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ABSTRACT 

Nephrolithiasis is the process of forming stone in the kidney by 

crystallization. Due to the increasing prevalence of nephrolithiasis from time to time, 

medical institutions look for more advanced technology of medical imaging which 

can tackle the disadvantages of current medical imaging devices for renal, which are 

non-invasive, free radiation and rapid use. The research encompassed the design 

simulation study of Magnetic Induction Tomography (MIT) system for renal 

screening by using COMSOL multiphysics. MIT is a soft field tomography and a 

non-contact imaging modality used to image the passive electromagnetic properties 

(conductivity, permittivity and permeability) by applying principle of 

electromagnetic induction. In this research, 8 copper trans-receiver coils were 

employed in the MIT system and fixed by the insulation belt. Meanwhile, geometric 

set-up of renal organ imitates the transverse section at renal level of human body. 

Sensor performance analysis of MIT system was done based on various frequency 

and radius of calcium oxalate inside kidneys. In conclusion, frequency and radius of 

calcium oxalate affect the sensitivity performance of MIT system and has inverse 

relationship with sensitivity performance.  
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ABSTRAK 

Batu karang adalah proses pembentukan batu di buah pinggang dengan 

proses penghabluran. Disebabkan peningkatan kes batu karang dari semasa ke 

semasa, sektor perubatan berusaha untuk mencipta teknologi pengimejan yang lebih 

canggih yang dapat menangani kekurangan teknologi pengimejan yang terkini untuk 

buah pinggang, iaitu yang bersifat tidak invasif, tiada radiasi dan pantas. Kajian ini 

merangkumi kajian simulasi rekabentuk Sistem Tomografi Magnetik Induksi (TMI) 

bagi pemeriksaan buah pinggang dengan menggunakan COMSOL Multiphysics. TMI 

dikategorikan sebagai medan lembut dan teknologi tiada sentuhan yang 

menggambarkan sifat elektromagnet pasif (kekonduksian, ketelusan dan 

kebolehtelapan) dengan menggunakan prinsip induksi elektromagnetik. Dalam kajian 

ini, 8 gegelung penerima tembaga elektronik telah digunakan dalam sistem TMI 

yang dipasang pada tali pinggang penebat. Sementara itu, simulasi geometri buah 

pinggang direka berdasarakan buah pinggang sebenar manusia. Analisis prestasi 

kepekaan sistem TMI dilakukan berdasarkan variasi gelombang dan radius kalsium 

oksalat di dalam buah pinggang. Kesimpulannya, gelombang dan radius kalsium 

oksalat mempengaruhi prestasi kepekaan sistem TMI dan mempunyai hubungan 

terbalik dengan prestasi kepekaan. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Background 

  Tomography is originally derived from the Greek word, it brings the 

meaning of ‘slice’ or ‘section’. The evolution of tomography started as Conrad 

Röntgen discovered the X-ray in 1895. The X-ray was found to be able to project the 

internal image of human body. Soon after the discovery, the need of tomography in 

medical line had been given more attention as it offers many advantages [1]. 

Tomography technology reduces cost of medication and risk of infection as it can 

diagnose the illness of patient without the need of dissecting the patient body 

anatomically.  

Nephrolithiasis is the process of forming stone in the kidney by precipitation 

or crystallization [2]. In the paper, Sreenevasan, G analysed that the occurrence of 

nephrolithiasis in peninsular Malaysia had increased linearly from 1962 to 1981 from 

around 225 cases to 425 cases per 100,00 people [3]. It was observed too, that male 

has higher tendency to develop nephrolithiasis compared to female which is much 

more related to diet of male group which favour more on protein-based diet [3–5].  

Due to the increasing prevalence of nephrolithiasis from time to time, 

medical institutions look for more advanced technology of medical imaging which 

can tackle the disadvantage of current medical imaging devices such as Computed 

Tomography (CT) scanner, ultrasound and Magnetic Resonance Imaging (MRI). CT 

scanner is limited to pregnant woman as it projects X-ray which is harmful to the 

development of fetus in mother’s womb [6]. Ultrasound which produces heat can 

give thermal effect to the patients if used rapidly in long time [7]. Meanwhile, MRI 

consumes long time for each session of imaging to complete [8].  
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Thus, in this thesis, Magnetic Induction Tomography (MIT) simulation study 

had been studied to tackle all the mentioned disadvantages of current medical 

imaging devices. 

1.2 Problem Statement 

Current medical imaging devices used for renal screening have respective 

limitations. In instance, CT scanner cannot done on pregnant woman or children as it 

projects radioactive substances which can kill or mutate living cells.  

Ultrasound which produces heat can cause skin inflammation due to thermal 

effects which are directly applied on skin. Patients with sensitive skin, such as 

rashes, deep wound etc, are not advised to use ultrasound as screening method. 

MRI takes long time to screen patient which is time ineffective for medical 

sector, other than gives difficulties to claustrophobic patient as patient needs to be 

placed inside the capsule for long time. Due to its time ineffective and limited 

number of device in hospital, many patients have to wait for their scheduled session 

before their turn to be screened. 

Other than that, there is none from previous reseaches on MIT had been done 

in the application for renal screening. Lack of research input gives gaps of research 

and difficulties in developing MIT system (hardware). 

As the prevalence of nephrolithiasis cases that keep increasing from time to 

time, a newer and more advanced medical imaging devices for renal screening need 

to be produced which are convenience to all kinds of people and more time effective.   
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1.3 Research Objectives 

The objectives of the research are: 

i. To design sensor configuration of an 8 electrode channel MIT. 

ii. To analyze the sensor performance of 8 electrode channel MIT for renal 

screening using Finite Element Method (FEM). 

1.4 Research Scope 

In fulfilling the objective i, the research encompassed the design of transverse 

section of renal organ of human and sensor configuration of an 8 electrode channel 

MIT. The passive electrical properties (permittivity, permeability and conductivity) 

of transverse section of renal organ and the 8 electrode channel MIT were then fully 

defined respectively. 

Meanwhile, in order to fulfil the objective ii, the study simulation of 8 

electrode channel MIT on renal were done by changing the manipulated variables 

(frequencies of MIT and radii of kidney stone). The frequencies of MIT were set 

from 50KHz, 100KHz, 500KHz, 1MHz, 1.5MHz and 2MHz. Meanwhile, the radii of 

kidney stone ranged from 0.000cm to 0.030cm with increment of 0.003cm of interval 

for each study simulation. The analyses of sensor performances of MIT were done 

based on the graphs’ trends of sensitivity value. 

1.5 Significant of Research 

MIT had been used in various applications either in geophysics [9,10], 

industrial processes [11,12] and biomedical applications [10,13,14]. Focusing in 

biomedical application alone, researches on  MIT only been done on lungs [10], liver 
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[15], heart [16], heart [16], brain [9,17–20], and cancer cell [9], which all these will 

be further discussed in Chapter 2.  

Research of MIT for renal screening had never been done before. By 

employing this study simulation, this study could give insight for researchers to 

develop the hardware of MIT for renal screening application based on the results of 

MIT sensor performance. 

. 
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