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*Manuscript

A SOBOLEV TYPE EMBEDDING THEOREM FOR BESOV
SPACES DEFINED ON DOUBLING METRIC SPACES

JOAQUIM MARTIN* AND WALTER A. ORTIZ**

ABSTRACT. We obtain a Sobolev type embedding result for Besov spaces de-
fined on a doubling measure metric space.

1. INTRODUCTION

The classical theory of Besov spaces has been recently extended to the setting
of metric spaces and various results from the classical theory have their abstract
variants, however abstract versions of the Sobolev embedding theorem are only
available for @Q—regular metric spaces. The purpose of this paper is to obtain a
Sobolev type embedding result for the Besov spaces defined on doubling metric
spaces.

There are several equivalent ways to define Besov spaces in the setting of a
doubling metric space (see for example [9], [10], [13], [14], [30], [31], [39] and the
references therein), in this paper, we use the approach based on a generalization of
the classical the L”-modulus of smoothness introduced in [9].

Assume that Q = (Q, d) is a metric measure space equipped with a metric d and
a Borel regular outer measure p, for which the measure of every ball is positive
and finite. Given t >0, 0 < p < 00 and f € L; (), L’-modulus of smoothness is
defined by

w10 = ([, (£, 170 = 201 auto) du(l’))l/p,

where fB flx)du(z) := ﬁ IB flx)du(z).
For 0 < s < 00, the homogeneous Besov space B;yq(Q) consists of functions
f € L; (Q) for which the seminorm

loc
o q 1/q
(0 (B2 @) <o

fllgs (o) = o\ i
P Supt Ep(f7t)7 q = 09,
t>0

is finite.
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Remark 1. (See [9]) E,(f.t) is equivalent to the classical L"(R")—modulus of
smoothness of a function f € L} (R"™), indeed

loc

et =([(f,. 1@ - rwra) dx)”p

= (I . (J(B(o,t) |f(x+h) - f(x)lpdh) d;v)llp

= sup || f(z +h) = f(2)l| Lo(rrn) 2= wp( 1),

|h|<t
58 n . . . . 58 n
therefore, B, ,(R") coincides with the classical Besov space B, ,(R") .

In the Euclidean setting, the Sobolev embedding theorem states that (see for
example [33]) if 0 < s < %, then

Il a@ny <= CllfllBs mm,

where p* = np/(n — sp), and the Lorentz space L”'?(R"), consists of measurable
functions f of finite norm
1

07 (1)

Il raqrny =

L([0,00))

(f* denotes the decreasing rearrangement of f, see section 2.1 below).
The abstract variant for metric spaces is just known in the following particular
case (see [9] and [14]):

Theorem 2. Let Q be a Q—reqular metric space, i.e. there exists Q = 1 and
constant cg = 1 such that

CZ;TQ < u(B(x,r)) < CQTQ

for each x € X, and for all 0 < r < diam Q (here diam § is the diameter of
Q). Suppose that 0 < s < 1 and 1 < g < 00. If1 < p < Qs and  supports a
(1,p)—Poincaré inequality (|9, Thm. 5.1]) or, 0 < p < Qfs, 0 < g < 00 and Q is
geodesic ([14, Thm. 4.4]), then
BS

p,q(Q) c LP(Q)’[I(Q)

where p(Q) = Qp/(Q - sp).
The purpose of this paper is to obtain a Sobolev type embedding result for the

Besov spaces defined on a doubling metric space. This will be done by obtain-
ing pointwise estimates between the special difference! f,,"(¢) — f,;(t) (called the
oscillation of f:) and the X —modulus of smoothness defined by

Ex(f.r) = )(B( 1@ = S ()

X

(here f, is the decreasing rearrangement of f, f, " (t) = % jg fr(s)ds, for all t >0
and X is a rearrangement invariant space on (), see sections 2 and 3).

The paper is organized as follows. In Section 2, we introduce the notation and
the standard assumptions used in the paper. In Section 3, we will see that a

IEstimates of this type are very powerful and arise in connection with embeddings of Sobolev
type (see [2],[19], [22],[23],[24], [25], [27], ).
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Sobolev type embedding of B;Q(Q) into a rearrangement invariant space X implies
a lower bound for the measure of the balls. We introduce the notion of X —modulus
of smoothness and prove some estimates of the oscillation of f: in terms of the
X —modulus. In Section 4, we define general Besov type spaces on doubling measure
metric spaces and use oscillation inequalities obtained in the previous sections to
derive embedding Sobolev theorems for our generalized Besov spaces. In Section
5 we obtain generalized uncertainty Sobolev inequalities in the context of Besov
spaces. In Section 6 we obtain a criteria for essential continuity and the embedding
into BMO. Finally in Section 7, we consider in detail the case B;,q(Q).

Throughout the paper, the symbol f = g will indicate the existence of a universal
constant ¢ > 0 (independent of all parameters involved) so that (1/c)f < g < cf,
while the symbol f < g means that f < cg.

2. NOTATION AND PRELIMINARIES

A measure metric space (£, d, 1) will be a separable metric space (£, d) equipped
with a Borel measure pu. We start with some definitions.

2.1. Background on Rearrangement Invariant Spaces. For measurable func-
tions f : Q — R, the distribution function of f is given by

pp(t) = plz e Qe |f(z)[ >t} (£>0).

The decreasing rearrangement f: of f is the right-continuous non-increasing
function from [0, 00) into [0, co] which is equimeasurable with f. Namely,

f:(s) =inf{t 2 0: ps(t) < s}.

It is easy to see that for any measurable set FF C ()

1) [ 1)< j”(E) 12 (s)ds

In fact, the following stronger property holds (cf. [3]),

2) sap [ 1)) du = If#

w(E)=

Since f;: is decreasing, the function fu , defined by

= %L f:(s)ds

is also decreasing and, moreover,

The oscillation of f is defined by
Ou(fit) i= £ (1) = fu(1), 0<t<pu(Q).
Remark 3. An elementary computation shows that
0 * % O;L(f7 t)
Iy = -l
and that the function t — tO,(f,t) in increasing.

Conditions like f;;(00) = 0 will appear often. The following result (see [21,
Proposition 2.1]) clarifies the meaning of such equality.
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Proposition 4. If 11 () = 0o, then f;(00) = 0 if, and only if, ps(t) is finite for
any t > 0.

We recall briefly the basic definitions and conventions we use from the theory
of rearrangement-invariant (r.i.) spaces and refer the reader to [3], [20], for a
complete treatment. We say that a Banach function space X = X(Q) on (Q,d, )
is rearrangement-invariant (r.i.) space, if ¢ € X implies that all g—measurable
functions f with the same rearrangement function with respect to the measure p,
i.e. such that f, = g, also belong to X, and, moreover, || f|lx = |lgllx-

For any r.i. space X () we have

(3) LP(Q) n L'(Q) c X(Q) c L'(Q) + LZ(Q),

with continuous embedding.

Typical examples of 1.i. spaces are the L?(Q)-spaces, Lorentz spaces, Lorentz-
Zygmund spaces and Orlicz spaces.

A useful property of r.i. spaces states that if

L f:(s)ds < L g:(s)ds,
holds for all r > 0, then, for any r.i. space X = X(Q),

A1l x = llgllx -

The associated space X'(€) of X (€) is the r.i. space of all measurable functions
h for which the r.i. norm given by

Jo lg(@)h(z)] dpe
llg ”X(Q)
is finite. Note that by the definition (4), the generalized Holder inequality

(4) A1l x1(0y = sup
g#0

(5) Ll lg(@)h(2) dp < Nlgllx(a) 1Al x1(a

holds.
The fundamental function of X is defined by

ox(s) = lIxpllx

where E is any measurable subset of Q with u(E) = s. We can assume without loss
of generality that ¢x is concave. Moreover,

(6) dxi(s)px(s) = s.

Associated with an r.i. space X there are some useful Lorentz and Marcinkiewicz
spaces, defined by the quasi-norms

- ey
(7) Nl nrexy = sup f, (ox (@), Wfllax) = L fr(£)dox (t).

Notice that
dr(x)(t) = dacx)(t) = ox (1),
and that

8) A(X) € X ¢ M(X)
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and the embedding has norm 1.

2.1.1. Indices. Let D1 f(t) = f: (ﬁ) ,5 > 0, be the dilation operator, and let hx (s)
its norm, i.e. The upper and lower Boyd indices associated with a r.i. space X are
defined by

_ . .Inhx(s) _ Inhx(s)
) ax =if— 5 and oy =sup—

It is also useful sometimes to consider a slightly different set of indices obtained by
means of replacing hx(s) in (9) by

N Px(ts)
MX(S) - S;}:(I)) ¢X(t) , S

The corresponding indices are denoted BX, ﬁX, and will be referred to as the upper

> 0.

and lower fundamental indices of X. Actually, the relationship between Mx (s) and
hx(s) is that the computation of the former is exactly the computation of the latter
but done only over functions of the form f = x(,4). Therefore we have (cf. [3])

O<ays<f, <Bysaxsl

We shall usually formulate conditions on r.i spaces in terms of the Hardy oper-
ators defined by

PI0 = [ S Q)= [ @)

In particular, it is well known (cf. [3]) that if X is a r.i. space, P : X(0,00) —
X(0,00) (resp. Q) is bounded if and only if ax < 1 (resp. 0 < ay).

2.2. Doubling measures. Given a ball B(z,r) in Q we set V,(z,r) = u(B(z,7)).
A metric measure space is called doubling if there exists a constant Cp > 1, such
that
(10) 0<Vy(z,2r) < CpV,(z,7) < 00
for all x € Q and r > 0.
Obviously Q—regular spaces are doubling.

Remark 5. Giwen x € Q, the function r — p(B(x,r)) is (usually) not con-

tinuous, thus given t > 0 does not necessarily exist a ball B(x) centered at x

such that u(B(x)) = t, however there is a ball B(x) centered at x such that

t/Cp < w(B(z)) < t. Indeed, consider ro = sup{r : V,(z,r) <t/Cp}, then
Vu(z,rg) <t/Cp < V,(x,2r) < CpV,(x,70) < L.

Where Cp denotes the p—doubling constant.

Following the proofs of [37, Theorem 1] and [35, Theorem 1.4] we easily obtain
the following result:

Lemma 6. If (Q,d,u) is doubling, then for all bounded A C Q with u(A) > 0,
z €A and 0 <1 < diam(A), we have

(1) % =2 ()
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where m = logy, Cp and diam(A) = sup,, ,e 4 d(z,y)*.

A metric space (Q,d) is called uniformly perfect (with constant a), if it is not a
singleton, and if there exists a constant a > 1 such that

O\B(z;r) #+ @ = B(a;7)\B(x;7/a) #+ @

for all x+ € X and r > 0. Connected spaces are uniformly perfect, and so are
many classical totally disconnected fractals; for instance, the Cantor ternary set is
uniformly perfect. It is also easy to see that (Q—regular spaces are uniformly perfect
(see [15, Chapter 11]).

Now we can state the opposite inequality in Lemma 6.

Lemma 7. Let (Q,d, ) be doubling and uniformly perfect. Then there exist con-
stants D =2 1 and k > 0, depending only on the doubling constant Cp and the
uniform perfectness constant a, so that

(12) %((gf,’;z)) < D(}%)k’

forallz € A and 0 < r < R < diam(Q)3.

Combining the previous two lemmas, the following is true in doubling uniformly
perfect measure metric spaces: There exist positive constants cq, Cy, k, m (k < m)
depending only on the doubling constant of the measure and the uniform perfectness
constant of the space (£, d, u) such that

(13) o min(rk,rm)VM(m, 1) <V (z,7) = C max(rk,rm)VM(x, 1),

for all x € Q and 0 < r < 00.
Notice that if diam(Q) < oo, from (11) and (12) it follows that there exist
constants c¢q,C; such that

(14) ar™ <V, (x,r) < i,
for all z € X and 0 < r < diam(S2).

Definition 8. Let 0 < k < m. Let (Q,d, u) be a measure metric space (2, d, ) .
(1) (9, d, p) will be called a (k,m) —space, if inequality (13) holds*.
(2) A (k,m)—space will be called uniform, if there are constants ¢,C > 0,
such that

(15) cmin(r”, ™) < Vi(x,r) < C max(r*,r™).
(3) A (k,m) —space will be called bounded from below, if there are constants
d,D > 0 such that

(16) dmin(r", ™) < V.

() < Dmax(rk,rm)VH(x, 1).

2This inequality is actually equivalent to the doubling property of the measure taking B(z, 2r)
as the set A.

3Notice that if some measure satisfies the above inequality, with some constants D = 1 and
k > 0, then by choosing r < DY R in the above inequality we have that the space is uniformly
perfect with any constant bigger than DYF,

4In fact (see [39]) (€2, d, 1) is a (k, n) —space if, and only if, it is doubling and uniformly perfect.
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Remark 9. It follows from (13) that a (k,m) —space is a uniform (resp. bounded
from below) if, and only if, 0 < infeqV,(z,1) < sup,eq V,(z,1) < 0o, (resp.
0 <inf,eq V,(z,1)).

Remark 10. From (14), we have that doubling uniformly perfect measure metric
spaces with diam(Q) < oo, are uniform (k,m) —spaces.

Notation 11. Let (Q,d, ) be a (k,m) —space. In the rest of the paper we shall
use the following notation:

(1) Fort>0,
R(t) = max (tm/k,tk/m) ,r(t) = max(tl/k,tl/m).
(2) If (Q,d, 1) is a uniform, we denote
ko = 2Cp/c

where ¢ is the same constant as in (15).
(3) If (Q,d, u) is bounded from below, we denote

K1 = QCD/d
where d is the same constant as in (16).

Given (9,d, 1) a (k, m) —space, we associate to the measure p a new measure fi
defined in the following way,

oo [ dp(x)
IU’(E) - 5 V(IE,].)’

for all borelian sets E C €.
In the following lemma we collect some properties for the measure fi.

Lemma 12. Let (Q,d,u) be a (k,m) —space. Let f be a p-measurable function.
Then:
(1) For allr > 0, we have that

(17) min(r*, ™) J(

B(z,r)

) = [ 1wl dity)

B(z,r)

< maX(Tk,Tm) J( | f(y)| du(y).

B(z,r)

Thus f is pw—locally integrable, if and only if, [ is ji—locally integrable.
Moreover, (Q,d, i) is a uniform (k,m)—space.
(2) If (Q,d, 1) is uniform, for all measurable E C Q, we have that

i(E) = p(E).
(3) If (Q,d, 1) is bounded from below, then for all f € LE(Q) + L (Q)
fa(t) < fu(dt), (t>0),

where d is the same constant that appears in (16).
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Proof. (1) Using the doubling property and the fact that B(x,r) C B(y, 2r) when-
ever y € B(x,r), we get

o duly) Vi(y.r) du(y)
JB(gc,r) |f(y)| dﬂ(y) - IB(Q?,T) |f(y)| V/L(y7 1) - IB(x,'r') |f(y)| V:u(yv 1) V:u(yar)

< O mmo(rF T dp(y)
< Comax(r ™) [ 11y by (13)

< k m dﬂ(y)
s CoCymax(r ™) [ Wl FE Y by (10)

< CpC, maX(Tk,Tm) J( Lf ()| duly)-

B(x,r)

Similarly, if y € B(x,r) then B(y,r) C B(x,2r), and thus

~ _ d,u(y) _ Vu(yar) du(y)
Lu,ﬂ |7 () diiy) = IBW) Sl gy = JB@,M O T Ty

> comin(r", 7" du—(y)
= Co (T & )IB(.'EJ') |f(y)| V;L(y’r)

ok dp(y)
=qmin' ") [ WISy

C

> % min(r*, P du(y).
e it 1) dnty)

D

Taking f =1 in (17) we obtain that (2, d, i) is a uniform (k, m)—space.
(2) Tt is obvious.
(3) From (16) we get,

_ du(y) 1 piy(y)
u(y)=J S_I du(y) = ===
! e |f@)>y} VW, 1)~ d Jizeq| f(a)>y) d

Therefore, we get

pp(y) < dt = fig(y) < t;
and thus

fa(t) =inf{y : i;(y) <t} <inf{y: pp(y) < dt} = £, (at).
O
We end this section giving some examples of spaces introduced in definition 8.

2.3. Examples.

2.3.1. Closed Subsets of R" (see [17]). We denote by m,, the n—dimensional Lebesgue
measure on R"” and by d,, the n—FEuclidean distance.

(1) Consider F C R? = {(z1,25)} defined by F I, U Iy, where F, =
{(z1 +1)> + 25 < 1} and F, = {0 < 27 < 2, 25 = 0}. Let m,, denote the
n—dimensional Lebesgue measure, for n = 1 distributed over the z;—axes,
and put dA = z1dmy. Put p = mop, + \|F,, then (F, dy, 1) is (1, 2) —uniform
space.

(2) Let F C R” be the set F = {0 < ; < 1,0 < 25 < 2]} where v > 1, and

dv = x}_'ydmg and p = v, then (F,dy, 1) is (1,2) —uniform space.
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(3) (See [17, Proposition 1]) For every closed subset F' C R", there is a measure
© with support F' satisfying

wW(B(z,7)) < c,r" u(B(z,1)) and ¢; < p(B(z,1)) < ¢, z € F.

Thus is F' is uniform uniformly perfect, then there is k£ > 0, depending only
of ¢, and of the uniform perfectness constant of F' such that (F,d,,u) is
(k,n) —uniform space.

2.3.2. Muckenhoupt weights. A Weight is a positive locally integrable function on
R". For a given subset E of R", let w(E) := [, w(z)dx and |E| := [, dz. A weight
w on R" is said to belong to the Muckenhoupt class A,, 1 <p<oo, (see [31]) if
(18)

1 p-1
supis (75 J o)) (i ()7 o) <o i1 <p<en

ﬁ JB w(x)dz

ess inf eg w(x)

[w]AP =

supp 00, ifp=1,

where the supremum is over all balls B ¢ R". For p = 00, we define Ay = Ul<p<oo
Ap. Given w € A, we define

1
[, 1= sup s [B M (wys) (z)da

where M denotes the usual uncentered Hardy-Littlewood maxinal operator. It is
known that there is a positive dimensional constant ¢, such that [w], < ¢, [w] A,

Given w € A, it follows easily from (18) that if there exists A/ > 0 such that
essinf)yspr w(x) = 0, then inf,epn Vy,(2,1) = 0. Similarly, if esssupj, sy w(z) =
00, then sup,cgn V,(z,1) = 00.

Proposition 13. Given w € A, p 2 1, (R",dn,w) s a (27”+,pn) —space.
[w]AW

Proof. Since w € A, by [16, Theorem 2.3], we have that

131 I nie <2 [, w(x)dm)r

where r = 1 + , therefore (see [8]) there exist constants ¢, C' > 0 such

that

|E|) w(E) (lEl)(T_1

19 — =< C| =

1 (|B| w(@) *“\iB

for any measurable set F of the ball B. Considering in (19) F = B(x,r) € B(x,1) =

Bifr<1,or E = B(x,1) ¢ B(x,r) = B if r > 1, and elementary computation
shows

2n+1[ ]

min (rz"”[“’“w ,rp")w(B(x, 1)) = w(B(z,r)) < max (7‘2"“[”“& ,rp”)w(B(:v, 1)).
Il

Example 14. Let1<p< oo, -n<a<f<n(p-1)
(2) = l2®if |o] < 1,
P el i Jal > 1.

Then w, g(x) € A, and
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(1) If -n < B <0, then inf egn V,,(x,1) = 0.

(2) If B = 0, then sup,egn V,(z,1) < 00.

(3) If 0 < B < n(p—1), then sup,epn V,(x,1) = oo.
3

(

2.3.3. Carnot-Carathéodory spaces (see [13]).

1) (Compact case). If X is a compact n—dimensional Carnot-Carathéodory
space with the distance associated to the vector fields and endowed with
any fixed smooth measure p with strictly positive density, then (X, d, u) is
a uniform (n,nm) —space.

(2) (Noncompact case). Let G be a connected Lie group and fix a left in-
variant Haar measure p on G. We assume that G has polynomial volume
growth, that is, if U is a compact neighborhood of the identity element
e of G, then there is a constant C > 0 such that p(U™) = n for all
n € N. Then, there is a nonnegative integer no, such that u(U") = n"*
as n — o0o. Let Xy,...,X,, be left invariant vector fields on G that sat-
isfy Hormander’s condition, that is, they together with their successive
Lie brackets [X;,,[Xi,,[...,Xi,].-.] span the tangent space of G at ev-
ery point of G. Let d be the associated control metric. Then this met-
ric is left invariant and compatible with the topology on G; and there is
no € N, independent of x, such that u(B(z,r)) = 7" when 0 < r < 1,
and pu(B(z,r)) = r™ when r = 1. From this, it follows that (G, d, u) is a
uniform (min{ng, ne }, max{ng, ne }) —space.

3. SYMMETRIZATION INEQUALITIES FOR MODULI OF SMOOTHNESS

Let us start proving that the boundedness from below is necessary in order to
obtain Sobolev type embedding result for Besov spaces (see [12] and [18] for some
related results).

Theorem 15. Let (Q,d, i) be a doubling metric space. Let X be a rearrangement
invariant space with 1[p > Bx. Assume that the following embedding holds

B, ,(Q) c X.
Then
(20) alclel;fz Vu(z,1) > 0.

In particular, B;’q(Q) C Lp*’q(Q) for some p* > p , implies (20).

Proof. We claim that conditions on indices imply that for 1/p > EBX, and ¢ suffi-
ciently small

tl/p 1 [3 R
21 — < tp X7,
(21) ox (@

Indeed, let s,t > 0. Then

tl/p tl/p tl/p

_ ¢x(st) <
ex(t)  px(st) ox(t) = ox(st)
Thus, for s = 1/t, we get

Mx(S).

| =

Mx(3).
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Let 1/p > € > Bx. Then (see [20, p. 54]) for ¢ sufficiently small
1/p 1/p

t t 1

Mx(3)
px(1)

tl/p 1 EX"'E
ex(1) (?)
ti—ﬁx—g

IA

ox(t)

)

ox(1)
as we wanted to see.
For a fixed xg € 2, we define the Lipschitz function

(2_d(x07y)) inyB(%»?)\B(xo,l)
Ug, (y) := 1 if y € B(xg, 1)
0 if y € Q\B(zg,2).

It is easily seen that

920 (Y) = XB(z0,2)(Y)
is a generalized gradient, i.e.

(22) |ty (2) = ugy (¥)] < d(, ) [ 9oy (2) + guy ()] -
By Fubini theorem
@) Bt <2 [ fue @l du(@) +2 | I 0P duipa)

< 27 ||ug, || + 27 LZ | ()| ([B(y,w mdu(x)) du(y)

p
= e II

the last estimate follows from the doubling property of p and since B(y,t) C
B(z,2t) whenever x € B(y,t).
By (22) and using a similar argument as in (23), we get

2y Byt = | I COE ey I ) ) d(e)
<] ( J(B(m 0y gs, () + gzo(yn”du(y)) du(x)
<[ Jow (@) duta) + [ J(B@,t) 60 ()1 i)t

< g
Thus, combining (23) and (24) with the doubling property, we get
By (g, t) = min(|lug, ||, . ¢ |9, |,)
< min(V}L(xo,2)1/p7tvu($0a2)1/p)
< min(1,£)V,,(zo,1)""".

Therefore,
p

oo [l 55, 0 = Vialo, 1)
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Since
”uﬁco ||X z @X(‘fu(zOv 1))
from hypothesis, we have that
1
< Vu(x071) v ]
ox (V. (z0,1))

If inf,eq V,(z,1) = 0, we can select a sequence V,,(z,,1) —= 0, thus for n large
enough, (25) and (21) imply

(25)

1.5 -
12V, (2,,1)7 X%

which is impossible since i - BX -e>0. (]

Recall that our aim is to obtain embedding results for Besov spaces built on
doubling measure spaces. Therefore, in view of Theorem 2 it is reasonable to
assume that € is uniformly perfect (since QQ—regular spaces are uniformly perfect).
Moreover, if we assume the additional hypothesis (i.e.  supports a (1, p)—Poincaré
inequality or 2 geodesic), then € is connected and therefore uniformly perfect.

Taking into account these considerations and the previous theorem, our framework
in what follows will be a (k, m) —space bounded from below.

3.1. Pointwise estimates for the rearrangement. Let (Q2,d, 1) be a (k, m) —space
with?® 1(Q) = oo. For f € L'(Q) + L*(2), and X a r.i. space on (2, we define:
(1) The gradient at scale r

(Vi@ =, 1@ - I, >0

(2) The X —modulus of continuity Ex : (0,00) X X — [0, 00),

Ex(f.r) = (72 )l -
Remark 16. If1 < p < 00 and X = L, then by Holder inequality, we get

Butrn) = (], ({BW) 150 = S dntw) | du(w))l/p

(JQ (J(Bu’ )= f(y)lpdu(y)) du(x))l/p
- B(fr)

The aim of this section is to obtain pointwise estimates for the oscillation O,,( f,t)
in terms of the functional Ex(f,t), (see [23], [27]). The next lemma will be useful
in what follows:

Lemma 17. Let f € L' (Q) + L*(Q). Let x € Q and t > 0 be such that there is a
ball B,(x) centered at x with u(B,(x)) =t. Then

Fur(#12) = fu7 () < (81 ), (¢/2),

IA

where
1

(N @ =5 ] 1@ =l duty).

5All the results given in this section also hold in the case that u(Q2) < co. We leave the details
to the reader.
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Proof. Since

[ f(2)IxB,@)(¥) = 1 f(x) = fF(W)xB,@)(¥) + 1 f(W)xB, @) (¥),

integrating with respect to du(y), we have that

s@ies [ 1@ = 1wl + [ 1fwlanw)
< [ 1@ - swlanw + [ s oy ),
Bi(x)

Now integrating with respect to du(x) over a subset E C Q with u(E) = t/2, we

j|f Naut) < [ 5 IB, f(y)|du(y)du(z)+jE%(f:f:(s)ds)du(x)
- [ G @it + 5 [ itshas

By (2), taking the supremum over all such sets E, we obtain
t/2 t]2
fr(s)ds < I (6Yf) (s)ds + 5 J fils

0

or equivalently

£ (412) = fu7 () < (81 ), (¢2).

Theorem 18. Let f € L' (Q) + L%(). Let X be an r.i. space on .
(1) If (Q,d, 1) is uniform, then for all t > 0, we get

L R (Hot)
Kot ¢x (Kot)

(2) If (Q,d, u) is bounded form below, then for all t > 0, we get

(26) Ou(f,1) =

Ex(f,r(rot)).

1 R(Iﬁ:lt)
w1lt px (kpt)
Proof. (1) Given x € Q, and t > 0, by Remark 29 there is a ball B(x) centered at

x such that t/Cp < u(B(z)) < t. We denote by 2 the measure of this ball, i.e.
u(B.(z)) = 2z, with t/Cp < z < t. From (15) it follows that

Vi, (t)e) ™) < O (tfe)™ it <,
V(z, (t/e)F)y s C(tfe)™ itttz

On(fi1) = Ex(f,r(k1t)).
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Obviously, B,(z) € B(z,r(t/c)), and thus

iy 2 L .
(62£) (2) = ZJBZ(J_)If( ) = F()] duly)
<2 Fa) = £l dul)
B(x,r(t/c))
< 00, M09 £ 1£2) = Fduly)  (by (27)
t Blz,r(t]e))
= CODM (Vi f) (@)

Taking rearrangements, we get

(8 1)" (5) < CCp 2L

(Vf(t/c)f): (s), s>0,

which implies

R(E/C) (vﬁ(t/c)f):* (s), s>0.

(61), (s) = CCp
On the other hand

1
¢X(S

() ||( r(tfe) ||M(X) (by (7))
7o [(Vrwaf)c - oy )

1
= mEX( fir(t]c)).

(v‘;(t,c)f):*(s)s )Sup(¢x()( Yaaf)) ()

Combining this inequality and Lemma 17, we obtain

R(t/c)

Fu (=12) = 17 (2) = (82),7 (212) = COp =

Ex(f,r(t/c)).

By Remark 3, we get

In summary,
(29) 0, (4,212 £ 2000 X LN B (. r(e] ),
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Finally, using that t/Cp < z < ¢, we get

%oﬂ (f, %) < 50u(1.5) (by Remark 3)
<200y S g (e oy (29)
< 4OCD%EX( f.r(t/c)) (since ¢%(s) increases)
iy S
= 4CCH My (2]c) 2 (tlc)éi’((t(fc’)r(tlc))

which implies (26).

(2) By Lemma 12, we get L,,(Q) + L’ (Q) € Lx(Q) + L3 (Q).

Since fi is doubling, by Remark 29, given x € Q and ¢ > 0 there is a ball B, (x)
a ball centered at = such that t/Cp < i(B,(z)) = 2 < t. Then

A (o) < CP o) — dp(y)
(627) (2) < N LCOR IOy
< opp ™D { ) = S duty) (b (07)
B(z,r(t/d))

- CDDM (Viwaf) @)

Taking rearrangement with respect to fi, we have that for all s >0

(357) (s) = ODDM (Vi) (o)
< CDDM (vﬁf(t/d)f); (sd) (by Lemma 12).

Hence,

(4£1), )= 5 [ (0£1), iy
< Cop™GE [1(9201) iy
=CDDR(1;/d)£JSd(vu(t)f)*(y)dy

0

- CDDM (V) (sa).

Now we finish the proof as in part 1. O

Remark 19. These estimates are abstract variants of known estimates via the
classical modulus of smoothness. For exzample if X = L¥(R"™), we obtain

*% * < 1/p% (fvtl/n)
) -f) =2 pptl—/p-

See [19], [23] and the references quoted therein.
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4. A SOBOLEV TYPE EMBEDDING THEOREM FOR BESOV SPACES

Let (Q,d, 1) be a (k,m) —space. Let X be a r.i space on 2, let Y be a r.i. space
over [0, 00) with respect to the Lebesgue measure and let 0 < s < 1. We define the
Besov space B m).x.y () as the set of those functions in LY(Q) + L7(Q) for
which the semi- norm ”f”Bfk,m,),X,y(Q) is finite. Here

r(t) " Ex(f,r(t))
oy (t)

In the Euclidean case, there are several examples of generalized Besov spaces, for
instance if Y is a Lorentz-Zygmund space and X = L”, we obtain the Besov spaces
of generalized smoothness (see [7], [28] and the references quoted therein). If X is
an Orlicz spaces and Y = L?, we obtain the Besov-Orlicz spaces (see [1], [6], [38],
[36] and the references quoted therein). Examples of Besov involving two r.i. norms
can be found in [11] and [32].

Remark 20. If X = LP(Q) and Y = LY([0,00)), (1<sp< o0, 1 <q<00), we
u;Lrite éfk’m)’p’q(ﬁ) instead of BG‘(gk.ym)pr(Q)’Lq(Q). In this case, ¢y (t) = 19, and
thus

WA lse v @) =

Y

E,(f.1(1)
(r (@) i),

00 f,rnax( T Um)) th e
Jo ( max tl/k tl/m) ) 7)
BN a (B ar)
[\ ) T ) ¢
1 dt 0 Ep(f,t) 4 gt 1/q
fo () L) )
" (L) dt Ha
f, (P ) )

B,

P7q(

||f||éfk)m),p)q(§z) = (by Remark 16)

R

|
|
<
<

Therefore,

)p)q(
Similarly,
. os
Bp,oo(Q) c B(k,m),p,oo (Q)

4.1. Some new function spaces. Following [23], we shall now construct the range
spaces for our generalized Besov-Sobolev embedding theorem.
Let (Q,d, 1) be a (k,m) —space. Given s € R, we define

. ; . 1-mis 1_11:/.;
vg(t) 1= RO ()" = mln(t ,t )
and
570 = {1 11l = [0 0| < ool

where ¢ x is the fundamental function of X, a r.i space on 2, and Y is a r.i. space
on [0, 00) with respect to the Lebesgue measure.
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Note that these spaces are not necessarily linear and, in particular, ||.||gx.r,
i (v

is not usually a norm.
Given a r.i. space X we shall say that Y satisfies the Q(s, (k, m), X )—condition
if there exists a constant C' > 0 such that

ox (1) ox (1)

Q vs(1
W@ @
The following lemmas will be useful in what follows. A consequence of our first

lemma is that if Y satisfies the Q(s, (k, m), X )—condition then Sf’y(v) is a Banach
space.

<C

f(t)

Y Y

Lemma 21. Let X,Y be two r.i. spaces. IfY satisfies the Q(s, (k,m), X )—condition,
then for all f:(oo) =0,

ox(t)
RO

with constants of equivalence independent of f.

(29) /1l oy = O

Y

Proof. Obviously,
ox (1)
oy (t)

Conversely, from % f; *(t) =
lus, we have

Px (1)
oy (t)

and the Fundamental Theorem of Calcu-

vs(t)

vs(t)

£ ()

Ou(f,t)
Y

MO MO)
t

Y

o= U - 6)5 = U - 1) 0.
and the result follows by the Q(s, (k, m), X )—condition. O

The next result gives a useful criteria to check the validity of a Q(s, (k, m), X )—condition.
Lemma 22. Let XY be two 1.i. spaces. Suppose that

(30) J EE Ty (1) M (1/)My (1) 5 < oo,
1
Then Y satisfies the Q(s, (k, m), X)—condition.

Proof. Let us write vy := v. We have

ox(t) o ox(t) do _ (%) ox(t) Ry
B = | 0 H T = [ ST
(T i ey @G 00 o) oy (at) d
= J, 00 S T G S 7
= °°v T T ox(at) sup v(t) T dI
= [ ot (e S sup DM (1) b () T

Applying Minkowski’s inequality, we obtain

ox () (o rea @ w0 e
| 2Baso| = [" e wp SO arc 1oy ()&
(o O, e ox ()
< [ (sup i v ot e @5 [o0r0 23]
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Finally an elementary computation shows that, if > 1, then

sup o(t) | meey
>0 v(tx)

d

Remark 23. In terms of indices, it is easy to see that (30) is equivalent to the
inequality

m+s -
T —l<ay =By +5,

From Theorem 18 we immediately get the following generalization of the Sobolev
embedding theorem for Besov spaces.

Theorem 24. Let (Q,d, ) be a (k,m)—space, X,Y r.i. spaces and 0 < s < 1.
Then

(1) If (Q,d, ) is uniform,
Bo?k:,m),X,Y(Q) c Sif’y(vs)-
Moreover if Y satisfies the Q(s, (k,m), X), then for all f;(00) =0

¢X()

(2) If (Q,d, ) is bounded from below,
Bimy v (2) € S5 (v,):
Moreover if Y satisfies the Q(s, (k,m), X), then for all f;(00) =0

dx(t) .«
RO

Proof. (1) Let f € L'(Q)+L*(£). Then from (26) we know that there is a constant
K > 0 such that

(eym), X,y () °
Yy

0] T

i R(Iiot)

Kot ¢X(,€0t)EX(f,T(Hot)), t>0.

O, (f,t) =

Thus,

11711 H éx(t) 1 R(kot)
S ) ® )* oy (1) Kot dx (Kot

Ex (f,r(kot))

) y
_ Hot)r(ﬁot) ¢x ()dy (wot) 1 r(kot) ™" .
- H DI ox (rol)by (1) Fo oy (mot) X (o))
<su R (kot) r(kot) x (1)¢y (kot) 1\ |Ir(rot) s
< p( RO ox(roD)y (1) o ) o (apy ExUortiat)) |
r(t)”°

< i 1) | S )|

S, ),x,v ()"

Part (2) is analogous. O
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5. UNCERTAINTY TYPE INEQUALITIES

The purpose of this section is to extend the generalized uncertainty Sobolev
inequalities obtained in [26] to the context of Besov spaces.

Definition 25. Let (Q,d, u) be a (k,m) —space, X,Y r.i. spaces and0 < s < 1. We
will say that a p—measurable function w : Q — (0,00) is a (s,(k,m),X,Y)—ad-

missible weight if
v\
w] 1= su — t — | < o0.
[ ] t>(€)(((w)#( )) /Ué(t)d)x_(t;)

Py (t

Theorem 26. Let (Q,d, 1) be a uniform (k,m) —space, let X,Y be r.i. spaces,
0<s<landw a(s,(k,m),X,Y)—admissible weight. Assume that Y satisfies the
Q(s, (k,m), X)—condition. Let a > 0. Then for all f € L}L(Q) + L, () such that
fii(00) =0 we have that

31) Wflly < el AT o T A1
Proof. Since f;;(00) = 0, by the Fundamental theorem of Calculus and (26), we get
* % i * % ds
(32) ORI CNOENACIE
© 1 R(kos) ds
< | ¥ g )
< | m s Ex(fr(re))

Then
171ly = ||f(%)

Il )

w
(w) w<7,1/5} v +

f %) X{wsrtl}|,

|# (%) ]l

4 G R
Now we estimate the first term,
I “( ¢ t)
()1, < o (). 0) e
v lly
< |lw X
—[]fu()()¢y()y
<Ll | 200 20|
< y ox(t) OOL R (kos) AN
< [w] [[ou(t) Ow)j 5 ey B L) S oy (32)
< [w] r(t) “Ex(f,r(t)) (by the Q(s, (k,m), X) — condition)
oy (1) v
<[ @)
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In summary, we have proved that there is an absolute constant A > 0, such that

(33) Iflly < AlwlrllFllss, v +7 " 0™ Flly -
sa 1+
Selecting the value r = (2A ”w“ ‘f”Y ) to compute (33) balances the
I

two terms and we obtain the multiplicative inequality (31). O

Remark 27. The connection with the isoperimetric weight introduced in [26] is
the following: consider the case (2, d, ) = R"™. Obviously, (£2,d, 1) is a uniform
(k,m)—space with k = m = % Let X =Y = LY, then

L] = 225(((%): “’)Sf’i) - i&g(((%):‘“)”y-

Thus w is admissible if, and only, zfi € L™ (i.e. w is an isoperimetric weight).
Leta>0,1<qg<o00,0<s<1, with s <nfq. By Remark 23, L? satisfies the
Q(s, (%, %), L?)—condition. Then by Theorem 26, lfi € L™ we have that

o

171, = Lol AT oy 1™

1
a+l
q

b

where B(jq(Rn) is the classical Fuclidean Besov space.

6. EMBEDDING INTO BMO AND ESSENTIAL CONTINUITY

Theorem 28. Let (Q,d, u) be a uniform (k,m) —space. Let X be a r.i. space on
Q. Then
R(t)

1l Brio) = sup mEx(f,T(t))-

Proof. Let B = B(x) be a ball centered at z. Since (£, d, i) is uniform, we have
that

w(B) = p(B(z,r (u(B)/c)) = CR(u(B)]e).
Then

=),

<f | o ) = £ () ) ()

f(y) - J(B( TEus) | duy)

<4 jBW(H(B)/C)) 1£(y) = £()] da(s)dn(y)

<o (] )= S dut)) o)
< B (o BN sl o (o 5)

_ c%mm (u(B)]<)):
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Using this estimate and Remark 29, we get
HORS WIOLIO

e BB
< sup O N (o ul))
csp  sup  —EUBe)
N t/Cp<p(B)<t w(B)ox (u(B))

BU) b (e (t)e))

< sup

>0 tox(Cpt)
R(“)Ex(f,r(t)).

du(y)

”f”BMO(Q) = Sgp J(B
Ex(f,r(u(B)/c))

2SUp ——~
t>0 tox (1

O

6.1. Essential continuity. We are going to obtain conditions for the essential
continuity of functions in Besov spaces (see [25] for some related results).

Let f be a u—measurable function on 2. The signed decreasing rearrange-
ment® f; : [0,00] - R of f defined by

fi(s) =inf{t e R: p}(t) < s},
where p3(s) = pf{z € Q: f(z) > s}. It follows readily from the definition that
(34) f;(OJr) =esssup f and f,:(OO) = essinf f.

If f is p—integrable on €2, the signed maximal function is defined by

50 =1 [ g = pown] [ vt =1},

moreover it is subadditive (i.e. (f + g);* (t) < f27(t) + g5" (1)).
Note that for positive functions
IMOEFMOR
and, moreover, that for ¢ € R,
(35) (f+e) (1) = fult) +e

The functions f and f/: are equimeasurable (that is, they have the same distri-
bution function).

Theorem 29. Let (Q,d, u) be a uniform (k,m) —space. Let X be a r.i. space on
Q. Then. Let f € L'(Q) + L%(Q), such that

© R(t) dt
jo S () < oo

then f is p—locally essentially continuous.

Proof. If f 2 0, by Theorem 18, we get

£ () = £ = ()~ F1(0) 5 g ikal)

H_of¢X(/<;0t)EX(f’r(Kot))'

6We refer the reader to [34] and the references quoted therein for a complete treatment.
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If f is bounded from below and ¢ = inf(f), then f — ¢ = 0, and therefore

04 = (0) % 15 2 D (= (o)
< fﬁiot i((ioott)) Ex (f,r(kot)).
By (35),
£ = 50 = (=7 () = (f =0}, 1),
and thus

B0 = 0 = B et

Let f € L'(Q) + L*(9Q), and let B be a ball. Given n € N, we consider f, =
max(fxg,—n). Since f,, is bounded from below, we get

(f)i (8) = (£a) () = miotqi((zoott))

< 1 R(Iﬁ}ot)
< H—MWEX(JC»T(H@)).

Let 0 < a < pu(B). By the fundamental Theorem of Calculus

w(B) " . dt 1 a R 1 w(B) .
[T -G F =3 [ im0 ) e

Ex (fn,r(Kot))

u(B) Jo
Since f,(z) = fxg(z) p—a.e, and |f,| = |fxr| we have
1 (o . 1 w(B) R 1 (@ . 1 u(B) R
7] (t)it=—z [T wonwa 2 3 o (t)it=—z [ @ e

Letting a — 0, we get

w(B) Ko
(P O = (e B = [ 2L X g moe)

- ku(B) R(t) @

By (34)
w(B)
esssup fxp — ﬁ L (fXB):L (t)dt

- kop(B) R(t) @

Similarly, considering —fx g, instead of fxp, we obtain

(B)
L‘[“ (_fXB); (s)ds — essinf( fxp)

uw(B) Jo
- ropu(B) R(t) dt
< L mEx(f,r(t))y-

Since fxp and —fxp are both supported on B, we have that

(B) (B)
[ o= [ [T ()i (sds = - [ g
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Adding these results, we have that for y—almost every =,y € B
|f(2) = f(y)] < esssup(fxg) — essinf(fxp)

B kop{B) R(t) @
R O UL

and p—locally essentially continuity follows. O

7. SOBOLEV TYPE EMBEDDINGS FOR HOMOGENEOUS BESOV SPACES B; ()

In this Section we are going to consider in detail Sobolev type embeddings for
homogeneous Besov spaces B, ,(€2) where 0 < p < 00, 0 < g < 0.
First of all, notice that an elementary computation (see Remark 20) shows that

Jo7 (B )™ 0 <q <o,
Bivqm)’{go(()”(f),())), e

t>0

111

In case that 1 < p < 00 and 1 < g < 00, our results will be a direct consequence of
Theorem 24, however if 0 < p,q < 1 then L¥(Q) and L%([0, 00)) are not Banach
spaces, thus the duality arguments used in the previous theory cannot be applied.
Lemma 30. Let 0 < p < 1. Let f € LP(Q) + LT(Q), then:

(1) If (Q,d, u) is uniform, then for all t > 0, we have that

R (Ii()t)

Ou(lfI7 1) = E,(f, ot)’.
(rot)?
(2) If (Q,d, ) is bounded from below, then for all t > 0, we have that
R
011" 1) = D (1 i)y
(k1t)?

Proof. Let B = B(x) be a ball centered at z, since 0 < p < 1, we have that

|F(@) X By (¥) < 1f(2) = FI xB@) (W) + 1FW) X8 (9)-
Integrating with respect to du(y), we have that

F@PB) s [ 15@) = fPa) + [ 1)

w(B) .
<[ @ f@Pa)+ [ () s by ().
B(z) 0

Now integrating with respect to du(x) over a subset E C Q with u(E) = u(B)/2,
we get

[ @ j )(B(w) ()l )du(x>+jEﬁ(L“(B) f:(s)ds)du(m)

Pauan) + 2 [ 12 ()as
2 0

By (2), taking the supremum over all such sets E, we obtain

[y s [ f st aars [ 00 6
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Equivalently,
(1) B = (1) B = s [ ] 150 = Pyt
Now (1) and (2) follow in the same way as Theorem 18. O

Definition 31. Let0 < p < 00,0 < g < 00 and let v be a weight on (0, 00), the space
Sp(v) is the collection of all p—measurable functions such that 1 fll g2y < 00,
where

0 4 1/q
11l sprcay = (j Oﬂ(|f|ﬂt)w(t)dt) .

Remark 32. For p =1 the spaces S}t’q(v) were introduced in [5]. Notice that, if
lsp<oo,1=<q< oo, then

SEE (0,) = S (w,).

Iz Iz

Corollary 33. Let (Q,d,u) be a (k,m) —space. Let 0 < s <1 and 0 < p < 00,
0<qg=oo. Let

1 _ m+smin(1,p) 1 _ k+smin(1,p) \ min(1,p)
v(t)=min(t1+“‘ax(w> R A S )

)

| =

(1) If (Q,d, u) is uniform, then
BS,(Q) ¢ Snrhayy,

p.q

(2) If (Q,d, u) is bounded from below, then
By ,(9) ¢ sathPha (),

)
Proof. Part (1) In the case 1 < p < 00 the proof given in Theorem 24 works. In
case that 0 < p < 1, then by Lemma 30 it follows that
r(rot) " Ep(f, 7 (Kot))

(rot)"/*

and the result is obtained by taking L?([0, 00))-(quasi) norm in both sides.
Part (2) can be proved in the same way. O

2 1/p

t— p <
OO M

The following lemmas will be useful in what follows:

Lemma 34. (see [2, Lemma 5.4]) Let 1 < p < 00, and suppose that (w,v) is a pair
of weights satisfying the following condition: there exists C > 0 such that for all

0<t<l,
. 1/q 1 L (¢-1)/q
(I w(s)ds) (J v(s)i ds) <C.
0 t sa-1

Then
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Lemma 35. Let 0< g <1 and b > 0, then

IRZACE R (jolt"(f:*(t)—f::(t>)q$)1/q+f::*(1).

Proof. We integrate by parts and obtain,
1 * % d * % * d
| A e (O R T AL T ORI A K
d
[t fu( bJ —fr @)’ Tt (since g < 1).

I/\

Since ,
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To finish the proof we need to see that the previous limit is finite. If f;*(O) < 00
there is nothing to prove. If f;"(0) = oo, taking into account that tO,(f,t) is

increasing, we get
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Finally, by L’Hopital’s rule,
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Lemma 36. Given a < b < 00, we define
. a ,b
min(t*, )
v(t) = —

Let 0 < g < 00 and f € L'(Q) + L=(Q), with f;(00) = 0.
(1) If0<a<b< oo, then

(36) Wl = ([ 520 dt)l/q.
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(2) If a <0, then

U dt)l/q Wl + £a" (V-

(3) If b=0 and ¢ > 1, then
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(4) Ifb=0andq=<1orb<0 and 0 < g < 00, then
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Proof. (1) By [5, Corollary 4.3.], (36) holds if, and only if,
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Pick 0 < € < a, then

I i T
v(t)dt = | min(t*™° tb_s) dt < min(r° rb_s) dt
0 0 ’ tl—E ’ 0 tl—&‘

7,.(1

< min(ra,rb) = min(ra,rb)r—q

2r dt 2r dt
< min(ra,rb)rq L R <! J v(t)—

T

(2) By Lemma 35
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(3) By Lemma 34 with w(t) = ( L ) % and v(t) = 1, we get
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(4) If b =0 and ¢ = 1, then
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Ifb=0and 0<qg<1,let 0<r<1,then
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thus

which implies

1 1/q * ok 1
1flleo = £2¥(0) < (L Ou(f’t)q%) g q( )

Ifb<0and 1< q< oo, then
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Ifb<0and 0 < q<1, then
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and we finish the proof in the same way as in (37).
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Now we are ready to establish our Sobolev embedding Theorem for homogeneous
Besov spaces B;,q(Q). Motivated by the classical theory we will distinguish three
cases: The subcritical case when an embedding into a Lorentz type spaces holds,
the critical case if B;q(Q) is embedded into a logarithmic Lorentz space and the

supercritical case if the Besov space is embedded into L™

Theorem 37. Let (Q,d, u) be a uniform (k,m) —space. Let 0 < s <1, 0 < p < 00,

0<q<ooand f € L™ P(Q) + L®(Q), with (|f|“‘i““4’>): (00) = 0.

(1) Subcritical case:
(a) If smin(1,p) < k(1 +

maX(Lp)) —m, then
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(b) If k(1 + —2—) —m < smin(1,p) < m(1 + ———) = k, then
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(2) Critical case:
. _ 1
If smin(1,p) = m(1 + max(l,p)) — k, then
(a) If ¢ > 1, we get
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(b) If0 < g <1, we get
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(3) Supercritical case:
If smin(1,p) > m(1 + ma;)) — k, then
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Proof. The proof follows from Lemma 36. Let us see (38), if 0 < p < 1. Then
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with 2 — % < 0, by Lemma 36, applied to | f|” and ¢/p we have that
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thus
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All other cases can be proved in the same way. (I

With the same proof as Theorem 37 we obtain:

Theorem 38. Let (Q,d, i) be a (k,m) —space bounded from below. Let f € L' ()+
L™ (). Then Theorem 37 holds, considering f;* and f; instead of f:* and f:

By Theorems 28, 29 and 26, we obtain:

Corollary 39. Let (Q,d,p) be a uniform (k,m)—space. Let 1 < p < 00 and
0<s<1. Then

1)
1 laoc = sup & E(1,0) + supt™ B (1,0)
<t<

t>1
(2) It
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then, f is p—locally essentially continuous.
(3) Let s < k(1 + %) —m, and let w > 0 be such that
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Then, for all @ > 0 and ¢ = 1, we have that
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We finish the paper by collecting all our results in the particular case that
(Q,d, 1) is Q-regular.
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Theorem 40. Let (Q,d, 1) be a Q—regular. Let 0 < p < 00, 0 < ¢ < 00, and
0<s<1andfeL™P(Q)+L°(Q), with (|f]™""") (00) = 0. Then:

*
o
(1) Subcritical case, s < % :

£l r@rogay = 1111
where p(Q) = Qp/(Q - sp).

Moreover, let w > 0 be such that
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If 1 < p,q < 00, then for all a > 0, we have that
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(2) Critical case, s =
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(a) If g > 1, then

T NORWAN
- T = f Q1 + f min(1,p) . .
(Jo 1+m(L)) 1 1l ) * 1Nl Lmincnn e po e

(b) If0 < g <1, then
1o <1718+ 1l apesmcn-
P,q

(¢) If p 2 1, we get:

(i)

Il rroq) = ||f||5§g(g)~
(ii) If f € ||f||B'Q/1p(Q), then f is u—locally essentially continuous.
(3) Supercritical case, s > %:

1 £l = ||f||8:;,q(sz) + ||f||Lm‘n<1vp>(n)+L°°(sz)-
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