
BIDIRECTION MODELING AND EXPERIMENTAL ANALYSIS OF

UNDERWATER SNAKE ROBOT

ZHANG NA

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Mechatronics and Automatic Control)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JANUARY 2021



iv

DEDICATION

This thesis is dedicated to my parents, who supported me for my further study
and taught me that the best kind of knowledge to have is that which is learned for its
own sake. It is also dedicated to my father, who encouraged me to be the best person.



v

ACKNOWLEDGEMENT

First of all, I am indebted to University Technology Malaysia (UTM) for
supporting my research in this study. I would also like to thank the lectures from
Electrical Faulty for their guidance.

Secondly, I would like to deeply thank my supervisor Assoc. Prof. Dr Ahmad
Athif Mohd Faudzi for his guidance and support throughout this project. I have
benefited from his advice at many stages in this research project, especially when
exploring new ideas. His optimistic attitude and faith in my work motivated me and
gave me the support needed to complete this research. Furthermore, his
encouragement always make me step forward.

Last but not least, I would also like to extend my gratitude to all A2Lab
members. A2Lab is guided by Dr Athif. The academic surrounding here was really
nice, everyone helps each others and encourage each others. I met many seniors who
helped me in heart. Ali Jafari introduced this lab for me. Hazwan Hafidz Helped me
from the beginning of this project. Wong Liang Xuan, Hong Win Soon and Sii Zhi
Ying helped me with this project in details. Asyikin Sasha binti Mohd Hanif, Nurul
Mohamed Tahir Shoani and Mohd Firdaus bin Mohamed helped me on how to write
a good thesis. Thank you for them, I enjoyed my time studying.



vi

ABSTRACT

Snakes have dedicate body and can maneuver in challenging environments.
In this work, a soft snake-like robot is designed to locomote like a biological snake
that can be used in search and rescue operation. The soft snake-like for underwater
use has advantages of low inertia, high buoyancy, and more structural flexibility.
Currently, the use of multi-redundant thin McKibben actuators for soft snake-like
robot was not yet explored. Addressing this gap, a soft snake robot model using
Finite Element (FE) will be developed. The FE model will be developed and used to
investigate the snake bending motions in Matlab Simulink with Simscape Multibody
Library (SML). Next, the actual fabrication of the robot will be validated with the
simulated FE model using redundant mechanism of 10 McKibben actuators attached
on a plastic plate. The structure of this robot uses 32 cm of a thin non-rigid plastic
plate with five thin muscles at both sides of the body. Each thin muscle has 2.0 mm
outer diameter with internal 1.3 mm silicone tube. The manipulator will be tested
with different pressure and frequencies to perform various bending motions. Tracker
application will capture every phase of the bending body and movements for analysis
of the robot’s movement. It is expected that the snake-like robot can move and the
errors of bending angle between simulation and experiment are less than 5%.
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ABSTRAK

Ular mempunyai badan yang berdedikasi dan dapat bermanuver dalam lingkungan

yang mencabar. Dalam karya ini, robot seperti ular lembut dirancang untuk

menggerakkan seperti ular biologi yang dapat digunakan dalam operasi serak dan

penyelamatan. Seperti ular lembut untuk penggunaan di bawah air mempunyai

kelebihan inersia rendah, daya apung tinggi, dan fleksibiliti struktur yang lebih

banyak. Pada masa ini, penggunaan penggerak McKibben nipis multi-redudant untuk

robot seperti ular lembut belum diterokai. Untuk mengatasi jurang ini, model robot

ular lembut menggunakan Finite Element (FE) akan dikembangkan. Model FE akan

dikembangkan dan digunakan untuk menyiasat gerakan membengkokkan ular dalam

Matlab Simulink dengan Simscape Multibody Library (SML). Seterusnya, fabrikasi

sebenar robot akan disahkan dengan model FE yang disimulasikan menggunakan

mekanisme redudant 10 penggerak McKibben yang dilekatkan pada plat plastik.

Struktur robot ini menggunakan plat plastik nipis tidak tegar 32 cm dengan lima otot

nipis di kedua-dua belah badan. Setiap otot nipis mempunyai diameter luar 2.0 mm

dengan tiub silikon 1.3 mm dalaman. Manipulator akan diuji dengan tekanan dan

frekuensi yang berbeza untuk melakukan pelbagai gerakan lenturan. Aplikasi tracker

akan menangkap setiap fasa badan lenturan dan pergerakan untuk analisis pergerakan

robot. Dĳangkakan robot seperti ular dapat bergerak dan kesalahan sudut lenturan

antara simulasi dan eksperimen kurang dari 5 %.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Robots appeared in Rossum’s book in 1920 as the first time. In Czech, robots

represent slaves [21], which means they are the tool to help human. In our daily life, robots

can be widely used in environments which are inaccessible to humans, highly repetitive,

and extremely harsh [22]. With the development of seabed resources, underwater robots

are highly discussed these years to survey underwater resources, and applied in aquaculture

to estimate animal abundance.

Furthermore, many robots are inspired by natural animals. In these bio-inspired

robots, snake-like robots are the easier one with simple structure. Snake-like robots shown

as Figure 1.1 can be employed to navigate through constrained environments since their

structure was flexible and their body was small [1].

Figure 1.1 Snake-like robot with rigid structure [1]

Besides, soft robotics, intended as the use of soft materials in robotics, was a young

research field, going to overcome the basic assumptions of conventional rigid robotics and

its solid theories and techniques, developed over the last 50 years [3].
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Pressure-operated actuators shown as Figure 1.2 had been utilized by Ming et al.,

which also named as Pneumatic Artificial Actuators, Axially Contractible Actuators [2].

Mckibben actuators are the series of pressure-operated actuators. Applying soft actuators in

robotics is a kind of soft robotic. In this project, novel design of snake-like robot using

McKibben actuators have been proposed.

Figure 1.2 General structure of soft actuator [2]

To study the characteristics of McKibben actuator, there are some mathematical

models. FE model is the most popular model when studying on McKibben actuator.

Even though an excellent account of FE models have been proposed, they focused

more on the relationship between force and some constant values like length and diameter

or variable values like friction. Furthermore, the braid angle was the critical parameter to

obtain the contraction model of the actuator [23]. Meanwhile, FE model performed in 2D

form and only showed the main view of deformation. With the maturation of applications

like Solidworks, Ansys, and Matlab, the 3D animation model also available in our

generation [24].

In this project, Simscape Multibody Library (SML) in Matlab Simulink was carried

out, compared to Solidworks and Ansys, fewer researchers utilized Matlab to perform 3D

animation [25]. The simulation using SML demonstrated divergent views of the bending

experiment [26]. Finally, analyzing the bending experiments’ properties by Tracker

application.
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1.2 Problem Statement

Snake-like robots have been widely used in marine exploration, underwater

inspection and maintenance, search and rescue, and other fields. There were many projects

about snake-like robots, however, most designs of the snake-like robot were developed by

motors. Compared to hard actuator such as motors, soft actuators are less-weight and

water-proof. Soft actuators such as McKibben actuators were utilized to develop non-rigid

snake-like robot.

However, several snake-like robots developed by soft actuators only focused on the

movement on the ground. Besides, the movement of snake-like robot also helped by

several wheels, which was different from the natural snake. Moreover, currently, the usage

of multi-redundant thin McKibben actuators for soft snake-like robot was not yet explored.

In this project, a developed FE model with SML in Matlab has been proposed to

model the snake-like robot motion. Then, a real snake-like robot fabricated with plastic

ruler and several McKibben actuators was designed in this project which can be used

underwater. After that, bending tests on both simulation and experiment were carried out.

Furthermore, forward speed of snake-like robot under different pressures and different

frequencies were carried out.

1.3 Research Objectives

Based on the problem statement, the following research objectives are recognized

as a yardstick for the researchers to fulfill the study.

(a) To develop a snake-like robot model in Matlab Simulink using SML.

(b) To fabricate and analyze snake-like robot using 10 McKibben actuators attached on

a plastic plate.

(c) To validate the performances of simulated and experimental robotic snake using

Tracker application.
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1.4 Project Scope

The scopes of the research are:

(a) The design of the robotic snake is a plastic plate with 5 McKibben actuators on

each side, the McKibben actuators’ characteristics are 2.0 mm outer diameter with

internal 1.3 mm and 0.1 m length.

(b) The motion of the snake-like robot only have one small semicircle and one big

semicircle.

(c) The operating pressure is 0.3 MPa in simulation.

(d) Snake-like robot bending motions’ simulation built in Matlab Simulink with SML.

(e) The snake-like robot was tested with different pressures and frequencies.

1.5 Significance of study

Once the project fulfilled, several significance of this project will achieve.

(a) Simulation model using SML of snake robot will be shown, the 3D animation

(b) modelling using SML is more vivid compared to other FE model.

(c) A novel design with the use of multi-redudant thin McKibben actuators for soft

snake-like robot will be fabricated.

(d) The simulation results can be used to predicted the relationship between the

bending angle and the location of the joint.

(e) Low error shows that the simulation is suitable for testing experiment.

1.6 Organization of the Report
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This thesis consist of five chapters and the following chapters are organized

as follows:

Chapter 2 introduces the principles of the soft continuum robots, snake-like

robots, natural snake gaits, McKibben actuator, and the FE method from the

literature of this study.

Chapter 3 describes briefly how the research would be carried out regarding

the research design. It composed of four parts. First, fabrication of one McKibben

actuator. Second, simulation of snake-like robot using SML in Matlab. Third,

fabrication of snake-like robot and experiments tests. Tracker application analysis at

last.

Chapter 4 displays and discusses the results we got and utilized the Tracker

application to analyze the bending motions from the simulation and experiment.

Besides, Tracker application was utilized to check the forward speed of snake-like

robot under different pressures and different frequencies.

Chapter 5 summarizes and concludes the overall project as well as

achievements of objectives and the future work which need to do.

1.7 Summary

This chapter has provided the framework for this project. Firstly, it

gave the introduction and background of this project and introduced the most

important definitions. Then, the importance and significance were explained.

Moreover, the problem statement has explained the gap between previous

studies and this research. Thus this project aimed to fulfill the objectives.
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