

.

A STUDY OF TEST CASE PRIORITIZATION TECHNIQUE BASED ON

STRING DISTANCE METRICS

JANUARY 2019

School of Computing

Faculty of Engineering

 Universiti Teknologi Malaysia

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Philosophy

MUHAMMAD KHATIBSYARBINI

iii

Dedicated to:

My Beloved Parent

My Lovely Wife

My Righteous Son

My Respected Lecturers

My Dear Brothers

Thank you for your prayers and supports

DEDICATION

iv

Praise to Allah swt for His blessings that I am able to finish this research.

Firstly, I would like to express my gratitude to my parents and my wife for

supporting me spiritually throughout writing this thesis and my life in general.

Secondly, I would like to express my sincere gratitude to my advisor Dr.

Mohd Adham Isa for the continuous support of my Master study and related

research, for his patience, motivation, and immense knowledge. His guidance helped

me in all the time of research and writing of this thesis. I could not have imagined

having a better advisor and mentor for my Master study.

Besides my advisor, I would like to thank Associate Prof. Dr. Dayang

Norhayati Abang Jawawi and Associate Prof. Dr. Wan Mohd Nasir Wan Kadir, for

their insightful comments and encouragement, but also for the hard question which

incented me to widen my research from various perspectives.

Last but not the least, I would like to thank my friends who helped and

supporting me in any aspect throughout this research.

ACKNOWLEDGEMENT

v

Numerous test case prioritization (TCP) approaches have been introduced to

enhance the test viability in software testing activity with the goal to maximize early

average percentage fault detection (APFD). There are different approaches and the

process for each approach varies. Furthermore, these approaches are not well

documented within the single TCP approach. Based on current studies, having an

approach that has high coverage effectiveness (CE) and APFD rate, remains a

challenge in TCP. The string-based approach is known to have a single string

distance based metric to differentiate test cases that can improve the CE results.

However, to differentiate precisely the test cases, the string distances require

enhancement. Therefore, a TCP technique based on string distance metric was

developed to improve CE and APFD rate. In this research, to differentiate precisely

the test cases and counter the string distances problem, an enhanced string distances

based metric with a string weight based metric was introduced. Then, the metric was

executed under designed process for string-based approach for complete evaluation.

Experimental results showed that the enhanced string metric had the highest APFD

with 98.56% and highest CE with 69.82% in Siemen dataset, cstcas. Besides, the

technique yielded the highest APFD with 76.38% in Robotic Wheelchair System

(RWS) case study. As a conclusion, the enhanced TCP technique with weight based

metric has prioritised the test case based on their occurrences which helped to

differentiate precisely the test cases, and improved the overall scores of APFD and

CE.

ABSTRACT

vi

Banyak pendekatan keutamaan ujian (TCP) telah diperkenalkan untuk

meningkatkan daya maju ujian dalam aktiviti ujian perisian dengan matlamat untuk

memaksimumkan peratusan purata peratusan kesalahan awal (APFD). Terdapat

banyak perbezaan dalam proses untuk setiap pendekatan yang ada. Tambahan pula,

pendekatan-pendekatan ini tidak didokumenkan dengan lengkap dalam setiap TCP

proses. Berdasarkan kajian semasa, untuk mempunyai pendekatan yang mempunyai

keberkesanan liputan(CE) dan kadar APFD yang tinggi, masih menjadi cabaran

dalam TCP. Pendekatan berasaskan rentetan telah menunjukkan bahawa dengan

menggunakan metrik jarak tunggal untuk membezakan kes ujian dapat meningkatkan

hasil CE. Walau bagaimanapun, untuk membezakan kes ujian dengan tepat, jarak

rentetan masih memerlukan peningkatan. Oleh itu, satu teknik pengutamaan kes

ujian berdasarkan jarak jarak metrik telah dibangunkan untuk meningkatkan kadar

hasil CE dan APFD. Dalam kajian ini, untuk mengatasi masalah jarak rentetan dan

mengira jarak rentetan dengan tepat, metrik berasaskan jarak rentetan digabungkan

dengan metrik berasaskan berat rentetan. Kemudian, metrik gabungan ini

dilaksanakan di bawah proses yang direka untuk pendekatan berasaskan rentak untuk

penilaian lengkap. Hasil percubaan menunjukkan metrik gabungan ini mempunyai

kadar APFD tertinggi dengan 98.56% dan CE tertinggi dengan 69.82% dalam

kumpulan data Siemen iaitu cstcas. Selain itu, teknik hasil gabungan metrik ini

mendapat kadar APFD yang lebih tinggi dengan 76.38% dalam kajian kes Sistem

Robot Kerusi Roda (RWS). Sebagai kesimpulan, teknik yang dibangunkan telah

memberi keutamaan berbeza kepada setiap kes ujian yang mana telah membantu

dalam membezakan setiap kes, sekali gus meningkatkan skor keseluruhan APFD

dan CE.

ABSTRAK

vii

TABLE OF CONTENTS

CHAPTER

TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVATIONS xv

LIST OF APPENDICES xvi

1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Challenges in String Distance based TCP 5

1.3 Challenge in Process for TCP String-Based Technique 6

1.4 Research Questions 6

1.5 Research Objectives 7

1.6 Scope of Study 8

1.7 Significances and Original Contributions of Study 8

1.8 Thesis Structure and Organization 9

file:///C:/Users/Oc/Desktop/Main%20Thesis%20Final.docx%23_Toc509991048
file:///C:/Users/Oc/Desktop/Main%20Thesis%20Final.docx%23_Toc509991049
file:///C:/Users/Oc/Desktop/Main%20Thesis%20Final.docx%23_Toc509991050
file:///C:/Users/Oc/Desktop/Main%20Thesis%20Final.docx%23_Toc509991051
file:///C:/Users/Oc/Desktop/Main%20Thesis%20Final.docx%23_Toc509991052

viii

2 LITERATURE REVIEW 11

2.1 Overview 11

2.2 Software Testing 11

2.3 Test Case Prioritization Approaches 15

2.3.1 Systematic Literature Review 16

2.3.2 Comparison of Existing Prioritization Approaches 25

2.4 String Distance Metric 29

2.4.1 Manhattan 30

2.4.2 Levenshtein 31

2.4.3 Cosine Similarity 32

2.4.4 Jaccard 33

2.4.5 Summary of String Distances Metric 34

2.5 Summary 36

3 METHODOLOGY 38

3.1 Overview 38

3.2 Research Operational Framework 38

3.3 Research Conceptual Framework 42

3.4 Case Study - RWS 43

3.5 Benchmark Program – TCAS Programs 45

3.6 Term Frequency Inverse Document Frequency 47

3.7 Evaluation Metric 48

3.7.1 Average Percentage Fault Detection (APFD) 48

3.7.2 Coverage Effectiveness (CE) 49

3.7.3 One-way Analysis of variance (ANOVA) 49

3.8 Summary 50

4 ENHANCED STRING DISTANCES WITH TF-IDF 51

ix

4.1 Overview 51

4.2 The Application of String Distance Metric 51

4.3 The Siemens TCAS Experiment 54

4.3.1 Experiment Setup 55

4.3.2 Experiment Results 59

4.4 The Proposed Enhanced String Distance 61

4.4.1 Enhancement Inspiration and Motivation 61

4.4.2 Enhancement Steps and Modification 62

4.4.3 Result and Discussion 66

4.5 Threat of Validity 73

4.5.1 Selection of Dataset 73

4.5.2 Incomplete Data Extraction 74

4.5.3 Selection of Evaluation Metric 74

4.6 The Findings 75

4.7 Summary 75

5 A PROCESS FOR STRING BASED TEST CASE

PRIORITIZATION 76

5.1 Overview 76

5.2 Overview of the Applied Process 76

5.2.1 Analysis the Context 78

5.2.2 Data Preparation 79

5.2.3 Generate Test Cases Distance Matrix 80

5.2.4 The Test Case Prioritization 82

5.2.5 The Technique Evaluation 83

5.3 Process Comparison 84

5.4 Application to Case Study 87

5.4.1 Analysis the Context 87

x

5.4.2 The Data Preparation 88

5.4.3 Test Cases Distance Matrix Generation 89

5.4.4 The Prioritization of Test Cases 90

5.4.5 The Technique Evaluation 91

5.5 Summary 93

6 CONCLUSION 94

6.1 Overview 94

6.2 Achievement of the Study 94

6.3 Research Contribution 95

6.3.1 Enhanced String Distance 96

6.3.2 Systematic Process 96

6.4 Recommendation Future Work 97

 REFERENCES 98

 APPENDIX A - B 109-148

xi

LIST OF TABLES

TABLE NO.

TITLE PAGE

1.1 Test suite example 2

2.1 Regression Test Approaches 14

2.2 Summary of TCP approaches overviews 22

2.3 General Advantages and Limitation of Prioritization

Techniques 26

2.4 Prioritization Technique and Respective Authors 27

2.5 Comparison of Prioritization Techniques 28

2.6 String Distance Reviews Summaries 34

3.2 Robotic Wheelchair System Program Component 45

3.3 Siemen Benchmark Programs 46

3.4 Overviews of TCAS Datasets 47

4.1 Five Dummy Test Cases 52

4.2 Adjacency Matrix for Similarity Distance Percentage 53

4.3 Adjacency Matrix for Similarity Distance Percentage 54

4.4 Overviews of Datasets 56

4.5 Experiment APFD and CE Result 60

4.6 The Overview Idea Enhanced String Distance 62

4.7 Average Percentage Fault Detected (APFD) Rate 69

4.8 Overall Percentage Coverage Effectiveness Results 72

6.1 Process Comparison Between Designed and General 84

6.2 Process Criteria and Description 85

6.3 Process ID with Respective Authors 86

6.4 Process ID with Respective Authors 86

6.5 Part of the Example Requirement of RWS Test Case 87

xii

6.6 Example of String Distance Matrix Calculated 89

6.7 Overall APFD Assessments for RWS Case Study 91

6.8 RWS Shapiro-Wilk Test of Normality 91

6.9 ANOVA Tukey HSD Tests Results 92

xiii

LIST OF FIGURES

FIGURE NO.

TITLE PAGE

2.1 Life of Software System Evolution 12

2.2 The Taxonomy of Regression Testing 16

2.3 Percentage of Collated Studies 17

2.4 Percentage of Collated Studies 18

2.5 Standard Process Flow of TCP Approach 24

3.1 Research Operational Framework 41

3.2 Research Conceptual Framework 43

3.3 Robotic Wheelchair System 44

3.4 Block Diagram of Robotic Wheelchair System 44

4.1 Main Function of TCAS C Program 57

4.2 Example Inputs for Each Test Cases for TCAS Program 57

4.3 Experiment Prioritization Design 58

4.4 The Enhanced String Metric 65

4.5 APFD Rate for String Distances using tcas 67

4.6 APFD Rate for String Distances using jtcas 67

4.7 APFD Rate for String Distances using cstcas 68

4.8 Percentage Test Cases Used to Achieve Full Fault

Coverage for tcas 70

4.9 Percentage Test Cases Used to Achieve Full Fault

Coverage for jtcas 70

4.10 Percentage Test Cases Used to Achieve Full Fault

Coverage for cstcas 71

6.1 The String-Based TCP Process 77

6.2 Steps for Analysis the Context 78

xiv

6.3 Steps for Data Preparation 80

6.4 Steps for Generate Test Cases Distance Matrix 81

6.5 Steps for Test Case Prioritization 82

6.6 Steps for Technique Evaluation 83

6.7 APFD Result for RWS Case Study 90

xv

LIST OF ABBREVATIONS

AI - Artificial Intelligent

APFD - Average Percentage Fault Detection

ANOVA - Analysis of Variance

CE - Coverage Effectiveness

CS - Cosine Similarity

FATE - Fault Adequate Test Size

GA - Genetic Algorithm

HSD - High Significant Different

JC - Jaccard

L - Levenshtein

LOC - Line of Code

M - Manhattan

RWS - Robotic Wheelchair System

SLR - Systematic Literature Review

TCP - Test Case Prioritization

TF-IDF - Term Frequency – Inverse Document Frequency

TSP - Travelling Salesman Problem

xvi

 LIST OF APPENDICES

APPENDIX

TITLE PAGE

A Systematic Literature Review 109

A Case Study RWS Test Cases 146

INTRODUCTION

1.1 Background of the Study

Software engineering is not only confined to programming and software

development efforts (van Katwijk, 1991). Software engineering itself is an

implementation of engineering procedures in the development of any specific

software in a much systematic way. Within software development process, software

testing consumes a significant amount of time and can be the most expensive phase

(Myers et al., 2004). Software testing is arguably the least understood part of a

software development process. Software testing itself involves iterative strategies,

which are often subjected to various pressures due to time constraint and fixed

resources. Software engineering communities are regularly compelled to pre-

maturely end their testing activities, attributed to financial stress and time necessities,

which could lead to the generation of various conflicts relating to software quality

and client agreement.

In practical sense, developers are aware of the frustration arising from

software bugs that are reported by users. When this happens, developers inevitably

ask: How did these bugs escape watchful eyes in testing? Countless hours went into a

series of meticulous testing of hundreds or thousands of variables and code

statements, so how could a bug have eluded such vigilance? The answer might lie

2

within the software testing activity itself. Did testers test all possible test cases? Were

all possible ordering of statements tested? An immediate solution is to run all test

cases using several testing strategies, which may help testers to reveal the drawbacks

of each strategy, such as time execution and effectiveness of fault detection. In light

of this, it has been reported that the application of test case prioritization (TCP)

appears to enhance test viability in software testing activity (Rothermel et al., 1999).

TCP approach was first mentioned in the work of Wong et al. (1997). That

work, however, only applied prioritization on test cases that had undergone test case

selection. Later, Rothermel and Harold proposed and evaluated the TCP approach in

a much broader context. Consider a test suite as listed in Table 1.1 (Elbaum et al.,

2000). This example only depicts an ideal situation in which fault detection

information is known.

Table 1.1 Test suite example

Test Case Fault revealed by test case

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

TC1 √ √ √ √ √ √

TC2 √ √ √ √

TC3 √ √ √ √ √ √

TC4 √ √ √ √ √ √

TC5 √ √ √ √ √

TCP sort test cases with the highest significance first according to some

measures. Consequently, the primary goal of prioritization is to maximize early fault

detection. Referring to Table 1.1, it can be concluded that the ordering of test cases

in the order of TC5-TC3 is a much superior ordering that any other combinations.

Such ordering detects all of the faults at an earlier rate. In practice, it is often

challenging to distinguish which tests will essentially will reveal faults. Hence, the

effectiveness of a test case prioritization largely depends on choosing the most

applicable approach from a pool of approaches, expecting that an early

intensification of a certain approach will result in yielding an earlier fault discovery.

There are many dimensions of test case prioritization approaches. Eight broad

3

dimensions were described by Singh (2012). For each approach, the scholar specified

potential values, advantages, and limitation.

In software engineering research, inputs and dataset types play important

roles that allow scholars to determine their advantages and limitations. As there are

various approaches that exist, processes that are involved may be specific to each

approach. Variation of processes that is unique to each approach benefits project

managers, as they are able to adapt suitable approach that fits project schedules, in

order to compensate constraints that exist within the project development process.

Despite TCP being a relatively mature approach, there is a dearth of available

documentations that describe a systematic process within single TCP approach. In

view of this, there is a gap of readily accessible systematic process that facilitates a

complete TCP within existing approaches, which often involve the utilization of

distinctive resources and processes.

In a scenario where the only accessible resources are test cases and code

changes from previous working system, TCP approach may be used. Particularly,

TCP approach that utilizes string metric, as this approach is capable of distinguishing

the differences in test cases followed by prioritization based on string similarity. In

recent years, numerous TCP works have been documented, which prioritize test

cases solely based on information related to test cases (Bo Jiang and Chan, 2015;

Ledru et al., 2012; Mei, Cai, et al., 2015; Thomas et al., 2014). By depending on

information that is available from test cases such as test case inputs, software tester

may prioritize test cases prior to the availability of system source code. Such strategy

reduces the time spent to prioritize test cases as complete source code is only

available at a much later development phase.

String distance, which computes textual similarities, could be used to

differentiate test cases. This allows prioritization to be executed as test cases are

subsequently assigned distance or weight. String metrics play an important role in

textual document-related research such as information retrieval, text classification,

document clustering, topic detection, topic tracking, question generation, question

4

answering, essay scoring, short answer scoring, machine translation, text

summarization and others (Gomaa and Fahmy, 2013). String metrics can be

categorized based on their metric calculation such as distances, similarity and weight.

However, to precisely calculate the distance between test cases, a specific and

reliable string distance with specific priority is required. In existing works (Bo Jiang

and Chan, 2015; Ledru et al., 2012), only single-based string distance was used,

which may yield redundancy in equivalence distance. In order to overcome this,

enhancement of string distances may be pursued.

Subsequent step upon the calculation of string distance is the application of

prioritization algorithms to prioritize test cases based on their respective string

distance values. Recent work by Bo Jiang and Chan (2015) demonstrates that

heuristic prioritization algorithm can give a significant effect to TCP process. From

their findings, the application of artificial intelligence algorithm may increase the

results of average percentage of fault detection (APFD). However, existing

prioritization approaches with string metric provide less favorable coverage

effectiveness and execution time performance.

The main challenge to the problems alluded can be divided into two primary

issues, namely: systematic process for string distance technique in TCP and string

distance formulation. String distances are essentially formulations used to determine

textual distances to morph a test case to another test case. This is achieved by; either

calculating the difference, or similarity of test cases based on their attributes such as

test case inputs. As for the process, it is meant to provide a systematic guidance on

how to execute TCP process with consideration of string distances. These challenges

aim to address the issues of systematic maximization of fault detection in test case

prioritization, whereby, specific problems will be explained in detail in the following

sections.

5

1.2 Challenges in String Distance based TCP

In software development life cycle, product being maintained is often

subjected to system changes. After every change is implemented, immediate testing

is required to ensure that the software adheres or meets specification. Assuming

software testing team is required to execute testing and the only available resource is

test suite with related attributes, TCP process needs to work out a strategy that

prioritizes the test cases using available information. Work by Bo Jiang and Chan

(2015) attempts to maximize test case diversity through test case input information,

which differs from the work of Ledru et al. (2012). In Ledru et al. (2012), each test

case is treated as a string of characters, and prioritization of test cases is carried out

by using a simple string edit distance to determine the similarity between test cases.

In these techniques, the goal is to give high priority to test cases that are vastly

unalike (i.e., because they invoke different methods, or have higher string distance

values), thereby maximizing test case diversity and casting a wide net for detecting

unique faults (Hemmati et al., 2011).

However, by relying solely on string distance values, the possibility of

obtaining equal distances among test cases is relatively high and may affect overall

prioritization process. Associated with this issue, there is much room for

improvement to be made, as prioritization is primarily based on the differences

between two points. Instinctively, instead of using a single string distance, the

formulation may be enhanced further via combination with other possible string

distances. Primary challenge that arises from this notion is: How can string distances

be enhanced with other metrics while at the same time provide necessary priority

weights to test cases that are greatly altered? As supporting evidence, previous works

reported that prioritized test cases using string distance have promising APFD values

as compared to randomly ordered test cases (Bo Jiang and Chan, 2015; Ledru et al.,

2012). Despite this, average scores of APFD ranks across almost all string distances

are nearly identical, as reported in the work of Ledru et al. (2012). Hence, this

implies that an enhancement of string distances with other related metrics such as

weighting scale is worth further analysis.

6

1.3 Challenge in Process for TCP String-Based Technique

Software engineering highly concerns on how the engineering processes are

applied into software development in a systematic way. Therefore, it is necessary to

have a systematic process for TCP approach, particularly for string-based TCP

approach. There are numerous works that exhibit highly identical process flows, with

the only notable difference lies; either in the addition, or the reduction of one step to

an existing process flow (Bo Jiang and Chan, 2015; Ledru et al., 2012; Shahbazi and

Miller, 2016). Variation of process flows may yield different results despite of

utilization of a similar TCP approach on identical datasets. Therefore, the challenge

in this process can be highlighted as: How to apply a string-based TCP technique

into a testing environment in order to improve the effectiveness of the process?

Generally, a TCP process begins with the preparation of data. Even though

the description of this step is almost non-existent in existing literature, it is

compulsory for any experiment or research endeavor to identify which information

or data that shall be used. The data or information in TCP can be in the form of

requirement statements, system models, and source code. The process is followed by

determining and calculating prioritization criteria or dependency based on the data

chosen. The process proceeds with prioritizing the calculated criteria or dependency.

Finally, the performance is measured. This advocates the needs of formally defined

steps and process, centered on string-based approach, with the challenges that are

worth to be addressed.

1.4 Research Questions

The study of TCP approaches produces several research gaps worth

exploring. There are numerous approaches that have been adapted in the field of TCP

which concern with system evolution. Even though most existing works tend to

7

merely focus on TCP approaches, several other works cover the processes that are

required to apply proposed TCP approaches. As for string-based TCP approach,

highly redundant test cases owning identical string distances lead to a lack of

accuracy and efficiency along the prioritization process, especially in terms of APFD

scores. These problems could further lead to an un-systematic and inaccurate TCP.

Therefore, it is a primary focus of this research to develop a systematic testing

process for a string-based TCP approach. Consequently, a macro research question of

this research is:

“How to increase test case prioritization effectiveness with string distance

systematically?”

The macro research question leads to several micro research questions.

‘Effectiveness’ itself could be quantified based on several measurements including

fault detection rate, coverage effectiveness, and execution time. There are two micro

research questions that need to be answered:

i. What should be combined to the string distances to ensure that string

distances have sufficient enhancement to increase fault detection rate?

ii. How to apply the proposed technique systematically into testing

environment to improve the effectiveness of the process?

1.5 Research Objectives

The goal of this study is to establish a preliminary testing involving a test

case prioritization approach to adapt the changes in the source code of a system.

From the aim of the study and derived research questions, the following research

objectives are defined, specifically:

8

i. To propose an enhanced string metric in test case prioritization by

combining string distances and its weight-based metric to increase fault

detection rate.

ii. To propose a process for string-based TCP approach to evaluate the

effectiveness of the proposed TCP process on benchmark programs and

its applicability on case studies systematically.

1.6 Scope of Study

The scopes of this research are limited to the following:

i. The research focuses on small- to medium-scale specialized systems

which are available in many engineering applications.

ii. Benchmark programs and a case study would be used to compare the

findings of the enhanced test case prioritization approach to existing test

case prioritization approaches.

1.7 Significances and Original Contributions of Study

The research on test case prioritization technique is important in the context

of safety-critical embedded system as it can contribute to uplifting a system’s

software testing process. Moreover, the research conducted contributes to a better

testing quality. Through this research:

i. Prioritization of test cases can be performed at a much-reduced time.

ii. Safety criterion which is an important factor for safety-critical systems is

enforced as an important prioritization element when systems undergo

any changes.

9

iii. Fault detection capability of the proposed test case prioritization approach

is significantly increased.

iv. The proposed approach exhibits statistical significance.

1.8 Thesis Structure and Organization

This thesis is outlined as follows:

Chapter 1 provides a brief overview of the research. It consists of a brief

overview of software system development, software testing, test case prioritization

techniques and string metrics. Apart from that, within this chapter, statement of the

problem, motivation of study, aims of study, objectives of the study, justification of

study, scope of study, and the significance of the study are elaborated as well.

Chapter 2 provides brief overviews of related works on test case

prioritization. A summary of systematic literature review on test case prioritization

approaches is also presented. Besides that, string distances and prioritization

algorithm are briefly reviewed in this chapter.

Chapter 3 describes the overview of the research theoretical framework and

research operational framework. This chapter also introduces case studies and

benchmark programs, which will be utilized in later chapters for applicability and

verification.

Chapter 4 elaborates the implementation of four string distances namely,

Manhattan, Levenshtein, Cosine Similarity and Jaccard. Besides that, a proposed

enhanced string distance is implemented. Results are compared against the other four

string distances.

10

Chapter 5 elaborates the proposed process for string-based test case

prioritization. The process is then applied to one case study. Statistical evaluation of

the case study is also conducted in this chapter.

Chapter 6 provides the conclusion, contribution, limitations, and future works

of this research.

134

References

[1] P. Ralph, “Software engineering process theory: A multi-method comparison of Sensemaking-

Coevolution-Implementation Theory and function-behavior-structure theory,” Information

and Software Technology, vol. 70, pp. 232–250, 2016.

[2] G. J. Myers, T. M. Thomas, and C. Sandler, The Art of Software Testing, vol. 1. John Wiley &

Sons, 2004.

[3] G. Rothermel, R. H. Untch, C. C. Chu, and M. J. Harrold, “Test case prioritization: an

empirical study,” in Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE

International Conference on, 1999, pp. 179–188.

[4] H. K. N. Leung, “Insights into Regression Testing,” Proceedings of the International

Conference on Software Maintenance, pp. 60–69, 1989.

[5] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving regression testing in

continuous integration development environments,” in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering - FSE 2014,

2014, pp. 235–245.

[6] P. K. Chittimalli and M. J. Harrold, “Recomputing coverage information to assist regression

testing,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 452–469, 2009.

[7] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and Prioritisation : A

Survey,” Test Verif Reliab, vol. 0, pp. 1–7, 2007.

[8] D. Jeffrey and N. Gupta, “Improving fault detection capability by selectively retaining test

cases during test suite reduction,” IEEE Transactions on Software Engineering, vol. 33, no. 2,

pp. 108–123, Feb. 2007.

[9] S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel, and S. Kanduri, “Understanding

the effects of changes on the cost-effectiveness of regression testing techniques,” Journal of

Software Testing, Verification and Reliability, vol. 12, no. 2, pp. 65–83, 2003.

[10] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization: a family of

empirical studies,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 159–182,

2002.

[11] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele

University, vol. 33, no. TR/SE-0401, p. 28, 2004.

[12] B. Kitchenham, O. P. Brereton, and D. B. et al., “Systematic literature reviews in software

engineering �A systematic literature review,” Information and Software Technology, vol. 51,

no. 1, pp. 7–15, 2009.

[13] Y. Singh, “Systematic Literature Review on Regression Test Prioritization Techniques

Difference between Literature Review and Systematic Literature,” Informatica, vol. 36, pp.

379–408, 2012.

[14] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping study,” Software

Quality Journal, vol. 21, no. 3, pp. 445–478, 2012.

[15] A. Kumar and K. Singh, “A Literature Survey on test case prioritization,” Compusoft, 2014.

[16] P. Kiran and K. Chandraprakash, “A Literature Survey on TCP-Test Case Prioritization using

the RT-Regression Techniques,” Global Journal of, 2015.

[17] P. Achimugu, A. Selamat, R. Ibrahim, and M. Naz, “A systematic literature review of

software requirements prioritization research,” Information and Software, vol. 56, pp. 568–

585, 2014.

[18] S. Thomas, H. Hemmati, and A. Hassan, “Static test case prioritization using topic models,”

Software Engineering, 2014.

[19] S. Sampath, R. Bryce, and A. M. Memon, “A uniform representation of hybrid criteria for

regression testing,” IEEE Transactions on Software Engineering, vol. 39, no. 10, pp. 1326–

1344, 2013.

[20] A. B. Sanchez, S. Segura, and A. Ruiz-Cortes, “A Comparison of Test Case Prioritization

Criteria for Software Product Lines,” Software Testing, Verification and Validation (ICST),

2014 IEEE Seventh International Conference, pp. 41–50, 2014.

[21] L. Mei, W. K. Chan, T. H. Tse, S. Member, B. Jiang, and K. Zhai, “Preemptive Regression

Testing of Workflow-Based Web Services,” IEEE Transactions on, vol. 8, no. 5, pp. 740–754,

2015.

[22] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case prioritization using ordered

sequences of program entities,” Software Quality Journal, vol. 22, no. 2, pp. 335–361, 2014.

[23] B. Miranda and A. Bertolino, “Scope-aided Test Prioritization, Selection and Minimization for

135

Software Reuse,” Journal of Systems and Software, vol. 0, pp. 1–22, 2016.

[24] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Model-based test prioritization heuristic

methods and their evaluation,” Proceedings of the 3rd international workshop on Advances in

model-based testing - A-MOST ’07, pp. 34–43, 2007.

[25] R. Maheswari and D. Mala, “Combined Genetic and Simulated Annealing Approach for Test

Case Prioritization,” Indian Journal of Science and Technology, 2015.

[26] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization in software evolution,”

2015 IEEE 26th International Symposium on Software Reliability Engineering, ISSRE 2015,

pp. 46–57, 2016.

[27] F. Yuan, Y. Bian, Z. Li, and R. Zhao, “Epistatic Genetic Algorithm for Test Case

Prioritization,” International Symposium on Search Based, 2015.

[28] C. Catal, “On the application of genetic algorithms for test case prioritization: a systematic

literature review,” Proceedings of the 2nd International Workshop on, 2012.

[29] A. Kaur and S. Goyal, “A genetic algorithm for fault-based regression test case prioritization,”

International Journal of Computer Applications, vol. 32, no. 8, pp. 975–8887, 2011.

[30] W. Jun, Z. Yan, and J. Chen, “Test case prioritization technique based on genetic algorithm,”

Internet Computing & Information, 2011.

[31] S. Sabharwal, R. Sibal, and C. Sharma, “Prioritization of test case scenarios derived from

activity diagram using genetic algorithm,” 2010 International Conference on Computer and

Communication Technology, ICCCT-2010, pp. 481–485, 2010.

[32] K. Deb, S. Pratab, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic

Algorithm: NGSA-II,” IEEE Transactions on Evolutionary Computing, vol. 6, no. 2, pp. 182–

197, 2002.

[33] H. Do and G. Rothermel, “On the use of mutation faults in empirical assessments of test case

prioritization techniques,” IEEE Transactions on Software Engineering, vol. 32, no. 9, pp.

733–752, 2006.

[34] Z. Li, M. Harman, and R. M. Hierons, “Search Algorithms for Regression Test Case

Prioritization,” IEEE Transactions on Software Engineering, vol. 33, no. 4, pp. 225–237,

2007.

[35] S. Li, N. Bian, Z. Chen, and D. You, “A simulation study on some search algorithms for

regression test case prioritization,” 2010 10th International, 2010.

[36] K. Solanki, Y. Singh, S. Dalal, and P. Srivastava, “Test Case Prioritization: An Approach

Based on Modified Ant Colony Optimization,” Emerging Research in, 2016.

[37] D. Gao, X. Guo, and L. Zhao, “Test case prioritization for regression testing based on ant

colony optimization,” Software Engineering and Service, 2015.

[38] T. Noguchi, H. Washizaki, and Y. Fukazawa, “History-Based Test Case Prioritization for

Black Box Testing Using Ant Colony Optimization,” 2015 IEEE 8th, 2015.

[39] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing Test cases with string

distances,” Automated Software Engineering, vol. 19, no. 1, pp. 65–95, 2012.

[40] B. Jiang and W. K. Chan, “Input-based Adaptive Randomized Test Case Prioritization,” J Syst

Softw, vol. 105, no. C, pp. 91–106, 2015.

[41] S. Eghbali and L. Tahvildari, “Test Case Prioritization Using Lexicographical Ordering,”

IEEE Transactions on Software Engineering, vol. 5589, no. January, pp. 1–1, 2016.

[42] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-based test case

prioritization: An industrial case study,” Proceedings - IEEE 6th International Conference on

Software Testing, Verification and Validation, ICST 2013, pp. 302–311, 2013.

[43] D. Nardo, N. Alshahwan, and L. Briand, “Coverage‐based regression test case selection,

minimization, and prioritization: a case study on an industrial system,” Software Testing,

2015.

[44] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A Unified Test Case Prioritization

Approach,” ACM Trans Softw Eng Methodol, vol. 24, no. 2, p. 10:1--10:31, 2014.

[45] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To Be Optimal or Not in Test-Case

Prioritization,” IEEE Transactions on Software Engineering, vol. 42, no. 5, pp. 490–504,

2016.

[46] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the gap between the total

and additional test-case prioritization strategies,” Proceedings - International Conference on

Software Engineering, pp. 192–201, 2013.

[47] S.-Z. Haidry and T. Miller, “Using Dependency Structures for Prioritisation of Functional

Test Suites,” IEEE Transactions on Software Engineering, vol. 39, no. 2, pp. 1–1, 2012.

136

[48] C. R. Fang, Z. Y. Chen, and B. W. Xu, “Comparing logic coverage criteria on test case

prioritization,” Science China Information Sciences, vol. 55, no. 12, pp. 2826–2840, 2012.

[49] R. C. Bryce, S. Sampath, J. B. Pedersen, and S. Manchester, “Test suite prioritization by cost-

based combinatorial interaction coverage,” International Journal of Systems Assurance

Engineering and Management, vol. 2, no. 2, pp. 126–134, 2011.

[50] J. Jones and M. Harrold, “Test-Suite Reduction and Prioritization for Modified Condition /

Decision Coverage Georgia Institute of Technology,” Test, vol. 3, no. 3, pp. 101–195, 2003.

[51] D. Leon and A. Podgurski, “A comparison of coverage-based and distribution-based

techniques for filtering and prioritizing test cases,” Proceedings - International Symposium on

Software Reliability Engineering, ISSRE, vol. 2003–Janua, pp. 442–453, 2003.

[52] R. Krishnamoorthi and S. A. Sahaaya Arul Mary, “Factor oriented requirement coverage

based system test case prioritization of new and regression test cases,” Information and

Software Technology, vol. 51, no. 4, pp. 799–808, 2009.

[53] S. Tahvili, W. Afzal, M. Saadatmand, and M. Bohlin, “Towards earlier fault detection by

value-driven prioritization of test cases using fuzzy TOPSIS,” Information Technology:, 2016.

[54] E. L. G. Alves, P. D. L. Machado, T. Massoni, and M. Kim, “Prioritizing Test cases for early

detection of refactoring faults,” Software Testing Verification and Reliability, vol. 26, no. 5,

pp. 402–426, 2016.

[55] L. Mei et al., “A Subsumption Hierarchy of Test Case Prioritization for Composite Services,”

IEEE Transactions on Services Computing, vol. 8, no. 5, pp. 658–673, 2015.

[56] Y. Wang, X. Zhao, and X. Ding, “An effective test case prioritization method based on fault

severity,” Software Engineering and Service, 2015.

[57] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through fault-recorded testing

prioritization,” IEEE International Conference on Software Maintenance, ICSM, pp. 180–189,

2013.

[58] B. Jiang, Z. Zhang, W. K. Chan, T. H. Tse, and T. Y. Chen, “How well does test case

prioritization integrate with statistical fault localization?,” Information and Software

Technology, vol. 54, no. 7, pp. 739–758, 2012.

[59] Y. T. Yu and M. F. Lau, “Fault-based test suite prioritization for specification-based testing,”

Information and Software Technology, vol. 54, no. 2, pp. 179–202, 2012.

[60] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The Effects of Time Constraints on Test

Case Prioritization: A Series of Controlled Experiments,” IEEE Transactions on Software

Engineering, vol. 36, no. 5, pp. 593–617, 2010.

[61] H. Srikanth, C. Hettiarachchi, and H. Do, “Requirements Based Test Prioritization Using Risk

Factors,” Inf Softw Technol, vol. 69, no. C, pp. 71–83, 2016.

[62] T. Muthusamy, “A New Effective Test Case Prioritization for Regression Testing based on

Prioritization Algorithm,” International Journal of Applied Information Systems (IJAIS), vol.

6, no. 7, pp. 21–26, 2014.

[63] T. Ma, H. Zeng, and X. Wang, “Test case prioritization based on requirement correlations,”

2016 IEEE/ACIS 17th International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2016, pp. 419–424,

2016.

[64] J. Badwal and H. Raperia, “Test Case Prioritization using Clustering,” 2013 IEEE Sixth

International Conference, pp. 488–492, 2013.

[65] C. Hettiarachchi, H. Do, and B. Choi, “Effective regression testing using requirements and

risks,” Proceedings - 8th International Conference on Software Security and Reliability, SERE

2014, pp. 157–166, 2014.

[66] M. Yoon, “A Test Case Prioritization through Correlation of Requirement and Risk,” Journal

of Software Engineering and Applications, vol. 5, no. 10, pp. 823–836, 2012.

[67] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization of new and

regression test cases,” Int’l Symp on Empirical Software Engineering, vol. 0, no. c, pp. 62–71,

2005.

[68] H. Srikanth, M. Cashman, and M. B. Cohen, “Test case prioritization of build acceptance tests

for an enterprise cloud application: An industrial case study,” The Journal of Systems and

Software, vol. 119, pp. 122–135, 2016.

[69] C. T. Lin, C. D. Chen, C. S. Tsai, and G. M. Kapfhammer, “History-based test case

prioritization with software version awareness,” Proceedings of the IEEE International

Conference on Engineering of Complex Computer Systems, ICECCS, pp. 171–172, 2013.

[70] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for continuous regression testing:

137

An industrial case study,” Software Maintenance (ICSM), 2013.

[71] A. Khalilian, M. Azgomi, and Y. Fazlalizadeh, “An improved method for test case

prioritization by incorporating historical test case data,” Science of Computer, 2012.

[72] J.-M. K. J.-M. Kim and a. Porter, “A history-based test prioritization technique for regression

testing in resource constrained environments,” Proceedings of the 24th International

Conference on Software Engineering ICSE 2002, pp. 119–129, 2002.

[73] Y. C. Huang, K. L. Peng, and C. Y. Huang, “A history-based cost-cognizant test case

prioritization technique in regression testing,” Journal of Systems and Software, vol. 85, no. 3,

pp. 626–637, 2012.

[74] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case prioritization using a fuzzy expert

system,” Information and Software Technology, 2016.

[75] H. YOON and B. CHOI, “a Test Case Prioritization Based on Degree of Risk Exposure and

Its Empirical Study,” International Journal of Software Engineering and Knowledge

Engineering, vol. 21, no. 2, pp. 191–209, 2011.

[76] H. Stallbaum, A. Metzger, and K. Pohl, “An automated technique for risk-based test case

generation and prioritization,” … on Automation of software test, p. 67, 2008.

[77] M. Felderer and I. Schieferdecker, “A taxonomy of risk-based testing,” International Journal

on Software Tools for Technology Transfer, vol. 16, no. 5, pp. 559–568, 2014.

[78] E. Ufuktepe and T. Tuglular, “Automation Architecture for Bayesian Network Based Test

Case Prioritization and Execution,” Computer Software and Applications, 2016.

[79] X. Zhao, Z. Wang, X. Fan, and Z. Wang, “A Clustering-Bayesian Network Based Approach

for Test Case Prioritization,” Computer Software and, 2015.

[80] S. Mirarab and L. Tahvildari, “A Prioritization Approach for Software Test Cases Based on

Bayesian Networks,” Fundamental Approaches to Software Engineering Springer Berlin

Heidelberg, vol. 4422, pp. 276–290, 2007.

[81] S. Mirarab and L. Tahvildari, “An Empirical Study on Bayesian Network-based Approach for

Test Case Prioritization,” 2008 International Conference on Software Testing, Verification,

and Validation, pp. 278–287, 2008.

[82] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky, “Selecting a cost-effective test

case prioritization technique,” Software Quality Journal, vol. 12, no. 3, pp. 185–210, 2004.

[83] S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: A

survey,” Software Testing Verification and Reliability, vol. 22, no. 2. pp. 67–120, 2012.

[84] A. B. Sanchez, S. Segura, and A. Ruiz-Cortes, “A Comparison of Test Case Prioritization

Criteria for Software Product Lines,” in 2014 IEEE Seventh International Conference on

Software Testing, Verification and Validation, 2014, pp. 41–50.

[85] H. Srikanth, C. Hettiarachchi, and H. Do, “Requirements based test prioritization using risk

factors: An industrial study,” Information and Software Technology, vol. 69, pp. 71–83, 2016.

[86] M. J. Arafeen and H. Do, “Test Case Prioritization Using Requirements-Based Clustering,” in

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation,

2013, pp. 312–321.

[87] A. Shahbazi and J. Miller, “Black-Box String Test Case Generation through a Multi-Objective

Optimization,” IEEE Transactions on Software Engineering, vol. 42, no. 4, pp. 361–378,

2016.

[88] B. Jiang and W. Chan, “Input-based adaptive randomized test case prioritization: A local

beam search approach,” Journal of Systems and Software, 2015.

[89] S. Elbaum, A. Malishevsky, and G. Rothermel, Prioritizing test cases for regression testing.

2000.

[90] R. Fisher, “Statistical methods for research workers,” 1925.

[91] G. Kapfhammer and M. Soffa, “Using coverage effectiveness to evaluate test suite

prioritizations,” Proceedings of the 1st ACM international, 2007.

[92] “Software-artifact Infrastructure Repository: Home.” [Online]. Available:

http://sir.unl.edu/portal/index.php. [Accessed: 20-Mar-2017].

[93] D. K. Yadav and S. Dutta, “Test case prioritization technique based on early fault detection

using fuzzy logic,” 2016 3rd International Conference on Computing for Sustainable Global

Development (INDIACom), pp. 1033–1036, 2016.

[94] A. Schwartz and H. Do, “Cost-effective regression testing through Adaptive Test

Prioritization strategies,” Journal of Systems and Software, vol. 115, pp. 61–81, 2016.

[95] J. A. Parejo, A. B. S??nchez, S. Segura, A. Ruiz-Cort??s, R. E. Lopez-Herrejon, and A.

Egyed, “Multi-objective test case prioritization in highly configurable systems: A case study,”

138

Journal of Systems and Software, vol. 122, pp. 287–310, 2016.

[96] A. Marchetto, M. Islam, and W. Asghar, “A multi-objective technique to prioritize test cases,”

IEEE Transactions, vol. 42, no. 10, pp. 918–940, 2016.

[97] X. Xia, L. Gong, T.-D. B. Le, D. Lo, L. Jiang, and H. Zhang, “Diversity maximization

speedup for localizing faults in single-fault and multi-fault programs,” Automated Software

Engineering, vol. 23, no. 1, pp. 43–75, Mar. 2016.

[98] M. Laali, H. Liu, M. Hamilton, M. Spichkova, and H. W. Schmidt, “Test Case Prioritization

Using Online Fault Detection Information,” Springer, Cham, 2016, pp. 78–93.

[99] W. Fu, H. Yu, G. Fan, and X. Ji, “Test Case Prioritization Approach to Improving the

Effectiveness of Fault Localization,” in 2016 International Conference on Software Analysis,

Testing and Evolution (SATE), 2016, pp. 60–65.

[100] X.-Y. Zhang, D. Towey, T. Y. Chen, Z. Zheng, and K.-Y. Cai, “A random and coverage-

based approach for fault localization prioritization,” in 2016 Chinese Control and Decision

Conference (CCDC), 2016, pp. 3354–3361.

Appendix

This appendix section contains Table X1 – Table X5

Table X1: Result Quality Scores of Selected Studies.

Paper Refs. Q1 Q2 Q3 Q4 Q5 Score

Rothermel et al., 1999 [3] 1 1 0.5 0.5 1 4

Yoo, S., & Harman, M. 2012 [7] 1 0 1 0 1 3

Singh et al., 2012 [13] 1 0 1 0 1 3

Thomas et al., 2014 [18] 1 1 1 0.5 1 4.5

Sampath et al., 2013 [19] 1 1 1 0.5 1 4.5

Sanchez et al., 2014 [20] 1 1 0.5 0.5 1 4

Mei et al., 2015 [21] 1 1 1 0.5 1 4.5

Fang et al., 2014 [22] 1 1 1 0.5 1 4.5

Miranda & Bertolino, 2016 [23] 1 1 1 0.5 1 4.5

Korel et al., 2007 [24] 1 1 0.5 0.5 1 4

Maheswari et al.,2015 [25] 1 1 1 0.5 1 4.5

Lou et al., 2015 [26] 1 1 0.5 0.5 1 4

Yuan et al., 2015 [27] 1 1 0.5 0.5 1 4

Catal, C. 2012 [28] 1 1 0.5 0.5 1 4

Kaur, A., & Goyal, S. 2011 [29] 1 1 1 0.5 1 4.5

Jun et al., 2011 [30] 1 1 0.5 0.5 1 4

Sabharwal et al., 2010 [31] 1 1 0.5 0.5 1 4

Do et al., 2006 [33] 1 1 1 0.5 1 4.5

Deb et al., 2002 [32] 1 1 1 0.5 1 4.5

Li et al., 2007 [34] 1 1 1 0.5 1 4.5

Li et al., 2010 [35] 1 1 0.5 0.5 1 4

Solanki et al., 2016 [36] 1 1 0.5 0.5 1 4

Gao et al., 2015 [37] 1 1 0.5 0.5 1 4

Noguchi et al., 2015 [38] 1 1 0.5 0.5 1 4

Ledru et al., 2012 [39] 1 1 1 0.5 1 4.5

Jiang et al., 2015 [40] 1 1 1 0.5 1 4.5

