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ABSTRACT 

Generating the test cases for analysis is an important activity in software 

testing to increase the trust level of users. The traditional way to generate test cases 

is called exhaustive testing. It is infeasible and time consuming because it generates 

too many numbers of test cases. A combinatorial testing was used to solve the 

exhaustive testing problem. The popular technique in combinatorial testing is 

called pairwise testing that involves the interaction of two parameters. Although 

pairwise testing can cover the exhaustive testing problems, there are several issues 

that should be considered. First issue is related to modeling of the system under test 

(SUT) as a preprocess for test case generation as it has yet to be implemented in 

automated proposed approaches. The second issue is different approaches generate 

different number of test cases for different covering arrays. These issues showed 

that there is no one efficient way to find the optimal solution in pairwise testing 

that would consider the invalid combination or constraint. Therefore, a combination 

of Classification Tree Method and Negative Selection Algorithm (CTM-NSA) was 

developed in this research. The CTM approach was revised and enhanced to be 

used as the automated modeling and NSA approach was developed to optimize the 

pairwise testing by generate the low number of test cases. The findings showed that 

the CTM-NSA outperformed the other modeling method in terms of easing the 

tester and generating a low number of test cases in the small SUT size. Furthermore, 

it is comparable to the efficient approaches as compared to many of the test case 

generation approaches in large SUT size as it has good characteristic in detecting 

the self and non-self-sample. This characteristic occurs during the detection stage 

of NSA by covering the best combination of values for all parameters and considers 

the invalid combinations or constraints in order to achieve a hundred percent 

pairwise testing coverage. In addition, validation of the approach was performed 

using Statistical Wilcoxon Signed-Rank Test. Based on these findings, CTM-NSA 

had been shown to be able perform modeling in an automated way and achieve the 

minimum or a low number of test cases in small SUT size. 
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ABSTRAK 

Menghasilkan kes ujian adalah aktiviti penting dalam pengujian perisian 

untuk meningkatkan tahap kepercayaan pengguna. Cara tradisional untuk 

menghasilkan kes ujian ialah ujian menyeluruh.  Ujian ini sukar untuk dilaksanakan 

dan menelan masa yang banyak kerana menghasilkan banyak nombor kes ujian. 

Ujian kombinasi telah diwujudkan untuk menyelesaikan masalah ujian 

menyeluruh. Teknik ujian kombinasi yang digemari adalah ujian berpasangan yang 

melibatkan interaksi antara dua parameter. Walaupun ujian kombinasi mengatasi 

masalah ujian menyeluruh, namun terdapat beberapa isu yang perlu diambilkira. 

Isu pertama ialah berkaitan dengan permodelan sistem di bawah ujian (SUT) 

sebagai pra proses untuk penghasilan kes ujian secara automatik. Isu kedua adalah 

pendekatan berbeza menghasilkan bilangan kes ujian yang berbeza bagi 

tatasusunan yang berlainan. Isu ini menunjukkan bahawa tiada cara yang efisien 

untuk mencari penyelesaian optimum yang juga mempertimbangkan gabungan 

atau kekangan yang tidak sah. Oleh itu, kombinasi Kaedah Pokok Klasifikasi dan 

Algorithma Pemilihan Negatif (CTM-NSA) telah dibangunkan dalam kajian ini. 

Pendekatan CTM telah dipelajari dan dipertingkatkan untuk dijadikan permodelan 

automatik dan pendekatan NSA dibangunkan untuk mengoptimumkan ujian 

berpasangan. Hasil kajian mendapati bahawa CTM-NSA dapat mengatasi kaedah 

model lain dalam menyenangkan penguji dan menghasilkan sedikit bilangan kes 

ujian untuk saiz SUT kecil dan juga setanding dengan pendekatan lain dalam saiz 

SUT besar kerana mempunyai ciri-ciri mengesan sampel diri dan bukan diri. Ciri-

ciri ini berlaku di peringkat pengesanan NSA yang merangkumi kombinasi nilai-

nilai terbaik bagi semua parameter dengan menganggap kombinasi atau kekangan 

yang tidak sah dalam mencapai 100 peratus liputan ujian berpasangan. Pengesahan 

pendekatan ini menggunakan Ujian Statistik Wilcoxon Signed-Rank. Berdasarkan 

hasil kajian ini, CTM-NSA mampu melakukan pemodelan secara automatik dan 

menghasilkan kes ujian minimum atau rendah untuk saiz SUT yang kecil. 
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CHAPTER 1 

INTRODUCTION 

1.1  Overview 

Nowadays, the rapid developments of intelligence technologies grow as the 

demand grows. They put their trust on those technologies. For example, the web 

system such as food delivery website let people order their meal through the 

website without going to the restaurant. Technology has made life simpler and 

more convenient because this matter will save their time when doing important 

work. For an embedded system such as an airplane system, 100% assurance is 

needed as they are used to carry many lives in them. However, the question is how 

many people can put their trust on those technologies? Therefore, software testing 

is one of the important activities that should be performed in order to gain and 

present the software trustworthiness.  

Software testing consists of black box testing and white box testing (Khalsa 

and Labiche, 2014). A black box is focused on external behavior or functionality 

while a white box is focused on internal implementation of software. In order to 

conduct software testing, the test cases should be ready first. This activity falls into 

black box testing where it involves the specification only. The traditional way to 

generate the test cases is called exhaustive testing. Exhaustive testing is used to 

produce the test suite that will be used in other testing types such as unit testing, 

system testing, integration testing and acceptance testing. The example of how to 

conduct the exhaustive testing is as following; Assume that the parameters are A, 

B, and C. The values are as stated; A= (a1, a2), B= (b1, b2), C= (c1, c2, c3). The 
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number of test cases generated through this method will be 2x3x2= 12 tests; as 

shows in the figure below.  

 

Figure 1.1 Generated test cases for exhaustive testing 

 However, the issues or problems with exhaustive testing are discovered 

when it comes to large or complex software systems. The popular issue of 

exhaustive testing is costly and time-consuming (Purohit and Khan, 2015). Imagine 

if this research has a large number of parameters and values, it may generate about 

thousands of test cases. Therefore, the combinatorial testing (CT) is proposed to 

solve the exhaustive testing problem. 

CT is the black box type of testing (Brcic and Kalpic, 2012) (Mudarakola 

and Padmaja, 2015). It can provide a better way for test cases generation. It can 

reduce the cost of testing and save the testing time to increase its effectiveness 

(Borazjany et al, 2013); (Kitamura et al, 2015); (Nie and Leung, 2011); (Brcic and 

Kalpic, 2012); (Patil and Nikumbh, 2012). There are many techniques involve in 

CT. CT consists of one technique that is called t-way testing. This technique is a 

popular research area among researchers (Kitamura et al, 2015). It requires all 

combinations of values of t-parameter that are at least tested once. There are six 

types of t-way testing, which are 1-way, 2-way, 3-way, 4-way, 5-way and 6-way 

(Kuhn et al, 2013). Among these t-way types, 2-way is the wild technique in CT 

problems (Mudarakola and Padmaja, 2015) (Bach and Schroeder, 2004). 2-way 

testing is called Pairwise Testing. It is used to decrease the number of test cases or 

test suite generated, where it considers all interaction of two factors the most (Xiang 

et al, 2015). This means that they detect the constraint or problem between the 
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interactions of two parameters. The aim of this pairwise testing is to cover every 

pair of options in testing. Every pair of options must occur at least once and may 

occur more than once (Kuhn, 2013). The other advantages of pairwise testing are 

easy to manage and executed by testers (Bach and Schroeder, 2004).  

1.2  Problem Background 

 Pairwise testing is a test case generation technique that is caused by the 

interaction of two parameters-values. It covers the combination of two parameters-

values, therefore it generates the lower number of test cases compared to exhaustive 

testing. Pairwise testing has its own procedures to perform it (Nie and Leung, 

2011). In order to generate the test case, the modeling for SUT should be first 

performed as a pre-process for it. It is a fundamental activity for pairwise testing as 

the precise model will serve the right level of abstraction (Udai, 2014).  

The quality of pairwise testing is directly dependent on the quality of the 

model created (Staich and Rangarajan, 2016); Borazjany et al, 2013). This is 

because the systematic model will cover the problem of managing the SUT 

information, especially for a large system. One of the examples of the existing 

problem such as incomplete data or manageable (that affect the time and cost of 

testing) (Khalsa and Labiche, 2015). The information of SUT might be redundant 

as the input of test cases generator. The incomplete input of test case generation 

refers to some of the information which is left unwritten (missing information), 

while unmanageable refers to the “messy” values of the parameter (lead to a wrong 

place of value). Encountering the issue of unmanageable will make the program 

unable to detect the failure of a system after generating the test case.  

The flow of pairwise testing is manageable and understandable if the model 

can be embedded with test case generation approach. The updating of the 

parameters and values can be performed through the model only without disturbing 

the hard code of test case generation algorithm. However, there is the lack of 
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approaches that embedded the modeling of SUT with test case generation 

algorithm. 

 The finding for a low number of test cases is the NP-complete problem as 

there is no efficient way to find an optimal solution for it and the execution time to 

generate the test cases increased due to the number of parameters and values (Patil 

and Nikumbh, 2012). There is no best approach that can generate the test cases. 

Furthermore, the issue of invalid combinations of values for all parameters is also 

an important aspect to study. It can lead to faulty results in software testing. For 

example, a Vegetable Lover value cannot combine with the Fried Chicken value. 

It is obviously a wrong combination. This is also called as a constraint for pairwise 

testing. Some of the existing approaches still do not cover this matter.  

 There are many researchers who have conducted researches on pairwise 

testing and many approaches have been proposed from time to time (Khalsa and 

Labiche, 2014; Mudarakola and Padmaja, 2015; Parnami et al., 2012; Udai, 2014). 

 Test case generation for pairwise testing can be classified into several 

categories, namely mathematical approach, random approach, greedy approach, 

search-based approach and hybrid approach (Sabharwal and Aggarwal, 2015). 

However, each of these approaches has their own advantages and disadvantages. 

This will be discussed in detail in the next chapter.  

 For a general introduction, in the mathematical approach, the generation of 

test cases is based on the mathematical solution. Unfortunately, they are not 

generally applicable (Calvagna and Gargantini, 2009). Random search-based is 

producing the solution by depending on the degree of randomness of approaches. 

However, they did not cover the large or complex software system for pairwise 

testing (Khatun et al., 2011). Greedy approach is generating test cases by covering 

as many as possible the uncovered combinations. However, this category does not 

always cater for the optimal solution (Calvagna and Gargantini, 2009). A hybrid-

approach is a combination of two or more approaches from any categories. The aim 
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of this approach-based is to enhance the existing approaches by combining their 

advantages. However, these approaches may lead to high computational time.  

 A search-based approach is one of the most emerging technologies for the 

last 20 years (Nasser et al, 2015). This approach type applies the meta-heuristic 

algorithm to solve software engineering problems. It has been widely used in many 

activities of the software engineering lifecycle including in the test case generation 

for pairwise testing. One of the highlights about this approach type is its ability to 

find the minimal test suite (Nasser et al, 2015). The strategies for this approach type 

is divided into two; single-solution based and population-based. The single-

solution based focuses on a local search where it only needs a limited amount of 

memory for execution. However, this strategy is stuck in the local optimum 

solution. On the other hand, population-based focuses on global search where it 

reaches the global optimum solution. However, it requires heavy computational 

effort. Therefore, it addresses a small configuration only (Harman and Jones, 

2001). 

 Another issue that is related to the search based approach is there are 

prerequisites that need to be tuned (Nasser et al, 2015). For example, GA needs 

tuning of mutation rate, crossover rate, number of iteration and population size. 

Therefore, the researchers are contemplating the prerequisite free approaches for 

pairwise testing. Although there are many studies that have successfully adopted 

search-based approach for pairwise test case generation, there are many other 

algorithms for search based that have not been adopted in this area (Nasser et al, 

2015).  

 Automating test case generation is a popular research topic that gains the 

interest of many researchers. Recently, search-based approaches are the most 

widely used methods in generating the test case automatically. Although there are 

several approaches recently proposed for automating the generation of the test case, 

the application of these approaches to find the optimal solution is still limited. The 

optimal test cases set are obtained if their generated number is low. Besides, there 

is a lack of automation approaches that embedded the modeling of SUT. Hence, 
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performing a study and proposing a search-based approach that can cover the 

existing problems or issues in pairwise testing is needed.  

1.3 Statement of the Problem  

With the rapid development of technologies, many developers and testers 

tend to use automated test case generation. It can simplify their work and help them 

in terms of efficiency for the testing phase. Testing implementation using 

automated software is the best solution especially for those who have a poor 

command of programming languages and for beginner developers because it can 

be used for many purposes or functionalities. However, different approaches have 

different specific functionalities.  

This research aims at investigating an automated-approach based on 

Negative Selection (NSA) in generating the test cases with minimal numbers. 

Before conducting the generation of test cases using NSA, the modeling of SUT 

should be performed first. Based on the statement in the previous paragraph, 

different model methods and test case generation approaches serve the different 

purposes and functionalities. Therefore with this issue, research questions as 

following are generated: 

How to optimize the number of test cases for pairwise testing by using search-based 

algorithm? 

i. How to enhance the modeling of SUT for pairwise testing? 

ii. How to improve a search based algorithm for pairwise testing? 

iii. How to validate the proposed approach on optimizing the pairwise 

testing? 
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1.4  Objectives 

In order to achieve the goal of this research, 3 objectives have been defined. 

The objectives are: 

 

i. To enhance the classification tree method for modeling of pairwise 

testing.  

ii. To improve a search-based approach for optimizing the pairwise testing. 

iii. To validate the proposed-approach toward optimizing the pairwise 

testing.  

 

1.5  Significance of the Research 

The task of this research is to optimize the pairwise testing by reducing or 

produces or generates the minimal number of test cases. Reduce the number of test 

cases is important because low number of test cases to be executed lead to reducing 

the total testing time (Borazjany et al, 2013). In order to perform the pairwise 

testing, there are 2 things should be considered. Firstly, the modeling of SUT 

should be done before generate the test cases (Udai, 2014). The second important 

activity in pairwise testing is generating the test cases (Nie and Leung, 2011). 

Hence, the study that is related to the existing works for these 2 activities can be 

done to propose the approach to optimizing pairwise testing. 

1.6  Scope of the Research 

Although there are many techniques in combinatorial testing, this research 

is focused on 2-way or pairwise testing only. It is the most popular technique in 

combinatorial testing (Mudarakola and Padmaja, 2015). Since pairwise testing is a 

black box testing, hence this research is only considering the modeling of SUT in 

black box testing categories. Moreover, this research has proposed an algorithm 
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that falls under search based type for test case generation. Lastly, this research only 

uses the experimental data set to compare and analyze the result of the proposed 

approach to achieve the optimizing pairwise testing goal. 

1.7   Organization of Thesis 

A brief content description of the subsequent chapter is summarized as 

below: Chapter 1 introduces the concept of this research in detail. It discusses the 

background of the problem, statement of the problem, objectives, significant of the 

study and an organization of thesis. Chapter 2 presents the introduction of pairwise 

testing, and related works on this topic are also presented in this chapter. Chapter 

3 presents the detailed description of the research workflows, which includes the 

research framework and design. Chapter 4 presents the implementation of the 

proposed approach. Chapter 5 discusses the analysis for result gained in Chapter 4 

and Chapter 6 discusses the future work and conclusion. 
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