

AUTOMATED PAIRWISE TESTING APPROACH BASED ON

CLASSIFICATION TREE MODELING AND NEGATIVE SELECTION

ALGORITHM

EASTER VIVIANA ANAK SANDIN

A report submitted in partial fulfilment of the

requirements for the award of degree of

Master of Philosophy

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

 MARCH 2019

iii

This report is dedicated with the deepest gratitude especially to my beloved

family, as they always give me endless pray, love, support and motivation. To my

friends who are willing to help me, and to all lecturers, especially my supervisors,

for without their early inspiration, coaching and enthusiasm none of this would

have happened. Thank you for everything.

iv

ACKNOWLEDGEMENT

 Praise be to God, I have finally completed the research proposal for my

Master research titled “Pairwise Testing Approach Based on Classification Tree

Modeling and Negative Selection Algorithm”.

 I would like to extend my sincerest gratitude to my supervisor, Associate

Prof. Dr. Radziah binti Mohamad for her excellent guidance and her vast

experience towards the completion of this report. She had been very helpful and

resourceful from the very beginning until the end of this thesis.

 Endless thanks go to my friends who had involved themselves in the

completion of my report, especially those who are willing to spare their precious

time in helping me whenever requested. Their supports had inspired me along the

way to finish my report.

 Lastly, my gratitude goes to those who had involved themselves directly or

indirectly in the completion of this report.

v

ABSTRACT

Generating the test cases for analysis is an important activity in software

testing to increase the trust level of users. The traditional way to generate test cases

is called exhaustive testing. It is infeasible and time consuming because it generates

too many numbers of test cases. A combinatorial testing was used to solve the

exhaustive testing problem. The popular technique in combinatorial testing is

called pairwise testing that involves the interaction of two parameters. Although

pairwise testing can cover the exhaustive testing problems, there are several issues

that should be considered. First issue is related to modeling of the system under test

(SUT) as a preprocess for test case generation as it has yet to be implemented in

automated proposed approaches. The second issue is different approaches generate

different number of test cases for different covering arrays. These issues showed

that there is no one efficient way to find the optimal solution in pairwise testing

that would consider the invalid combination or constraint. Therefore, a combination

of Classification Tree Method and Negative Selection Algorithm (CTM-NSA) was

developed in this research. The CTM approach was revised and enhanced to be

used as the automated modeling and NSA approach was developed to optimize the

pairwise testing by generate the low number of test cases. The findings showed that

the CTM-NSA outperformed the other modeling method in terms of easing the

tester and generating a low number of test cases in the small SUT size. Furthermore,

it is comparable to the efficient approaches as compared to many of the test case

generation approaches in large SUT size as it has good characteristic in detecting

the self and non-self-sample. This characteristic occurs during the detection stage

of NSA by covering the best combination of values for all parameters and considers

the invalid combinations or constraints in order to achieve a hundred percent

pairwise testing coverage. In addition, validation of the approach was performed

using Statistical Wilcoxon Signed-Rank Test. Based on these findings, CTM-NSA

had been shown to be able perform modeling in an automated way and achieve the

minimum or a low number of test cases in small SUT size.

vi

ABSTRAK

Menghasilkan kes ujian adalah aktiviti penting dalam pengujian perisian

untuk meningkatkan tahap kepercayaan pengguna. Cara tradisional untuk

menghasilkan kes ujian ialah ujian menyeluruh. Ujian ini sukar untuk dilaksanakan

dan menelan masa yang banyak kerana menghasilkan banyak nombor kes ujian.

Ujian kombinasi telah diwujudkan untuk menyelesaikan masalah ujian

menyeluruh. Teknik ujian kombinasi yang digemari adalah ujian berpasangan yang

melibatkan interaksi antara dua parameter. Walaupun ujian kombinasi mengatasi

masalah ujian menyeluruh, namun terdapat beberapa isu yang perlu diambilkira.

Isu pertama ialah berkaitan dengan permodelan sistem di bawah ujian (SUT)

sebagai pra proses untuk penghasilan kes ujian secara automatik. Isu kedua adalah

pendekatan berbeza menghasilkan bilangan kes ujian yang berbeza bagi

tatasusunan yang berlainan. Isu ini menunjukkan bahawa tiada cara yang efisien

untuk mencari penyelesaian optimum yang juga mempertimbangkan gabungan

atau kekangan yang tidak sah. Oleh itu, kombinasi Kaedah Pokok Klasifikasi dan

Algorithma Pemilihan Negatif (CTM-NSA) telah dibangunkan dalam kajian ini.

Pendekatan CTM telah dipelajari dan dipertingkatkan untuk dijadikan permodelan

automatik dan pendekatan NSA dibangunkan untuk mengoptimumkan ujian

berpasangan. Hasil kajian mendapati bahawa CTM-NSA dapat mengatasi kaedah

model lain dalam menyenangkan penguji dan menghasilkan sedikit bilangan kes

ujian untuk saiz SUT kecil dan juga setanding dengan pendekatan lain dalam saiz

SUT besar kerana mempunyai ciri-ciri mengesan sampel diri dan bukan diri. Ciri-

ciri ini berlaku di peringkat pengesanan NSA yang merangkumi kombinasi nilai-

nilai terbaik bagi semua parameter dengan menganggap kombinasi atau kekangan

yang tidak sah dalam mencapai 100 peratus liputan ujian berpasangan. Pengesahan

pendekatan ini menggunakan Ujian Statistik Wilcoxon Signed-Rank. Berdasarkan

hasil kajian ini, CTM-NSA mampu melakukan pemodelan secara automatik dan

menghasilkan kes ujian minimum atau rendah untuk saiz SUT yang kecil.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION (6 \ ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

 LIST OF SYMBOLS xvi

1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Background 3

1.3 Statement of the Problem 6

1.4 Objectives 7

1.5 Significance of the Research 7

 1.6 Scope of the Research 7

 1.7 Organization of Thesis 8

2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Black Box Software Testing 9

2.3 Prepare Test case Methods 11

viii

2.3.1 Exhaustive Testing 12

 2.3.2 Combinatorial Testing 13

2.4 Modeling of SUT 17

 2.4.1 Category-Partition Method 18

 2.4.2 Classification-Tree Modeling 19

 2.4.3 Input Parameter Modeling 21

 2.4.4 Input Space Method 21

 2.4.5 UML Diagram 22

2.5 Test Case Generation Approach 32

 2.5.1 Random Approach 34

 2.5.2 Greedy Approach 34

 2.5.3 Hybrid Approach 37

 2.5.4 Search Based Approach 38

2.6 Comparison of Pairwise Test Case Generation 41

 2.6.1 Covering Arrays 41

 2.6.2 Test case Number Comparison 42

2.7 Negative Selection Algorithm (NSA) 47

2.8 Concluding Remarks 49

2.9 Summary 52

3 METHODOLOGY 54

3.1 Introduction 54

3.2 Overview of the Research 54

3.3 Research Design 55

 3.3.1 Literature Study 57

 3.3.2 Model Formation 58

 3.3.3 Apply NSA in Test Case Generation 58

3.3.4 Validation 58

3.4 Research Framework 60

3.5 Experimental Setup 63

3.6 Assumptions and Limitations 63

3.7 Experimental Data Set 64

 3.7.1 Implementation Section 64

 3.7.2 Comparison or Validation Section 66

ix

3.8 Summary 66

4 PAIRWISE TESTING APPROACH BASED ON

 CTM-NSA 67

4.1 Introduction 67

4.2 Applying CTM-NSA in Pairwise Testing 67

 4.2.1 Modeling of SUT using CTM 69

 4.2.2 Test Case Generation using NSA 76

4.2.3 Applying Proposed Approach on Data Set 77

4.3 Evaluation 87

4.4 Summary 89

5 VALIDATION 90

5.1 Introduction 90

5.2 Comparison for Number of Test Cases 90

5.3 Statistical Wilcoxon Signed Rank Test 96

5.4 Threats of Validity 103

5.5 Summary 104

6 CONCLUSION 105

6.1 Introduction 105

6.2 Concluding Remarks 105

6.3 Research Contributions 107

6.4 Limitation and Future Works 108

6.5 Summary 109

REFERENCES 110

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Number of Test Case for Combinatorial Testing 16

2.2 Number of Generated Test Cases for Exhaustive and 16

 Combinatorial Testing

2.3 Pairwise Testing Modeling Methods 24

2.4 Comparison of Pairwise Testing Modeling Methods 29

2.5 Covering Arrays 41

2.6 Classification of CAs 42

2.7 Test Case Comparison for Computational Approaches 43

2.8 Test Case Comparison for Artificial Intelligence 44

 Approaches

2.9 Summarization Based on CAs Categories 46

4.1 Checklist 74

4.2 The SUT Information 78

4.3 Checklist for Pizza Option 80

4.4 Parameters and Values for Pizza Option 81

4.5 References R 81

4.6 Initial Random Generated Test Cases d for Pizza Option 82

4.7 Parameters and Values for E-Travel Agency 84

4.8 Initial Random Generated Test Cases d for E-Travel 85

 Agency

xi

4.9 Generated Test Cases D for E-Travel Agency 86

4.10 Comparison of Pairwise Testing Modeling Methods 88

4.11 Test Cases for Random and NSA 89

5.1 Comparison Number of Test Cases with Computational 94

 Approaches

5.2 Comparison Number of Test Cases with Artificial 95

 Intelligence Approaches

5.3 Wilcoxon Signed Rank Test 96

5.4 Wilcoxon Signed Rank Test for Computational 98

 Approaches

5.5 Wilcoxon Signed Rank Test for Artificial 101

 Intelligence Approaches

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Generated Test Cases for Exhaustive Testing 2

2.1 Correctness Testing Techniques 10

2.2 Examples of Black Box Testing 11

2.3 Google Account Sign Up Interface 12

2.4 Combinatorial Testing Methods 14

2.5 Pairwise Testing Procedure 15

2.6 Modeling of SUT for Pairwise Testing 18

2.7 Traditional Tree 20

2.8 Test Case Generation Approaches 33

2.9 Basic NSA Proposed by Forest et al (1994) 49

2.10 Research Summarization 50

2.11 Existing Modeling Methods and Test Case Generation 51

 Approaches

3.1 Research Design 56

3.2 Wilcoxon Signed-Rank Criteria 59

3.3 Research Framework 62

4.1 Overview of Proposed Approach 68

4.2 Proposed Approach Algorithm 69

4.3 CTM Modeling Algorithm 70

4.4 Previous CTM for Modeling of SUT Information 71

4.5 Steps in Enhanced Model 71

xiii

4.6 Standard Pairwise Testing 75

4.7 Data Structure for Proposed Approach 76

4.8 Test Case Generation for NSA 77

4.9 Flat Tree Model for Pizza Option 79

4.10 Standard Pairwise Testing for Pizza Option 80

4.11 Standard Pairwise Testing for E-Travel Agency 84

4.12 Test Cases for Random and NSA 90

5.1 Z Values for Comparison between NSA and 99

 Computational Approaches

5.2 Ranks Comparison for NSA and Computational 99

 Approaches

5.3 Z Values for Comparison between NSA and 102

 Artificial Intelligence Approaches

5.4 Ranks Comparison for NSA and Artificial Intelligence 102

 Approaches

xiv

LIST OF ABBREVIATIONS

ABC - Ant Bee Colony Algorithm

ACA - Ant Colony Algorithm

API - Application Programming Interface

AETG - Automatic Efficient Test Generator

SAT - Boolean Satisfiability Solving

CPM - Classification Parameter Method

CTM - Classification Tree Method

CT - Combinatorial Testing

CA - Covering Array

CS - Cuckoo Search Algorithm

DDA - Deterministic Density Algorithm

FS - Flower Pollination Algorithm

GA - Genetic Algorithm

GS - Genetic Strategy

HD - Hamming Distance

HS - Harmony Search Algorithm

HHH - High Level Hyper-Heuristic

HC - Hill Climbing Algorithm

HOA - Hybrid Optimization Approach

IPO - In-Parameter-Order

IPM - Input Parameter Modeling

OPAT - One-parameter-at-a-time

OTAT - One-test-at-a-time

PICT - Pairwise Independent Combination Testing

PSO - Particle Swarm Optimization

SA - Simulated Annealing Algorithm

SDLC - Software Development Life Cycle

xv

SUT - System Under Testing

TCG - Test Case Generator

UML - Unified Modeling Language

xvi

 LIST OF SYMBOLS

∈ - Element of

∑ - Sum of

< - Less than

⨁ - XOR or Exclusive OR

𝜏 - Threshold

𝜇 - Mean

𝛼 - Alpha

29

CHAPTER 1

INTRODUCTION

1.1 Overview

Nowadays, the rapid developments of intelligence technologies grow as the

demand grows. They put their trust on those technologies. For example, the web

system such as food delivery website let people order their meal through the

website without going to the restaurant. Technology has made life simpler and

more convenient because this matter will save their time when doing important

work. For an embedded system such as an airplane system, 100% assurance is

needed as they are used to carry many lives in them. However, the question is how

many people can put their trust on those technologies? Therefore, software testing

is one of the important activities that should be performed in order to gain and

present the software trustworthiness.

Software testing consists of black box testing and white box testing (Khalsa

and Labiche, 2014). A black box is focused on external behavior or functionality

while a white box is focused on internal implementation of software. In order to

conduct software testing, the test cases should be ready first. This activity falls into

black box testing where it involves the specification only. The traditional way to

generate the test cases is called exhaustive testing. Exhaustive testing is used to

produce the test suite that will be used in other testing types such as unit testing,

system testing, integration testing and acceptance testing. The example of how to

conduct the exhaustive testing is as following; Assume that the parameters are A,

B, and C. The values are as stated; A= (a1, a2), B= (b1, b2), C= (c1, c2, c3). The

2

number of test cases generated through this method will be 2x3x2= 12 tests; as

shows in the figure below.

Figure 1.1 Generated test cases for exhaustive testing

 However, the issues or problems with exhaustive testing are discovered

when it comes to large or complex software systems. The popular issue of

exhaustive testing is costly and time-consuming (Purohit and Khan, 2015). Imagine

if this research has a large number of parameters and values, it may generate about

thousands of test cases. Therefore, the combinatorial testing (CT) is proposed to

solve the exhaustive testing problem.

CT is the black box type of testing (Brcic and Kalpic, 2012) (Mudarakola

and Padmaja, 2015). It can provide a better way for test cases generation. It can

reduce the cost of testing and save the testing time to increase its effectiveness

(Borazjany et al, 2013); (Kitamura et al, 2015); (Nie and Leung, 2011); (Brcic and

Kalpic, 2012); (Patil and Nikumbh, 2012). There are many techniques involve in

CT. CT consists of one technique that is called t-way testing. This technique is a

popular research area among researchers (Kitamura et al, 2015). It requires all

combinations of values of t-parameter that are at least tested once. There are six

types of t-way testing, which are 1-way, 2-way, 3-way, 4-way, 5-way and 6-way

(Kuhn et al, 2013). Among these t-way types, 2-way is the wild technique in CT

problems (Mudarakola and Padmaja, 2015) (Bach and Schroeder, 2004). 2-way

testing is called Pairwise Testing. It is used to decrease the number of test cases or

test suite generated, where it considers all interaction of two factors the most (Xiang

et al, 2015). This means that they detect the constraint or problem between the

3

interactions of two parameters. The aim of this pairwise testing is to cover every

pair of options in testing. Every pair of options must occur at least once and may

occur more than once (Kuhn, 2013). The other advantages of pairwise testing are

easy to manage and executed by testers (Bach and Schroeder, 2004).

1.2 Problem Background

 Pairwise testing is a test case generation technique that is caused by the

interaction of two parameters-values. It covers the combination of two parameters-

values, therefore it generates the lower number of test cases compared to exhaustive

testing. Pairwise testing has its own procedures to perform it (Nie and Leung,

2011). In order to generate the test case, the modeling for SUT should be first

performed as a pre-process for it. It is a fundamental activity for pairwise testing as

the precise model will serve the right level of abstraction (Udai, 2014).

The quality of pairwise testing is directly dependent on the quality of the

model created (Staich and Rangarajan, 2016); Borazjany et al, 2013). This is

because the systematic model will cover the problem of managing the SUT

information, especially for a large system. One of the examples of the existing

problem such as incomplete data or manageable (that affect the time and cost of

testing) (Khalsa and Labiche, 2015). The information of SUT might be redundant

as the input of test cases generator. The incomplete input of test case generation

refers to some of the information which is left unwritten (missing information),

while unmanageable refers to the “messy” values of the parameter (lead to a wrong

place of value). Encountering the issue of unmanageable will make the program

unable to detect the failure of a system after generating the test case.

The flow of pairwise testing is manageable and understandable if the model

can be embedded with test case generation approach. The updating of the

parameters and values can be performed through the model only without disturbing

the hard code of test case generation algorithm. However, there is the lack of

4

approaches that embedded the modeling of SUT with test case generation

algorithm.

 The finding for a low number of test cases is the NP-complete problem as

there is no efficient way to find an optimal solution for it and the execution time to

generate the test cases increased due to the number of parameters and values (Patil

and Nikumbh, 2012). There is no best approach that can generate the test cases.

Furthermore, the issue of invalid combinations of values for all parameters is also

an important aspect to study. It can lead to faulty results in software testing. For

example, a Vegetable Lover value cannot combine with the Fried Chicken value.

It is obviously a wrong combination. This is also called as a constraint for pairwise

testing. Some of the existing approaches still do not cover this matter.

 There are many researchers who have conducted researches on pairwise

testing and many approaches have been proposed from time to time (Khalsa and

Labiche, 2014; Mudarakola and Padmaja, 2015; Parnami et al., 2012; Udai, 2014).

 Test case generation for pairwise testing can be classified into several

categories, namely mathematical approach, random approach, greedy approach,

search-based approach and hybrid approach (Sabharwal and Aggarwal, 2015).

However, each of these approaches has their own advantages and disadvantages.

This will be discussed in detail in the next chapter.

 For a general introduction, in the mathematical approach, the generation of

test cases is based on the mathematical solution. Unfortunately, they are not

generally applicable (Calvagna and Gargantini, 2009). Random search-based is

producing the solution by depending on the degree of randomness of approaches.

However, they did not cover the large or complex software system for pairwise

testing (Khatun et al., 2011). Greedy approach is generating test cases by covering

as many as possible the uncovered combinations. However, this category does not

always cater for the optimal solution (Calvagna and Gargantini, 2009). A hybrid-

approach is a combination of two or more approaches from any categories. The aim

5

of this approach-based is to enhance the existing approaches by combining their

advantages. However, these approaches may lead to high computational time.

 A search-based approach is one of the most emerging technologies for the

last 20 years (Nasser et al, 2015). This approach type applies the meta-heuristic

algorithm to solve software engineering problems. It has been widely used in many

activities of the software engineering lifecycle including in the test case generation

for pairwise testing. One of the highlights about this approach type is its ability to

find the minimal test suite (Nasser et al, 2015). The strategies for this approach type

is divided into two; single-solution based and population-based. The single-

solution based focuses on a local search where it only needs a limited amount of

memory for execution. However, this strategy is stuck in the local optimum

solution. On the other hand, population-based focuses on global search where it

reaches the global optimum solution. However, it requires heavy computational

effort. Therefore, it addresses a small configuration only (Harman and Jones,

2001).

 Another issue that is related to the search based approach is there are

prerequisites that need to be tuned (Nasser et al, 2015). For example, GA needs

tuning of mutation rate, crossover rate, number of iteration and population size.

Therefore, the researchers are contemplating the prerequisite free approaches for

pairwise testing. Although there are many studies that have successfully adopted

search-based approach for pairwise test case generation, there are many other

algorithms for search based that have not been adopted in this area (Nasser et al,

2015).

 Automating test case generation is a popular research topic that gains the

interest of many researchers. Recently, search-based approaches are the most

widely used methods in generating the test case automatically. Although there are

several approaches recently proposed for automating the generation of the test case,

the application of these approaches to find the optimal solution is still limited. The

optimal test cases set are obtained if their generated number is low. Besides, there

is a lack of automation approaches that embedded the modeling of SUT. Hence,

6

performing a study and proposing a search-based approach that can cover the

existing problems or issues in pairwise testing is needed.

1.3 Statement of the Problem

With the rapid development of technologies, many developers and testers

tend to use automated test case generation. It can simplify their work and help them

in terms of efficiency for the testing phase. Testing implementation using

automated software is the best solution especially for those who have a poor

command of programming languages and for beginner developers because it can

be used for many purposes or functionalities. However, different approaches have

different specific functionalities.

This research aims at investigating an automated-approach based on

Negative Selection (NSA) in generating the test cases with minimal numbers.

Before conducting the generation of test cases using NSA, the modeling of SUT

should be performed first. Based on the statement in the previous paragraph,

different model methods and test case generation approaches serve the different

purposes and functionalities. Therefore with this issue, research questions as

following are generated:

How to optimize the number of test cases for pairwise testing by using search-based

algorithm?

i. How to enhance the modeling of SUT for pairwise testing?

ii. How to improve a search based algorithm for pairwise testing?

iii. How to validate the proposed approach on optimizing the pairwise

testing?

7

1.4 Objectives

In order to achieve the goal of this research, 3 objectives have been defined.

The objectives are:

i. To enhance the classification tree method for modeling of pairwise

testing.

ii. To improve a search-based approach for optimizing the pairwise testing.

iii. To validate the proposed-approach toward optimizing the pairwise

testing.

1.5 Significance of the Research

The task of this research is to optimize the pairwise testing by reducing or

produces or generates the minimal number of test cases. Reduce the number of test

cases is important because low number of test cases to be executed lead to reducing

the total testing time (Borazjany et al, 2013). In order to perform the pairwise

testing, there are 2 things should be considered. Firstly, the modeling of SUT

should be done before generate the test cases (Udai, 2014). The second important

activity in pairwise testing is generating the test cases (Nie and Leung, 2011).

Hence, the study that is related to the existing works for these 2 activities can be

done to propose the approach to optimizing pairwise testing.

1.6 Scope of the Research

Although there are many techniques in combinatorial testing, this research

is focused on 2-way or pairwise testing only. It is the most popular technique in

combinatorial testing (Mudarakola and Padmaja, 2015). Since pairwise testing is a

black box testing, hence this research is only considering the modeling of SUT in

black box testing categories. Moreover, this research has proposed an algorithm

8

that falls under search based type for test case generation. Lastly, this research only

uses the experimental data set to compare and analyze the result of the proposed

approach to achieve the optimizing pairwise testing goal.

1.7 Organization of Thesis

A brief content description of the subsequent chapter is summarized as

below: Chapter 1 introduces the concept of this research in detail. It discusses the

background of the problem, statement of the problem, objectives, significant of the

study and an organization of thesis. Chapter 2 presents the introduction of pairwise

testing, and related works on this topic are also presented in this chapter. Chapter

3 presents the detailed description of the research workflows, which includes the

research framework and design. Chapter 4 presents the implementation of the

proposed approach. Chapter 5 discusses the analysis for result gained in Chapter 4

and Chapter 6 discusses the future work and conclusion.

110

REFERENCES

Ahmed, B. S., Abdulsamad, T. S., and Potrus, M. Y. (2015). Achievement of

Minimized Combinatorial Test Suite for Configuration-Aware Software

Function Testing Using The Cuckoo Search Algorithm. Information and

Software Technology 66 (2015) 13-29.

Ahmed, B. S., and Zamli, K. Z. (2011). The Development of A Particle Swarm

Based Optimization Strategy for Pairwise Testing. Journal of Artificial

Intelligence 4 (2): 156-165, 2011.

Alazzawi, A. K., Homaid, A. A. B., Alomouch, A. A., and Alsewari A. A. (2017).

Artificial Bee Colony Algorithm for Pairwise Test Generation. Journal of

Telecommunication, Electronic and Computer Engineering. vol. 9 no. 1-2.

Alsewari, A. R., Zamli, K. Z., and Kazemi, B. A. (2015). Generating T-way Test

Suite In The Presence of Constraints. Journal of Engineering and Technology.

Vol. 6 No. 2.

Alsewari, A. R., and Zamli, K. Z. (2012). Design and Implementation of A

Harmony-Search-Based Variable-Strength T-way Testing Strategy With

Constraints Support. Information and Software Technology 54 (6), Pp. 553-568.

Alsewari, A. R., and Zamli K. Z. (2011). Interaction Test Data Generation Using

Harmony Search Algorithm. IEEE Symposium on Industrial Electronics and

Application (ISIEA2011), September 25-28, 2011, Langkawi, Malaysia

Bach, J., and Schroeder, P. J. (2004). Pairwise testing - A best practice that isn’t.

In Proceedings of the 22nd Pacific Northwest Software Quality Conference.

180–196.

Bach, J. (2003). Allpairs. Retrieved on January 2018. Available online:

Satisfice.com

Bansal, P., Mittal, N., Sabharwal, A., and Koul, S. (2014) Integrating Greedy

Based Approach with Genetic Algorithm to Generate Mixed Covering Arrays

111

for Pair-wise Testing.The 7th International Conference on Contemporary

Computing, Noida.

Bansal, P., Sabharwal, S., Malik, S., Arora, V. and Kumar, V. (2013) An Approach

to Test Set Generation for Pair-Wise Testing Using Genetic Algorithms. Search

Based Software Engineering, Springer Berlin Heidelberg, Pp. 294-299.

Bao, X., Liu, S., Zhang, N., and Dong, M. (2015). Combinatorial Test Generation

Using Improved Harmony Search Algorithm. International Journal of Hybrid

Information Technology Vol. 8, No. 9, Pp. 121-130.

Boehm, B. W. (1984). Understanding and Controlling Software Costs. IEEE

Transactions on Software Engineering. Vol. 14 (Issue 10), Page 1462-1477.

Borazjany, M. N., Ghandehari, L. S., Lei, Y., Kacker, R., and Kuhn, R. (2013) An

input space modeling methodology for combinatorial testing. In Software

Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth

International Conference on, pp. 372-381.

Brcic, M., and Kalpic, D. (2012) Combinatorial testing in software projects. In

MIPRO, 2012 Proceedings of the 35th International Convention, pages 1508–

1513, 2012.

Byrce, R. C., and Colbourn C. J. (2007). The density algorithm for pairwise

interaction testing. Software Testing, Verification and Reliability (in Press).

Calvagna, A., and Gargantini A. (2009). IPO-s: Incremental generation of

combinatorial interaction test data based on symmetries of covering arrays.

IEEE International Conference on Software testing Verification and Validation

Workshops.

Chen, T. Y., Poonb, P.L., Tang, S. F., Tse, T.H. (2004). On the identification of

categories and choices for specification-based test case generation. Article in

Information and Software Technology 46 (13): 887–898

Chen, X., Gu, Q., Qi, J., and Chen, D. (2010). Applying Particle Swarm

Optimization to Pairwise Testing. 34th Annual IEEE Computer Software and

Applications Conference. China. 2010. Pp 107-116

Cohen, M. B., Gibson, P. B., Mugridge, W. B., and Colbourn, C. J. (2003).

Conctructing Test Suites for Interaction Testing. Proc. Of the 25th International

Conference on Software Engineering (ICSE ’99), pp. 285-94.

Cohen, M. B. (2004). Designing Test Suites for Software Interaction Testing. PHD

Thesis. University of Auckland.

112

Cui, Y., Li, L., and Yao, S. (2009). A New Strategy for Pairwise Test Case

Generation. 3rd International Symposium on Intelligent Information Technology

Application.

Czerwonka, J. (2016). Pairwise Testing Combinatorial Test Case Generation.

Retrieved on 16 March 2016. www.pairwise.org

Dasgupta, S., and Nino, F. (2008). Immunological Computation: Theory and

Applications, USA: CRC Press.

Do, T. B., Kitamura, T., Tang, N. V., Hatayama, G., Sakuragi, S., and Ohsaki, H.

(2013) Constructing test cases for N-wise testing from tree-based test models.

In Proc. of SoICT’13, pages 275–284. ACM.

Easterbrook, S., Sim, S., Perry, D., Aranda, J. (2006) Case Studies for Software

Engineers Tutorial. Proc. Of ICSE ́2006, Shanghai, Chin, May 2006.

Esfandyari, S., and Rafe V. (2018). A Tuned Version of Genetic Algorithm for

Efficient Test Suite Generation in Interactive T-way Testing Strategy.

Information and Software Technology 94 (2018) 165-185

Fan, P., Wang, S. and Sun, J. (2012). An Auto-Adapted Method to Generate

Pairwise Test Data Set. Artificial Intelligence and Computational Intelligence,

Springer Berlin Heidelberg, Pp. 239-246.

Flores, P., and Cheon, Y. (2011). PWiseGen: Generating Test Cases for Pairwise

Testing Using Genetic Algorithms. IEEE International Conference on Computer

Science and Automation Engineering (CSAE), Vol. 2, Pp. 747-752

Forrest, S., Alan S. P., Lawrence A., and Rajesh C. (1994). Self-Nonself

Discrimination in a Computer. Proceedings of the 1994 IEEE Symposium on

Security and Privacy, 16-18 May. Oakland, CA, USA: IEEE, Pp. 202-212.

Gao, S., Du, B., Jiang, Y., Lv, J., and Ma, S. (2014). An Efficient Algorithm for

Pairwise Test Case Generation in Presence of Constraints. 2nd International

Conference on Systems and Informatics. China. Pp 406-410.

Getty, S. R., Wilson C. D., Taylor J. A., and Kowalski S. M. (2002). Managing

Threats to Validity in Experimental Tests of Education In terventions: Data and

Evidence from A Large, Cluster-Randomized Trial (CRT) of A High School

Science Intervention. A Science Education Curriculum Study.

Grochtmann, M., Joachim, W., and Klaus, G. (1995) Test case design using

classification trees and the classification-tree editor CTE. In Proceedings of

Quality Week, vol. 95, p. 30.

113

Harman, M., and Jones, B. F. (2001) Search-based Software Engineering.

Information and Software Technology. Vol 43, Pp. 833-839

Idris, I., Selamat, A., Nguyen, N. T., Omatu, S., Krejcar O., Kuca, K. and Penhaker,

M. (2015). A Combined Negative Selection Algorithm- Particle Swarm

Optimization For An Email Spam Detection System. Journal of Engineering

Applications of Artificial Intelligence 39 Pp.33-44.

Idris, I., Selamat, A. and Omatu, S. (2014). Hybrid Email Spam Detection Model

With Negative Selection Algorithm and Differential Evolution. Engineering

Applications of Artificial Intelligence 28, Pp. 97-110.

Jenkins, B. (2005). Jenny Download Web Page. Retrieved on October 2017.

Available online: http://burtleburtle.net/bob/math/jenny.html

Jeong, O. (2012). A Practical Extension of Pairwise Testing. 23rd International

Symposium on Software Reliability Engineering Workshops.

Jia, M., and Shengyuan, W. (2014). An Improved Genetic Algorithm for Test Cases

Generation Oriented Paths. Chinese Journal of Electronics Vol. 23, No. 3.

Ji, Z., and Dasgupta, D. (2007). Revisiting Negative Selection Algorithms.

Evolutionary Computing 15(2): Pp. 223-251.

Khalsa, S. K., and Labiche, Y. (2014) An orchestrated survey of available

algorithms and tools for combinatorial testing. in 25th IEEE International

Symposium on Software Reliability Engineering, ISSRE 2014, Naples, Italy,

November 3-6, 2014, 2014, pp. 323–334.

Khatun, S., Rabbi, K.F., Yaakub, C.Y., and Klaib, M.F. (2011) A Random Search

Based Effective Algorithm for Pairwise Test Data Generation. International

Conference on Electrical, Control and Computer Engineering. 2011. Malaysia

and Jordan.

Kitamura, T., Yamada, A., Hatayama, G., Artho, C., Choi, E. H., Do, N. T. B.,

Oiwa, Y., Sakuragi, S. (2015). Combinatorial Testing for Tree-Structured Test

Models with Constraints. 2015 IEEE International Conference on Software

Quality, Reliability and Security. Pp 141-150

Kobayashi, N., Tsuchiya, T., and Kikuno, T. (2002). Non-specification-based

Approaches to Logic Testing for Software. Journal of Information and Software

Technology 44 (2), Pp. 113-121

Kuhn, R. (2016). Combinatorial Methods in Software Testing. Conference on

Applied Statistic in Defense. October 26.

114

Kruse, P. M. (2013). Enhanced Test Case Generation with the Classification Tree

Method. PHD Thesis

Kruse, P. M. and Wegener, J. (2012) Test Sequence Generation from Classification

Trees in Proceedings of ICST 2012 Workshops (ICSTW 2012),

Montreal,Canada, April 2012

Khatun, S., Rabbi, K. F., Yaakub, C. Y., and Klaib, M. F. J. (2011). A Random

Search Based Effective Algorithm for Pairwise Test Data Generation.

International Conference on Electrical, Control and Computer Engineering,

Pahang, Malaysia, June 21-22.

Khatun, S., Rabbi, K. F., Yaakub, C. Y., Klaib, M. F. J. and Mohammad Masroor

Ahmed (2011). PS2Way: An Efficient Pairwise Search Approach for Test Data

Generation. J. M. Zain et al. (Eds.): ICSECS 2011, Part III, CCIS 181, Pp. 99-

108. Springer-Verlag Berlin Heidelberg.

Kitamura, T., Yamada, A., Hatayama, G., Artho, C., Choi, E. H., Do, N. T. B.,

Oiwa, Y., and Sakuragi, S. (2015). Combinatorial Testing for Tree-Structured

Test Models with Constraints. IEEE International Conference on Software

Quality, Reliability and Security.

Kuhn, D. R., Kacker, R. N., and Lei, Y. (2013) Introduction to Combinatorial

Testing, 1st ed. Chapman & Hall/CRC, London, UK.

Kumar, R. and Singh, S. (2010) Breeding Software Test Cases for Pairwise Testing

Using GA. Global Journal of Computer Science and Technology, Vol. 10 Issue

4 Ver. 1.0.

Fan, P., Wang, S. and Sun, J. (2012) An Auto-Adapted Method to Generate

Pairwise Test Data Set. Berlin. Springer-Verlag. 2012. Pp. 239-246

Lei, Y., and Tai, K. C. (1998). In-Parameter-Order: A Test Generation Strategy

for Pairwise Testing”, Proc. 3rd IEEE International Symposium on High

Assurance Systems Engineering, pp. 254-261, Nov 1998.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V. and Lawrence, J. (2007) IPOG: A

General Strategy for T-way Software Testing. In Proceedings of the 14th Annual

IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems (ECBS’07). IEEE Computer Society, Los Alamitos,

CA, Pp. 549-556.

115

Li, X., Gao, R., Wong, W. E., Yang, C., and Li, D. (2016) Applying Combinatorial

Testing in Industrial Settings. IEEE International Conference on Software

Quality, Reliability and Security. 2016

Lott, C., Jain, A., and Dalal, S. (2005) Modeling Requirements for Combinatorial

Software Testing. SIGSOFT Softw. Engin. Notes 30, 4, 1-7

Marcos, E. (2005) Software engineering research versus software development,

ACM SIGSOFT Software Engineering Notes, v.30 n.4.

Mats, G,. and Offutt, J. (2007) Input Parameter Modeling for Combination

Strategies. Proceedings of the 25th Conference on IASTED International Multi-

Conference (SE’07). ACTA Press, 255-260

McCaffrey, J. D. (2010) An Empirical Study of Pairwise Test Set generation using

A Genetic Algorithm. Seventh International Conference on Information

Technology. 2010. Washington, United State. Pp 992-997

McCaffrey, J. D. (2009) Generation of Pairwise Test Sets Using A Genetic

Algorithm. 33rd Annual IEEE International Computer Software and Applications

Conference.

McCaffrey, J. D. (2009) Generation of Pairwise Test Sets Using A Simulated Bee

Colony Algorithm. IEEE IRI 2009, July 10-12, 2009, Las Vegas, Nevada, USA.

Mills, D.L. (2008). Testing for Web Applications. USA: University of Memphis.

Mohd Ehmer Khan (2010) Different Forms of Software Testing Techniques for

Finding Errors. IJCSI International Journal of Computer Science Issues,Vol. 7,

Issue 3, No 1, May 2010.

Mohd Ehmer Khan & Farmeena Khan. (2012). A Comparative Study of White

Box, Black Box and Grey Box Testing Techniques. International Journal of

Advanced Computer Science and Applications, 3(6), 12–15.

https://doi.org/10.1017/CBO9781107415324.004

Mohammod Abul Kashem and Mohammad Naderuzzaman (2013). An Enhanced

Pairwise Search Approach for Generating Optimum Number of Test Data and

Reduce Execution Time. Journal of Computer Engineering and Intelligent

Systems, Vol. 4, No. 1.

Mudarakola, L. P., and Padmaja, M. (2015). The Survey on Artificial Life

Techniques for Generating the Test Cases for Combinatorial Testing.

International Journal of Research Studies in Computer Science and Engineering

(IJRSCSE) Vol. 2, Issue 6. June 2015. Pp. 19-26

http://dl.acm.org/citation.cfm?id=1083005&CFID=875857895&CFTOKEN=77214181
http://dl.acm.org/citation.cfm?id=1083005&CFID=875857895&CFTOKEN=77214181

116

Mudarakola, L. P., Sastry, J., and Vudatha, C. P. (2014). Generating Test Cases for

Testing WEB Sites Through Neural Networks and Input Pairs. International

Journal of Applied Engineering Research Vol. 9, No. 22. Pp. 11819-11831.

Mustafa, Mohi-Aldeen S., Mohamad, R. and Deris, S. (2016). Application of

Negative Selection Algorithm (NSA) for Test Data Generation of Path Testing.

Applied Soft Computing Journal.

Nanba, T., Tsuchiya, T., and Kikuno, T. (2011) Constructing Test Sets for Pairwise

Testing: A SAT-Based Approach. 2nd International Conference on Networking

and Computing.

Nasser, A. B., Alsewari, A. A., and Zamli, K. Z. (2015) Adopting Search-Based

Algorithms for Pairwise Testing. 4th International Conference on Software

Engineering and Computer Systems (ICSECS), Kuantan, Pahang, Malaysia.

August 2015.

Nasser, A. B., Sariera, Y. A., Alsewari, A. R. A., and Zamli, K. Z. (2015). A Cuckoo

Search Based Pairwise Strategy For Combinatorial Testing Problem. Journal

of Theoretical and Applied Information Technology. Vol. 82. No 1.

Nasser, A. B., Sariera, Y. A., Alsewari, A. R. A., and Zamli, K. Z. (2015). Assessing

Optimization Based Strategies for t-way Test Suite Generation: The Case for

Flower-based Strategy. IEEE International Conference on Control System,

Computing and Engineering, 27-29 November 2015, Penang, Malaysia.

Nasser, A. B., Alsewari A. A, Tairan N. M. and Zamli K. Z. (2017). Pairwise Test

Data Generation Based on Flower Pollination Algorithm. Malaysia Journal of

Computer Science vol 30(3).

Nguyen, V. T., Nguyen, T. T., Mai, K. T. and Le, T. D. (2014). A Combination of

Negative Selection Algorithm and Artificial Immune Network for Virus

Detection. T. K. Dang et al. (Eds.): FDSE 2014, LNCS 8860, Pp. 97-1-6.

Springer International Publishing Switzerland 2014.

Nidhra, S., and Dondeti, J. (2012) Black Box and White Box Testing Techniques- A

Literature Review. International Journal of Embedded Systems and Applications

(IJESA) Vol. 2, No. 2, June 2012.

Nie, C., and Leung, H. (2011). A Survey of Combinatorial Testing. ACM

Computing Surveys, Vol. 43, No. 2, Article 11. January 2011.

117

Ostrand, T. J., and Balcer, M. J. (1988). The Category-Partition Method for

Specifying and Generating Functional Tests. Communications of the ACM.

Volume 32 (6), Pp. 676-686.

Patil, M., and Nikumbh, P. J. (2012). Pair-wise Testing Using Simulated

Annealing. Proceedings 2nd International Conference on Computer,

Communication, Control and Information Technology (C3IT-2012), Feb. 2012,

Pp. 25-26.

Parnami, S., Sharma, K. S. and Chande, S. V. (2012). A Survey on Generation of

Test Cases and Test Data Using Artificial Intelligence Techniques. Proceeding

of the International Conference on Advances in Computer Science and

Electronics Engineering.

Purohit, P., and Khan, Y. (2015) An Automated Sequence Model Testing (ASMT)

For Improved Test Case Generation Using Cloud Integration. (IJCSIT)

International Journal of Computer Science and Information Technologies, Vol.

6 (1) , 2015, 488-494

Qi, R., Wang, Z., Ping, P., and Li, S. (2015) A Hybrid Optimization Algorithm for

Pairwise Test Suite Generation. International Conference on Information and

Automation Lijiang, China, August 2015.

Rabbi, K., Islam, R., Quazi, M., and Kaosar, M. G. (2014). MTTG: An Efficient

Technique for Test Data Generation. 8th International Conference on Software,

Knowledge, Information Management and Applications (SIKMA).

Rabbi, K., Mamun, Q. and MD Rafiqul Islam MD. (2015) An Efficient Particle

Swarm Intelligence Based Strategy to Generate Optimum Test Data in T-way

Testing. IEEE.

Rahman, M., Othman, R. R., Ahmad, R. B., and Rahman, M. M. (2015) Event

Driven Input Sequence T-way Test Strategy Using Simulated Annealing. 5th

International Conference on Intelligent Systems, Modelling and Simulation.

2015

Rahnamoun, R. (2013). Distributed Black-Box Software Testing Using Negative

Selection. International Journal of Smart Electric Engineering 2 (2013), Pp. 151-

157

Sabharwal, S., Aggorwal, M. (2016). A Novel Approach for Deriving Interactions

for Combinatorial Testing. Engineering Science and Technology.

118

Sabharwal, S., and Aggarwal M. (2015) Test Set Generation for Pairwise Testing

Using Genetic Algorithms. Journal of Information Processing Systems.

Sabharwal, S., and Aggarwal M. (2015). Variable Strength Interaction Test Set

Generation Using Multi Objective Genetic Algorithms. International

Conference on Advances in Computing, Communications and Informatics

(ICACCI).

Satish, P., and Rangarajan, K. (2016) A Preliminary Survey of Combinatorial Test

Design Modeling Methods. International Journal Of Scientific & Engineering

Research, Volume 7, Issue 7, July-2016. Pp 1455-1459

Satish, P., Sheeba, K. and Rangarajan, K. (2013) Deriving combinatorial test

design model from UML activity diagram. In Software Testing, Verification and

Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on,

pp. 331-337. IEEE.

Satish, P., Paul, A., Rangarajan, K. (2014). Extracting the Combinatorial Test

Parameters and Values from UML Sequence Diagrams. IEEE International

Conference on Software Testing, Verification, and Validation Workshops. Pp.

88-97

Sawant, A. A., Bari, P. H. and Chawan, P. M. (2012) Software Testing Techniques

and Strategies. International Journal of Engineering Research and Applications

(IJERA). Vol. 2, Issue 3, May-Jun 2012, Pp. 980-986

Shiba, T., Tsuchiya, T., and Kikuno, T. (2004). Using Artificial Life Techniques to

Generate Test Cases for Combinatorial Testing. in 28th Annual International

Computer Software Applications Conference, vol. 1, Hong Kong, pp 72-77.

Srikanth, A., Kulkarni, N. J., Naveen, K. V., Singh, P. and Srivastava, P. R. (2011).

Test Case Optimization Using Artificial Bee Colony Algorithm. A. Abraham et

al. (Eds.): ACC 2011, Part III, CCIS 192, Pp. 570-579. Springer-Verlag Berlin

Heidelberg.

Sun, J. Z., and Wang, S. Y. (2012). Generation of Pairwise Testing Test Sets using

Novel DPSO Algorithm. Y. Yang and M. Ma(eds.) Green Communications and

Networks. LNEE, Vol. 113, Pp. 479-487. Springer, Heidelberg.

Syed Roohullah Jan, Syed Tauhid Ullah Shah, Zia Ullah Johar, Yasin Shah, and

Fazlullah Khan (2016). An Innovative Approach to Investigate Various Software

Testing Techniques and Strategies. IJSRSET. Vol 2, Issue 2, March-April 2016.

Pp. 682-689.

119

Taylor, D. W. and Corne, D. W. (2003). An Investigation Into Negative Selection

Algorithm for Fault Detection In Refrigeration Systems. In: Artificial Immune

Systems: Proceedings of ICARIS 2003, Springer, 2003, Pp. 34-45.

Trivedi, A. H. (2012). Software Testing Techniques. International Journal of

Advanced Research in Computer Science and Software Engineering

(IJARCSSE). Vol 2, Issue 10, October. Pp. 433-439

Udai, S. (2014) A Literature Survey on Combinatorial Testing. International

Journal of Advanced Research in Computer Science and Software Engineering.

Volume 4, Issue 4, April 2014, Pp 932-936. IJARCSSE

Wang, H., Gao, X. Z., Huang, X. and Song, Z. (2009). PSO-Oprimized Negative

Selection Algorithm for Anomaly Detection. E. Avineri et al. (Eds.):

Applications of Soft Computing, ASC 52, Pp. 13-21. Springer-Verlag Berlin

Heidelberg.

Whittaker, J.A. (2000) What is software testing? And why is it so hard? Software,

IEEE. 2000. 17 (1): 70-79.

Williams, A. W., and Probert R. L. (2000). A practical strategy for testing pair-

wise coverage of network interfaces. Proceedings of the 7th International

Symposium on Software Reliability Engineering, San Jose, CA, 2000. IEEE

Computer Society Press:Piscataway, NJ, 2000; 246–254.

Wu, H., and Nie, C. (2014) An Overview of Search Based Combinatorial Testing.

in Proceedings of the 7th International Workshop on Search-Based Software

testing, SBST 2014, New York, NY, USA, 2014, ACm, Pp. 27-30

Xiang, L. Y., Alsewari, A. R. A. and Zamli, K. Z. (2015) Pairwise Test Suite

Generator Tool Based On Harmony Search Algorithm (HS-PTSGT).

International Journal on Artificial Intelligence, Vol. 2, Feb 2015.

Yamada, A., Biere, A., Artho, C., Kitamura, T. and Choi, E. H., (2016). Greedy

Combinatorial Test Case Generation using Unsatisfiable Cores. International

Conference on Automated Software Engineering.

Yamada, A., Kitamura, T., Artho, C., Choi E. H. and Oiwa Y. (2015). Optimization

of Combinatorial Testing by Incremental SAT Solving. 8th IEEE International

Conference on Software Testing, Verification and Validation, ICST 2015, Graz,

Austria, April 13-17, 2015. Pp. 1-10.

Yang, S., Man, T. and Xu, J. (2014). Improve Ant Algorithms for Software Testing

Cases Generation. The Scientific World Journal Vol. 2014, Article ID 392309

120

Yu, L., Lei, Y., Nourozborazjany, M., Kacker R. and Kuhn, D. R. (2013) An

Efficient Algorithm for Constraint Handling in Combinatorial Test Generation.

IEEE Sixth International Conference on Software Testing, Verification and

Validation. 2013. USA. Pp 242-251

Zakaria, H. L., and Zamli, K. Z (2015). Migrating Birds Optimization Based

Strategies for Pairwise Testing. 9th Malaysian Software Engineering

Conference, Dec 2015.

Zhang, Z., Yan, J., Zhao, Y., and Zhang, J. (2014). Generating Combinatorial Test

Suite Using Combinatorial Optimization. The Journal of Systems and Software.

Pp. 191-207

