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Numerous test case prioritization (TCP) approaches have been introduced to 

enhance the test viability in software testing activity with the goal to maximize early 

average percentage fault detection (APFD). There are different approaches and the 

process for each approach varies. Furthermore, these approaches are not well 

documented within the single TCP approach. Based on current studies, having an 

approach that has high coverage effectiveness (CE) and APFD rate, remains a 

challenge in TCP. The string-based approach is known to have a single string 

distance based metric to differentiate test cases that can improve the CE results. 

However, to differentiate precisely the test cases, the string distances require 

enhancement. Therefore, a TCP technique based on string distance metric was 

developed to improve CE and APFD rate. In this research, to differentiate precisely 

the test cases and counter the string distances problem, an enhanced string distances 

based metric with a string weight based metric was introduced. Then, the metric was 

executed under designed process for string-based approach for complete evaluation. 

Experimental results showed that the enhanced string metric had the highest APFD 

with 98.56% and highest CE with 69.82% in Siemen dataset, cstcas. Besides, the 

technique yielded the highest APFD with 76.38% in Robotic Wheelchair System 

(RWS) case study. As a conclusion, the enhanced TCP technique with weight based 

metric has prioritised the test case based on their occurrences which helped to 

differentiate precisely the test cases, and improved the overall scores of APFD and 

CE. 
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Banyak pendekatan keutamaan ujian (TCP) telah diperkenalkan untuk 

meningkatkan daya maju ujian dalam aktiviti ujian perisian dengan matlamat untuk 

memaksimumkan peratusan purata peratusan kesalahan awal (APFD). Terdapat 

banyak perbezaan dalam proses untuk setiap pendekatan yang ada. Tambahan pula, 

pendekatan-pendekatan ini tidak didokumenkan dengan lengkap dalam setiap TCP 

proses. Berdasarkan kajian semasa, untuk mempunyai pendekatan yang mempunyai 

keberkesanan liputan(CE) dan kadar APFD yang tinggi, masih menjadi cabaran 

dalam TCP. Pendekatan berasaskan rentetan telah menunjukkan bahawa dengan 

menggunakan metrik jarak tunggal untuk membezakan kes ujian dapat meningkatkan 

hasil CE. Walau bagaimanapun, untuk membezakan kes ujian dengan tepat, jarak 

rentetan masih memerlukan peningkatan. Oleh itu, satu teknik pengutamaan kes 

ujian berdasarkan jarak jarak metrik telah dibangunkan untuk meningkatkan kadar 

hasil CE dan APFD. Dalam kajian ini, untuk mengatasi masalah jarak rentetan dan 

mengira jarak rentetan dengan tepat, metrik berasaskan jarak rentetan digabungkan 

dengan metrik berasaskan berat rentetan. Kemudian, metrik gabungan ini 

dilaksanakan di bawah proses yang direka untuk pendekatan berasaskan rentak untuk 

penilaian lengkap. Hasil percubaan menunjukkan metrik gabungan ini mempunyai 

kadar APFD tertinggi dengan 98.56% dan CE tertinggi dengan 69.82% dalam 

kumpulan data Siemen iaitu cstcas. Selain itu, teknik hasil gabungan metrik ini 

mendapat kadar APFD yang lebih tinggi dengan 76.38% dalam kajian kes Sistem 

Robot Kerusi Roda (RWS). Sebagai kesimpulan, teknik yang dibangunkan telah 

memberi keutamaan berbeza kepada  setiap kes ujian yang mana telah membantu 

dalam membezakan setiap kes, sekali  gus meningkatkan skor keseluruhan APFD 

dan CE.  
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INTRODUCTION 

1.1 Background of the Study 

Software engineering is not only confined to programming and software 

development efforts (van Katwijk, 1991). Software engineering itself is an 

implementation of engineering procedures in the development of any specific 

software in a much systematic way. Within software development process, software 

testing consumes a significant amount of time and can be the most expensive phase 

(Myers et al., 2004). Software testing is arguably the least understood part of a 

software development process. Software testing itself involves iterative strategies, 

which are often subjected to various pressures due to time constraint and fixed 

resources. Software engineering communities are regularly compelled to pre-

maturely end their testing activities, attributed to financial stress and time necessities, 

which could lead to the generation of various conflicts relating to software quality 

and client agreement. 

In practical sense, developers are aware of the frustration arising from 

software bugs that are reported by users. When this happens, developers inevitably 

ask: How did these bugs escape watchful eyes in testing? Countless hours went into a 

series of meticulous testing of hundreds or thousands of variables and code 

statements, so how could a bug have eluded such vigilance? The answer might lie 
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within the software testing activity itself. Did testers test all possible test cases? Were 

all possible ordering of statements tested? An immediate solution is to run all test 

cases using several testing strategies, which may help testers to reveal the drawbacks 

of each strategy, such as time execution and effectiveness of fault detection. In light 

of this, it has been reported that the application of test case prioritization (TCP) 

appears to enhance test viability in software testing activity (Rothermel et al., 1999). 

TCP approach was first mentioned in the work of Wong et al. (1997). That 

work, however, only applied prioritization on test cases that had undergone test case 

selection. Later, Rothermel and Harold proposed and evaluated the TCP approach in 

a much broader context. Consider a test suite as listed in Table 1.1 (Elbaum et al., 

2000). This example only depicts an ideal situation in which fault detection 

information is known. 

 

Table 1.1 Test suite example 

Test Case Fault revealed by test case 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

TC1 √   √ √   √ √ √ 

TC2 √    √ √ √    

TC3     √ √ √ √ √ √ 

TC4 √ √ √  √   √ √  

TC5 √ √ √ √ √      

TCP sort test cases with the highest significance first according to some 

measures. Consequently, the primary goal of prioritization is to maximize early fault 

detection. Referring to Table 1.1, it can be concluded that the ordering of test cases 

in the order of TC5-TC3 is a much superior ordering that any other combinations. 

Such ordering detects all of the faults at an earlier rate.  In practice, it is often 

challenging to distinguish which tests will essentially will reveal faults. Hence, the 

effectiveness of a test case prioritization largely depends on choosing the most 

applicable approach from a pool of approaches, expecting that an early 

intensification of a certain approach will result in yielding an earlier fault discovery. 

There are many dimensions of test case prioritization approaches. Eight broad 
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dimensions were described by Singh (2012). For each approach, the scholar specified 

potential values, advantages, and limitation. 

In software engineering research, inputs and dataset types play important 

roles that allow scholars to determine their advantages and limitations. As there are 

various approaches that exist, processes that are involved may be specific to each 

approach. Variation of processes that is unique to each approach benefits project 

managers, as they are able to adapt suitable approach that fits project schedules, in 

order to compensate constraints that exist within the project development process. 

Despite TCP being a relatively mature approach, there is a dearth of available 

documentations that describe a systematic process within single TCP approach. In 

view of this, there is a gap of readily accessible systematic process that facilitates a 

complete TCP within existing approaches, which often involve the utilization of 

distinctive resources and processes. 

In a scenario where the only accessible resources are test cases and code 

changes from previous working system, TCP approach may be used. Particularly, 

TCP approach that utilizes string metric, as this approach is capable of distinguishing 

the differences in test cases followed by prioritization based on string similarity. In 

recent years, numerous TCP works have been documented, which prioritize test 

cases solely based on information related to test cases (Bo Jiang and Chan, 2015; 

Ledru et al., 2012; Mei, Cai, et al., 2015; Thomas et al., 2014). By depending on 

information that is available from test cases such as test case inputs, software tester 

may prioritize test cases prior to the availability of system source code. Such strategy 

reduces the time spent to prioritize test cases as complete source code is only 

available at a much later development phase. 

String distance, which computes textual similarities, could be used to 

differentiate test cases. This allows prioritization to be executed as test cases are 

subsequently assigned distance or weight. String metrics play an important role in 

textual document-related research such as information retrieval, text classification, 

document clustering, topic detection, topic tracking, question generation, question 
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answering, essay scoring, short answer scoring, machine translation, text 

summarization and others (Gomaa and Fahmy, 2013). String metrics can be 

categorized based on their metric calculation such as distances, similarity and weight. 

However, to precisely calculate the distance between test cases, a specific and 

reliable string distance with specific priority is required. In existing works (Bo Jiang 

and Chan, 2015; Ledru et al., 2012), only single-based string distance was used, 

which may yield redundancy in equivalence distance. In order to overcome this, 

enhancement of string distances may be pursued.  

Subsequent step upon the calculation of string distance is the application of 

prioritization algorithms to prioritize test cases based on their respective string 

distance values. Recent work by Bo Jiang and Chan (2015) demonstrates that 

heuristic prioritization algorithm can give a significant effect to TCP process. From 

their findings, the application of artificial intelligence algorithm may increase the 

results of average percentage of fault detection (APFD). However, existing 

prioritization approaches with string metric provide less favorable coverage 

effectiveness and execution time performance.  

The main challenge to the problems alluded can be divided into two primary 

issues, namely: systematic process for string distance technique in TCP and string 

distance formulation. String distances are essentially formulations used to determine 

textual distances to morph a test case to another test case. This is achieved by; either 

calculating the difference, or similarity of test cases based on their attributes such as 

test case inputs. As for the process, it is meant to provide a systematic guidance on 

how to execute TCP process with consideration of string distances. These challenges 

aim to address the issues of systematic maximization of fault detection in test case 

prioritization, whereby, specific problems will be explained in detail in the following 

sections. 
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1.2 Challenges in String Distance based TCP  

In software development life cycle, product being maintained is often 

subjected to system changes. After every change is implemented, immediate testing 

is required to ensure that the software adheres or meets specification. Assuming 

software testing team is required to execute testing and the only available resource is 

test suite with related attributes, TCP process needs to work out a strategy that 

prioritizes the test cases using available information. Work by Bo Jiang and Chan 

(2015) attempts to maximize test case diversity through test case input information, 

which differs from the work of Ledru et al. (2012). In Ledru et al. (2012), each test 

case is treated as a string of characters, and prioritization of test cases is carried out 

by using a simple string edit distance to determine the similarity between test cases. 

In these techniques, the goal is to give high priority to test cases that are vastly 

unalike (i.e., because they invoke different methods, or have higher string distance 

values), thereby maximizing test case diversity and casting a wide net for detecting 

unique faults (Hemmati et al., 2011). 

However, by relying solely on string distance values, the possibility of 

obtaining equal distances among test cases is relatively high and may affect overall 

prioritization process. Associated with this issue, there is much room for 

improvement to be made, as prioritization is primarily based on the differences 

between two points. Instinctively, instead of using a single string distance, the 

formulation may be enhanced further via combination with other possible string 

distances. Primary challenge that arises from this notion is: How can string distances 

be enhanced with other metrics while at the same time provide necessary priority 

weights to test cases that are greatly altered? As supporting evidence, previous works 

reported that prioritized test cases using string distance have promising APFD values 

as compared to randomly ordered test cases (Bo Jiang and Chan, 2015; Ledru et al., 

2012). Despite this, average scores of APFD ranks across almost all string distances 

are nearly identical, as reported in the work of Ledru et al. (2012). Hence, this 

implies that an enhancement of string distances with other related metrics such as 

weighting scale is worth further analysis. 
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1.3 Challenge in Process for TCP String-Based Technique 

Software engineering highly concerns on how the engineering processes are 

applied into software development in a systematic way. Therefore, it is necessary to 

have a systematic process for TCP approach, particularly for string-based TCP 

approach. There are numerous works that exhibit highly identical process flows, with 

the only notable difference lies; either in the addition, or the reduction of one step to 

an existing process flow (Bo Jiang and Chan, 2015; Ledru et al., 2012; Shahbazi and 

Miller, 2016). Variation of process flows may yield different results despite of 

utilization of a similar TCP approach on identical datasets. Therefore, the challenge 

in this process can be highlighted as: How to apply a string-based TCP technique 

into a testing environment in order to improve the effectiveness of the process? 

Generally, a TCP process begins with the preparation of data. Even though 

the description of this step is almost non-existent in existing literature, it is 

compulsory for any experiment or research endeavor to identify which information 

or data that shall be used. The data or information in TCP can be in the form of 

requirement statements, system models, and source code. The process is followed by 

determining and calculating prioritization criteria or dependency based on the data 

chosen. The process proceeds with prioritizing the calculated criteria or dependency. 

Finally, the performance is measured. This advocates the needs of formally defined 

steps and process, centered on string-based approach, with the challenges that are 

worth to be addressed. 

1.4 Research Questions 

The study of TCP approaches produces several research gaps worth 

exploring. There are numerous approaches that have been adapted in the field of TCP 

which concern with system evolution. Even though most existing works tend to 
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merely focus on TCP approaches, several other works cover the processes that are 

required to apply proposed TCP approaches. As for string-based TCP approach, 

highly redundant test cases owning identical string distances lead to a lack of 

accuracy and efficiency along the prioritization process, especially in terms of APFD 

scores. These problems could further lead to an un-systematic and inaccurate TCP. 

Therefore, it is a primary focus of this research to develop a systematic testing 

process for a string-based TCP approach. Consequently, a macro research question of 

this research is: 

“How to increase test case prioritization effectiveness with string distance 

systematically?” 

The macro research question leads to several micro research questions. 

‘Effectiveness’ itself could be quantified based on several measurements including 

fault detection rate, coverage effectiveness, and execution time. There are two micro 

research questions that need to be answered: 

i. What should be combined to the string distances to ensure that string 

distances have sufficient enhancement to increase fault detection rate? 

ii. How to apply the proposed technique systematically into testing 

environment to improve the effectiveness of the process? 

1.5 Research Objectives 

The goal of this study is to establish a preliminary testing involving a test 

case prioritization approach to adapt the changes in the source code of a system. 

From the aim of the study and derived research questions, the following research 

objectives are defined, specifically: 
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i. To propose an enhanced string metric in test case prioritization by 

combining string distances and its weight-based metric to increase fault 

detection rate. 

ii. To propose a process for string-based TCP approach to evaluate the 

effectiveness of the proposed TCP process on benchmark programs and 

its applicability on case studies systematically. 

1.6 Scope of Study 

The scopes of this research are limited to the following: 

i. The research focuses on small- to medium-scale specialized systems 

which are available in many engineering applications. 

ii. Benchmark programs and a case study would be used to compare the 

findings of the enhanced test case prioritization approach to existing test 

case prioritization approaches. 

1.7 Significances and Original Contributions of Study 

The research on test case prioritization technique is important in the context 

of safety-critical embedded system as it can contribute to uplifting a system’s 

software testing process. Moreover, the research conducted contributes to a better 

testing quality. Through this research: 

i. Prioritization of test cases can be performed at a much-reduced time. 

ii. Safety criterion which is an important factor for safety-critical systems is 

enforced as an important prioritization element when systems undergo 

any changes. 
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iii. Fault detection capability of the proposed test case prioritization approach 

is significantly increased. 

iv. The proposed approach exhibits statistical significance. 

1.8 Thesis Structure and Organization 

This thesis is outlined as follows: 

Chapter 1 provides a brief overview of the research. It consists of a brief 

overview of software system development, software testing, test case prioritization 

techniques and string metrics. Apart from that, within this chapter, statement of the 

problem, motivation of study, aims of study, objectives of the study, justification of 

study, scope of study, and the significance of the study are elaborated as well. 

Chapter 2 provides brief overviews of related works on test case 

prioritization. A summary of systematic literature review on test case prioritization 

approaches is also presented. Besides that, string distances and prioritization 

algorithm are briefly reviewed in this chapter. 

Chapter 3 describes the overview of the research theoretical framework and 

research operational framework. This chapter also introduces case studies and 

benchmark programs, which will be utilized in later chapters for applicability and 

verification. 

Chapter 4 elaborates the implementation of four string distances namely, 

Manhattan, Levenshtein, Cosine Similarity and Jaccard. Besides that, a proposed 

enhanced string distance is implemented. Results are compared against the other four 

string distances. 
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Chapter 5 elaborates the proposed process for string-based test case 

prioritization. The process is then applied to one case study. Statistical evaluation of 

the case study is also conducted in this chapter. 

Chapter 6 provides the conclusion, contribution, limitations, and future works 

of this research. 
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Appendix 

This appendix section contains Table X1 – Table X5 

 

Table X1: Result Quality Scores of Selected Studies.  

 

Paper Refs. Q1 Q2 Q3 Q4 Q5 Score 

Rothermel et al., 1999  [3] 1 1 0.5 0.5 1 4 

Yoo, S., & Harman, M. 2012  [7] 1 0 1 0 1 3 

Singh et al., 2012  [13] 1 0 1 0 1 3 

Thomas et al., 2014  [18] 1 1 1 0.5 1 4.5 

Sampath et al., 2013  [19] 1 1 1 0.5 1 4.5 

Sanchez et al., 2014  [20] 1 1 0.5 0.5 1 4 

Mei et al., 2015  [21] 1 1 1 0.5 1 4.5 

Fang et al., 2014 [22] 1 1 1 0.5 1 4.5 

Miranda & Bertolino, 2016 [23] 1 1 1 0.5 1 4.5 

Korel et al., 2007  [24] 1 1 0.5 0.5 1 4 

Maheswari et al.,2015  [25] 1 1 1 0.5 1 4.5 

Lou et al., 2015  [26] 1 1 0.5 0.5 1 4 

Yuan et al., 2015  [27] 1 1 0.5 0.5 1 4 

Catal, C. 2012  [28] 1 1 0.5 0.5 1 4 

Kaur, A., & Goyal, S. 2011  [29] 1 1 1 0.5 1 4.5 

Jun et al.,  2011  [30] 1 1 0.5 0.5 1 4 

Sabharwal et al., 2010  [31] 1 1 0.5 0.5 1 4 

Do et al., 2006 [33] 1 1 1 0.5 1 4.5 

Deb et al., 2002 [32] 1 1 1 0.5 1 4.5 

Li et al., 2007  [34] 1 1 1 0.5 1 4.5 

Li et al., 2010  [35] 1 1 0.5 0.5 1 4 

Solanki et al., 2016  [36] 1 1 0.5 0.5 1 4 

Gao et al., 2015  [37] 1 1 0.5 0.5 1 4 

Noguchi et al., 2015  [38] 1 1 0.5 0.5 1 4 

Ledru et al., 2012  [39] 1 1 1 0.5 1 4.5 

Jiang et al., 2015  [40] 1 1 1 0.5 1 4.5 




