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ABSTRACT

Mutation testing is used to design new software tests and evaluate the quality
of existing software tests. It works by seeding faults in the software program, which
are called mutants. Test cases are executed on these mutants to determine if they are
killed or remain alive. They remain alive because some of the mutants are
syntactically different from the original, but are semantically the same. This makes it
difficult for them to be identified by the test suites. Such mutants are called
equivalent mutants. Many approaches have been developed by researchers to
discover equivalent mutant but the results are not satisfactory. This research
developed an ontology based negative selection algorithm (NSA), designed for
anomalies detection and similar pattern recognition with two-class classification
problem domains, either self (normal) or non-self (anomaly). In this research, an
ontology was used to remove redundancies in test suites before undergoing detection
process. During the process, NSA was used to detect the equivalent mutant among
the test suites. Those who passed the condition set would be added to the equivalent
coverage. The results were compared with previous works, and showed that the
implementation of NSA in equivalent mutation testing had minimized local
optimization problem in detector convergence (number of detectors) and time
complexity (execution time). The findings had more equivalent mutants with average
of 91.84% and scored higher mutation score (MS) with average of 80% for all the
tested programs. Furthermore, the NSA had used a minimum number of detectors for
higher detection of equivalent mutants with the average of 78% for all the tested
programs. These results proved that the ontology based negative selection algorithm
had achieved its goals to minimize local optimization problem.
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ABSTRAK

Ujian mutasi digunakan untuk merekabentuk ujian perisian baru dan menilai
kualiti ujian perisian yang sedia ada. Ia berfungsi dengan pembenihan kerosakan
dalam program perisian yang dipanggil mutan. Kes ujian dilaksanakan pada mutan
untuk menentukan jika mereka terbunuh atau masih hidup. Mutan masih hidup
disebabkan oleh sesetengah mutan berbeza secara sintetik dari asal tetapi
menghasikan jawapan yang sama. Ini menjadikan mereka sukar untuk dikenal pasti
oleh kes ujian. Mutan tersebut dipanggil mutan bersamaan. Banyak pendekatan telah
dibangunkan oleh para penyelidik untuk mencari mutan setara tetapi hasilnya tidak
memuaskan. Kajian ini menghasilkan algoritma pemilihan negatif berasaskan
ontologi (NSA) yang direka untuk mengesan perubahan dan pengiktirafan corak
yang sama dengan domain klasifikasi masalah dua kelas, sama ada sendiri (normal)
atau bukan diri (anomali). Dalam kajian ini, ontologi membantu membuang lebihan
set ujian sebelum menjalani proses pengesanan. Semasa proses ini, NSA digunakan
untuk mengesan mutan bersamaan dalam set ujian. Mutan yang menepati persamaan
akan dimasukkan ke dalam liputan mutan bersamaan. Hasilnya dibandingkan dengan
kaedah sebelumnya, dan menunjukkan bahawa pelaksanaan NSA dalam ujian mutasi
bersamaan telah meminimumkan masalah tempatan pengoptimuman dalam pengesan
penumpuan (jumlah pengesan) dan masa kerumitan (tempoh masa). Kajian ini telah
mengesan mutan bersamaan dengan purata 91.84% dan menjaringkan skor mutasi
(MS) yang lebih tinggi dengan purata 80% untuk semua program yang diuji.
Tambahan pula, NSA telah menggunakan bilangan pengesan minimum untuk
pengesanan mutan bersamaan yang lebih tinggi dengan purata 78% untuk semua
program yang diuji. Keputusan ini membuktikan bahawa algoritma pemilihan negatif
berasaskan ontologi telah mencapai matlamatnya untuk meminimumkan masalah
tempatan pengoptimalan.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Software testing is defined as an activity to check whether the actual results

match the expected results and to ensure that the software system is defect free. It

involves the execution of a software component or the system component to evaluate

one or more properties of interest. Software testing also helps to identify errors, gaps

or missing requirements in contrary to the actual requirements. It can be either done

manually or using automated tools. In simple terms, software testing means

Verification of Application Under Test (AUT). Typically testing can be classified

into three categories: functional testing, non-functional testing and maintenance. In

functional testing, there are several types like Unit Testing and User Acceptance

Testing. While non-functional testing has types like performance and usability

testing. For maintenance category, there are regression testing and maintenance.

There are several major methods used while conducting various software

testing types within various software testing levels. Methods of testing include black

box testing, white box testing, and experience based testing. Black box testing is a

method that tested the internal structure of the program that is not known to the tester.

The testing parts can be functional or non-functional, but mostly functional. Black

box testing focuses on the outputs generated in response to selected inputs and

execution condition (Liu and Tan, 2009).White box testing is a method that tested the

internal structure of the program that is known to the tester. The test cases of this

testing method were designed based on the information derived from the source code

(Liu and Tan, 2009). While, agile testing is a method of the software testing that

follows the principles of agile software development. Agile testing method has the

ability to rapidly accommodate changes in the original requirements and prioritize

the development of functionality through executable code (Collins et al., 2012).
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Mutation testing is fall under the unit testing. Unit testing is a method where

components or individual units of software are tested to determine their conformity

to the designed specifications, and that also includes testing associated data and

usage procedures. A unit is simply a small piece of code for any single function. The

unit test itself is a short script or piece of code designed to verify the behavior of a

particular unit to produce a pass or fail result. The aim of the unit test is to allow

developers to run as many unit tests as possible to identify potential loopholes. Once

the application has passed the unit testing, other forms of testing will then need to be

applied for further validation. Some benefits of unit testing like faster the

development as less time of debugging and reduce the cost for future maintenance.

Although the benefits of Unit Testing are beginning to be understood more widely,

there are still number of reasons why it has not been more fully adopted, which

leaves its potential unrealized. There is no allocated time for unit testing as writing

unit testing is time consuming. Besides, the emergence of new tools in the market

causes difficulties to the developer to write unit tests. The more the coverage of the

code, the more test coverage should be prepared by the developer.

Nowadays, testing is quite expensive because of either inefficient test suites

or ineffective defect detection. In some research, mutation testing had been proven to

have high cost-effective test after improving their rate of test suites and also by test

cases creation where it is necessary. The idea of mutation testing is syntactically

equivalence where firstly, mutation testing is used to generate mutants from original

program. Each mutant contains at least one artificial change. Normally the changes

are a fault in good test case. Nonetheless, sometimes the changes of the code will

lead to the exhibition of the same behavior. So, in general, mutation testing achieves

two goals: evaluating test suite quality and executing a test case against the original

program to find errors.

Mutation testing is a type of software testing where we mutate (change)

certain statements in the source code and check if the test cases are able to find the

errors. It is a type of White Box Testing which is mainly used for Unit Testing.

Mutation testing is one general methodology used to test program. The difference is

that mutation testing focuses on the test cases used to test the program and does not
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focus on the functionality of the program. The main idea of mutation testing is to

create well sets test case that able to discover all the ease and hard-to-find faults in

the program. So, for the application, first the original program is executed with the

same test suite. Then, mutants are generated and executed with the same test suite.

The execution is using a mutation operator and it checks whether the testing can

identify this fault (Budd, 1981). A small syntactic modification is inserted in the

program under test and it automatically created the version of the program called

mutant. A mutant in the mutated program is said to be killed if any test case can

distinguish the mutant from its original program. This killed mutant is behaving

differently from the original program. However, if there is no test case can

differentiate between them then the mutant is still alive. In order to identify

equivalent mutants, the set of live mutants is analyzed. A mutant is considered

equivalent if it exhibits the same deportment as the program under test. Incipient test

cases are engendered to kill the live mutants. Some quandaries may occur like a high

number of generated mutants, the computational cost of implementation and high

effort for equivalent mutant identification even though mutation testing has benefits

in term of effectiveness (Delamaro et al., 2007).

There are two general types of mutation testing, either non-equivalent or

equivalent. Non-equivalent mutant is a mutant that totally differs from the original

program. The difference is from the structure of the mutant that produced different

output from the original. These types of mutants are easily identified during the

detection process. Those who generate different output from the original are

considered as a non-equivalent mutant. Equivalent mutant is defined when the

introduced change does not modify the meaning of the original program. Figure 1.1

shows the example of the equivalent mutant where both codes produced the same

output. A mutant is equivalent if there is no such test case that is able to differentiate

between two different outputs, mutant or original program. The equivalent mutant

problem is one of the most crucial problems and mutation testing widely studied over

decades (Jacobs and Bean, 1963). There are several serious consequences due to the

equivalent mutant. For instance, it is difficult to assess the effect of a single change

of the code if there are any random changes generated. Besides, the test suite tends to

find more and more non-equivalent mutant with a fixed number of equivalent

mutants and percentage is statically increases (Madeyski et al., 2014). A test suite is
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categorized as effective if it has the capability to detect more mutants. Mutation

score used to measure the efficiency of a test suite in mutation testing. The mutation

score is calculated by dividing the number of equivalent mutants detected with an

overall number of non-equivalent mutants. Based on the definition of mutation score,

it is assured that the detection of all equivalent mutants is very important.

Figure 1.1The example of equivalent mutant.

The use of mutation testing is basically improving a test suite. Mutation

testing provides tests for undetected mutants. After applying a mutant to a program,

then one checks whether the test suite detects mutations or not. If the results show

the undetected mutants, the programmer will add or modify the existing tests to

detect the undetected mutants. Several reasons proved why test suite might fail to

detect mutation. The reason is mutation did not change the program semantically,

therefore it causes mutant to be undetected. These equivalent mutants give

disadvantages to the test suite and also give additional burden to the programmer for

manual assessment. If a mutation is covered but not detected, that means the test

does not thoroughly check the result enough or the input data not the best for

triggering erroneous behavior.

1.2 Background of the Problem

One of the major problem causes by mutation testing is the equivalent mutant

problem. This problem might happen when a mutation over the original program
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does not change the semantics of the program. It will be hard for the test case to

detect the change. An equivalent mutant is generated due to a mutation leads to no

possible observable change in behavior. This mutant is syntactically different but

semantically identical to the original program. It is said to be equivalent if there is no

such test case that able to differentiate between the mutant and their original output

program. The result of survive mutations not found by the test suite thus mutants that

are equivalent had mixes all valuable mutations in one set. This is the important issue

to be considered when generating the mutants.

The equivalent mutant problem is actually a decision problem that allows the

determination of a program behavioral that equivalent to its mutant. There are several

reasons on the cause of equivalent mutant and their distribution to mutation testing.

The reasons for a certain equivalent mutants are caused by the dead code. However,

the biggest single reason is weak mutation testing cannot kill these mutants.

Furthermore, those mutants that cannot be killed by strong mutation testing also

become a large effect in internal state result rather than those who fail to propagate to

an output.

There are several techniques that can solve the equivalent mutant problem.

Some of the techniques or approaches used to solve this equivalent problem lacking

in mutant coverage and time complexity. Mutant coverage includes the number of

mutant detected while time complexity mentioned about the total time required by

the program to run a completion. We could easily live with equivalent mutants with a

few numbers or easily to be assessed. Unfortunately, it is hard to hold as there are

plenty of equivalent mutants and assessing each equivalent mutant is time consuming.

The effort needed to check equivalent mutant can be very high even for small

programs. In fact, these mutants effectively prohibited any automatic assessment of

test quality during mutation testing.

The equivalent mutant problem is a major hindrance to mutation testing.

Being un-decidable in general cause is only susceptible to partial solutions. Thus,

equivalent mutant has instance introduce further difficulties to the mutation testing

process.
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1.3 Problem Statement

The problems detected from the previous works are coverage of mutants and

the execution time for testing process. Most of the existing techniques that have been

tested before produce least mutant coverage and very time consuming. While these

complexities of software systems have increased in recent years have required higher

quality that stress on testing in order to increase quality of the testing. The

importance of having highest mutant coverage is to measure the effectiveness of the

method either the method able to detect high coverage of mutant.

The other problem apart from detecting high coverage of mutant is the

redundancy in test suite. The redundancy causes the method to take longer time to do

the testing. Due to the repetitive data in the test suite it makes the method to run the

testing for same data twice. Avoiding redundancy is important for effectiveness and

efficiency of the method. Previous works exclude redundancy in their testing. They

directly implement the testing without avoiding any redundancy. This will affect the

execution time of the testing. The execution time is important in mutation testing as

this will measure the ability of the method to finish the process within shorter time.

The general research question is:

How can mutant coverage and execution time be improved using negative selection

algorithm?

In order to answer this question, the following questions or challenges are required to

be answered, which are:

i. How to minimize the redundancy in test suite using proposed method?

ii. How to improve mutant coverage and execution time?

iii. How effective is proposed method in solving equivalent mutant problem?
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1.4 Objectives

The objectives of the research based on the problem statement are as follows:

i. To design ontology for mutation testing that identifies redundancy in test

data.

ii. To apply negative selection algorithm in improving mutant coverage and

time complexity.

iii. To evaluate the findings of proposed method of solving equivalent mutant

1.5 Research Scope and Significant

As described earlier, although a few studies have been done on equivalent

mutant problems, but a little information was available on the process of detecting

equivalent mutant in mutation testing. All of the previous researches on the related

field have been encountering several problems but have yet not fully covered the

solution for equivalent mutant problem. Thus, this research considered the through

detection of equivalent mutant and this present as a detection technique of equivalent

mutant as well as resolving the problems faced by previous approaches or methods.

The major differences between this research and previous researches can be

explained as follows: first, this proposed method will be used to evaluate Java

programs, second, this research will use common Java testing tools like Pitest and

Muclipse, third, this research will detect equivalent mutant using its own simple and

accurate rules (Euclidean distance), and last this research has a major function which

is fault detection. Although NSA has been successfully applied in pattern recognition,

fault detection and computer security but its applicability in the theater of operations

of testing is still undiscovered. The general flow of NSA in fault detection is that a

set of fault detectors are generated using NSA which is responsible for detection

faulty. The self and non-self theory in NSA inspired researchers to do fault detection.

This is why NSA suitable for the area of fault detection.
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The main contribution of this research can be explained as follows: first, this

research evolves a method that puts up an effective way for detecting equivalent

mutant with the optimal set of test data that guarantees all mutants are covered,

second, this research cuts the number of test data while avoiding redundancies and

generated adequate test data which can be applied to detect program faults. Finally

the maturation of the systematic survey includes a comparison done between the

proposed method and the previous techniques. The result of this research could be

useful to the solution of equivalent mutant problem. With the advantages of the

negative selection approach, it could significantly increase the detection of

equivalent mutant in mutation testing.

1.6 Thesis Outline

The thesis is structured as follows:

 Chapter 1: This chapter presents an introduction of the research, which

includes the background of the research, problem statement, objectives

and finally, the scope and significance of the study.

 Chapter 2: This chapter presents the literature review of the study. It

begins with an outline of software testing, mutation testing and negative

selection, as considerably as the different techniques employed to

generate test data and detect equivalent mutant and discussion on related

works.

 Chapter 3: This chapter presents the research methodology which

includes the research operational framework, description of the data set

used and declaration of the evaluation measurement.

 Chapter 4: This chapter presents the evolution of ontology for mutation

testing. This includes ontology construction such as entity extraction,

taxonomy formation, relationships and axioms. There is also ontology

validation to determine consistency, correctness and quality.

 Chapter 5: In this chapter, it explained the experimental analysis of

applying ontology based NSA in generating test data and detecting
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equivalent mutant, and comparing the results with others to investigate

the strength of the algorithm.

 Chapter 6: This chapter shows the validation of the proposed method. A

statistical tool will be utilized to examine and compare the proposed

method with other existing methods.

 Chapter 7: The contributions, conclusions as well as the suggestions for

future works will be discussed in this chapter

1.7 Summary

This chapter presents the introduction of the research. The introduction is

about the overview of the mutation testing including methods applied by the

researchers and the problems of mutation testing that still unsatisfactory. This

chapter also stated several research questions and objectives to be achieved followed

by the scope and the significance of the research. And, finally, the chapter described

the organization of the thesis from Chapter 1 till Chapter 7.
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