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SARS-CoV-2 infection elicits a rapid
neutralizing antibody response
that correlates with disease
severity
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The protective effect of neutralizing antibodies in SARS-CoV-2 infected individuals is not yet well
defined. To address this issue, we have analyzed the kinetics of neutralizing antibody responses and
their association with disease severity. Between March and May 2020, the prospective KING study
enrolled 72 COVID-19+ participants grouped according to disease severity. SARS-CoV-2 infection was
diagnosed by serological and virological tests. Plasma neutralizing responses were assessed against
replicative virus and pseudoviral particles. Multiple regression and non-parametric tests were used to
analyze dependence of parameters. The magnitude of neutralizing titers significantly increased with
disease severity. Hospitalized individuals developed higher titers compared to mild-symptomatic and
asymptomatic individuals, which together showed titers below the detection limit in 50% of cases.
Longitudinal analysis confirmed the strong differences in neutralizing titers between non-hospitalized
and hospitalized participants and showed rapid kinetics of appearance of neutralizing antibodies
(50% and 80% of maximal activity reached after 11 and 17 days after symptoms onset, respectively)
in hospitalized patients. No significant impact of age, gender or treatment on the neutralizing titers
was observed in this limited cohort. These data identify a clear association of humoral immunity with
disease severity and point to immune mechanisms other than antibodies as relevant players in COVID-
19 protection.

In December 2019, a novel severe acute respiratory disease was reported in China'. Following the early identifi-
cation, in January 20207, of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the etiologic
agent of the Coronavirus disease-19 (COVID-19), the new virus rapidly spread to generate a pandemic with
a deep impact in global human health. The virus has caused more than 32,800,000 infections and more than
990,000 deaths (as of September 27th, 2020) despite worldwide restrictions in economic activities and mobility.

This massive impact has prompted an unprecedented research taskforce to define the epidemiological features
of SARS-CoV-2 transmission, to identify new antivirals and to develop new vaccines able to generate protective
immunity against the virus®*. To guide vaccine development, the understanding of the interplay between the
virus and the immune system as well as the definition of protective mechanisms have also been established as
research priorities®. The current knowledge indicates that COVID-19 patients elicit a rapid humoral response
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SARS-CoV-2 infected

Uninfected | Non-Hospitalized | Hospitalized

n=6 n=32 n=40 p-value
Gender. Female, N (%) 3 (50) 19 (59) 13 (33) 0.066*
Age (years), Median [IQR] 50 [43-62] 51 [42-55] 63 [56-70] <0.0001°
Days from symptoms Median [IQR] | - 27 1830 28 13-% ns®
Hospitalization days Median [IQR] - - 221628 <0.001°¢
Severity n (%)
Asymptomatic NA 7(22) 0(0)
Mild/asymptomatic NA 25 (78) 0(0)
Hospital Non-severe NA 0(0) 13 (33)
Hospital Severe NA 0(0) 22 (55)
Hospital ICU NA 0(0) 5(13)
Treatment, N (%)
Corticosteroids 0(0) 0(0) 20 (50)
Tocilizumab or equivalent 0(0) 0(0) 11 (28)
OHCQ or CQ 0(0) 1(4) 39 (98)
Type IIFN 0(0) 0(0) 8(20)
PI 0 (0) 0(0) 17 (43)
Exitus, N (%) 0(0) 0(0) 4(10)

Table 1. Description of participants. Bold values indicate statistically significant differences. NA Not
applicable. *Fisher exact test. "Kruskal-Wallis rank sum test. ‘Mann Whitney test.

against the virus, all of them seroconverting 19 days after symptom onset, with heterogeneous kinetics of IgM
and IgG subclasses®. Elicited antibodies show reactivity against multiple viral proteins including the outer Spike
(S) protein, which is the target of neutralizing antibodies. These include mainly, but not exclusively, antibodies
blocking the binding of the S protein to the ACE-2 receptor through interaction with different epitopes of the
receptor binding domain (RBD)7-13, These antibodies, which are elicited in most infected individuals, are able to
protect golden Syrian hamsters from acquisition of SARS-CoV-2 infection'>'*, and are thought to play a relevant
role in viral clearance after infection'®. Consistently, different S protein-based vaccines are able to induce neutral-
izing responses and mediate protection in different animal models'®. In contrast, the implication of antibodies in
exacerbated inflammatory responses and in antibody-dependent enhancement of infection (ADE) phenomena
are among the potential drawbacks of the humoral response in COVID-19 patients'>.

Most of the knowledge generated on humoral responses against SARS-CoV-2 is based on severe/hospitalized
patients. However, epidemiological data indicate that up to 80% of infected individuals undergo mild symptoms"”.
Importantly there is an undetermined number of infected individuals (reaching 40% in some studies) that do not
develop symptoms'®. Given the high percentage of mild and subclinical cases, the analysis of these individuals
may be valuable to understand the global kinetics of herd immunity against the virus.

Here, we longitudinally assessed 72 patients from North Barcelona area displaying a wide range of clinical
manifestations (from critical to asymptomatic infection) and we have systematically evaluated their ability to
generate neutralizing antibodies. Our data show a rapid elicitation of neutralizing antibodies in hospitalized
patients reaching 80% maximal levels 17 days after symptoms onset. In contrast, mild-symptomatic and asymp-
tomatic patients developed lower and sometimes undetectable neutralizing antibodies. These data associate
humoral immunity with disease severity and point to immune mechanisms other than neutralizing antibodies
as relevant players in COVID-19 protection.

Results

Description of participants. The KING study recruited 78 individuals suspected from COVID-19 symp-
toms. As shown in Table 1 (and supplementary Fig. 1), six individuals gave negative results in both serologic and
molecular diagnostic tests and were included in the control uninfected group, while 72 individuals were found
positive for SARS-CoV-2 infection by either serological or nucleic acid detection tests and were monitored lon-
gitudinally, when possible. From positive individuals, 32 (44%) did not require hospital admission, most of them
were identified by mild symptoms (25 individuals), while seven individuals with no symptoms were identified
in routine serologic tests. The hospitalized participants (n=40) were classified according to severity (cutoft pO,
saturation 94%) and need of intensive care (Supplementary Fig. 1). One third showed non-severe infection,
while 22 patients (55% of hospitalized individuals) were severely affected and 5 required intensive care. The main
characteristics of enrolled individuals are shown in Table 1. Significant differences were observed in gender and
age (p <0.05) between infected subgroups, with women and young participants being more represented in the
non-hospitalized group. The main comorbidities in hospitalized patients were high blood pressure (19 out 40
patients, 47.5%) and respiratory diseases (10 out of 40 patients, 25%), while the main treatments were hydroxy-
chloroquine, corticosteroids and available antivirals other than remdesivir (mainly lopinavir). Most patients
received combined treatments that also included anti-IL-6 biologics (mainly tocilizumab) and Interferon-3
(Table 1).
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Figure 1. Neutralization activity. (A) Dose response of normalized neutralization data for all samples tested
against replicative virus in Vero E6 cells (n=130). (B) Correlation between ICs, values of plasma samples in
replicative virus and pseudovirus neutralization assays (n=122). Line indicates linear regression for illustrative
purposes. Correlation coefficient and p-value (Spearman correlation test) are shown. (C) Analysis of the impact
of disease severity on neutralization titers (replicative virus assay) for the whole sample set. Individual values,
mean values (solid lines) are shown for each group (0=seronegative, 1 =asymptomatic, 2 = mid-symptomatic,
3 =hospitalized non severe, 4 =severe, 5=ICU). (D) Calculated IC;, (reciprocal dilution) in the replicative
virus assay for all plasma samples tested grouped by SARS-CoV-2 positivity and clinical grade of symptoms.
Comparison between groups was performed by Kruskal-Wallis test (p-value indicated in the Figure) with
Dunn’s correction for multiple comparisons (indicated in intergroup comparisons). Top p-value indicates the
comparison of the whole hospitalized and outpatient groups.

Neutralization assays. A total of 128 plasma samples were assayed for neutralization capacity against the
replication of an infectious isolate of SARS-CoV-2 in Vero E6 cells (Fig. 1A)" and neutralization titers were
determined.

To confirm that neutralization was directly associated with the blockade of S-protein mediated viral entry, a
pseudoviral neutralization assay, that uses HIV-based pseudoviruses bearing the SARS-CoV-2 S or the VSV-G
proteins, was also developed (see methods). 122 plasma samples were analyzed for pseudovirus neutralization
and ICs,s were compared with the results obtained with the replicative virus neutralization assay. Figure 1B shows
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the strong correlation between the neutralization titers calculated using each method (r=0.865, p=0.00001,
Spearman test). This result confirms that plasma-mediated inhibition of fully replicative virus is primarily asso-
ciated with the presence of neutralizing anti-S antibodies.

Plasma neutralization titers from all infected participants, showed a wide range of activity with a gradual
increase in median neutralization activity following disease severity (Fig. 1C). A detailed analysis showed sig-
nificant differences among disease severity groups (p <0.0001, Kruskal-Wallis test), that was driven by dif-
ferences between seronegative individuals and hospitalized subgroups and by significant differences between
asymptomatic or mild-symptomatic subgroups with severe patients (Fig. 1D, Dunn’s multiple comparison test).
However, no statistical differences were observed between asymptomatic and mild asymptomatic participants
or among hospitalized subgroups. When subgroups were combined in non-hospitalized and hospitalized, the
former group showed significant lower levels of neutralizing antibodies compared to individuals requiring hospi-
talization (p <0.0001, K-W test). Among plasma from infected individuals, 12% of samples reached titers above
2000, with 3 samples, corresponding to three different hospitalized individuals, above 5000. At the other end,
33% of plasma samples showed neutralization titers below 100, mostly corresponding to individuals with mild/
asymptomatic infection and early sampled hospitalized individuals (Fig. 1D). All control uninfected individuals
showed undetectable neutralizing activity (<50, reported as 20, Fig. 1D).

Kinetics of neutralizing antibodies. Taking advantage of the wide range of sampling times after symp-
toms onset, we determined the kinetics of emergence of neutralizing antibodies using nonlinear mixed-effects
models. Data from hospitalized patients (who had sampling timepoints closer to symptom onset and longer
follow-up periods), allowed for proper fitting of data. Kinetics were similar for severe and non-severe individu-
als, while ICU participants showed a trend towards faster and higher development of neutralizing activity; how-
ever, differences were not statistically significant. Fitting all pooled data showed that half maximal neutralization
activity was achieved at day 10.7 (confidence interval, CI 8.3-12.9), while 17.3 days (CI 14-21.1) were required
to develop the 80% maximal response, which achieved 3.12 logs (CI 2.9-3.3), i.e. 1584 (CI: 794-1995) reciprocal
dilution (Fig. 2A). Interestingly, one individual from the hospitalized group failed to generate detectable neutral-
izing activity even after 55 days of symptoms. This individual was not included in this analysis.

Data from mild-symptomatic individuals could not be analyzed in the same way owing to different temporal
distributions of data (as a consequence of difficulties in obtaining samples short term after infection) and low
level of neutralizing titers observed in some individuals with late sampling. Therefore, after discarding the late
samples, we analyzed the mean neutralization level overtime yielding a value of 2.4 logs (CI 2.2-2.6), i.e. 234 (CI
158-354) reciprocal dilution (Fig. 2B). The difference of this value with the plateau of neutralizing activity of
hospitalized individuals was highly significant (p < 10~ by Z-test, and p < 10~* by Wilcoxon test as described in
methods; Fig. 2B), and reflects the different distribution (p =0.0003, Chi-square test) of individuals with unde-
tectable (< 20), low (20-100), medium (100-1000) or high (> 1000) neutralization titers in the non-hospitalized
and the hospitalized groups (Fig. 2C). Of note, almost 50% of outpatient (asymptomatic and mild-symptomatic)
participants showed low neutralization titers (< 100).

Association of neutralizing antibodies with age and gender.  Since hospitalized and non-hospital-
ized individuals showed differences in age and gender distribution, we analyzed the impact of these parameters
on neutralization titers. A positive correlation was observed between maximal individual neutralization titers
and age when all individuals were analyzed (p=0.03, Spearman test, Fig. 3A). However, significance was lost
when each group (hospitalized and non-hospitalized) was analyzed separately (Fig. 3A, dotted lines), suggest-
ing that the main driver of the correlation is the increased age in hospitalized patients. A two-factor regression
model, including age and hospitalization status, showed a strong correlation of neutralizing titers with hospi-
talization (p=0.0001, Wald test) and a non-significant contribution of age (Table 2). Although we cannot rule
out an effect of age due to the limited size of our dataset, these data suggest that severity is the major correlate of
neutralizing antibody titer.

For hospitalized patients no correlation was observed between the neutralization capacity and the duration
of hospital stay (Fig. 3B). Similarly, unbalanced gender distribution among groups seems to be unrelated to neu-
tralization titer, although barely significant differences were observed when maximal titers of neutralization were
compared (Fig. 3C), the kinetics and plateau of female and male participants were similar when a longitudinal
analysis was performed (Fig. 3D).

Impact of treatment on neutralizing titers. We analyzed the potential impact of immunomodulatory
or antiviral treatments on neutralizing titers. All participants, but one, were on hydroxychloroquine or chloro-
quine treatment, hampering the analysis of the effect of this drug. For other drugs, analysis was also perturbed by
the different combinations administered. When drugs were analyzed individually, no differences were observed
between maximal neutralization titers among participants treated with corticosteroids, tocilizumab (or other
anti-IL-6 drugs), type-I IFN (mainly IFN-83) or protease inhibitors (mainly Lopinavir, Fig. 4). Although type-I
IFN seemed to negatively impact neutralization titers, this observation is caused by the high incidence of death
(4 out of 8 patients) and the shorter sampling time in the IFN-treated group. We approached the analysis of drug
combinations by a more general clustering analysis. However, the large amount of combinations and the limited
number of participants prevented the identification of any significant relationships between severity, neutraliza-
tion titer and treatment regimen (Supplementary Fig. 2).
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Figure 2. Longitudinal analysis and distribution of neutralization activity. (A) Neutralization titers from
hospitalized patients were plotted against time from symptoms onset and fitted (solid line). Empty symbols
indicate outliers. Light and dark blue arrows indicate the calculated time required to achieve the 50% and the
80% maximal neutralization titer, respectively. Non severe, severe and ICU groups are indicated by orange,
maroon and red symbols, respectively. Analysis was performed with all the dataset. (B) Neutralization titers
from mild-symptomatic individuals were fitted (solid line) after identification of outliers (empty symbols).
The comparison of the plateau values for neutralization titers in hospitalized (light maroon line) and mild-
symptomatic individuals is shown (Z test). (C) Representation of the frequency of undetectable, low, medium
and high neutralizing individuals in non-hospitalized and hospitalized (All hospital) patients (p-value of Chi-
square test).

Discussion

In this study, we analyzed the development of antibody-mediated neutralizing activity in SARS-CoV-2 infected
individuals. We used, either a fully replicative SARS-CoV-2 isolate or a HIV-based pseudovirus exposing the
SARS-CoV-2 S protein, similar to other recently reported assays?’-22, The comparison of both methods yielded
a high degree of identity, suggesting that the antiviral activity of plasmas samples is mostly mediated by anti-S
protein antibodies (the only SARS-CoV-2 derived protein expressed on the pseudovirus). This comparison also
validates the pseudoviral assay as a faster, safer and specific (compared to VSV-G pseudoviruses as control)
neutralization screening method.

Our analysis of SARS-CoV-2 infected individuals highlights the association between the development of the
neutralizing activity and the clinical course of the infection. First, disease severity appears to be linked to age and
gender, with hospitalization rates being higher in both older and male individuals. However, the sub-analyses of
hospitalized patients showed no significant differences in neutralization titers according to gender and age. We
consider that we do not have enough sample size to be able to correctly assess these questions; therefore, larger
studies with longer follow-up will be needed to properly address this issue. Second, hospitalized patients showed
a relatively homogeneous development of neutralizing antibodies reaching titers of 3.12 logs. Only ICU cases
showed a trend to elicit faster and higher titers, although no clear causality can be established from our data.
The global longitudinal analysis showed 50% of response by day 11 and maximal responses (>80%) attained by
day 17 after symptoms onset. These values are similar to those reported for total antibody titers, with 11 and
16 days, respectively'®, suggesting that the early humoral response already contains neutralizing antibodies. This
is consistent with the identification of neutralizing antibodies with a low somatic hypermutation that can prob-
ably arise during the first germinal center reactions®. No clear effect of treatment on the short-term neutralizing
activity was observed as none of the treatments analyzed (tocilizumab, corticosteroids, type-I IFN or protease
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Figure 3. Factors associated with neutralizing responses. (A) Correlation between maximal individual
neutralizing titers and age. P-value for Spearman’s test correlation of all data is shown (solid line), red and green
dotted lines indicate correlations for hospitalized and mild-symptomatic individuals, respectively. P-value for
Spearmans test correlation is shown. (B) For hospitalized patients, correlation between neutralizing activity and
duration of hospital stay. P-value for Spearman test correlation of data is shown (solid line). (C,D) Analysis

of gender differences in the maximal neutralization titer value of COVID-19 participants (n=73, C) and in
hospitalized participants (n=40, panel D). P-values for Mann-Whitney tests is shown.

p-value
Regression coefficient Standard error (Wald test)
Age —-0.004 0.006 0.523
Hospitalization 0.752 0.182 0.0001

Table 2. Two-factor regression model to assess the impact of age and hospitalization on neutralizing activity.

inhibitors) were associated with higher or lower magnitude of neutralizing responses. This fact contrasts with
reported impact of corticosteroid treatment in long-lasting immunity against SARS-CoV?%; however, the lack
of long-term follow up in our samples impedes a direct comparison. Therefore, we cannot rule out a long-term
impact, since immunomodulatory interventions might affect the inflammatory balance and the activation and
migration of immune cells to secondary lymphoid organs. Again, the reduced sample size and the large number of
treatment combinations limited our ability to assess this issue, larger cohorts with longer follow-up are required.

Importantly, our data show that mild-symptomatic participants exhibited significant lower titers of neutral-
izing antibodies either analyzed longitudinally or by comparing maximal individual values. Consistently, a
relevant fraction, roughly 50%, of mild-symptomatic/asymptomatic patients showed neutralization titers below
100, and among them, a significant fraction of individuals with undetectable activity were also identified. This
fact has been also observed by others****-?’; and despite that some neutralizing antibodies have been isolated
from those individuals®, the reasons and the consequences of such a low neutralizing response remain unclear.
Exceptionally, we also identified one hospitalized patient with persistent undetectable neutralization titers, despite
undergoing severe infection and 33 days hospital stay before recovering.

An obvious risk for patients with low neutralizing capacity is the possibility of reinfection. Although animal
models point against this possibility?, several cases have been reported in humans®**, and at least one of them
was associated with a poor seroconversion after the initial infection®”. Dangers of low neutralization titer could
be also associated with incomplete antibody mediated protection and ADE, a situation of antibody mediated
exacerbation of the infection reported for other coronaviruses®'. However, this is not the case for individuals with
low/undetectable neutralizing activity identified in our study, since they have experienced mild-symptomatic
or fully asymptomatic infection. Additionally, the absence of correlation between neutralization capacity and
length of hospital stay (in the hospitalized group) could suggests that the presence of neutralizing antibodies
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Figure 4. Effect of treatment. Maximal neutralization titers from hospitalized participants (n =40) were
analyzed according to the indicated treatments. Individual values, median and interquartile boxes (25-75) are
indicated. P-values for Mann-Whitney tests are shown.

is not determinant for the resolution of the disease. This is consistent with published data on SARS-CoV-2%,
but contrasts with a previous study on SARS-CoV patient linking neutralization capacity with shorter illness®.
Therefore, our data point to a contradictory situation in which neutralization titers do not associate with clini-
cal benefit. In addition, individuals with low antibody responses, far from the doses reported to be protective
in animal models'®, seem to have been protected against severe infection. This apparent contradiction should
be explained by further exploration of other immunological mechanisms of viral control. Specifically, innate
and/or T-cell mediated responses might play a key role promoting sufficient protection in the absence of a wide
and potent B cell mobilization. While few data exist on the protective role of innate immunity against SARS-
CoV-2*, a relevant role for T-cell responses has been described*>*¢. The hypothesis of a major role of preexisting
SARS-CoV-2 cross reactive T cells is of particular interest in this context. These cells could have arisen in a large
fraction (roughly 50%) of SARS-CoV-2 unexposed individuals by previous infections with other human corona-
viruses causing common cold*” and could mediate cross protection as reported in animal models of SARS-CoV
and Middle East respiratory syndrome coronavirus infections®. Alternatively, the failure to detect neutralizing
activity does not rule out the presence of transient albeit low neutralizing responses, which could be sufficient
to control early viral replication. Consistent with this hypothesis, low frequencies of RBD-specific B cells have
been identified in low neutralizing individuals®.

Given the seemingly relevance of asymptomatic or mild-symptomatic infection in the global COVID-19
pandemic'®, understanding the mechanisms that control viral pathogenesis will be key to assess the herd immu-
nity (antibody-mediated or not) against SARS-CoV-2.

Materials and methods

Participants. We designed the KING observational study at the Hospital Universitari Germans Trias i Pujol
(Badalona, Spain) aimed to characterize virological and immunological features of SARS-CoV-2 infection. The
study was approved by the Hospital Universitari Germans Trias i Pujol Ethics Committee Board (reference
PI-20-122). Participants were enrolled after a positive test of SARS-CoV-2 infection (either virological test per-
formed by RT-qPCR analysis of nasopharyngeal swabs in routine clinical screenings or serological test per-
formed by in-house ELISA of plasma samples). All methods were carried out in accordance with the principles
of the Declaration of Helsinki. All participants provided written informed consent before inclusion. Some of the
individuals recruited in the KING cohort have been included in a sub-analysis of humoral responses recently
submitted (Rodriguez de la Concepcioén et al., submitted).
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Severity of symptoms was defined by the following criteria. Asymptomatic infection (severity level 1), mild-
symptomatic infection requiring medical visit but no hospitalization (severity level 2), symptomatic non-severe
infection requiring hospitalization with pO2 saturation above 94% (severity level 3), severe infection requiring
hospitalization and reaching pO2 saturation values below 94% (severity level 4) and very severe infection requir-
ing hospitalization and further intensive care unit (ICU) admission (severity level 5).

Samples and COVID-19 tests. When available, nasopharyngeal swabs were obtained at time of inclusion
in the study and processed by the routine clinical services. Results were categorized as positive or undetectable
(considered negative). No quantitative data on viral load was available from these specimens.

Blood was collected by venipuncture in EDTA vacutainer tubes (BD Bioscience). Plasma was obtained by
centrifugation of blood at 1200xg for 10 min and stored at — 80 °C until use. The presence of anti-SARS-CoV-2
antibodies in plasma samples was assayed by ELISA (Rodriguez de la Concepcidn et al., submitted). Briefly, the
anti-6xHis antibody HIS.H8 (2 pg/mL in PBS) was coated overnight at 4 °C in MaxiSorp plates (Nunc). Then,
plates were blocked using blocking buffer (BB): PBS/1% of bovine serum albumin (BSA, Miltenyi Biotec) for two
hours at room temperature. After that, 50 uL of SARS-CoV-2 S2 subunit at 0.9 pg/mL and recombinant RBD at
0.3 pg/mL (both from SinoBiologicals and prepared in BB), were added and incubated overnight at 4 °C. Plasma
samples were incubated at 1/100 dilution in BB for one hour at room temperature. The HRP conjugated- (Fab),
Goat anti-human IgG (Fc specific) (1/20,000), Goat anti-human IgM (1/10,000), and Goat anti-human IgA (alpha
chain specific) (1/20,000) (Jackson ImmunoResearch) were used as detection antibodies. The specific signal for
each sample was calculated after subtracting the background signal obtained for antigen-free wells. Negative
cutoffs were defined by COVID-19 negative samples run in parallel.

Virus neutralization assay. Plasma samples were inactivated (56 °C, 30 min) before mixing at increasing
dilutions (ranging from 1/100 to 1/8100) with 60 TCIDs,/mL of the SARS-CoV-2 isolate Cat01 (accession ID
EPI_ISL_418268 at GISAID repository: http://gisaid.org), a concentration that achieves a 50% of cytopathic
effect as described previously'®. Uninfected cells and untreated virus-infected cells were used as negative and
positive control of infection respectively. In order to detect any plasma-associated cytotoxicity, Vero E6 cells
(ATCC CRL-1586) were equally cultured in the presence of increasing plasma dilutions, but in the absence of
virus. Cytopathic or cytotoxic effects of the virus or plasma samples were measured at 3 days post infection,
using the CellTiter-Glo luminescent cell viability assay (Promega). Luminescence was measured as relative lumi-
nescence units (RLU) in a Fluoroskan Ascent FL luminometer (ThermoFisher Scientific).

Dose response neutralization curves were normalized according to positive and negative controls (% Neutrali-
zation = (RLUmax - RLUexperimental)/(RLUmax - RLUmin)*100) and fitted to a four-parameter logistic curve
with variable slope using Graph Pad Prism software (v8.3.0). All IC;, values are expressed as reciprocal dilution.

Pseudovirus neutralization assay. HIV reporter pseudoviruses expressing SARS-CoV-2 S protein, and
Luciferase were generated. pNL4-3.Luc.R-.E- was obtained from the NIH AIDs repository*®. SARS-CoV-2.
SctA19 was generated (Geneart) from the full protein sequence of SARS-CoV-2 spike with a deletion of the last
19 amino acids in C-terminal*’, human-codon optimized and inserted into pcDNA3.4-TOPO.

Expi293F cells were transfected using Expifectamine Reagent (Thermo Fisher Scientific, Waltham, MA,
USA) with pNL4-3.Luc.R-.E- and SARS-CoV-2.SctA19 at a 24:1 ratio, respectively. Control pseudoviruses were
obtained by replacing the S protein expression plasmid by a VSV-G protein expression plasmid as reported
previously*!. Supernatants were harvested 48 h after transfection, filtered at 0.45 pm, frozen and titrated on
HEK293T cells overexpressing WT human ACE-2 (Integral Molecular, USA). For neutralization assay, 200
TCIDs, of pseudovirus supernatant was preincubated with serial dilutions of the heat-inactivated plasma samples
(see above) for 1 h at 37 °C and then added onto ACE2 overexpressing HEK293T cells. After 48 h, cells were
lysed with Britelite Plus Luciferase reagent (Perkin Elmer, Waltham, MA, USA). Luminescence was measured
for 0-2 s with an EnSight Multimode Plate Reader (Perkin Elmer).

Neutralization capacity of the plasma samples was calculated by comparing the experimental RLU calculated
from infected cells treated with each plasma to the max RLUs (maximal infectivity calculated from untreated
infected cells) and min RLUs (minimal infectivity calculated from uninfected cells), and expressed as percent
neutralization: %Neutralization = (RLU s~ RLU yperimental)/ (RLU ax=RLU 3,) ¥100. IC5, values were calculated
as described above.

Statistical analysis. Continuous variables were descriptively summarized using medians with 25" and
75" percentiles, and categorical factors were reported using percentages. T-test and chi-square test were used to
analyze association of age and gender with the clinical severity of the infection. Association of age with neutral-
izing titers was analyzed fitting a multivariate linear regression adjusted by clinical severity. We used nonlinear
mixed-effects models with an individual based single-level of grouping to model the levels of neutralizing anti-
bodies overtime, estimated since the apparition of symptoms. Models were fitted to a four-parameter logistic
function with a constrained lower asymptote set to the limit of detection and three parameters, the inflection
point, a scale parameter and the upper asymptote. Individual-specific random effect for upper asymptote was
introduced in the model and a first order autocorrelation structure was used to model the within-individuals
error variance—covariance structure. In order to analyze differences in antibody concentration between genders
and patients with different severity levels, models with covariate-dependent fixed effects were also fitted. Due to
the lack of early timepoints in the mid-symptomatic individuals, this group was analyzed separately, estimating
the mean level and its standard error of neutralizing antibodies. Comparison of neutralizing antibodies levels
between mid-symptomatic and hospitalized groups was assessed in to ways, performing a Z test from estima-
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tions and their standard errors (mean level for the former and upper asymptote estimation for the latter) and
using Wilcoxon rank sum test to compare antibody levels between mild-symptomatic and hospitalized indi-
viduals after 14 days (estimated lower bound to reach the 80% of neutralization level). One individual from the
hospitalized group and three from the mild-symptomatic group who failed to generate detectable neutralizing
activity were not included in the longitudinal analyses. All analyses were performed with GraphPad Prism 8.4.3
(GraphPad Software, Inc., San Diego, CA) and R version 4.0 (R Foundation for Statistical Computing)*%. Mixed-
effects models was fitted using “nlme” R package.
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