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Analytical and numerical results for the elasticity and 
adhesion of elastic films with arbitrary Poisson’s ratio and 
confinement
Christian Müllera and Martin H. Müsera,b

aINM - Leibniz Institute for New Materials, Saarbrücken, Germany; bDepartment. Of Materials Science and 
Engineering, Saarland University, Saarbrücken, Germany

ABSTRACT
We present an approximate, analytical treatment for the linearly 
elastic response of a film with arbitrary Poisson's ratio ν, which is 
indented by a flat cylindrical punch while resting on a rigid 
foundation. Our approach is based on a simple scaling argu-
ment allowing the vast changes of the elastomer’s effective 
modulus �E with the ratio of film height h and indenter radius a 
to be described with a compact, analytical expression. This 
yields exact asymptotics for large and small reduced film 
heights h=a, whereby it also reproduces the observation that 
�Eðh=aÞ has a pronounced minimum for ν> 0:49 at h=a � 1:6. 
Using Green’s function molecular dynamics (GFMD), we demon-
strate that the predictions for �Eðh=aÞ are reasonably correct and 
generate accurate reference data for effective modulus and pull- 
off force. GFMD also reveals that the nature of surface instabil-
ities occurring during stable crack growth as well as the crack 
initiation itself depend sensitively on the way how continuum 
mechanics is terminated at small scales, that is, on parameters 
beyond the two dimensionless numbers h=a and ν defining the 
continuum problem.
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1. Introduction

This paper revisits the contact mechanics of confined, linearly elastic layers of 
height h sandwiched between a rigid surface and a circular rigid punch of 
radius a. A central quantity of such films is the effective modulus �E [1] as 
a function of the reduced height h=a and the Poisson’s ratio ν. �E is defined as 
the ratio of mean contact stress and relative height change. The arguably most 
important reason for wanting to know �Eðh=aÞ is that it allows the pull-off 
stress σp �

[2,3] and the fracture mechanisms of confined elastomers to be 
determined.[4–8] For large h=a or small ν, adhesive contact failure is sudden, i. 
e., the tensile force drops discontinuously from its maximum value to zero 
under quasi-static loading, even when the system is displacement driven. 
However, stable crack growth occurs for (nearly) incompressible elastomers 
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once h=a falls below approximately two. As h=a drops below unity, the contact 
shape is no longer circular during stable crack growth but clearly symmetry 
broken[4,6–9] so that contact features have a characteristic linear dimension λ 
minimizing the total energy.[4,8,10–13]

The limits of unconfined (h=a!1)[14] and incompressible (ν ¼ 0:5), 
highly confined (h=a! 0)[15] elastomers were solved more than half 
a century ago. Over time, amendments to the latter case were made with 
respect to boundary conditions, the geometry of the elastomer, and other 
details.[1,4,12,16] However, intermediate confinements h=a � 1 have not yet 
been solved analytically for extended two-dimensional films, although solu-
tions for poker-chip specimens[17,18] as well as elastomeric strips[19] can be 
found. Extended films have only been treated numerically with finite-element 
(FE) simulations,[2,3,5,7,20,21] which lead to the suggestion of semi-empirical 
relationships between �E=E� and h=a,[3,5,20] where E� ¼ E=ð1 � ν2Þ is the con-
tact modulus and E the Young’s modulus. They turn out to benefit the 
interpretation of real-laboratory experiments, in particular, to explain differ-
ent crack propagation mechanisms during detachment.[4,6–8] A deeper under-
standing of the �Eðh=aÞ dependence might also prove useful in interpreting 
observations made on confined elastomers in contact with rough 
indenters.[22–24]

Unfortunately, most existing semi-empirical �Eðh=aÞ relations were 
only designed for Poisson’s ratios equal to or just below 0.5 so that 
confinement effects of various soft materials with small Poisson’s ratios, 
such as foams, corks or soft isotropic metamaterials with negative 
Poisson's ratio are not quantitatively understood. Moreover, as demon-
strated in this work, the extreme confinement limit, in which deviations 
from ideal incompressible matter have not yet been described satisfacto-
rily for the given elastic film geometry. While instabilities of the elasto-
mer surface were studied analytically for arbitrary Poisson’s ratios,[10,25] 

the focus was quickly laid on ideally incompressible elastomers.[10,12,21] 

In addition, no physically motivated, closed-form expressions for the 
dependence of the effective modulus on the reduced film height have 
been proposed.

The original main motivation for this article was to identify a non- 
empirical relationship for �Eðh=a; νÞ, which allows us to easily rationalize 
the minimum in �Eðh=a; νÞ and estimate the range of Poisson’s ratios, in 
which an elastomer film behaves as if it were incompressible. To this 
end, we propose that the energy needed to deform the elastic film should 
be most sensitive to the stiffness of a surface undulation with 
a wavevector in the order of the inverse punch radius. Even if such 
a simple scale argument may not outperform existing, more empirical 
models for all possible combinations of h=a and ν, it should improve our 
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ability to estimate �Eðh=a; νÞ, in particular in the limit of extreme con-
finement and/or small Poisson’s ratio. It certainly behoves us to examine 
numerically the accuracy of any scaling relation, which we do by run-
ning Green’s function molecular dynamics (GFMD) simulations.[26] This 
also allows us to produce reference data for the pull-off stress as 
a function of h=a and ν. While simulating the detachment process, we 
realized that the analysis of surface instabilities that occur during stable 
crack growth at h=a ,< 1 is interesting in its own right. We therefore 
include an in-depth analysis of how substrate symmetry, lattice trapping, 
and stochastic irregularities in the form of thermal noise, as well as their 
interplay affect the patterns that occur when the surface morphology 
becomes unstable during detachment.

The remainder of this article is organized as follows: Model and 
numerical methods are introduced in Section 2. Our scaling approach is 
presented in Section 3. Section 4 contains a comparison between theory 
and simulations as well as additional simulation results. Conclusions are 
drawn in Section 5.

2. Model and methods

2.1. Model

The investigated model system consists of isotropic, linearly elastic films of 
varying film height h resting on a perfectly flat and perfectly rigid foundation 
with a surface normal in the z direction. The in-plane extent of film and 
foundation are taken to be infinitely large and a no-slip condition is assumed 
between them. The opposite surface of the elastomer interacts with a rigid 
circular punch of radius a through a hard-wall constraint with a slip condition. 
Such systems can be effectively simulated by assuming periodic boundary 
conditions in the xy plane, as long as the linear dimension L of the periodically 
repeated simulation cell exceeds the punch radius a by a sufficiently large 
padding, which is most effectively chosen to be larger than but of 
order minðh; aÞ.

In the just-defined setup, the elastic energy of the elastomer is given 
by[27–29] 

Vela ¼
X

q

qE�

4
cðν; qhÞ ~uðqÞj j

2 (1) 

where q is an in-plane wave vector with absolute value q, ~uðqÞ is the Fourier 
coefficient of the displacement field of the elastomer’s surface facing the 
indenter and 
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c ν; qhð Þ ¼
3 � 4νð Þ cosh 2qhð Þ þ 2ðqhÞ2 � 4ν 3 � 2νð Þ þ 5

3 � 4νð Þ sinh 2qhð Þ � 2qh
: (2) 

For an infinitely large system without periodic boundaries, the sum on the r.h. 
s. of Eq. (1) will be replaced with an appropriate integral. For some of the 
calculations presented in this study, knowledge of the asymptotes of cðν; qhÞ is 
useful. A Taylor expansion reveals them to be 

cðν; qhÞ ¼
1 for qh� 1
c1ðνÞ=ðqhÞ for qh� 0:5 � ν and ν< 0:5
1:5=ðqhÞ3 for qh� 1 and ν ¼ 0:5:

8
<

:
(3) 

with 

c1ðνÞ ¼
2ð1 � νÞ2

1 � 2ν
: (4) 

In our analytical treatment, the interaction between indenter and elastomer is 
a non-overlap constraint. In addition, a surface energy γ is gained per unit area 
where surfaces touch. The model is then replaced with a cohesive zone model 
for the numerical solution of the contact problem, which is described next.

2.2. Methods

The contact problems were solved numerically using Green’s function mole-
cular dynamics (GFMD) simulations.[26] GFMD is a boundary-value method, 
in which Newton’s equations of motion for the displacement fields are solved 
in their Fourier representation. In compression simulations, we use an exact 
non-overlap constraint in conjunction with the fast-inertial relaxation 
(FIRE)[30] algorithm as described in Ref.[31] Typical simulations assume the 
linear dimension of the periodically repeated simulation cell to be three times 
the punch diameter and a discretization of the displacement field into 2; 048�
2; 048 elements. While exploiting the circular symmetry of the problem would 
have allowed us to reduce the computational cost of the simulations substan-
tially, we found it more time effective to use the implemented methods.

Although knowledge of Vela as a function of normal displacement and h=a 
determined from purely repulsive experiments is sufficient to deduce the 
adhesive pull-off force, see Section 3.3, simulations mimicking tensile loading 
were also conducted. This was not only done to double-check our pull-off 
force calculations but also to investigate the dynamics and failure mechanisms 
that occur during the detachment of confined elastomers. For this purpose, 
adhesion is modeled with a cohesive zone model (CZM), in which the gap- 
dependent surface energy has the form[32] 
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γðgÞ ¼ � γ� fcosðkgÞ þ 1g=2 for 0 � kg � π=Δa
1 � ðkgÞ2=4
� �

for g < 0

�

(5) 

and zero else, where g is the gap between elastomer and punch. The parameter 
k was generally set such that the maximum stiffness of surface undulations was 
slightly more than twice the maximum (negative) curvature of the potential 
defining the CZM, i.e., k2 ¼ 0:4

r qmax E�cðν; qmaxhÞ, where qmax ¼
ffiffiffi
2
p

π=Δa and 
Δa the linear mesh discretization. In this way, the interaction is effectively as 
short ranged as possible while avoiding lattice trapping. The latter refers to 
a situation, where an individual degree of freedom, e.g., a GFMD discretization 
point, can have two or more mechanically stable positions, while all other 
points remain fixed. When addressing lattice trapping, the parameter k was set 
to 3.75 times its default value. To improve the convergence rate, the mass- 
weighting GFMD variant was used for adhesive simulations.[31] Computing 
time is furthermore reduced by progressively increasing spatial resolution and 
decreasing the rate of retraction upon approaching the point of maximum 
tensile force.

To also model the response of elastomers to small perturbations, some 
simulations were conducted at finite temperature with the help of a recently 
introduced GFMD thermostat.[33] To this end, the thermal energy was kept at 
about 0.1% of the adhesive energy gained in a single mesh element in which 
the elastomer makes perfect contact with the indenter.

2.2.1. Finite-size corrections
If the origin of the coordinate system coincides with the center of the flat 
punch, the macroscopic displacement u0 is defined as uð0Þ � uðr !1Þ. 
Thus, the best simple estimate for u0 when using a finite square-shaped 
simulation cell with length L is to replace u1;uðr!1Þ with uðL=2; L=2Þ.

To reduce the finite-size error, we use a correction appropriate for semi- 
infinite elastomers[34] but damp it with the weight function wðh=aÞ ¼
tanhðh=aÞ for small h=a: 

u1 � uðL=2; L=2Þ þ 5wðh=aÞfuðL=2; L=2Þ � uðL=2; 0Þg: (6) 

The damping of the usual correction is needed because for finite h=a, the 
displacement field approaches u1 exponentially quickly with increasing dis-
tance r from the origin rather than with 1=r.

3. Theory

As has been done before,[2,3,35] we define the effective modulus �E as the ratio of 
the mean (compressive) contact stress �σ ¼ F=ðπ a2Þ and the relative height 
change of the elastomer to the contact area, �ε ¼ u0=h, even if the uncom-
pressed elastomer is a film rather than a free-standing cylinder of radius a, for 
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which �E was originally introduced.[35] Here, u0 is the normal displacement of 
the elastomer’s surface right below the punch from its equilibrium height in 
the absence of an indenter. Thus, �E is given by 

�E ¼
�σ
�ε
¼

Fh
u0πa2 : (7) 

Since a does not change with u0 for a flat punch under compression, it follows 
that F is proportional to u0 within linear elasticity. Thus, the elastic energy is 
simply given by Vela ¼ Fu0=2 so that 

Vela ¼ πa2� � �E
2h

u2
0: (8) 

As already argued in the introduction, the only in-plane length defining the 
contact problem is the punch radius a. Thus, under compression, dimensional 
analysis suggests that the elastic energy should predominantly reside in undu-
lations with wave numbers of the order of qa ¼ 2π=a given that q! 0 or q!
1modes are not dominant. In this case, a good estimate for the elastic energy 
would be 

Vela ¼ πa2� �
O qað ÞE�c ν;O qað Þhf gu2

0: (9) 

In order to eliminate the big-O notation in Eq. (9), we introduce two propor-
tionality factors α and β. Comparing the resulting elastic energy to Eq. (8) 
yields 

�E
E�
�

1
2

αβqahc ν; βqahf g; (10) 

which is the central analytical result of this work. Sections 3.1 and 3.2 
are concerned with a parametrization of α and β, while Section 3.3 
summarizes how to deduce depinning forces from the h=a dependence 
of �E.

To further motivate our approach, Figure 1 shows displacement and stress 
fields in real space for the various confinements, which range from small 
(h=a� 1) and intermediate (h=a ¼ 1) via large (1 � 2ν� ðh=aÞ2 � 1) to 
extreme (ðh=aÞ2 � 1). These data are complemented by the elastic energy 
associated with individual ~uðqÞ modes in the right column of Figure 1, which 
clearly supports the scaling hypothesis that energy predominantly resides in 
modes with wavelengths of order a.

The top row of Figure 1 shows the well-established properties of the 
flat-punch solution for semi-infinite elastomers. On the other end, in the 
two bottom rows, Figure 1 reveals a qualitative difference between large 
and extreme confinement, which may often be underappreciated, 
although the principle is known from works addressing poker-chip and 

6 C. MÜLLER AND M. H. MÜSER



Figure 1. Displacement field (left column), stress field (center column), and energy spectrum (right 
column), i.e., individual summands of the r.h.s. of Eq. (1), for ν ¼ 0:4995 at different values of the 
reduced height h=a. The ordinate axis is linear in all cases.
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elastic-strip geometries.[17–19] Specifically, for 1 � 2ν< ðh=aÞ2 � 1, the 
stress profile at the origin is close to an inverted parabola while for 
ðh=aÞ2 � 1 � 2ν, the stress is constant within (most of) the contact. It 
should also be noted that in all cases, a stress singularity occurs at the 
contact edge, which in our numerical treatment – and in reality – is cut 
off by the finite range of the interaction potential, whose precise effective 
value can be a function of the microscopic roughness.[33] In addition, the 
corresponding intensity decreases with decreasing h=a and thus disap-
pears in the limit of h=a! 0.

3.1. Asymptotic scaling

In many cases, nearly incompressible elastomers are treated as perfectly 
incompressible and their Poisson's ratio is approximated with ν ¼ 0:5.[4–6,35] 

However, analyzing the asymptotic behavior of �E for h=a! 0 reveals a more 
concise picture, which is presented in the following.

The ratio �E=E� can only be a function of the two dimensionless numbers 
defining the problem, namely ν and h=a. The asymptotic limits for �E=E� at 
extreme and small confinement can be deduced from existing solutions for the 
considered confined elastomer. As will be shown in the remaining part of this 
Section 3.1, they turn out to be 

�E
E�
¼

2h=ðπaÞ for h=a� 1
c1ðνÞ=2 for h=a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and ν< 0:5
3a2=ð32h2Þ for h=a� 1 and ν ¼ 0:5;

8
<

:
(11) 

where c1ðνÞ was introduced in Eq. (4).
The condition ðh=aÞ2 � 1 � 2ν for ν< 0:5 in Eq. (11) is motivated by the 

observation that for ν close to 0.5, the scaling of the function cðν; h=aÞ has two 
different small-h=a scaling regimes. The threshold between these regimes is 
characterized by the transition from a parabolic to a constant stress distribu-
tion as illustrated by Figure 1. Based on this we introduce the terminology that 
a film is extremely confined if h=a is small compared to 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and largely 
confined if this condition does not hold but h is still small compared to a.

3.1.1. Unconfined limit
The unconfined limit is nothing but a regular flat punch in contact with 
a semi-infinite half space.[14] Inserting its well-known stress–displacement 
relation F ¼ 2aE�u0 into Eq. (7) yields the first case given in Eq. (11).
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3.1.2. Extreme confinement limit
For h=a! 0 and ν< 0:5, the proportionality between the elastic energy of 
a single height undulation and j~uðqÞj2 does not depend noticeably on the wave 
number q. Due to Parseval’s theorem, a linear relation between local displace-
ment and local stress occurs within most of the contact. This is why the stress 
is approximately constant within the contact in the bottom row of Figure 1 and 
zero outside so that its Fourier transform is 

~σðqÞ ¼
�σ

2π

ð

d2r eiq�r Θða � rÞ (12) 

¼ �σaJ1ðaqÞ=q; (13) 

Θð. . .Þ being the Heaviside step function, r ¼ ðx; yÞ the in-plane position with 
r ¼ jrj and Jnð. . .Þ the Bessel function of the first kind of order n. Using the 
stress–strain relation that follows from Eq. (1) yields a displacement at the 
origin u0;uðr ¼ 0Þ of 

u0 ¼
1

2π

ð

d2q
a
q

J1ðaqÞ
2

qcðν; qhÞ
�σ
E�

(14) 

)
u0=h

�σ
¼

2
~hE�

ð1

0
d~q

J1ð~qÞ

~qc ν; ~q~h
� � ; (15) 

where ~h ¼ h=a is the reduced height and ~q ¼ qa. By definition, the l.h.s. of Eq. 
(15) and thus its r.h.s. is nothing but the inverse of the effective elastic 
modulus �E.

The integral on the r.h.s. of Eq. (15) probably has no closed-form analytical 
solution and is even difficult to solve numerically because of the oscillations of the 
Bessel function. To reduce the effect of the oscillations, we rewrite the integral as 

I ¼
ð1

0
d~q

f ð~qÞ þ f ð~qþ πÞ
2

þ
1
2

ðπ

0
d~qf ð~qÞ; (16) 

f ð~qÞ being the integrand on the r.h.s. of Eq. (15). In its rewritten form, the integral 
can be easily seen to have its dominant contribution from small ~q when ~h is small. 
This property does not change after using the appropriate small-~q approximation 
for cðν; ~qÞ in the integrand. As a consequence, I can be solved analytically to be 
~h=c1ðνÞ in the large-confinement limit for ν< 0:5, which ultimately translates into 
the corresponding expression stated in Eq. (11).
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3.1.3. Large-confinement limit
For ν ¼ 0:5 and h sufficiently small compared to a, or, alternatively, ν< 0:5 
and h=a in the intermediate scaling regime, the stiffness of a mode is no 
longer independent of q but instead proportional to q� 2. As a consequence, 
the stress is no longer constant in the contact area but assumes the 
functional form[35] 

σðrÞ ¼ σ0 1 � r2=a2� �
Θða � rÞ (17) 

with σ0 ¼ 2�σ, see also the second to last row in Figure 1. It should be noted 
that this stress distribution was originally derived for a finite elastomer of 
originally cylindrical shape sandwiched between two rigid planes and assum-
ing a stick condition. However, Gent[35] already expected the functional 
dependence of �E on h=a for his set-up to be similar to that of films.

Proceeding as in Section 3.1.2, we first determine ~σðqÞ to be 

~σðqÞ ¼
ða

0
dr rJ0ðqrÞσðrÞ ¼ σ0a2 J1ð~qÞ

~q
� 2

J2ð~qÞ
~q2 þ

J3ð~qÞ
~q

� �

: (18) 

The displacement in the origin then becomes 

u0 ¼
2aσ0

E�

ð1

0
d~q

1
cðν; ~q~hÞ

J1ð~qÞ
~q
� 2

J2ð~qÞ
~q2 þ

J3ð~qÞ
~q

� �

(19) 

)
Eq:ð3Þ u0=h

�σ
¼

8~h
2

3E�

ð1

0
d~q ~q2J1ð~qÞ � 2~qJ2ð~qÞ þ ~q2J3ð~qÞ
� �

: (20) 

As in the previous section, the integral cannot be solved analytically and the 
integrand oscillates too much to allow for a numerically robust integration. We 
therefore proceed again as described in the text around Eq. (16). This time, we did 
not identify a closed-form expression for the small-q expansion, but found 
a numerical value of 4 with six significant digits, so that we believe 4 to be the 
exact value for the integral on the r.h.s. of Eq. (20). Thus, comparing the r.h.s. of 
Eq. (20) with the definition of �E yields the large-confinement limit for �E 
and ν ¼ 0:5.

3.2. Intermediate reduced film heights

In the previous section, we derived the asymptotic dependence of �E on h=a at 
large and small h=a. We now want to ascertain how to chose α and β. To this 
end, we define ~Es ¼ �Es=E� as the r.h.s. of Eq. (10). Inserting the asymptotes of 
cðν; qhÞ from Eq. (3) into Eq. (10) yields 

�Es

E�
¼

αβqah=2 for h=a� 1
c1ðνÞα=2 for h=a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and ν < 0:5
3α= 4β2ðqahÞ2
� �

for h=a� 1 and ν ¼ 0:5:

8
<

:
(21) 
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Comparing this result to Eq. (11) reveals that �Es scales properly with h=a in the 
asymptotic limits. However, when expressing the elastic energy of the system 
and the subsequent effective modulus, there are three equations and just two 
parameters 

αβ ¼ 2=π2 for any ν (22a) 

α ¼ 1 for ν< 0:5 (22b) 

αβ� 2 ¼ π2=2 for ν ¼ 0:5: (22c) 

Thus, Eqs. (22b) and (22c) give conflicting optimum parameter choices for 
ν< 0:5 and ν ¼ 0:5. They are α ¼ 1, β ¼ 2=π2 for ν< 0:5 and α ¼ 2=π, β ¼
ffiffiffiffiffiffiffiffiffiffi
4=π43

p
for ν ¼ 0:5.

An exact representation of �Eðh=aÞ=E� may be achievable by adding (infi-
nitely) many summands as they occur on the r.h.s. of Eq. (10). To make these 
sums satisfy the asymptotic limits, Eq. (22) must be generalized to sum rules. 
However, we did not find that proceedings along those lines appeared to be 
promising. Therefore, we will only use the single wave-number, asymptotically 
correct approximations for �Eðh=aÞ.

3.3. Deducing depinning force and range of stable crack growth from the 
effective modulus

Refs.[3–6,8] relate �Eðh=aÞ (or its inverse) to the energy release rate G, from which 
the pull-off force and crack propagation dynamics can be deduced. Similar to 
Yang and Li,[36] we start from the total energy formulation rather than the 
energy release rate, as we find this more direct and more intuitive.

The total potential energy of our system in an externally potential produ-
cing a constant force F reads 

U ¼
�Eðh=acÞ

2
u0

h

� �2
ðπha2

cÞ � πa2
cγ � Fu0; (23) 

where a negative value of F implies a (positive) tensile force causing a negative 
displacement u0. In this nomenclature, ac is the actual contact radius, which 
may now be different from the punch radius a.

In equilibrium, u0 and contact radius ac both minimize the potential energy, i. 
e., @U=@a ¼ @U=@u0 ¼ 0. In stable equilibrium, the Hessian produced by 
the second-order derivatives of U w.r.t. u0 and ac must be positive definite. 
When the system is displacement-driven, this condition reduces to @2U=@a2

c > 0.
The generalized force acting on the radius ac, Fa; � @U=@ac, is easily 

deduced as 
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Fa ¼ 2πγac � π�Eðh=acÞ
u2

0
h

ac þ
π
2
@�Eðh=acÞ

@ac

u2
0 a2

c
h

: (24) 

This equation allows ac to be determined self-consistently for a given u0. 
However, it has to be kept in mind that ac cannot grow for positive Fa when 
ac is equal to the punch radius a. This is why the case of ac ¼ a and ac < a must 
be treated separately.

The contact radius starts shrinking when Faðu0; ac ¼ aÞ ¼ 0� on retraction. 
Inserting this condition into Eq. (24) and solving for u0 yields 

u0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γh

2�Eðh=acÞ þ ac@�Eðh=acÞ=@ac

s

; (25) 

which has to be evaluated at ac ¼ a to deduce the normal displacement at the 
point, where the contact is just about to start shrinking for the first time. The 
normal force acting on the punch can then be deduced from @U=@u0 ¼ 0 to be 

FðacÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�Eðh=acÞγ=h
2þ @ ln �Eðh=acÞ=@ ln ac

s

πa2
c : (26) 

Evaluating this force at ac ¼ a gives the depinning or pull-off force Fp; � FðaÞ, 
which is the maximum tensile force occurring right before the contact radius 
starts shrinking. Different representations of the same equation can also be 
found using the energy release rate and/or assuming the load-driven case.[2,16]

As mentioned above, the previously determined contact radius ac is only 
stable if @2U=@a2

c > 0, which can be written in a convenient form that repro-
duces @U=@ac, which is 0 in equilibrium: 

@2U
@a2

c
¼

1
ac

@U
@ac
þ

πu0�E
2h

@2 ln �E
ð@ ln acÞ

2 þ
@ ln �E
@ ln ac

� �2

þ 2
@ ln �E
@ ln ac

 !

> 0: (27) 

The dividing line between stable and unstable crack propagation is defined by 
the condition @Fa=@ac ¼ 0. It can be cast 

@2 ln �Eðh=acÞ

ð@ ln acÞ
2 þ

@ ln �Eðh=acÞ

@ ln ac

� �2

þ 2
@ ln �Eðh=acÞ

@ ln ac
¼ 0: (28) 

This criterion together with Eq. (21) can be used to explain why there is no 
stable crack growth in an adhesive contact between a flat punch and a semi- 
infinite elastomer. For confined bodies, especially when ν is close to 0.5, this 
procedure is no longer applicable, since the contact area is usually not circular.

12 C. MÜLLER AND M. H. MÜSER



4. Results and discussion

4.1. Effective modulus

Figure 2 compares numerical results for �E=E� to the analytical results from the 
previous section using adjustable parameters α and β following from Eq. (22). 
It is shown that the simple scaling approach reproduces the overall trends 
fairly well. By design, the asymptotic limits are matched for ν< 0:5. Moreover, 
the location of the minimum in �Eðh=aÞ=E�, so it exists for a given Poisson’s 
ratio, almost coincides between theory and simulation. However, the value of 
�E=E� in the minimum has an error of a few 10%. Errors are largest in the 
regime where a ν ,< 0:5 elastomer shows similar behavior to an ideally incom-
pressible solid. This can be rationalized by the h=a! 0 asymptotics of a ν ¼
0:5 body, which would require the parameters α and β to be redefined. For 
reasons of completeness, we note that the minimum of �Eðh=aÞ=E� for ν ¼ 0:5 
is located at h=a ¼ 1:665 in our analytical treatment and at h=a � 1:23� 0:02 
in the GFMD data. The relatively large numerical uncertainty of the minimum 
location results from the minimum being shallow.

To better resolve the discrepancies between the scaling approach and the 
numerical data, Figure 3 shows the ratio �EGFMD=�Es as a function of reduced 
height. For ν< 0:45, relative errors turn out to be quite insensitive to ν for any 
h=a. They can be approximated reasonably well with a single Gaussian con-
structed according to 

10−3 10−2 10−1 100 101 102

h/a

100

101

102

103

Ē
/E

∗

ν = 0.0
ν = 0.4
ν = 0.45

ν = 0.495

ν = 0.4995

ν = 0.5

Figure 2. Reduced effective modulus �E=E� as a function of the reduced film height h=a for 
different Poisson’s ratios ν. Solid lines are theoretical predictions based on our scaling approach, 
symbols represent numerical results. Dotted lines indicate the asymptotic limits described in Eq. 
(21).
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�EGFMD
�Es
� 1 ¼ A exp � ln2 ~h=~h0

� �
= 2B2� �n o

(29) 

with A ¼ 0:46, B ¼ 0:75, and ~h0 ¼ 2. A similar insensitivity of �EGFMD=�Es on ν 
holds for large ν only as long as h=a � 1. Interestingly, all �EGFMD=�Es curves 
almost coincide at �h=a ¼ 1, where they assume the value of 4=3 within a 3% 
margin. Unfortunately, the relative errors can exceed a factor of 1.5 for 
ðh=aÞ2 > 1 � 2ν while h=a� 1. Nonetheless, they always remain below 
a factor of π2=2.

Since previous works[2,3,5,7,21] considered mostly stick conditions for the 
elastomer-punch interface, comparing our numerical data to existing data or 
(semi-) empirical approximations for �Eðh=aÞ may not appear meaningful at 
first sight. However, we note that the overall trends are similar and that 
comparisons between different boundary conditions and comparisons 
between FEM and GFMD data may yet be insightful. We find Hensel et al.’s[3] 

(well, ugly) fit function to match our data most beautifully, which is shown 
exemplarily for ν ¼ 0:495 in Figure 3, in particular for 0:5< h=a< 10. 
Interestingly, for h=a< 0:5, their fit function is close to our analytical result. 
Thus, it does not capture the minimum associated with the large Poisson’s 
ratios, which may well be because Hensel et al. assumed stick conditions 
between punch and elastomer.

10−3 10−2 10−1 100 101 102

h/a

10−1

100
Ē

G
F
M

D
/Ē

s

Gaussian fit
Hensel 2018

ν = 0.5
ν = 0.4995
ν = 0.495
ν = 0.45
ν = 0.4
ν = 0.0

Figure 3. Ratio of numerical and theoretical effective modulus, �EGFMD=�Es. The solid line reflects Eq. 
(29) and the dashed line represents the empirical fit function from Ref.[3] evaluated for ν ¼ 0:495. 
Dotted lines are drawn to guide the eye.
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4.2. Pull-off stress

In order to deduce the adhesive pull-off stress σp ¼ Fp=ðπa2Þ from �Eðh=aÞ, we 
replace @ ln �E=@ ln ac in Eq. (26) with � @ ln �E=@ ln ~h so that 

σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�Eð~hÞγ

a~h 2 � @ ln �Eð~hÞ=@ ln ~h
� �

v
u
u
t : (30) 

The derivatives are evaluated numerically from the GFMD data shown in 
Figure 2 using cubic spline interpolation. Results for the pull-off stress are 
shown in Figure 4. To ensure their correctness, the pull-off stresses were also 
computed for selected values of ν at h=a ¼ 0:1 with simulations mimicking 
tack tests. Agreement was always within 2%. Since direct adhesive simulations 
are much more demanding and more prone to discretization errors than 
computations of �E using non-overlap constraints, we believe the presented 
results to have errors well below 2%.

Using our analytical expression for �Eðh=aÞ directly to estimate the pull-off 
stress turned out to be disappointing. However, using the asymptotic scaling 
for σp yields relatively satisfactory results, because it allows one to transition 
from ν< 0:5 to ν ¼ 0:5 scaling when crossing over from extreme to large 
confinement. Likewise, it is beneficial to transition from ν ¼ 0:5 to h=a!
1 scaling when crossing over from confined to unconfined.

10−3 10−2 10−1 100 101 102

h/a

100

101

102

103

104

ν = 0.5
ν = 0.4995
ν = 0.495
ν = 0.45
ν = 0.4
ν = 0

σ p
/

γE
∗
/a

Figure 4. Computed pull-off stress as a function of confinement h=a for a wide range of Poisson’s 
ratios ν. Dotted lines, full lines, and circles represent asymptotic limits, analysis of the numerical 
�Eðh=aÞ curves, and results from adhesive GFMD simulations, respectively.
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The asymptotic solutions for σp can be obtained from Eq. (30) by exploiting 
once more Eq. (11): 

σp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8γE�=ðπaÞ

p
for h=a� 1 ð31aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1ðνÞγE�= a~h
� �r

for h=a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2ν
p

and ν< 0:5 ð31bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3γE�= 32ta ~h
3� �r

for h=a� 1 and ν ¼ 0:5: ð31cÞ

8
>>>><

>>>>:

Related scaling relations have been proposed before[1,4,7,12,13,15,16,36] for 
varying boundary conditions (BCs), however, generally assuming ν ¼ 0:5. 
Historically first, Kendall[15] identified Eq. (31a) for the unconfined system 
using, as we do, a frictionless elastomer-punch interface. In the opposite limit, 
h=a! 0, he found σp / 1=

ffiffiffi
h
p

, which differs from our Eq. (31c) because 
Kendall used a slip condition for the elastomer–substrate interface, while we 
assumed a stick condition. Yang and Li[36] confirmed Kendall’s scaling rela-
tion, albeit they corrected the numerical prefactor by multiplying Kendall’s 
result with 

ffiffiffiffiffiffiffiffiffiffiffi
E�=K

p
, where K is the bulk modulus. In the case where Yang and 

Li employ our BCs, they also find Eq. (31c). In fact, Yang and Li considered all 
four possible combinations of elastomer-punch and elastomer-substrate BCs. 
However, they only considered ν ¼ 0:5.

4.2.1. Deducing ν from mechanical measurements
In order for our calculations to benefit the determination of the Poisson’s ratio 
from mechanical measurements or, rather that of Δν ¼ 0:5 � ν, our results for 
�E and σp are best represented as functions of ν for fixed values of h=a, as is 
done in Figure 5. This way E� and/or σp only need to be determined once for 

Figure 5. GFMD results for the dimensionless, effective modulus �E=E� and the predicted reduced 
pull-off stress σp=

ffiffiffiffiffiffiffiffiffiffiffi
γE�=a

p
for Poisson’s ratios ν ¼ 0:4999 to 0.4 for the confinements h=a ¼ 0:02 

and h=a ¼ 0:05.
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a semi-infinite elastomer and once more for a confined elastomer. Similar 
approaches to determine Δν experimentally from �Eðh=aÞ have already been 
pursued successfully.[37,38]

Information as that presented in Figure 5 is certainly only beneficial as long 
as we are not yet too deep in the extreme confinement limit since �E and σp are 
no longer sensitive to logðΔνÞ in that regime.

Using very small h=a from the beginning is not necessarily effective either, 
since it might be equally important and infeasible to accurately align the flat 
punch as well as to account for the effects arising from the combined com-
pliance of substrate, punch, and driving apparatus. Thus, for Δν suspected to 
exceed 10 � 3 and 10 � 4, we would recommend to use h=a ¼ 0:05 and 
h=a ¼ 0:02, respectively.

Determining Poisson’s ratios of confined layers to less than 10 � 4 might be 
possible through optical measurements of the bulge arising right next to the 
indenter.[39] However, we could not identify bulge characteristics, i.e., appro-
priately undimensionalized bulge widths or heights, which appear to be 
promising candidates. The thin slit between the indenter and elastomer 
seems to have the largest sensitivity to logðΔνÞ. Unfortunately, its determina-
tion would require extremely smooth surfaces and a high-accuracy measure-
ment of the buried gap.

4.3. Crack formation and propagation

Crack growth during punch retraction becomes stable for sufficiently confined 
elastomers and large Poisson’s ratios, i.e., below a critical film height hcðνÞ. 
Evaluating the stability condition, Eq. (28), for ν ¼ 0:5, we locate the transition 
near hcð0:5Þ=a ¼ 3:44 from the GFMD data and at hcð0:5Þ=a ¼ 3:692 from 
our scaling ansatz. As ν decreases, the estimates for hcðνÞ=a move to smaller 
values. However, hcðνÞ=a becomes tedious to evaluate numerically from 
GFMD data once the elastomer is no longer very close to being 
incompressible.

Once h=a is well below unity, elastic instabilities, so-called fingering 
instabilities, occur for (nearly) incompressible elastomers,[4,6–9] which result 
in wavy displacement fields below the indenter. Their characteristic wave 
number q was related to a minimum in the stiffness of surface undulations, 
κ ¼ qE� cðqh; νÞ=4.[4,8,10–13] It is located at q ¼ 2:12=h for ν ¼ 0:5 and at q ¼
1:553=h for ν ¼ 0:4. These values translate to wavelengths of λ ¼ 2:964h and 
λ ¼ 4:046h, respectively. The minimum moves to larger wavelengths, with 
further decreasing ν and disappears completely at ν ¼ 0:25.

Simulations[12,13] reveal elastic instabilities similar to those observed experi-
mentally, thereby supporting the theoretical analysis. It yet seems unclear why 
and how the simulated patterns in two-dimensional contacts[13] break the 

THE JOURNAL OF ADHESION 17



symmetry of the mathematical problem, which has circular symmetry in the 
absence of discretization and periodic boundary conditions. To elucidate this 
issue further, we simulated the detachment process for three different 
Poisson’s ratios using different ways in which the continuum model was 
terminated at small scales. Some of the most intriguing snapshots taken during 
detachment are compiled in Figure 6.

Every graph in a row in Figure 6 reflects the same continuum model in that 
ν and h=a is kept constant. However, they differ in terms of their discretiza-
tion – leading to or suppressing lattice trapping at small scales – and in terms 
of the absence or presence of random noise, which is introduced with 
a Langevin thermostat. Despite representing the same continuum limit, all 
four graphs within a row look qualitatively different with the exception of the 
two right panels in the bottom row, which are both singly connected contact 
domains with the four-fold symmetry of the discretized model.

Figure 6. Stress heat maps at selected moments during detachment for a confined elastomer with 
reduced height h=a ¼ 0:06. Bright colors indicate high stress, black represents non contact. 
Poisson’s ratios are kept constant in each row and take the values ν ¼ 0:499; 0:48; 0:4 from top 
to bottom. Columns differ in the way how continuum mechanics is terminated at the small scale, i. 
e., with and without thermal noise, and with and without lattice trapping.
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The most highly symmetric patterns are obtained when thermal noise and 
lattice trapping are absent. While the ν ¼ 0:4 and ν ¼ 0:48 systems have 
circular symmetry, the ν ¼ 0:499 configuration reduces to a four-fold sym-
metry axis. The symmetry reduction is not due to the presence of periodic 
boundary conditions in our square domain but results from the discretization 
of the elastomer’s surface into grid points forming a square lattice. We come to 
this conclusion because increasing the buffer between the punch and the 
boundary of the simulation cell does not change the point at which circular 
symmetry is broken. However, we observed that the rate of retraction can 
matter. For example, a complete loss of symmetry can occur even in the 
absence of thermal noise when decreasing from very small to extremely 
small retraction rates. Since our four-fold symmetry axis is only broken by 
the order in which numbers are added up, the complete loss of symmetry can 
only result from an accumulation of round-off errors. We suspect that 
a similar round-off error progression to significant digits is responsible for 
the low-symmetry configurations produced by Gonuguntla et al.,[13] owing to 
them using a highly efficient conjugate gradient minimization method and/or 
because computers used smaller data precision in 2006 than they do nowadays. 
Given our results, we predict that instability patterns assume a quasi-circular 
symmetry, when elastomers are retracted quickly if the original surfaces are 
sufficiently planar.

Switching on temperature yield configurations similar to those observed 
experimentally and more so for a fine discretization avoiding lattice trapping. 
Specifically, the snapshots shown in the “no-trapping, T > 0” column resemble 
typical experimental images[4,6–9] for ν> 0:45 and the contact shown for ν ¼
0:4 in that column is similar to that depicted in Fig. 9a of Ref.[8] for ν ¼ 0:4. 
Due to lattice trapping, the non-contact patches show 90 � corners oriented w. 
r.t. the microscopic shape, similar to but substantially stronger than in the 
pioneering simulations by Gonuguntla et al.,[13] who thus must have also 
discretized their domain into squares.

In the presence of thermal noise, the width of contact and of non- 
contact domains is similar in size. Their combined width indeed satisfies 
λ � 3h, which is the expected wavelength for nearly incompressible elas-
tomers introduced at the beginning of this section. However, contact 
generally appears broader than non-contact due to (close-to) circular 
symmetry. This difference might matter for a comparison between single- 
wavelength pen-on-paper theory and real or realistic patterns. In addition, 
the surface tension can shift the characteristic wavelength to larger 
values.[9,13]

We also analyze the effect of lattice trapping. For this phenomenon to occur, 
it does not matter whether the range of adhesion is decreased at fixed dis-
cretization Δx ¼ Δy or the mesh size is increased at fixed range of adhesion, as 
long as Δx is clearly less than typical contact and non-contact widths. Lattice 
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trapping also counteracts symmetry reduction, as revealed most clearly in the 
bottom row of Figure 7, where thermal fluctuations are no longer strong 
enough to roughen the contact line during the course of the simulation. In 
other words, symmetry reduction can become an activated process in the case 
of lattice trapping whereby contact domains become thicker than non-contact 
regions upon retraction.

Unfortunately, our simulations do not correlate very well with some experi-
ments regarding one aspect: for ν> 0:45, we usually observe the nucleation of 
non-contact below the punch center, while experiments often find finger- 
shaped non-contact regions to emerge from the rim of the punch and then 
to move inward.[4,6–8]

Reasons for this discrepancy might be (i) the simulations ignore the effect of 
air pressure, which certainly favors the primary detachment to occur at the 
contact edge, (ii) the simulations neglect shear stress, which can be large near 
the contact periphery, (iii) no attempts were made to model viscoelastic effects, 
and (iv) the edge singularities in the normal stress are cut off too early due to 
a coarse discretization. Nonetheless, other experiments observed, as we did, 
crack nucleation in the center,[9,11,13,38] especially in cases where h=a� 0:1.

It is beyond the scope of this work to test all four hypotheses for why our 
non-contact domains nucleate in the centerin particular, as testing the first 
three does not fall into the realm of our model. However, we did investigate 
the fourth hypothesis by increasing the resolution from our default value to 
4096� 4096 for a h=a ¼ 0:1 punch and ν ¼ 0:495 elastomer while decreasing 
the range of adhesion and the rate of retraction so that the ratio of local elastic 
stiffness and maximum curvature of the tensile potential remained constant. 
As a consequence, the detachment nucleates at the periphery of the contact as 
is revealed in Figure 7 for the fine discretization, while it nucleated in the 
center for the coarser simulation.

Figure 7. Stress heat maps showing the nucleation of edge cracks and their motion toward the 
punch center. The number of time steps between subsequent images were 9000, 2000 and 14000 
from left to right.
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5. Summary

In this work, we combine and streamline existing approaches to the mechanics 
of confined elastomers interacting with a flat punch. In doing so, we identify 
a relatively simple, yet physically motivated expression for how the effective 
modulus of the confined layer, �E, depends on its Poisson’s ratio ν and the ratio 
of elastomer height and punch radius h=a. Using our approach, the Poisson’s 
ratios no longer have to be close to 0.5. One consequence of this is that large 
confinement can be distinguished from extreme confinement, for which 
deviations from ideal incompressibility cannot be ignored. A central benefit 
of the pursued scaling ansatz is that the asymptotic dependence of �Eðh=a! 0Þ
allows the simulated pull-off force to be estimated reasonably well for any 
combination of ν and h=a. Of course, in real-laboratory experiments, the 
compliance of the substrate, the indenter, or, more generally speaking, the 
system must be considered when deducing �E in the extreme-confinement 
limit. Moreover, eliminating viscoelastic retardation implies (unrealistic?) 
requirements on the patience of experimentalists.

The central assumption of the analytical part of our study is that the elastic 
energy of a confined elastomer stems predominantly from surface undulations 
with wavelengths in the vicinity of the punch radius. This leads to a closed- 
form expression in Eq. (10) for �Eðh=aÞ with two parameters of order unity, 
whose precise value can be fixed by demanding the asymptotic limits of h=a!
0 and h=a!1 to be exactly reproduced. The pursued treatment can be 
repeated for boundary conditions (BCs) other than ours, which is a slip BC 
between the elastomer-punch interface and a stick BC for the elastomer– 
substrate interface. In these cases, the relation for the stiffness of the surface 
undulation of the wave vector q has to be derived or looked up in the 
literature,[11,27–29,36] i.e., the replacement of Eq. (2). All remaining steps to 
estimate �Eðh=aÞ for other BCs can certainly be done by repeating the proce-
dures worked out in this study. However, if both interfaces have slip boundary 
conditions, qualitatively different behavior ensues and other scaling relations 
apply than in the remaining three cases.[20,36] Investigating those is beyond the 
scope of this paper.

The analytical calculations are augmented with Green’s function molecular 
dynamics (GFMD) simulations. They yield accurate reference data for the 
reduced elastic modulus and pull-off force as functions of reduced height and 
Poisson’s ratios. In particular, the latter can be useful to determine experi-
mentally the deviation of ν from ν ¼ 0:5.

The GFMD simulations also reveal that the initiation and the formation 
of cracks that occur during stable crack growth depend sensitively on the 
way in which continuum mechanics is terminated at small scales. For 
example, the (effective) range of interaction can determine whether cracks 
initiate from the punch center or from its periphery. Moreover, if 
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interactions are so short ranged that lattice pinning ensues, small-scale 
features of the substrate, e.g. its crystallinity, can be reflected in the crack 
at coarse scales.
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