
ONTOLOGY BASED NEGATIVE SELECTION APPROACH FOR MUTATION

TESTING

SHEROLWENDY ANAK SUALIM

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Philosophy

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

MAY 2019

iii

DEDICATION

This thesis is dedicated to my beloved family and friends, who taught me that
the best kind of knowledge to have is that which is learned for its own sake. It is also

dedicated to my mother, who taught me that even the largest task can be
accomplished if it is done one step at a time.

iv

ACKNOWLEDGEMENT

I would like to express my appreciation to my main supervisor, Dr Radziah
Mohamed for her incredible advice, encouragement, support and guidance through
my Master journey. I am really proud to be under her supervision. I also want to
thank my co-supervisor, Dr Nor Azizah Sa’adon for her advises and guidance in
completing my thesis.

I also want to thank my family for their encouragement and moral support
during this journey. I am also being thankful to my colleagues and those who have
supported and provided all kinds of assistance either directly or indirectly during the
completion of this projects.

Lastly, I want to express my gratitude to Universiti Teknologi Malaysia
(UTM) and Ministry of Higher Education (MOHE) Malaysia for providing the
facilities during this research.

v

ABSTRACT

Mutation testing is used to design new software tests and evaluate the quality
of existing software tests. It works by seeding faults in the software program, which
are called mutants. Test cases are executed on these mutants to determine if they are
killed or remain alive. They remain alive because some of the mutants are
syntactically different from the original, but are semantically the same. This makes it
difficult for them to be identified by the test suites. Such mutants are called
equivalent mutants. Many approaches have been developed by researchers to
discover equivalent mutant but the results are not satisfactory. This research
developed an ontology based negative selection algorithm (NSA), designed for
anomalies detection and similar pattern recognition with two-class classification
problem domains, either self (normal) or non-self (anomaly). In this research, an
ontology was used to remove redundancies in test suites before undergoing detection
process. During the process, NSA was used to detect the equivalent mutant among
the test suites. Those who passed the condition set would be added to the equivalent
coverage. The results were compared with previous works, and showed that the
implementation of NSA in equivalent mutation testing had minimized local
optimization problem in detector convergence (number of detectors) and time
complexity (execution time). The findings had more equivalent mutants with average
of 91.84% and scored higher mutation score (MS) with average of 80% for all the
tested programs. Furthermore, the NSA had used a minimum number of detectors for
higher detection of equivalent mutants with the average of 78% for all the tested
programs. These results proved that the ontology based negative selection algorithm
had achieved its goals to minimize local optimization problem.

vi

ABSTRAK

Ujian mutasi digunakan untuk merekabentuk ujian perisian baru dan menilai
kualiti ujian perisian yang sedia ada. Ia berfungsi dengan pembenihan kerosakan
dalam program perisian yang dipanggil mutan. Kes ujian dilaksanakan pada mutan
untuk menentukan jika mereka terbunuh atau masih hidup. Mutan masih hidup
disebabkan oleh sesetengah mutan berbeza secara sintetik dari asal tetapi
menghasikan jawapan yang sama. Ini menjadikan mereka sukar untuk dikenal pasti
oleh kes ujian. Mutan tersebut dipanggil mutan bersamaan. Banyak pendekatan telah
dibangunkan oleh para penyelidik untuk mencari mutan setara tetapi hasilnya tidak
memuaskan. Kajian ini menghasilkan algoritma pemilihan negatif berasaskan
ontologi (NSA) yang direka untuk mengesan perubahan dan pengiktirafan corak
yang sama dengan domain klasifikasi masalah dua kelas, sama ada sendiri (normal)
atau bukan diri (anomali). Dalam kajian ini, ontologi membantu membuang lebihan
set ujian sebelum menjalani proses pengesanan. Semasa proses ini, NSA digunakan
untuk mengesan mutan bersamaan dalam set ujian. Mutan yang menepati persamaan
akan dimasukkan ke dalam liputan mutan bersamaan. Hasilnya dibandingkan dengan
kaedah sebelumnya, dan menunjukkan bahawa pelaksanaan NSA dalam ujian mutasi
bersamaan telah meminimumkan masalah tempatan pengoptimuman dalam pengesan
penumpuan (jumlah pengesan) dan masa kerumitan (tempoh masa). Kajian ini telah
mengesan mutan bersamaan dengan purata 91.84% dan menjaringkan skor mutasi
(MS) yang lebih tinggi dengan purata 80% untuk semua program yang diuji.
Tambahan pula, NSA telah menggunakan bilangan pengesan minimum untuk
pengesanan mutan bersamaan yang lebih tinggi dengan purata 78% untuk semua
program yang diuji. Keputusan ini membuktikan bahawa algoritma pemilihan negatif
berasaskan ontologi telah mencapai matlamatnya untuk meminimumkan masalah
tempatan pengoptimalan.

vii

TABLEOFCONTENTS

TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT ivv

ABSTRACT v

ABSTRAK vii

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiii

LIST OF SYMBOLS xv

LIST OF APPENDICES xvii

CHAPTER 1 INTRODUCTION..1

1.1 Overview..1

1.2 Background of the Problem... 4

1.3 Problem Statement... 6

1.4 Objectives...7

1.5 Research Scope and Significant...7

1.6 Thesis Outline.. 8

1.7 Summary.. 9

CHAPTER 2 LITERATURE REVIEW..11

2.1 Introduction..11

2.2 Testing Technique..13

2.2.1 White Box Testing.. 13

2.2.2 Black Box Testing...14

2.3 Introduction to Mutation Testing... 14

2.4 Ontology...20

viii

2.4.1 Ontology For Operators.. 22

2.5 Equivalent Mutant..24

2.6 Negative Selection Approach...28

2.7 Method Comparison...32

2.8 Summary.. 35

CHAPTER 3 RESEARCH METHODOLOGY..37

3.1 General Flow of Research..37

3.2 Overview of Research..38

3.3 Research Design...39

3.4 Research Framework..41

3.4.1 Ontology of Mutation Testing...43

3.4.2 Applying Ontology Based Negative Selection
for Mutation Testing...45

3.4.3 Evaluation and Validation...47

3.5 Evaluation of Testing Performance..48

3.6 Experimental Setup..50

3.7 Experimental Programs..50

3.8 Summary.. 54

CHAPTER 4 ONTOLOGY OF MUTATION TESTING..................................57

4.1 Introduction..57

4.2 Methodology of Ontology..58

4.3 Ontology Construction...60

4.3.1 Entity Extraction... 61

4.3.2 Java Operators...64

4.3.3 Taxonomy Formation..67

4.3.4 Relationships... 69

4.3.5 Axioms.. 70

4.4 Consistency and Correctness Checking... 75

4.5 Ontology Quality..76

4.6 Summary.. 78

ix

CHAPTER 5 ONTOLOGY BASED NEGATIVE SELECTION
ALGORITHM FORMUTATION TESTING....... Error! Bookmark not defined.

5.1 Introduction..Error! Bookmark not defined.

5.2 Application of Ontology Based NSA in Mutation TestingError! Bookmark not defined.

5.3 Experimental Evaluation....................Error! Bookmark not defined.

5.3.1 Discussion Results...............Error! Bookmark not defined.

5.3.2 Result of the Test Programs Error! Bookmark not defined.

5.4 Summary.. Error! Bookmark not defined.

CHAPTER 6 EFFICIENCY AND EFFECTIVENESS
VALIDATION...Error! Bookmark not defined.

6.1 Introduction..Error! Bookmark not defined.

6.2 The Statistical Analysis T-Test..........Error! Bookmark not defined.

6.3 Comparison with Related Works....... Error! Bookmark not defined.

6.4 Thread to Validity.............................. Error! Bookmark not defined.

6.5 Summary.. Error! Bookmark not defined.

CHAPTER 7 CONCLUSION............................... Error! Bookmark not defined.

7.1 Conclusion Remarks.......................... Error! Bookmark not defined.

7.1.1 Minimize redundancy in test suiteError! Bookmark not defined.

7.1.2 Improve mutant coverage and time complexityError! Bookmark not defined.

7.1.3 Evaluation on proposed method on solving
equivalent mutant............. Error! Bookmark not defined.

7.2 Research Contributions......................Error! Bookmark not defined.

7.3 Future Work....................................... Error! Bookmark not defined.

7.4 Summary.. Error! Bookmark not defined.

REFERENCES..79

x

LISTOFTABLES

TABLE NO. TITLE PAGE

Table 2.1 Step of mutation testing 19

Table 2.2(a) Method analysis 26

Table 2.2(b) Method analysis (continued) 27

Table 2.3 Method comparisonError! Bookmark not defined. 33

Table 3.1 Benchmarking program 52

Table 4.1 Description of concepts 63

Table 4.2 Method-level operators 65

Table 4.3 Class-level operators 66

Table 4.4 Logical table for Operator Category 71

Table 4.5(a) Logical table for Operator Example 71

Table 4.5(b) Logical table for Operator Example 72

Table 4.6(a) Logical table for Operator Characteristic 73

Table 4.6(b) Logical table for Operator Characteristic 74

Table 4.7 Logical table for Operator Characteristic 75

Table 4.8 Result from ontology evaluation based on Burton-Jones et
al. (2005) 77

Table 5.1 Mutation score (MS) for each project under test 89

Table 5.2 Number of equivalent mutant detected 89

Table 5.3 Experimental results for number of data set 90

Table 5.4 Experimental results for execution time 91

Table 6.1 t-test on ATDG at 0.05 significance level 96

Table 6.2 t-test on AD at 0.05 significance level 97

Table 6.3 Statistical comparison of the results 98

Table 6.4 Comparison with related works 99

xi

LISTOFFIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 The example of equivalent mutant 4

Figure 2.1 Generic process of mutation testing (JIa and Harman,
2017) 18

Figure 2.2 The work flow of mutation testing 20

Figure 2.3 Generation of detector set 30

Figure 2.4 Detection of new instances 30

Figure 3.1 Flow of the research 38

Figure 3.2 Research process 41

Figure 3.3 Research framework 43

Figure 3.4 Task according to METHONTOLOGY (Corcho et al.,
2003) 45

Figure 3.5 The general flow of NSA 46

Figure 3.6 Overview of the proposed method for Phase 4 48

Figure 4.1 Task of the conceptualization according to
METHONTOLOGY (Corcho et al., 2003) 59

Figure 4.2 Direct relationship of the concepts (Lozano-Tello and
Gomez-Perez, 2004) 61

Figure 4.3 Taxonomy of ontology for operators 67

Figure 4.4 Sub-classes of Operator Type 68

Figure 4.5 Sub-classes of Operator Category 68

Figure 4.6 Sub-classes of Operator Characteristic 68

Figure 4.7 Sub-classes of Operator Equivalency 69

Figure 4.8 Sub-classes of Operator Example 69

Figure 4.9 Properties of ontology 70

Figure 4.10 Consistency checking 76

Figure 5.1 Algorithm for equivalent mutant detection 81

Figure 5.2 Flowchart of the proposed method 82

xii

Figure 5.3 Example of calculation 84

Figure 5.4 Sample of test data 88

Figure 5.5 Execution time in Seconds 91

Figure 5.6 Number of data set 92

xiii

LISTOFABBREVIATIONS

ABS - Absolute Value Insertion

AIS - Artificial Immune Systems

AMC - Access Modifier Change

AOD - Arithmetic Operator Deletion

AOI - Arithmetic Operator Replacement

AUT - Application Under Test

CDL - Condition Deletion

COI - Conditional Operator Insertion

COR - Conditional Operator Replacement

CPU - Central Processing Unit

EMD - Equivalent Mutant Detection

FOM - First Order Mutation

GUI - Graphical User Interface

HAZOP - Hazard and Operability Studies

HOM - Higher Order Mutation

JSI - Static Modifier Insertion

JUnit - Java Unit

IHD - Hiding Variable Deletion

IHI - Hiding Variable Insertion

IOD - Overriding Method Deletion

IOR - Overriding Method Rename

ISI - Super Keyword Insertion

LCR - Logical Connector Replacement

LOC - Line of Code

LOI - Logical Operator Insertion

MS - Mutation Score

NSA - Negative Selection Algorithm

OAN - Argument Number Change

OO - Object Oriented

OWL - Web Ontology Language

xiv

PCC - Cast Type Casting

PUT - Program Under test

ROR - Relational Operator Replacement

SOM - Second Order Mutant

UOI - Unary Operator Insertion

xv

LISTOFSYMBOLS

xvi

LISTOFAPPENDICES

APPENDIX TITLE PAGE

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Software testing is defined as an activity to check whether the actual results

match the expected results and to ensure that the software system is defect free. It

involves the execution of a software component or the system component to evaluate

one or more properties of interest. Software testing also helps to identify errors, gaps

or missing requirements in contrary to the actual requirements. It can be either done

manually or using automated tools. In simple terms, software testing means

Verification of Application Under Test (AUT). Typically testing can be classified

into three categories: functional testing, non-functional testing and maintenance. In

functional testing, there are several types like Unit Testing and User Acceptance

Testing. While non-functional testing has types like performance and usability

testing. For maintenance category, there are regression testing and maintenance.

There are several major methods used while conducting various software

testing types within various software testing levels. Methods of testing include black

box testing, white box testing, and experience based testing. Black box testing is a

method that tested the internal structure of the program that is not known to the tester.

The testing parts can be functional or non-functional, but mostly functional. Black

box testing focuses on the outputs generated in response to selected inputs and

execution condition (Liu and Tan, 2009).White box testing is a method that tested the

internal structure of the program that is known to the tester. The test cases of this

testing method were designed based on the information derived from the source code

(Liu and Tan, 2009). While, agile testing is a method of the software testing that

follows the principles of agile software development. Agile testing method has the

ability to rapidly accommodate changes in the original requirements and prioritize

the development of functionality through executable code (Collins et al., 2012).

2

Mutation testing is fall under the unit testing. Unit testing is a method where

components or individual units of software are tested to determine their conformity

to the designed specifications, and that also includes testing associated data and

usage procedures. A unit is simply a small piece of code for any single function. The

unit test itself is a short script or piece of code designed to verify the behavior of a

particular unit to produce a pass or fail result. The aim of the unit test is to allow

developers to run as many unit tests as possible to identify potential loopholes. Once

the application has passed the unit testing, other forms of testing will then need to be

applied for further validation. Some benefits of unit testing like faster the

development as less time of debugging and reduce the cost for future maintenance.

Although the benefits of Unit Testing are beginning to be understood more widely,

there are still number of reasons why it has not been more fully adopted, which

leaves its potential unrealized. There is no allocated time for unit testing as writing

unit testing is time consuming. Besides, the emergence of new tools in the market

causes difficulties to the developer to write unit tests. The more the coverage of the

code, the more test coverage should be prepared by the developer.

Nowadays, testing is quite expensive because of either inefficient test suites

or ineffective defect detection. In some research, mutation testing had been proven to

have high cost-effective test after improving their rate of test suites and also by test

cases creation where it is necessary. The idea of mutation testing is syntactically

equivalence where firstly, mutation testing is used to generate mutants from original

program. Each mutant contains at least one artificial change. Normally the changes

are a fault in good test case. Nonetheless, sometimes the changes of the code will

lead to the exhibition of the same behavior. So, in general, mutation testing achieves

two goals: evaluating test suite quality and executing a test case against the original

program to find errors.

Mutation testing is a type of software testing where we mutate (change)

certain statements in the source code and check if the test cases are able to find the

errors. It is a type of White Box Testing which is mainly used for Unit Testing.

Mutation testing is one general methodology used to test program. The difference is

that mutation testing focuses on the test cases used to test the program and does not

3

focus on the functionality of the program. The main idea of mutation testing is to

create well sets test case that able to discover all the ease and hard-to-find faults in

the program. So, for the application, first the original program is executed with the

same test suite. Then, mutants are generated and executed with the same test suite.

The execution is using a mutation operator and it checks whether the testing can

identify this fault (Budd, 1981). A small syntactic modification is inserted in the

program under test and it automatically created the version of the program called

mutant. A mutant in the mutated program is said to be killed if any test case can

distinguish the mutant from its original program. This killed mutant is behaving

differently from the original program. However, if there is no test case can

differentiate between them then the mutant is still alive. In order to identify

equivalent mutants, the set of live mutants is analyzed. A mutant is considered

equivalent if it exhibits the same deportment as the program under test. Incipient test

cases are engendered to kill the live mutants. Some quandaries may occur like a high

number of generated mutants, the computational cost of implementation and high

effort for equivalent mutant identification even though mutation testing has benefits

in term of effectiveness (Delamaro et al., 2007).

There are two general types of mutation testing, either non-equivalent or

equivalent. Non-equivalent mutant is a mutant that totally differs from the original

program. The difference is from the structure of the mutant that produced different

output from the original. These types of mutants are easily identified during the

detection process. Those who generate different output from the original are

considered as a non-equivalent mutant. Equivalent mutant is defined when the

introduced change does not modify the meaning of the original program. Figure 1.1

shows the example of the equivalent mutant where both codes produced the same

output. A mutant is equivalent if there is no such test case that is able to differentiate

between two different outputs, mutant or original program. The equivalent mutant

problem is one of the most crucial problems and mutation testing widely studied over

decades (Jacobs and Bean, 1963). There are several serious consequences due to the

equivalent mutant. For instance, it is difficult to assess the effect of a single change

of the code if there are any random changes generated. Besides, the test suite tends to

find more and more non-equivalent mutant with a fixed number of equivalent

mutants and percentage is statically increases (Madeyski et al., 2014). A test suite is

4

categorized as effective if it has the capability to detect more mutants. Mutation

score used to measure the efficiency of a test suite in mutation testing. The mutation

score is calculated by dividing the number of equivalent mutants detected with an

overall number of non-equivalent mutants. Based on the definition of mutation score,

it is assured that the detection of all equivalent mutants is very important.

Figure 1.1The example of equivalent mutant.

The use of mutation testing is basically improving a test suite. Mutation

testing provides tests for undetected mutants. After applying a mutant to a program,

then one checks whether the test suite detects mutations or not. If the results show

the undetected mutants, the programmer will add or modify the existing tests to

detect the undetected mutants. Several reasons proved why test suite might fail to

detect mutation. The reason is mutation did not change the program semantically,

therefore it causes mutant to be undetected. These equivalent mutants give

disadvantages to the test suite and also give additional burden to the programmer for

manual assessment. If a mutation is covered but not detected, that means the test

does not thoroughly check the result enough or the input data not the best for

triggering erroneous behavior.

1.2 Background of the Problem

One of the major problem causes by mutation testing is the equivalent mutant

problem. This problem might happen when a mutation over the original program

5

does not change the semantics of the program. It will be hard for the test case to

detect the change. An equivalent mutant is generated due to a mutation leads to no

possible observable change in behavior. This mutant is syntactically different but

semantically identical to the original program. It is said to be equivalent if there is no

such test case that able to differentiate between the mutant and their original output

program. The result of survive mutations not found by the test suite thus mutants that

are equivalent had mixes all valuable mutations in one set. This is the important issue

to be considered when generating the mutants.

The equivalent mutant problem is actually a decision problem that allows the

determination of a program behavioral that equivalent to its mutant. There are several

reasons on the cause of equivalent mutant and their distribution to mutation testing.

The reasons for a certain equivalent mutants are caused by the dead code. However,

the biggest single reason is weak mutation testing cannot kill these mutants.

Furthermore, those mutants that cannot be killed by strong mutation testing also

become a large effect in internal state result rather than those who fail to propagate to

an output.

There are several techniques that can solve the equivalent mutant problem.

Some of the techniques or approaches used to solve this equivalent problem lacking

in mutant coverage and time complexity. Mutant coverage includes the number of

mutant detected while time complexity mentioned about the total time required by

the program to run a completion. We could easily live with equivalent mutants with a

few numbers or easily to be assessed. Unfortunately, it is hard to hold as there are

plenty of equivalent mutants and assessing each equivalent mutant is time consuming.

The effort needed to check equivalent mutant can be very high even for small

programs. In fact, these mutants effectively prohibited any automatic assessment of

test quality during mutation testing.

The equivalent mutant problem is a major hindrance to mutation testing.

Being un-decidable in general cause is only susceptible to partial solutions. Thus,

equivalent mutant has instance introduce further difficulties to the mutation testing

process.

6

1.3 Problem Statement

The problems detected from the previous works are coverage of mutants and

the execution time for testing process. Most of the existing techniques that have been

tested before produce least mutant coverage and very time consuming. While these

complexities of software systems have increased in recent years have required higher

quality that stress on testing in order to increase quality of the testing. The

importance of having highest mutant coverage is to measure the effectiveness of the

method either the method able to detect high coverage of mutant.

The other problem apart from detecting high coverage of mutant is the

redundancy in test suite. The redundancy causes the method to take longer time to do

the testing. Due to the repetitive data in the test suite it makes the method to run the

testing for same data twice. Avoiding redundancy is important for effectiveness and

efficiency of the method. Previous works exclude redundancy in their testing. They

directly implement the testing without avoiding any redundancy. This will affect the

execution time of the testing. The execution time is important in mutation testing as

this will measure the ability of the method to finish the process within shorter time.

The general research question is:

How can mutant coverage and execution time be improved using negative selection

algorithm?

In order to answer this question, the following questions or challenges are required to

be answered, which are:

i. How to minimize the redundancy in test suite using proposed method?

ii. How to improve mutant coverage and execution time?

iii. How effective is proposed method in solving equivalent mutant problem?

7

1.4 Objectives

The objectives of the research based on the problem statement are as follows:

i. To design ontology for mutation testing that identifies redundancy in test

data.

ii. To apply negative selection algorithm in improving mutant coverage and

time complexity.

iii. To evaluate the findings of proposed method of solving equivalent mutant

1.5 Research Scope and Significant

As described earlier, although a few studies have been done on equivalent

mutant problems, but a little information was available on the process of detecting

equivalent mutant in mutation testing. All of the previous researches on the related

field have been encountering several problems but have yet not fully covered the

solution for equivalent mutant problem. Thus, this research considered the through

detection of equivalent mutant and this present as a detection technique of equivalent

mutant as well as resolving the problems faced by previous approaches or methods.

The major differences between this research and previous researches can be

explained as follows: first, this proposed method will be used to evaluate Java

programs, second, this research will use common Java testing tools like Pitest and

Muclipse, third, this research will detect equivalent mutant using its own simple and

accurate rules (Euclidean distance), and last this research has a major function which

is fault detection. Although NSA has been successfully applied in pattern recognition,

fault detection and computer security but its applicability in the theater of operations

of testing is still undiscovered. The general flow of NSA in fault detection is that a

set of fault detectors are generated using NSA which is responsible for detection

faulty. The self and non-self theory in NSA inspired researchers to do fault detection.

This is why NSA suitable for the area of fault detection.

8

The main contribution of this research can be explained as follows: first, this

research evolves a method that puts up an effective way for detecting equivalent

mutant with the optimal set of test data that guarantees all mutants are covered,

second, this research cuts the number of test data while avoiding redundancies and

generated adequate test data which can be applied to detect program faults. Finally

the maturation of the systematic survey includes a comparison done between the

proposed method and the previous techniques. The result of this research could be

useful to the solution of equivalent mutant problem. With the advantages of the

negative selection approach, it could significantly increase the detection of

equivalent mutant in mutation testing.

1.6 Thesis Outline

The thesis is structured as follows:

 Chapter 1: This chapter presents an introduction of the research, which

includes the background of the research, problem statement, objectives

and finally, the scope and significance of the study.

 Chapter 2: This chapter presents the literature review of the study. It

begins with an outline of software testing, mutation testing and negative

selection, as considerably as the different techniques employed to

generate test data and detect equivalent mutant and discussion on related

works.

 Chapter 3: This chapter presents the research methodology which

includes the research operational framework, description of the data set

used and declaration of the evaluation measurement.

 Chapter 4: This chapter presents the evolution of ontology for mutation

testing. This includes ontology construction such as entity extraction,

taxonomy formation, relationships and axioms. There is also ontology

validation to determine consistency, correctness and quality.

 Chapter 5: In this chapter, it explained the experimental analysis of

applying ontology based NSA in generating test data and detecting

9

equivalent mutant, and comparing the results with others to investigate

the strength of the algorithm.

 Chapter 6: This chapter shows the validation of the proposed method. A

statistical tool will be utilized to examine and compare the proposed

method with other existing methods.

 Chapter 7: The contributions, conclusions as well as the suggestions for

future works will be discussed in this chapter

1.7 Summary

This chapter presents the introduction of the research. The introduction is

about the overview of the mutation testing including methods applied by the

researchers and the problems of mutation testing that still unsatisfactory. This

chapter also stated several research questions and objectives to be achieved followed

by the scope and the significance of the research. And, finally, the chapter described

the organization of the thesis from Chapter 1 till Chapter 7.

79

REFERENCES

Acree Jr, A. T. (1980). On Mutation (No. GIT-ICS-80/12). Georgia Inst of Tech

Atlanta, School of Information And Computer Science.

Adamopoulos, K., Harman, M., and Hierons, R. M. (2004, June). How to overcome

the equivalent mutant problem and achieve tailored selective mutation using

co-evolution. In Genetic and evolutionary computation conference (pp. 1338-

1349). Springer, Berlin, Heidelberg.

Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic review of search-based

testing for non-functional system properties. Information and Software

Technology, 51(6), 957-976.

Ahmed, M. A., and Hermadi, I. (2008). GA-based multiple paths test data

generator. Computers & Operations Research, 35(10), 3107-3124.

Alshahwan, N., and Harman, M. (2011, November). Automated web application

testing using search based software engineering. In Proceedings of the 2011

26th IEEE/ACM International Conference on Automated Software

Engineering(pp. 3-12). IEEE Computer Society.

Baldwin, D., and Sayward, F. (1979). Heuristics for Determining Equivalence of

Program Mutations. Georgia Inst of Tech Atlanta, School of Information

And Computer Science.

Black, R. (2009). Advanced Software Testing–Guide to the ISTQB Advanced

Certification Vol. 1 and 2. ISBN-13, 978-1.

Budd, T. A. (1981). Mutation analysis: Ideas, examples, problems and

prospects. Computer Program Testing, 8, i29-l48.

Budd, T. A., and Angluin, D. (1982). Two notions of correctness and their relation to

testing. Acta Informatica, 18(1), 31-45.

Castro, L. N., De Castro, L. N., and Timmis, J. (2002). Artificial immune systems: a

new computational intelligence approach. Springer Science & Business

Media.

80

Cohen, M. B., Colbourn, C. J., and Ling, A. C. (2003, November). Augmenting

simulated annealing to build interaction test suites. In Software Reliability

Engineering, 2003. ISSRE 2003. 14th International Symposium on (pp. 394-

405). IEEE.

Colanzi, T. E., Assunção, W. K. G., Vergilio, S. R., and Pozo, A. (2011, September).

Integration test of classes and aspects with a multi-evolutionary and coupling-

based approach. In International Symposium on Search Based Software

Engineering (pp. 188-203). Springer, Berlin, Heidelberg.

Coles, H., Laurent, T., Henard, C., Papadakis, M., and Ventresque, A. (2016, July).

Pit: a practical mutation testing tool for java. In Proceedings of the 25th

International Symposium on Software Testing and Analysis (pp. 449-452).

ACM.

Collins, E., Dias-Neto, A., and de Lucena Jr, V. F. (2012, July). Strategies for agile

software testing automation: An industrial experience. In Computer Software

and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th

Annual (pp. 440-445). IEEE.

Corcho, O., Fernández-López, M., and Gómez-Pérez, A. (2003). Methodologies,

tools and languages for building ontologies. Where is their meeting

point?. Data & knowledge engineering, 46(1), 41-64.

Corcho, O., Fernández-López, M., Gómez-Pérez, A., and López-Cima, A. (2005).

Building legal ontologies with METHONTOLOGY and WebODE. In Law

and the semantic web (pp. 142-157). Springer, Berlin, Heidelberg.

Cristani, M., and Cuel, R. (2005). A survey on ontology creation

methodologies. International Journal on Semantic Web and Information

Systems (IJSWIS), 1(2), 49-69.

Dasgupta, D., Ji, Z., and Gonzalez, F. (2003, December). Artificial immune system

(AIS) research in the last five years. In The 2003 Congress on Evolutionary

Computation, 2003. CEC'03. (Vol. 1, pp. 123-130). IEEE.

Dasgupta, D., KrishnaKumar, K., Wong, D., and Berry, M. (2004, September).

Negative selection algorithm for aircraft fault detection. In International

Conference on Artificial Immune Systems (pp. 1-13). Springer, Berlin,

Heidelberg.

81

Dasgupta, D., and González, F. (2002). An immunity-based technique to characterize

intrusions in computer networks. IEEE Transactions on evolutionary

computation, 6(3), 281-291.

Delamaro, M., Pezze, M., Vincenzi, A. M., and Maldonado, J. C. (2001, October).

Mutant operators for testing concurrent Java programs. In Brazilian

symposium on software engineering(pp. 272-285).

Del Grosso, C., Antoniol, G., Di Penta, M., Galinier, P., and Merlo, E. (2005, June).

Improving network applications security: a new heuristic to generate stress

testing data. In Proceedings of the 7th annual conference on Genetic and

evolutionary computation (pp. 1037-1043). ACM.

Deng, L., Offutt, J., and Samudio, D. (2017, July). Is Mutation Analysis Effective at

Testing Android Apps?. In Software Quality, Reliability and Security (QRS),

2017 IEEE International Conference on (pp. 86-93). IEEE.

Derderian, K., Hierons, R. M., Harman, M., and Guo, Q. (2006). Automated unique

input output sequence generation for conformance testing of FSMs. The

Computer Journal, 49(3), 331-344.

Do, H., Elbaum, S., and Rothermel, G. (2005). Supporting controlled

experimentation with testing techniques: An infrastructure and its potential

impact. Empirical Software Engineering, 10(4), 405-435.

Domoney, C., Knox, M., Moreau, C., Ambrose, M., Palmer, S., Smith, P., and

Swain, M. (2013). Exploiting a fast neutron mutant genetic resource in Pisum

sativum (pea) for functional genomics. Functional Plant Biology, 40(12),

1261-1270.

Esponda, F., Ackley, E. S., Forrest, S., and Helman, P. (2004, September). Online

negative databases. In International Conference on Artificial Immune

Systems (pp. 175-188). Springer, Berlin, Heidelberg.

Esponda, F., Forrest, S., and Helman, P. (2004). A formal framework for positive

and negative detection schemes. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 34(1), 357-373.

Forrest, S., Perelson, A. S., Allen, L., and Cherukuri, R. (1994, May). Self-nonself

discrimination in a computer. In Research in Security and Privacy, 1994.

Proceedings., 1994 IEEE Computer Society Symposium on (pp. 202-212).

Ieee.

82

Freitas, A. A., and Timmis, J. (2003, September). Revisiting the foundations of

artificial immune systems: A problem-oriented perspective. In International

Conference on Artificial Immune Systems (pp. 229-241). Springer, Berlin,

Heidelberg.

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A., and Marinov, D.

(2013, July). Comparing non-adequate test suites using coverage criteria.

In Proceedings of the 2013 International Symposium on Software Testing and

Analysis(pp. 302-313). ACM.

Gómez-Pérez, A., Fernández-López, M., and Corcho, O. (2006). Ontological

Engineering: with examples from the areas of Knowledge Management, e-

Commerce and the Semantic Web. Springer Science & Business Media.

Gonzalez, F., and Dasgupta, D. (2003). A study of artificial immune systems applied

to anomaly detection (Doctoral dissertation, University of Memphis).

Gonzalez, F., Dasgupta, D., and Kozma, R. (2002, May). Combining negative

selection and classification techniques for anomaly detection. In Evolutionary

Computation, 2002. CEC'02. Proceedings of the 2002 Congress on (Vol. 1,

pp. 705-710). IEEE.

Guarino, N., and Poli, R. (1993). Toward principles for the design of ontologies used

for knowledge sharing. In In Formal Ontology in Conceptual Analysis and

Knowledge Representation, Kluwer Academic Publishers, in press.

Substantial revision of paper presented at the International Workshop on

Formal Ontology.

Gruber, T. R. (1993). A translation approach to portable ontology

specifications. Knowledge acquisition, 5(2), 199-220.

Del Grosso, C., Antoniol, G., Di Penta, M., Galinier, P., and Merlo, E. (2005, June).

Improving network applications security: a new heuristic to generate stress

testing data. In Proceedings of the 7th annual conference on Genetic and

evolutionary computation (pp. 1037-1043). ACM.

Delamaro, M. E., Offutt, J., and Ammann, P. (2014, March). Designing deletion

mutation operators. In Software Testing, Verification and Validation (ICST),

2014 IEEE Seventh International Conference on (pp. 11-20). IEEE.

Derderian, K., Hierons, R. M., Harman, M., and Guo, Q. (2006). Automated unique

input output sequence generation for conformance testing of FSMs. The

Computer Journal, 49(3), 331-344.

83

Du Bousquet, L., Delahaye, M., and Oriat, C. (2016, April). Applying a pairwise

coverage criterion to scenario-based testing. In Software Testing, Verification

and Validation Workshops (ICSTW), 2016 IEEE Ninth International

Conference on (pp. 83-91). IEEE.

Fraser, G., and Zeller, A. (2011, March). Exploiting common object usage in test

case generation. In Software Testing, Verification and Validation (ICST),

2011 IEEE Fourth International Conference on (pp. 80-89). IEEE.

Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M. A., and Marinov, D.

(2013, July). Comparing non-adequate test suites using coverage criteria.

In Proceedings of the 2013 International Symposium on Software Testing and

Analysis(pp. 302-313). ACM.

Grün, B. J., Schuler, D., and Zeller, A. (2009, April). The impact of equivalent

mutants. In Software Testing, Verification and Validation Workshops, 2009.

ICSTW'09. International Conference on (pp. 192-199). IEEE.

Hamlet, R. G. (1977). Testing programs with the aid of a compiler. IEEE

Transactions on Software engineering, (4), 279-290.

Harman, M., Hierons, R., and Danicic, S. (2001). The relationship between program

dependence and mutation analysis. In Mutation testing for the new

century (pp. 5-13). Springer, Boston, MA.

Harman, M., Islam, F., Xie, T., and Wappler, S. (2009, March). Automated test data

generation for aspect-oriented programs. In Proceedings of the 8th ACM

international conference on Aspect-oriented software development (pp. 185-

196). ACM.

Harman, M., Jia, Y., and Langdon, W. B. (2011, September). Strong higher order

mutation-based test data generation. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on Foundations of

software engineering (pp. 212-222). ACM.

Harman, M., and McMinn, P. (2010). A theoretical and empirical study of search-

based testing: Local, global, and hybrid search. IEEE Transactions on

Software Engineering, 36(2), 226-247.

Herzig, K., Just, S., and Zeller, A. (2013, May). It's not a bug, it's a feature: how

misclassification impacts bug prediction. In Proceedings of the 2013

international conference on software engineering (pp. 392-401). IEEE Press.

84

Hierons, R., Harman, M., and Danicic, S. (1999). Using program slicing to assist in

the detection of equivalent mutants. Software Testing, Verification and

Reliability, 9(4), 233-262.

Huang, T., Li, W., and Yang, C. (2008, December). Comparison of Ontology

Reasoners: Racer, Pellet, Fact++. In AGU Fall Meeting Abstracts.

Inozemtseva, L., and Holmes, R. (2014, May). Coverage is not strongly correlated

with test suite effectiveness. In Proceedings of the 36th International

Conference on Software Engineering (pp. 435-445). ACM.

Jacobs, I. S. (1963). Fine particles, thin films and exchange anisotropy. Magnetism,

271-350.

Jalote, P. (2008). A concise introduction to software engineering. Springer Science &

Business Media.

Jones, B. F., Eyres, D. E., and Sthamer, H. H. (1998). A strategy for using genetic

algorithms to automate branch and fault-based testing. the computer

journal, 41(2), 98-107.

Jia, Y., and Harman, M. (2008, September). Constructing subtle faults using higher

order mutation testing. In Source Code Analysis and Manipulation, 2008

Eighth IEEE International Working Conference on (pp. 249-258). IEEE.

Jia, Y., and Harman, M. (2009). Higher order mutation testing. Information and

Software Technology, 51(10), 1379-1393.

Jia, Y., and Harman, M. (2011). An analysis and survey of the development of

mutation testing. IEEE transactions on software engineering, 37(5), 649-678.

Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D., Holmes, R., and Fraser, G. (2014,

November). Are mutants a valid substitute for real faults in software testing?.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering (pp. 654-665). ACM.

Just, R., Kapfhammer, G. M., and Schweiggert, F. (2012, April). Do redundant

mutants affect the effectiveness and efficiency of mutation analysis?.

In Software testing, verification and validation (ICST), 2012 IEEE fifth

international conference on(pp. 720-725). IEEE.

Just, R., Kapfhammer, G. M., and Schweiggert, F. (2012, November). Using non-

redundant mutation operators and test suite prioritization to achieve efficient

and scalable mutation analysis. In Software Reliability Engineering (ISSRE),

2012 IEEE 23rd International Symposium on (pp. 11-20). IEEE.

85

Just, R., and Schweiggert, F. (2015). Higher accuracy and lower run time: efficient

mutation analysis using non‐redundant mutation operators. Software Testing,

Verification and Reliability, 25(5-7), 490-507.

Kaminski, G., Ammann, P., and Offutt, J. (2011, May). Better predicate testing.

In Proceedings of the 6th International Workshop on Automation of Software

Test (pp. 57-63). ACM.

Kaminski, G., Ammann, P., and Offutt, J. (2013). Improving logic-based

testing. Journal of Systems and Software, 86(8), 2002-2012.

Khan, M. E. (2011). Different approaches to black box testing technique for finding

errors. International Journal of Software Engineering & Applications, 2(4),

31.

Kim, J., and Bentley, P. (1999, July). Negative selection and niching by an artificial

immune system for network intrusion detection. In Proc. of GECCO’99 (pp.

149-158).

Kim, J., and Bentley, P. J. (2001, July). An evaluation of negative selection in an

artificial immune system for network intrusion detection. In Proceedings of

the 3rd Annual Conference on Genetic and Evolutionary Computation (pp.

1330-1337). Morgan Kaufmann Publishers Inc..

Kintis, M., Papadakis, M., and Malevris, N. (2015). Employing second‐order

mutation for isolating first‐order equivalent mutants. Software Testing,

Verification and Reliability, 25(5-7), 508-535.

Klischies, D., and Fögen, K. (2016). An analysis of current mutation testing

techniques applied to real world examples. Full-scale Software

Engineering/Current Trends in Release Engineering, 13.

Langdon, W. B., Harman, M., and Jia, Y. (2009, September). Multi objective higher

order mutation testing with genetic programming. In Testing: Academic and

Industrial Conference-Practice and Research Techniques, 2009. TAIC

PART'09. (pp. 21-29). IEEE.

Langdon, W. B., Harman, M., and Jia, Y. (2010). Efficient multi-objective higher

order mutation testing with genetic programming. Journal of systems and

Software, 83(12), 2416-2430.

86

Laurent, T., Papadakis, M., Kintis, M., Henard, C., Le Traon, Y., and Ventresque, A.

(2017, March). Assessing and improving the mutation testing practice of PIT.

In Software Testing, Verification and Validation (ICST), 2017 IEEE

International Conference on (pp. 430-435). IEEE.

Lewis, W. E. (2000). Software testing and continuous quality improvement.

Auerbach publications.

Liu, H., and Tan, H. B. K. (2009). Covering code behavior on input validation in

functional testing. Information and Software Technology, 51(2), 546-553.

López-Pellicer, F. J., Vilches-Blázquez, L. M., Nogueras-Iso, J., Corcho, Ó.,

Bernabé, M. A., and Rodríguez, A. F. (2008). Using a hybrid approach for the

development of an ontology in the hydrographical domain.

Ma, Y. S., Offutt, J., and Kwon, Y. R. (2005). MuJava: an automated class mutation

system. Software Testing, Verification and Reliability, 15(2), 97-133.

Mabrook, A. Z. M. S. (2013). Study of software testing and the evolution of optimal

method for quality and reliability investigation.

Madeyski, L., and Radyk, N. (2010). Judy-a mutation testing tool for Java. IET

software, 4(1), 32-42.

Madeyski, L., Orzeszyna, W., Torkar, R., and Jozala, M. (2014). Overcoming the

equivalent mutant problem: A systematic literature review and a comparative

experiment of second order mutation. IEEE Transactions on Software

Engineering, 40(1), 23-42.

Mala, D. J., Elizabeth, S. R., and Mohan, V. (2008). Intelligent Test Case Optimizer-

An automated Hybrid Genetic Algorithm based test case optimization

framework. International Journal Of Computer Science And

Applications, 1(1), 51-55.

Malhotra, R., and Garg, M. (2011). An adequacy based test data generation

technique using genetic algorithms. Journal of information processing

systems, 7(2), 363-384.

Mathur, A. P. (1991, September). Performance, effectiveness, and reliability issues

in software testing. In 1991 The Fifteenth Annual International Computer

Software & Applications Conference (pp. 604-605). IEEE.

87

McMinn, P., Harman, M., Lakhotia, K., Hassoun, Y., and Wegener, J. (2012). Input

domain reduction through irrelevant variable removal and its effect on local,

global, and hybrid search-based structural test data generation. IEEE

Transactions on Software Engineering, 38(2), 453-477.

McMinn, P., Shahbaz, M., and Stevenson, M. (2012, April). Search-based test input

generation for string data types using the results of web queries. In Software

Testing, Verification and Validation (ICST), 2012 IEEE Fifth International

Conference on (pp. 141-150). IEEE.

Michael, C. C., McGraw, G., and Schatz, M. A. (2001). Generating software test data

by evolution. IEEE transactions on software engineering, (12), 1085-1110.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software testing. John

Wiley & Sons.

Myers, G. J., Sandler, C., Badgett, T., and Thomas, T. M. (2004). The Art of

Software Testing. Business Data Processing: a Wiley Series.

Naik, K., and Tripathy, P. (2011). Software testing and quality assurance: theory and

practice. John Wiley & Sons.

Nguyen, Q. V., and Madeyski, L. (2015). Searching for strongly subsuming higher

order mutants by applying multi-objective optimization algorithm.

In Advanced Computational Methods for Knowledge Engineering (pp. 391-

402). Springer, Cham.

Nguyen, Q. V., and Madeyski, L. (2016). Higher order mutation testing to drive

development of new test cases: An empirical comparison of three strategies.

In Intelligent Information and Database Systems (pp. 235-244). Springer,

Berlin, Heidelberg.

Nguyen, C. D., Miles, S., Perini, A., Tonella, P., Harman, M., and Luck, M. (2012).

Evolutionary testing of autonomous software agents. Autonomous Agents and

Multi-Agent Systems, 25(2), 260-283.

Norouzi, M., Fleet, D. J., and Salakhutdinov, R. R. (2012). Hamming distance metric

learning. In Advances in neural information processing systems (pp. 1061-

1069).

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., and Musen, M.

A. (2001). Creating semantic web contents with protege-2000. IEEE

intelligent systems, 16(2), 60-71.

88

Offutt, A. J. (1992). Investigations of the software testing coupling effect. ACM

Transactions on Software Engineering and Methodology (TOSEM), 1(1), 5-

20.

Offutt, J., and Ammann, P. (2008). Introduction to software testing (p. 27).

Cambridge: Cambridge University Press.

Offutt, A. J., and Craft, W. M. (1994). Using compiler optimization techniques to

detect equivalent mutants. Software Testing, Verification and Reliability, 4(3),

131-154.

Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., and Zapf, C. (1996). An

experimental determination of sufficient mutant operators. ACM Transactions

on Software Engineering and Methodology (TOSEM), 5(2), 99-118.

Offutt, A. J., and Pan, J. (1996, June). Detecting equivalent mutants and the feasible

path problem. In Computer Assurance, 1996. COMPASS'96, Systems

Integrity. Software Safety. Process Security. Proceedings of the Eleventh

Annual Conference on (pp. 224-236). IEEE.

Offutt, A. J., and Pan, J. (1997). Automatically detecting equivalent mutants and

infeasible paths. Software testing, verification and reliability, 7(3), 165-192.

Offutt, A. J., Rothermel, G., and Zapf, C. (1993, May). An experimental evaluation

of selective mutation. In Proceedings of the 15th international conference on

Software Engineering(pp. 100-107). IEEE Computer Society Press.

Offutt, A. J., Voas, J., and Payne, J. (1996). Mutation operators for Ada. Technical

Report ISSE-TR-96-09, Information and Software Systems Engineering,

George Mason University.

Pan, J. (1994). Using constraints to detect equivalent mutants(Master's thesis,

George Mason University).

Papadakis, M., Jia, Y., Harman, M., and Le Traon, Y. (2015, May). Trivial compiler

equivalence: A large scale empirical study of a simple, fast and effective

equivalent mutant detection technique. In Proceedings of the 37th

International Conference on Software Engineering-Volume 1 (pp. 936-946).

IEEE Press.

Pezzè, M., and Young, M. (2008). Teste e Análise de software. Tradução Bernardo

Copstein, Flavio Moreira de Oliveira. Porto Alegre: Bookman.

89

Polo, M., Piattini, M., and García‐Rodríguez, I. (2009). Decreasing the cost of

mutation testing with second‐order mutants. Software Testing, Verification

and Reliability, 19(2), 111-131.

Sahaf, Z., Garousi, V., Pfahl, D., Irving, R., and Amannejad, Y. (2014, May). When

to automate software testing? decision support based on system dynamics: an

industrial case study. In Proceedings of the 2014 International Conference on

Software and System Process (pp. 149-158). ACM.

Sahu, A., and Maharana, P. (2013). Negative Selection Method for Virus Detection

in a Cloud. International Journal of Computer Science and Information

Technologies, 4, 771-774.

Schuler, D., Dallmeier, V., and Zeller, A. (2009, July). Efficient mutation testing by

checking invariant violations. In Proceedings of the eighteenth international

symposium on Software testing and analysis (pp. 69-80). ACM.

Schuler, D., and Zeller, A. (2009, August). Javalanche: efficient mutation testing for

Java. In Proceedings of the the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering (pp. 297-298). ACM.

Schuler, D., and Zeller, A. (2010, April). (Un-) covering equivalent mutants.

In Software Testing, Verification and Validation (ICST), 2010 Third

International Conference on (pp. 45-54). IEEE.

Schuler, D., and Zeller, A. (2013). Covering and uncovering equivalent

mutants. Software Testing, Verification and Reliability, 23(5), 353-374.

Shelton, W., Li, N., Ammann, P., and Offutt, J. (2012, April). Adding criteria-based

tests to test driven development. In Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth International Conference on (pp. 878-

886). IEEE.

Siami Namin, A., Andrews, J. H., and Murdoch, D. J. (2008, May). Sufficient

mutation operators for measuring test effectiveness. In Proceedings of the

30th international conference on Software engineering (pp. 351-360). ACM.

Singh, O., Kapur, P. K., and Anand, A. (2012). A multi-attribute approach for release

time and reliability trend analysis of a software. International Journal of

System Assurance Engineering and Management, 3(3), 246-254.

90

Smith, B. H., and Williams, L. (2007, September). An empirical evaluation of the

MuJava mutation operators. In Testing: academic and industrial conference

practice and research techniques-MUTATION, 2007. TAICPART-

MUTATION 2007(pp. 193-202). IEEE.

Srivastava, P. R., and Kim, T. H. (2009). Application of genetic algorithm in

software testing. International Journal of software Engineering and its

Applications, 3(4), 87-96.

Sommerville, I. (2011). Software Engineering, Boston, Massachusetts: Pearson

Education.

Tan, R. P., and Edwards, S. H. (2004). Experiences evaluating the effectiveness of

JML-JUnit testing. ACM SIGSOFT Software Engineering Notes, 29(5), 1-4.

Tonella, P. (2004, July). Evolutionary testing of classes. In ACM SIGSOFT Software

Engineering Notes (Vol. 29, No. 4, pp. 119-128). ACM.

Umar, M. (2006). An evaluation of mutation operators for equivalent

mutants. Project report, MSc in Advanced Software Engineering, Department

of Computer Science, King’s College London, London, UK.

Vanoverberghe, D., de Halleux, J., Tillmann, N., and Piessens, F. (2012, January).

State coverage: Software validation metrics beyond code coverage.

In International Conference on Current Trends in Theory and Practice of

Computer Science(pp. 542-553). Springer, Berlin, Heidelberg.

Voas, J. M., and McGraw, G. (1997). Software fault injection: inoculating programs

against errors. John Wiley & Sons, Inc..

Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., and Roos, R. S. (2006, July).

Timeaware test suite prioritization. In Proceedings of the 2006 international

symposium on Software testing and analysis (pp. 1-12). ACM.

Wegener, J., and Bühler, O. (2004, June). Evaluation of different fitness functions

for the evolutionary testing of an autonomous parking system. In Genetic and

Evolutionary Computation Conference (pp. 1400-1412). Springer, Berlin,

Heidelberg.

Wegener, J., and Grochtmann, M. (1998). Verifying timing constraints of real-time

systems by means of evolutionary testing. Real-Time Systems, 15(3), 275-298.

Weyuker, E. J. (1979). Translatability and decidability questions for restricted

classes of program schemas. SIAM Journal on Computing, 8(4), 587-598.

91

Whittaker, J. A. (2000). What is software testing? And why is it so hard?. IEEE

software, 17(1), 70-79.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.

(2012). Experimentation in software engineering. Springer Science &

Business Media.

Wright, C. J., Kapfhammer, G. M., and McMinn, P. (2014, October). The impact of

equivalent, redundant and quasi mutants on database schema mutation

analysis. In Quality Software (QSIC), 2014 14th International Conference

on (pp. 57-66). IEEE.

Yoo, S., Harman, M., Tonella, P., and Susi, A. (2009, July). Clustering test cases to

achieve effective and scalable prioritisation incorporating expert knowledge.

In Proceedings of the eighteenth international symposium on Software testing

and analysis (pp. 201-212). ACM.

Zhan, Y., and Clark, J. A. (2005, June). Search-based mutation testing for simulink

models. In Proceedings of the 7th annual conference on Genetic and

evolutionary computation (pp. 1061-1068). ACM.

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	LIST OF APPENDICES
	CHAPTER 1INTRODUCTION
	1.1Overview
	1.2Background of the Problem
	1.3Problem Statement
	1.4Objectives
	1.5Research Scope and Significant
	1.6Thesis Outline
	1.7Summary

	CHAPTER 2LITERATURE REVIEW
	2.1Introduction
	2.2Testing Technique
	2.2.1White Box Testing
	2.2.2Black Box Testing

	2.3Introduction to Mutation Testing
	2.4Ontology
	2.4.1Ontology For Operators

	2.5Equivalent Mutant
	2.6Negative Selection Approach
	2.7Method Comparison
	2.8Summary

	CHAPTER 3RESEARCH METHODOLOGY
	3.1General Flow of Research
	3.2Overview of Research
	3.3Research Design
	3.4Research Framework
	3.4.1Ontology of Mutation Testing
	3.4.2Applying Ontology Based Negative Selection for Mut
	3.4.3Evaluation and Validation

	3.5Evaluation of Testing Performance
	3.6Experimental Setup
	3.7Experimental Programs
	3.8Summary

	CHAPTER 4ONTOLOGY OF MUTATION TESTING
	4.1Introduction
	4.2Methodology of Ontology
	4.3Ontology Construction
	4.3.1Entity Extraction
	4.3.2Java Operators
	4.3.3Taxonomy Formation
	4.3.4Relationships
	4.3.5Axioms

	4.4Consistency and Correctness Checking
	4.5Ontology Quality
	4.6Summary

	REFERENCES

