoor video scenes. The benchmarking 

result indicates that the developed method is on-par with several normally used 

shadow detection methods. The developed method yields a mean score of 85.17% for 

the video sequence in which the strongest shadow is present and a mean score of 

89.93% for the video having the most complex textured background. This research 

contributes to the development and improvement of a functioning shadow eliminator 

method that is able to cope with image noise and various illumination changes. 

  



vi 

 

 

 

 

 

 

 

ABSTRAK 

 

 

 

 

 

 

Sistem pengawasan automatik bayangan sering mengesan bayang-bayang 

sebagai sebahagian daripada objek bergerak dan ini akan seterusnya menjejaskan 

pelbagai tugas pemprosesan imej seperti pengenalpastian dan penjejakan objek. Tesis 

ini membentangkan kaedah yang lebih berkesan seperti penyingkiran bayang-bayang 

bagi sistem pengawasan bangunan. Kaedah yang digunakan ini merupakan gabungan 

beberapa kaedah pemprosesan imej. Proses pertama menggunakan teknik 

penggabungan kawasan imej secara statistik untuk membahagikan imej dan 

seterusnya mendapatkan kawasan bayang-bayang yang berpotensi. Proses seterusnya 

merangkumi gabungan ciri-ciri pengesanan bayang-bayang termasuk Korelasi Silang 

secara normal, Ketetapan Warna Setempat dan pengesanan bayang Nilai Ketepuan 

Hue untuk menghasilkan potensi imej pemetaan bayang-bayang. Pemetaan ini 

seterusnya digunakan untuk mengenalpasti dan menyingkirkan bayang-bayang 

mengikuti kawasan bayangan berpotensi yang telah dibahagi. Rakaman video yang 

digunakan berasal dari Ejen Autonomi untuk Pengurusan Insiden Rangkaian Terhad 

yang meliputi keadaan luar dan dalam bangunan. Keputusan ujikaji menunjukkan 

bahawa kaedah yang digunakan dapat memperolehi pengesanan yang setara dengan 

beberapa kaedah pengesanan bayang yang lain. Kaedah yang digunakan 

menghasilkan skor min 85.17% untuk video yang mempunyai bayang-bayang paling 

ketara dan skor min 89.93% untuk video yang mempunyai latar belakang bertekstur 

yang paling kompleks. Penyelidikan ini menyumbang kepada pembangunan dan 

kemajuan sistem penghapusan bayang-bayang untuk mengatasi masalah gangguan 

imej dan pelbagai perubahan pancaran cahaya. 
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color conversion 



xxiii 

 

 

𝛿𝐻𝑆𝑉  - Denotes a constant value used in HSV shadow cue algorithm, 

to avoid division by zero 
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𝛿𝑆𝑅𝑀  - Constant variable used to denote the maximum probability 
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energy when the distant light source is partially occluded at 

pixel position 𝒖 
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𝜇𝑰 - Mean intensity of the entire image 𝑰 
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𝑜𝑡𝑠𝑢 - Refers to the mean used in the conventional Otsu method, 

where 𝑗 represents the divided classes 

𝜇𝑖,𝑡
𝐺𝑀𝑀  - Mean value of the 𝑖th Gaussian at time t 
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∑
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INTRODUCTION 

 

 

 

 

 

 

1.1  Introduction 

 

 

Surveillance is the monitoring of behavior, activities, or other changing 

information. It comes from French phrase, “sur” means “from above” and “veiller” 

means “to watch” (Lyon, 2001). It is used for managing, preventing and protecting 

the general public from danger, crisis and injury. Besides that, it has become crucial 

for detecting and identifying of anomalous or unusual events, especially after the rise 

in terrorist attacks such as the 2013 Boston Marathon bombing and 2015 Paris 

attacks. These attacks become the catalyst and main reason for the increasing 

attention in the recent years for the needs and importance of surveillance for public 

safety (Tian et al., 2011). 

 

 

A reliable automated surveillance system for security is needed. It is nearly 

impossible to monitor in real-time while analyzing massive information generated 

from various surveillance cameras installed at numerous locations. There are 

numerous surveillance systems have been developed such as attack detection 

(Raghavendra et al., 2015), detecting abandoned and removed objects (Tian et al., 

2011), indoor surveillance (Liu et al., 2015), anomaly detection (Sun et al., 2017), 
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human action recognition (Rahmani et al., 2018), room occupancy detection 

(Candanedo and Véronique, 2016), and fall detection (Mubashir et al., 2013). 

 

 

A full fledge surveillance system generally comprises of three main steps: 

object detection, object recognition and lastly object tracking. These sequential steps 

rely heavily on the information of the previous step it undergoes and are interlink to 

one another. Hence the first step, which is the object detection phase, is crucial to 

have the highest possible accuracy. Detecting moving object in the scene, involves 

able to distinguish foreground objects from the background field regardless of the 

scene condition in a video sequence (Sobral and Vacavant, 2014). A false detection 

would have ended up in disastrous consequences for the subsequent image 

processing task such as object recognition. Therefore, a reliable detection of moving 

objects is critical for surveillance systems. 

 

 

Arguably, the most common method to detect moving object in a video 

stream is the background subtraction (BGS) method (Sobral and Vacavant, 2014). 

This method does not require any prior knowledge of the moving objects in the video 

source (Sobral and Vacavant, 2014). The BGS process models the background image 

from the video source, then computes with the respective frame image to generate 

the foreground mask. The model background is then maintained and updated 

repetitively as the process continues until the video stream end. Among all BGS 

methods available, the Gaussian Mixture Model (GMM) by Stauffer and Grimson 

(1999) is the most widely used BGS method. This method utilizes multiple Gaussian 

as statistical means to compute the likelihood of a pixels to be classified as 

background or foreground pixel.  

 

 

After the foreground mask is generated, it marks the beginning of the shadow 

detection method. For an effective shadow detection, several assumptions and 

shadow properties must be defined. The assumptions used are usually tailored and 
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they are different from algorithms to algorithms. Both shadow properties and 

assumptions are the backbone of all the shadow detection methods.  
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The choice of shadow detection method highly depends on the prior 

assumptions and defined shadow properties defined earlier. However, the shadow 

detection method always has several similar traits and it can be easily noticed and 

identified. One of the most noticeable trait is that, the algorithm usually exploits the 

shadow’s unique properties. For example, whenever a shadow is casted over a 

region, the texture property of the object remains unchanged. By knowing this 

property, shadows are easily identified and detected. Besides that, researchers 

normally take prior knowledge of the video source to their advantages, for a higher 

accuracy detection. Such case can be seen, for example, for a pedestrian surveillance 

system (Hsieh et al., 2003). In these kinds of system, the orientation and position of 

the pedestrian are known beforehand. Hence it is much easier to detect shadow with 

known orientation. In some cases, the position of the illumination source is also 

exploited (Russell et al., 2015). Knowing all the orientations beforehand is also the 

key in having a successful shadow detection. 

 

 

 

 

1.2 Background of Study 

 

 

Object detection is the most fundamental process used in image processing. It 

is used for detecting moving objects within an image, and the detection output is 

commonly used in the subsequent process such as object recognition, object tracking 

or object classification. Object detection has a wide range of applications from 

industrial automation quality control and military usage to human behavior analysis 

(Weinland et al., 2011). Hence the detection process is important and require a high 

degree of accuracy for it to be useful for the subsequent process. 

 

 

However, there are many challenging problems when dealing with object 

detection in the real-world, as commented by Sanin et al. (2012) and Russel et al. 

(2016). Firstly, these moving objects are usually having a wide range of texture 
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properties and color range, hence blending the moving object into its surrounding 

background making it difficult to identify and model the object. Besides that, 

background environment conditions also influence the accuracy of the detection. 

Moving objects are normally found in complex and cluttered background. 

Furthermore, time varying changes such as changing from day to night and sudden 

lighting or illumination changes, drastically change the appearance of the object 

making the process even complex and harder for detection. 

 

 

Yet, one of the common problems faced in object detection is incorrect 

identification and classification of shadows as part of the foreground moving object 

(Russel et al., 2016). In a typical image, shadow and object share two important 

visual features. Firstly, shadow shares the same movement pattern as the moving 

object who casted it. The shadow is usually found adjacent to the moving object, 

sharing a common boundary. As for the second feature, shadow has a similar 

magnitude of intensity change as that of the foreground moving object (Nadimi and 

Bhanu, 2004). Therefore, without shadow identification process, the object detection 

method is likely to include the shadows as part of the object foreground. This falsely 

identified foreground, further reduce the accuracy of the subsequent image 

processing step, such as object recognition and object tracking. 

 

 

 

 

1.3 Problem Statements 

 

 

There are two main issues on how a falsely identified shadow as part of a 

moving object affects the subsequent image processing tasks as commented by Sanin 

et al. (2012). The first issue is a falsely included shadow as part of a moving object 

causes a change to the geometric properties of the moving object. Furthermore, the 

geometric properties are also affected by the duration of the day. A stronger 

surrounding luminance causes a shadow to be darker. The darker shadow making it 
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as though as there is a new object presented in the video sequence. Adding the 

shadow along with the actual object distorts the actual object size and shape and 

subsequently affects the task of recognizing and classifying the moving object. 

 

 

For the second issue, falsely identified shadow causes the object detection 

method to identify two or more moving objects as a single moving object entity. This 

occurs because shadow creates a false adjacency between the two moving objects 

which are close to one another. This false adjacency created by the shadow tricks the 

detection method to classify the moving objects as a single entity, instead of two 

different entities (Sanin et al., 2012; Russel et al., 2016). 

 

 

Without any form of prevention on the aforementioned issues, the wrongly 

identified moving object further affects the subsequent image processing task such as 

object counting, object tracking, and object classification. Hence it is crucial for the 

object detection method to properly identify, segment and differentiate the moving 

object and its shadow (Prati et al., 2003; Al-Najdawi et al., 2012). Without 

identifying and removing shadow regions, the detected boundaries became unreliable 

and distorted, thus causing the surveillance system to lose track of the moving object. 

 

 

Figure 1.1 illustrates what happens if the detected shadow regions are 

included as part of a moving object. Columns (i) and (j), respectively illustrate 

tracking system detection result without and with a shadow detection method. Rows 

(a) shows the identified foreground masks. Lastly, Row (b) shows the tracking 

results with a unique ellipse boundary representing different object for both system 

without and with shadow detection method. 
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 Column (i) Column (j) 

Row 

(a) 

 

Row 

(b) 

 

Figure 1.1: Illustrates a case where a tracking system tracks ongoing 

pedestrians, without and with shadow detection.  

 

 

Apart from that, shadows can be formed under various illumination 

conditions such as under poor illumination lighting environment and even at night 

time. Therefore, a surveillance system has to be able to cater for various illumination 

changes. In the current shadow detection methods, even though the researchers have 

catered for various illumination conditions by evaluating their detection method in 

both indoor and outdoor scene, however their methods are still unable to accurately 

detect and eliminate shadow especially in the scenes with strong illuminations are 

present (Russel et al., 2016). Besides that, most environment scenes have a single 

dominant illumination source. However, there are some environment scenes, such as 

in an indoor environment has multiple dominant illumination sources. In a typical 

indoor environment, the illumination sources are surrounded in a closed 

environment. Such situation leads to the creation of shadow by the reflected light off 

the wall or the floor. The reflected light from those surfaces are normally weak in 
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comparison with the illumination source, and the amount of reflected light depends 

on the reflective index of the surface.  

 

 

Lastly, image noise is also one of the issues that hinders the performance of 

the shadow detection. Image noise is random variation of brightness or color 

information in images, which can be found in most digital video recorder. Besides 

that, it causes the colors of any given scene do not remain for a long period of time 

due to the present of camera noise and illumination fluctuations (Horprasert et al., 

1999).  

 

 

Therefore, incorrectly identify shadow as a part of a moving object resulting 

in producing incorrect detection. Hence there is a need for improving the accuracy of 

the shadow detection method especially for tackling environment scene that have 

image noise and illumination changes.  

 

 

 

 

1.4 Objective of Research 

 

 

The objectives of the research are defined as follows: 

(i) To develop a multiplicative fusion shadow detection method that utilizes both 

texture and Chromaticity features together with image segmentation for 

surveillance images to tackle image noise and illumination changes. 

(ii) To evaluate the accuracy of the developed method, by benchmarking it several 

commonly used shadow detection methods. 
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1.5 Scope of Research 

 

 

Research scope is an agreement on the research work to be completed, also 

justifying the objectives of the research and setting deliverables and limitations of the 

research. The main focus of this research is to develop a highly accurate shadow 

eliminator method for a surveillance system, tackling unresolved shadow issues. The 

summary of the scope of research can be found in Table 1.1. 

 

 

This developed method is limited to using Gaussian Mixture Model (GMM) 

background subtraction method by Stauffer and Grimson (1999). Details on the 

parameter setup are discussed in Chapter 3. Besides that, the list of commonly used 

shadow detection methods used for benchmarking are prepared by Sanin et al., 

(2013). The list includes a wide range of shadow detection methods from 

Chromaticity based detection to texture based detections. In this research, the 

additional multiple feature fusion is added for a better benchmarking result. 

 

 

For a fair evaluation, a standard video dataset is utilized. The video dataset 

used is the Agents for On-Scene Networked Incident Management (ATON), 

prepared and maintained by Martel-Brisson and Zaccarin, (2008) and Sanin et al., 

(2012). Each video in the video dataset consist of several challenges in order to 

evaluate the robustness of a shadow detection method. The challenges tackled in this 

research is limited to the handling image noise, ability to cope with various 

illumination changes, flexibility of detection under various background scene and the 

ability to handle scene with multiple illumination sources. Details on the properties 

of the video sequence dataset and its associated challenges are presented 

comprehensively in Chapter 3. 

 

Next, two evaluation tests are performed on the video dataset used to 

determine the accuracy the shadow detection. The tests include the shadow detection 

and discrimination test (Prati et al., 2003) and the desaturation test (Sanin et al., 
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2012). The shadow detection and discrimination test evaluate the percentage of 

accuracy for both object and shadow identified by the shadow detection method. 

Lastly, the desaturation test was carried out to test the performance capability of the 

algorithm when colour information is reduced.  

 

 

Lastly, the developed shadow detection method is coded in C++ 

programming language, utilizing the open source computer vision (OpenCV) library 

version 2.4.10. It is developed using Microsoft Visual Studio 2013 as integrated 

development environment.  

 

 

 

 

1.6 Significances of Research 

 

 

The significances and findings of the research can be highlighted in several 

aspects. The most important aspect of this research is to further improve the accuracy 

of other image processing systems especially in terms of security and public safety. 

This research can be coupled with other image processing tasks such as human action 

recognition (Rahmani et al., 2018), abandoned object detection (Tian et al., 2011) 

and anomaly detection (Sun et al., 2017) to be installed in places such as at banks 

and transit terminals. Thus, further improving the accuracy is useful for security 

purposes. 
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Table 1.1: Research scope for this research. 

Description Scope 

Background 

subtraction 

technique 

GMM background subtraction method by Stauffer and 

Grimson (1999) 

Video dataset ATON video dataset, prepared and updated by: 

• Martel-Brisson and Zaccarin (2008), and 

• Sanin et al., (2012). 

Video source 

challenges 

• Handle image noise 

• Illumination changes 

• Multiple illumination source 

• Various background scene 

• Execution time 

Benchmarked 

shadow detection 

method, prepared by 

Sanin et al., (2012) 

• Chromaticity, by Cucchiara et al. (2003) 

• Geometry, by Hsieh et al. (2003) 

• Physical, by Huang and Chen (2009) 

• Large-Region Texture, by Sanin et al. (2010) 

• Small-Region Texture, by Leone and Distante (2007) 

• Combined Color Model, by Sun and Li (2010) 

• Multiple Feature Fusion, by Dai et al. (2013) 

Evaluating the 

performance of the 

shadow detection 

method  

• Shadow detection and discrimination test,  

by Prati et al. (2003) 

• Desaturation test, by Sanin et al. (2012) 
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1.7 Thesis Outline 

 

 

The remaining of this thesis is structured in the following manner. Literature 

reviews are presented in Chapter 2. Firstly, discussion on the shadow feature 

definition are presented then followed by reviews on background subtraction. After 

that, the four individual shadow detection technique classification, which are the 

Chromaticity, Geometry, Physical and Texture are analyzed in detail. Next, 

segmentation based shadow detection methods and combination of multiple 

techniques are analyzed and reviewed. Lastly, critical reviews on the identified 

shadow detection methods are analyzed and compared.  

 

 

The first part in Chapter 3 describes the overview of the research 

methodology, then followed by introducing the video sequence dataset with detail 

explanations on the challenges provided by each video in the dataset. Next, the 

overview of the shadow eliminator process is discussed and each of the method used 

is explained in details. This includes background subtraction, image segmentation, 

individual shadow identifying methods and the developed combination technique. 

Lastly, evaluation techniques are introduced to quantify the shadow elimination 

method in terms of detection accuracy. 

 

 

The results of the research are presented and discussed in Chapter 4. First the 

challenges for each of the video for benchmarking are neatly explained. Next the 

quantitative analysis for benchmarking are shown and explained. Finally, the results 

for this research are shown and compared with other commonly used shadow 

detection methods. A comprehensive discussion on this research in comparison with 

other research is provided. 

 

 

Lastly, Chapter 5 summarizes the entire research. The research work is 

concluded, and several recommendations are emphasized for future work.  
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