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Abstract
Microbial range expansion experiments provide insight into the complex link between dynamic
structure, pattern formation and evolutionary dynamics of growing populations. In this work, we
develop a theoretical model in order to investigate the interplay of growth statistics and mechanical
interactions which are implemented as division driven pushing and swapping of cells. For the case
of the competitive growth of a strongly and a weakly interacting strain we investigate the influence
of different mean division times, as well as different mechanical interactions on the development of
the colony. Our results show that the susceptibility to cell division induced pushing has a much
stronger influence on the structure of the colony than cell sorting towards the colony’s perimeter.
Motivated by microbial range expansion experiments of Neisseria gonorrhoeae bacteria, we also
consider the influence of mutating cells on the structure of the colony. We show that the outgrowth
of the three different strains is strongly influenced by the relative strengths of their mechanical
interaction. The experimentally observed patterns are reproduced for mechanical interactions of
the mutants, which range between those of the strongly and weakly interacting strain.

1. Introduction

Microbial range expansion experiments are widely
used to study ecological, population genetic and evo-
lutionary dynamics. They provide insight into the
complex link between dynamic structure, pattern
formation and evolutionary dynamics of growing
populations [1, 2]. Mechanical and genetic hetero-
geneity are known to be important factors in micro-
bial expansions. These heterogeneities can lead to
cell sorting, sector formation and gene surfing which
increase the evolutionary fitness of otherwise disad-
vantaged sub-populations [3–5].

Microbial range expansion experiments and sim-
ulations have been used to study the influence of
genetic drift in neutral population growth and for elu-
dicidating the development of advantageous or dele-
terious mutations inside expanding populations [4, 6,
7]. Also the influence of social interactions mediated
by toxin or nutrient secretion and growth inhibition
by direct contact has been investigated [8, 9]. Ulti-
mately, all fitness differences in those studies, were
mediated by differences in reproduction or death
statistics.

However, it has been demonstrated experi-
mentally that mechanical properties like reduced
substrate adhesion or increased osmotic pressure
influence the fitness inside a growing population [10,
11]. Additional mechanical interactions like pushing
of microbes in growing colonies have been shown
to reduce the power of natural selection [12, 13].
The corresponding increase in extinction time of a
disadvantaged species facilitated evolutionary rescue
in a changing environment. This sustained survival is
relevant for the development of antibiotic resistance
[12]. The influence of mechanical properties and
interactions on the survival of mutants has been
recently studied theoretically by Farrell et al [5].

Some bacteria, e.g. Neisseria gonorrhoeae, pos-
sess extracellular polymers named type IV pili, which
lead in populations with and without pili to separa-
tion of both populations [14]. Zöllner et al [3] and
Oldewurtel et al [14] introduced N. gonorrhoeae
strains with different tunable mechanical interac-
tions and reproduction statistics to study their influ-
ence on colony growth and range expansion. They
used a strong interacting, fast growing strain and a
slow growing, weakly interacting strain. The weakly
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interacting strain could be sorted to the perimeter of
the colony and therefore ‘surf’ on the colony front.
Surfing in spatial population genetics refers to the
effect that the offspring of individuals stay at the
front of an expanding colony and, therefore, tend to
be more successfully in reproducing than individuals
from the bulk. Several mechanisms have been sug-
gested to cause surfing, as for example initial cell sort-
ing or pushing of cells by the bulk towards the colony’s
surface [3].

In order to study the interplay of two sorting
strains Dong and Klumpsp [15] introduced a lattice
gas model. The modelling results confirm the predic-
tions of the differential adhesion hypothesis [16] if the
particle number is conserved. However, the predic-
tions fail if cell division is considered as well. In this
study, we address the role of division driving push-
ing in competitive range expansion in general, and
apply our model to the particular experimental setup
used in [3]. We focus on the influence of mechan-
ical heterogeneous interactions, induced potentially
by a population of piliated and non-piliated cells. To
this end we implement selective cell division induced
pushing of neighbouring cells into a lattice gas model.
Within this model we investigate the influence of
heterogeneous pushing on competitive growth from
radial inoculations as well as sector formation from
line inoculations. We demonstrate that in both cases
heterogeneous mechanical interactions have strong
influence on the composition of the growing colony.

2. Model

We model range expansion as a two dimensional cel-
lular automaton with Eden-like growth [17] on a
hexagonal lattice in continuous time.

2.1. Cell types and interactions
To study the interplay of mechanical heterogene-
ity and division statistics, we introduce three cell
types with different interactions (corresponding to
the degree of piliation) and mean division times. The
strong interacting strain (SI-strain, red) has many
pili and divides with scale parameter λr. The mutant
strain (M-strain, yellow) originates from an SI-cell
during division and inherits its division statistics. The
mutant loses some of its pili and this leads to a weak-
ening of the mechanical interactions in comparison
to the SI-strain. Strong interacting cells and their
mutants compete with cells from a weakly interact-
ing strain (WI-strain, green), which has no pili and
divides with different scale parameter λg.

2.2. Swapping
It is known that different degrees of piliation, i.e.
different interaction strengths, lead to cell sorting
[14]. In our model, we assume that the different
interaction strengths lead locally to an optimisation
of interaction energies, i.e. to an increase in the

number of the SI-strain SI-strain interactions. We
implement this mechanism by swapping SI-cells with
M- and WI-cells with rate 1/μs (swapping of M- and
WI-cells is not considered). Swapping is only allowed
if it leads to an increase of neighbouring SI-cells
(see figure 1(b)).

2.3. Cell division
Cell divisions are often modelled with exponential
distributed waiting times between divisions. These
statistics imply that the most likely time for a division
is immediately after the last division. However, for
real cells the minimal time between divisions is com-
parable to the mean division time [18]. In order to
study systematically the influence of non-exponential
waiting time distributions, we consider Weibull dis-
tributed waiting times (see appendix A). The proba-
bility density of the Weibull distribution is given by

ρ(t) =
k

λ

( t

λ

)k−1

e−( t
λ )k

(1)

with scale parameter λ and form parameter k. This
distribution reduces to the exponential distribution
for k = 1 and therefore permits a systematic study
of possible regularisation effects due to waiting times
which are narrowly distributed around the mean
value. In the experiments of Zöllner et al [3] the divi-
sion statistics of the competing strains were regulated
by antibiotics. In these experiments, the SI-strain was
constructed to show only a weak dependence on the
antibiotic concentration. Therefore, we use the scale
parameter of the SI-strain as a reference time scale i.e.
μs = rs · λr,λg = rd · λr. Events (divisions, swaps) are
selected analogously to the next reaction method of
the stochastic simulation algorithmy [19].

Cell division is always possible if a cell has an
empty neighbour site (see figure 1(a)). In case more
than a single neighbour site is empty one of the empty
sites J is selected with relative weight

wd
I→J :=

∑
j

sj

∑
i∈〈I,J〉

ISi=Pj +
∑

i∈〈I,J〉
ISi=E, (2)

whereby
∑

〈I,J〉 is the sum over common neighbour
sites of site I and J. IS=Pj indicates whether a cell
of type j is occupying the site and IS=E if the site is
empty. The sj control the stickiness of a given cell type
by giving additional weight to a division next to it
(see figure 1(c)). If the dividing cell is an SI-cell the
newly placed cell mutates with probability pm into an
M-cell.

If all neighbouring sites of the cell are occu-
pied, cell division may still be possible by pushing
neighbouring cells. The cell can divide onto a neigh-
bouring site if the translation of at most P parti-
cles leads to a valid configuration, i.e. the last par-
ticle of the chain occupies a previously empty site.
The different interaction strengths of the strains are
reflected by their influence on the pushing chain: SI-
cells cannot be pushed, M-cells can only be pushed
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Figure 1. Red cells represent the strong interacting fast growing strain (SI-strain), while the green strain represents the slow
growing weakly interacting strain (WI-strain). The yellow cells (M-strain) are daughter cells of the red cells which are weaker
interacting but are growing as fast as the SI-strain. (a) All cell types produce offspring of the same type by cell division. Red cells,
however, can also produce yellow mutants as offspring. Due to different cell–cell interactions red cells can swap places with yellow
and green cells. (b) Example of configuration-dependent swap possibilities. The digit inside the cells counts the number of
surrounding red particles, while the double headed arrow indicates pairs of cells that could swap in principle. The red crosses rule
out the swaps in which the red particle would have not more red neighbours than before the swap. (c) Example of
configuration-dependent division weights for a division to an empty site. (d) Cell division to occupied sites is possible by pushing
neighbouring cells. In this example we consider mechanical heterogeneity, i.e. red cells cannot be pushed. The red cell is able to
push green and yellow cells and create one of the push paths indicated by the arrows. The paths resulting in a division are
indicated by continuous black arrows and non-viable paths by dotted arrows. Note that we construct the path by following a valid
path and just consider branching if the path fails to find an empty site. This means that in this example we would either find two
empty sites (upper path) or three empty sites (lower path).

to an empty site, and WI-cells can always be pushed.
The construction of the pushing chain is imple-
mented in the following way (see figure 1(d)): in
the first layer we choose from the pushable (M-,
WI-) neighbours of the dividing cell (0th layer cell),
one random cell. The chosen cell has six neighbour
sites from which three are not next neighbours to the
dividing cell (0th layer). From the pushable of these
sites the new position for the first layer cell is chosen
at random and the chain continued such that the new
position of the nth layer cell is chosen randomly from
the three neighbours of the nth layer cell which are
not common neighbours of the (n − 1)th cell and are
empty or occupied by a pushable cell. The construc-
tion of the chain ends if the maximal chain length
P is reached or an empty site is found. The trans-
lation of the chain is accepted if a valid configura-
tion is found. Otherwise we step back to the previous

layer and choose randomly a different neighbour to
continue the chain. This method guarantees that an
empty site in the distance reachable by the maximal
amount of pushes P is always found.

3. Results and discussion

3.1. Competitive radial range expansion
To mimic typical experimental set-ups of radial range
expansion we start with 500 cells of the SI- and WI-
strain. The cells are initially randomly distributed in
a circular patch of fixed density ρ = 0.1. Simulation
parameters are listed in appendix C, table C1.

3.1.1. Effects of division induced pushing
First, we study the competition between the SI- and
WI-strain. Different to the standard model config-
uration both strains are allowed to be pushed and

3
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Figure 2. Range expansion simulations of weakly interacting slow growing (WI, green) and fast growing strong interacting (SI,
red) strains with relative mean division times rd and maximal allowed pushes P. Here, both strains can be pushed equally.
(a) Typical phases for shape parameter k = 2. We observe similar results for k = 1. For P = 2 and rd = 1 sectors still grow to the
perimeter of the colony but die out for P = 3. (b) Mean fraction of WI-cells up to radial distance R, after 60 h of growth time. The
dotted line indicates the initial radius of the inoculation zone. (c) Mean fraction of the maximal radial distances of the WI-strain.
Values close to one indicate survival. Values for rd = 1 would be greater one and are not shown.

neither strain is mutating. Notice however, that the
strong interactions of the SI-strain are still considered
by swapping with the WI-strain (see section 2.2). The
typical colony compositions after 60 h of growth time
are shown in figure 2(a). We quantify the patterns by
computing the mean fraction of WI-cells at radial dis-
tance R to the origin inside the inoculation zone (see
figure 2(b)).
Competition of cells with equal mean division times:
If the strains have no divisional advantage
(rd = 1), we observe a compact (ρ = 1) random
mixture of both strains inside the inoculation zone
after 60 h of growth time. Inside the inoculation
zone the mean fraction of WI-cells is 0.5 confirming
that the inoculation zone is equally filled with both
strains. Interestingly, outside the inoculation zone
we observe a dominance of the WI-strain, with
sectors of the SI-strain growing out of the inoculation
zone. The increasing dominance of the WI-strain is
quantitatively described by the monotonic increase
of the mean fraction outside the inoculation zone.

This is different from the situation without swapping,
where a constant mean fraction of 0.5 is predicted
from symmetry as well as from stochastic continuum
theory [2, 20]. We attribute this slow increase to
the initial cell sorting, which grants the WI-strain
a starting advantage originating from the swapping
mechanism, which favours bonds between SI-cells.
This leads to a systematic reduction of the number
of neighbouring empty sites for the SI-strain. The
aforementioned effect leads to a broken symmetry
between WI- and SI-cells at the perimeter of the
colony, giving the WI-strain the advantage to surf
on the front of the expanding population. This
asymmetry between SI- and WI-cells is also observed
in experiments, where the WI-strain is always sorted
towards the perimeter of the colony [14].

Swapping reduces the roughness of the interfaces
between SI- and WI-strain sectors and thereby fur-
ther stabilises the SI–WI sector boundaries. This leads
to a slow increase of the mean fraction. However, if
the cells are able to push, the WI-strain is able to
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Figure 3. Range expansion simulations of weakly interacting slow growing (WI, green) and fast growing strong interacting (SI,
red) strains with relative mean division times rd and maximal allowed pushes P. Here, only the WI-strain can be pushed.
(a) Typical phases of the range expansion for shape parameter k = 2. We observe similar results for k = 1. (b) Mean fraction of
WI-cells up to radial distance R, after 60 h of growth time. The dotted line indicates the initial radius of the inoculation zone.

overcome the sector interfaces and therefore dom-
inates the outgrowth even more. The dominance
increases with P, but particular for small values of P
we observe long living SI-strain sectors.

The regularisation (k = 2) of the waiting times
between divisions enhances the symmetry breaking
which is induced by swapping. This leads to a shift of
the mean fraction to higher values, indicating a faster
annihilation of the outgrowing sectors. Indeed, we
see complete annihilation for P = 2, while for k = 1
the sectors still reach the colony frontier and get
extinct for P = 3. Also somehow surprizing, the max-
imal radial extension of the colony reaches smaller
values. The mean value of the waiting times for k = 2
is
√
π/2 times smaller than for k = 1 (see appendix

A, equation (A.4)), and therefore one would naively
expect that the colony should grow faster and reach
higher radial expansions. However, the actual time for
the occupation of a vacant site is given by the mini-
mal waiting time of the neighbouring cells. For a given
mean value of the waiting time distributions this min-
imal time is significantly shorter for an exponential
distribution (k = 1) than for higher values of k (see
appendix A, equation (A.4)).
Impact of divisional advantage:
In the case of a substantial divisional advantage
(rd = 2) the strong interacting strain dominates the
colony, as expected. Quantitatively, this is repre-
sented in a mean fraction value below 0.5 inside the
inoculation zone. Outside the inoculation zone we
observe a monotonic decrease to zero. In the case of
P = 0 the dominance of the SI-strain leads to com-
plete extinction of the WI-strain. Interestingly, if cells
are allowed to push the expanding population of SI-
cells transports a small population of WI-cells with it
(see figure 2(a)). This leads to the chance of forming
a standing variation of strains inside the expanding
population and is not predicted by continuum theo-
ries. Since the population of WI-cells is quite small,
and their radial position stochastic, the mean frac-
tion of WI-cells is not a good quantity to characterise

their survival. Therefore, we calculate the fraction of
the maximal radial distances of all WI- and SI-cells
for every colony. In figure 2(c) we show the mean
values of this fraction for rd = 2 at different times.
Values close to one indicate a prolonged survival
during subsequent range expansions. We observe for
higher amount of pushes a sustained survival inside
the colony. While the explanation for enhanced sur-
vival in the case of more allowed pushes is obvious,
we also observe enhanced survival for the regular-
ized distribution. This can be understood by compar-
ing the probability of the WI-strain dividing slower
than the SI-strain for arbitrary k (see appendix A,
equation (A.3)). The probability for a slower divi-
sion with k = 1 is higher than for k = 2, meaning
that it is easier for the WI-strain to compete with the
SI-strain.

3.1.2. Effects of mechanical heterogeneity

Mechanical heterogeneity is materialized by the dif-
ferent resistance of SI- and WI-cells with respect to
pushing. Here, we consider that only the WI-strain
can be pushed. In the case of P = 0 this reduces to
the same scenario as in the previous section. As in
section 3.1.1 we show the typical phases of the colony
in figure 3(a) and quantify the composition by com-
puting the mean fraction of WI-cells at radial dis-
tance R to the origin inside the inoculation zone (see
figure 3(b)).

If we do not consider a divisional advantage for
any strain (rd = 1), the behaviour inside the inoc-
ulation zone is in accordance with the homoge-
neous case. However, the mean fraction of WI-strain
increases more steeply outside the inoculation zone
if selective pushing is applied. Remarkably, the mean
fraction reaches one already for R� 57. For P �= 0 the
parameters k and P have only little influence on the
radial dependence of the mean fraction.

Now, we turn to the case, where mechanical
inhomogeneous growth can compensate for a disad-
vantage in the reproduction statistics of individual

5
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Figure 4. Mean fraction of WI-cells up to radial distance R, after 60 h of growth time. The dotted line indicates the initial radius
of the inoculation zone. Here, only the WI-strain can be pushed and cells were not able so swap.

cells. For a divisional advantage of rd = 2, which is
comparable to the extreme case of the experimen-
tal setup of competitive microbial range expansion
[3], we observe, as previously mentioned, a strong
dominance of the SI-strain for P = 0. A very complex
behaviour is observed for P = 1. In this case push-
ing supports the outgrowth of the WI-strain which
have similar or higher mean fraction than the SI-
strain below R � 100. The higher mean fraction is
observed for k = 2, which means that the regulariza-
tion supports the outgrowth of the WI-strain. The
reason for this behaviour was already discussed in
section 3.1.1. If we increase P � 2 the WI-strain dom-
inates the colony almost in the same way than without
divisional advantage.

Our results show that the higher passive mobil-
ity of the WI-cells, which is introduced by selective
pushing, may lead to a dominance even in the case
of an extreme divisional disadvantage. This domi-
nance of a slower growing strain was observed by
Zöllner et al [3] and studied with the help of sim-
ulations by Dong and Klumpp [15]. In their model,
they incorporated cell division and cell sorting by
swapping cells to energetically favourable positions
and diffusion of cells to empty sites. Mechanical
heterogeneity by pushing, however, has not been con-
sidered. Although these results show that cell swap-
ping may lead as well to outcompetition despite
divisional disadvantage, we notice that this effect
strongly depends on the initial conditions. In par-
ticular, fast growing cells are contained in a sin-
gle compact sector. This initial condition is not
realised by the experimental setup of Zöllner et al
[3], where a randomly mixed population is inoculated
inside a circular domain. This discrepancy shows the

importance of pushing, which stabilises the domi-
nance of the slow growing strain.

In order to characterise the importance of
mechanical heterogeneity even further, we stud-
ied the competition between the different strains
without swapping (see figure 4). First, we consider
the reference case rd = 1, P = 0, where both strains
have identical properties and the value of the mean
fraction is ≈0.5, as expected. This result shows that
the dominance of the WI-strain, observed for the
same parameters in section 3.1.1, is caused by the
asymmetry of the swapping rule. Remarkably, we
observe comparable behaviour to the case without
swapping if pushing is considered (P > 0). For
rd = 1 the mean fraction reaches one shortly after
the inoculation zone, and only a weak dependence
on the parameters k and P is observed. For rd = 2
and P = 1, however, we observe a strong dependence
of the waiting time distribution. While in the expo-
nential case (k = 1) the mean fraction of WI-cells
decreases, the mean fraction increases linearly for
k = 2. This can be attributed to the different short
time probabilities as discussed in the last paragraph
of section 3.1.1. For P � 2 we observe, as with
swapping, the dominance of the slow growing strain
outside the inoculation zone. This demonstrates that
the mechanical heterogeneity of the pushing rather
than swapping is responsible for the outcompetition.
Our results suggest that the outcompetition observed
in the experiments by Zöllner et al [3] is caused by
the heterogeneous transduction of division induced
pushing forces, and not by the initial sorting of the
WI-cells to the perimeter of inoculation zone. This
hypothesis could be tested experimentally by using
pilT knockout mutants of SI-cells. These knockout
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Figure 5. Range expansion simulations with 70 h of growth time of a small population inside a bigger population of WI-cells
starting from a line inoculation. The simulations uses periodic boundary conditions perpendicular to the growth directions and
none of the strains are able to swap. The WI-strain (green) can be pushed according to P, while the M-strain (yellow) can just be
pushed according to min(1, P) and the SI-strain (red) cannot be pushed at all. rd is the relative division time of the WI-strain with
respect to the small initial sub-population. We quantify the sector growth by the opening angle α. (a) Illustration of sector
dynamics for shape parameter k = 2. (b) Opening angle α quantifies the relative fitness of the strains. Angles of domains which
die out are plotted as zero.

mutants lack the ability of pili retraction which
inhibits cell-sorting by swapping [14, 21].

3.2. The fate of mutants
The previous section demonstrated that differential
pushing is an important factor in colony growth. We
now turn to the question how differential pushing
influences the development of a small sub-population
of cells, which is embedded in a large population of
WI-cells. First, we study this with a deterministic flat
initial condition and second we apply these results to
a random circular inoculation as considered in the
previous section. For the flat initial condition we con-
sider the competition of an M- and SI-colony with
the embedding WI-strain. In case of a circular inoc-
ulation zone both, where M-cells are created dynam-
ically during the range expansion, both the SI- and
M-strain compete with the WI-strain. As described in
section 2.3 the SI-strain (red) cannot be pushed, while
a single M-strain (yellow) cell can be pushed. The
scale parameter of the SI-strain defines the reference
time scale.

3.2.1. Flat front
In order to study the development of domains of
different strains, we consider cells that are initially
arranged along a line. The colony of the smaller pop-
ulation (M-/SI-cell, here 10 cells) is placed as com-
pact segment inside a background of WI-cells. We
use a two dimensional system with periodic boundary
conditions perpendicular to the direction of growth
(x-direction x ∈ [0, 499]) and a half open system in
y-direction (y ∈ [0,∞)). Here, we study the case that
the cells are not allowed to swap positions. The other
dynamic properties of SI-cells remain unchanged, i.e.
they set the reference time scale and cannot be pushed.
As already mentioned in section 2.3 the M-strain
shares the division time distribution with the SI-strain
but can be pushed according to min (1, P). Using this
setup we study the influence of pushing and divi-
sional advantage by varying P and rd of the embedding
WI-cells.

First, we studied the mechanical homogeneous
case, i.e. every strain can be pushed equally. This is
shown in figure 5(a) for P = 0 and rd = 2. In this case,
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Figure 6. Example configurations of mutating SI-cells competing with WI-cells after 50, 60 and 70 h of growth time. We consider
Weibull distributed division times with k = 2, rd = 2 and P = 2 for the WI-strain. The mutation probability is given by
pm = 10−3. Configurations are shown for different pushing capabilities of the M-strain (PM = 0, 1, 2 from left to right).

we always observe a compact sector growing from
the initial small population. We quantified these sec-
tors by measuring the opening angle α (see appendix
B). The opening angle is predominantly determined
by the divisional advantage rd, while P has only lit-
tle influence (see figure 5(c)). The increase of the
opening angle with increasing rd is obviously due to
the fact that faster dividing cells occupy the empty
space earlier. Although the effect of pushing is much
weaker than the rd dependence, we still observe a sys-
tematic difference between P = 0 and P � 1: push-
ing increases the opening angle if it has any influence
at all. Moreover, since pushing decreases the effective
division time, it facilitates the occupation of space.

In the case of heterogeneous pushing, the domi-
nance of the faster dividing cells is strongly reduced.
For the case of WI-cells (rd = 2) competing with SI-
cells, we observe that the colonies generally die out
for P � 2. In case of P = 1 we observe dendrite like
shape and survival to at least 70 h of growth time.
The shape of the sectors, however, complicates the
interpretation of the opening angle, which is much
smaller than for compact sectors. These results show
that even a large divisional advantage is not sufficient
to balance a small mechanical advantage. In order to
quantify the necessary divisional advantage, we stud-
ied the competition of SI-cells competing with WI-
cells for P = 2 and rd in the range of three to five
(see figure 5(a) middle column). Throughout our

simulations, we observe sector formation of the SI-
strain for rd � 4, which is difficult to realize exper-
imentally [3]. Interestingly, these sectors show an
inhomogeneous mixture of SI- and WI-cells despite
the dominance of SI-strain. This high persistence
of WI-cells inside the expanding SI-strain domain
is caused by transportation of the mobile WI-cells
towards the surface of the colony. This demon-
strates that heterogeneous mechanical interactions
can establish a standing heterogeneous population
inside the growing sector, which is not observed for
homogeneous mechanical interactions.

The third scenario under consideration is the
competition of a small population of the M-strain
with the WI-strain. Since we consider as push-
ing capabilities min (1, P) for the M-strain only the
cases P � 2 constitute new scenarios. For P = 2 and
rd � 1.6 we observe stable sectors (see figure 5(b)).
For larger passive mobility of the WI-strain (P = 3)
and rd = 2, we recover the dominance of the WI-
strain background. Remarkably, although swapping is
not considered, the domains of M-cells are compact
irrespective whether the M-strain domain dies out or
not.

3.2.2. Radial range expansion with mutants
Now we return to the experimental setup of Zöll-
ner et al [3]. We initialize the system as in the
previous section 3.1.2, i.e. SI- and WI-cells are
placed initially at random positions in a circular
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inoculation zone. Additionally, we consider a finite
mutation probability pm = 0.001 of SI- to M-cells.
Zöllner et al [3] characterized the properties of the
M-strain such that the division statistics remains
unchanged from the SI-strain but their pili are lost.
These properties suggest that M- and WI-strain share
the same mechanical properties. The results of our
simulations, however, show a fast growth of the M-
strain sector with opening angles that are much larger
than observed experimentally (see figure 6 right col-
umn). If the loss of pili would retain the mechanical
properties of the SI-cell (no push) we observe that
the M-strain domains die out fast. For the interme-
diate case (single push), however, we observe a stable
outgrowth of M-strain sectors with an opening angle
comparable to the experimental results.

4. Conclusion

Our work provides a coarse-grained model that con-
tributes to the understanding of competitive micro-
bial range expansion experiments. We focus on the
role of division induced pushing with strain depended
mechanical and growth speed specific properties.
Moreover, we use initial conditions analogous to
experiments, where a low density population of
microbes are randomly distributed inside a circular
inoculation zone. This enhances the general under-
standing of population genetic and evolutionary
dynamics inside microbial populations.

For the competition between cells that possess
the same mean division time (neutral case) and are
unable to push, we observe that subtle differences in
the swapping mechanism lead to a broken symme-
try between WI- and SI-cells at the perimeter of the
colony. The symmetry breaking can be attributed to
the stronger clustering of SI-cells, which leads to an
effective divisional advantage of WI-cells. This result
is also valid if the pushing capabilities of both strains
are identical. Therefore, our results demonstrate that
the WI-strain dominates the outgrowths of the colony
even in neutral case. Multiple cells compete for empty
space, and therefore the regularization of division
times, i.e. for a non-exponential distribution, reduces
the growth speed of the colony and enhances the
impact of different mean division times.

Independent of the regularization, the dominance
of the WI-strain can only be compensated if the divi-
sion times of the WI-cells are significantly larger. But
even for the case, that the faster dividing SI-strain
dominates the outgrowth of the colony, we observe
that division induced pushing leads to a standing vari-
ation of slower dividing cells inside the outgrowth.
These standing variations contribute to the develop-
ment of antibiotic resistance and spread of microbial
infections as argued by Kayser et al [12]: the sus-
tained survival leads to evolutionary rescue in chang-
ing environments and promote accumulation of
deleterious mutations inside a growing colony. This

has interesting applications for e.g. the occurrence of
antibiotic resistance inside a growing colony which
usually comes at a cost in growth speed.

In the case that weak interactions of one strain
lead to a susceptibility to pushes, we observe an
even stronger dominance of the WI-strain. In this
case, the outgrowth of the colony is populated by
WI-cells even if the SI-cells divide two times faster.
This observation is also valid in the absence of
swapping because WI-cells are systematically pushed
in direction of the colony perimeter. Motivated by the
experiments of Zöllner et al [3], we also model the
competition between three different interacting
strains. In addition to SI- and WI-cells, we consider
dynamically created M-cells that are partially pili-
ated. The lower number of pili is materialized by
a susceptibility to pushes, which lays between the
susceptibility of WI- and SI-cell. Our simulation
results show the experimentally observed WI-strain
dominated outgrowth, which contains sectors of
M-cells. It is important to notice, that the experimen-
tally observed patterns cannot be reproduced if the
mechanical interactions of the M-cells agree with the
SI- or WI-strain. This can be understood by analysing
the development of an initially small colony of SI- or
M-cells inside a larger population of slowly dividing
WI-cells. The competition of SI- and WI-cells gener-
ally leads to the formation of dendrite like structures
or the extinction of the SI-strain domain. Compact
SI-strain sectors are only observed if pushing of the
embedding WI-cells is not considered. By contrast,
the competition of M- and WI-cells always leads to
compact sectors. Their opening angles depend on the
pushing capabilities and divisional disadvantage of
the embedding strain. These results suggest that the
M-strain is not non-piliated but rather underpiliated.
Comparing swapping and pushing mechanisms, we
notice that the complete range of experimental results
can be modelled by implementing heterogeneous
strain depend susceptibility to pushing even without
an explicit cell sorting mechanism (swapping).

Together, these results demonstrate the impor-
tance of passive mobility induced, by mechanical
interactions inside expanding populations. These
question the often used growth rate specific fitness
definition in mechanical heterogeneous populations
and therefore have interesting implications for the
field of evolutionary systems and population genet-
ics as a whole. In particular, it would be interest-
ing to see, if indeed a sustained transport of a small
sub-population during homogeneous and especially
heterogeneous microbial expansion can be observed
experimentally.
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Figure A1. Probability density function of the Weibull distribution with scale parameter λ = 1 and shape parameter k.

Figure B1. (a) Opening angle α quantifies the growth advantage of two competing strains. To find α, we compute the angles
αl,αr via the slope of the lines connecting the origin to the endpoints. (b) For computing the y coordinate of the endpoints, we
compute the number of WI-cells in layer y and find with the MATLAB function ‘findechangepts’ the first layer where the mean
and slope change significantly.

Appendix A. Characteristics of the
Weibull distribution

The Weibull distribution with scale parameter λ and
form parameter k [Weib(λ, k)] is defined as (t � 0)

ρ(t) =
k

λ

( t

λ

)k−1

e−( t
λ )k

.

This distribution reduces to the exponential distribu-
tion for k = 1 (figure A1).

The cumulative distribution F and moments 〈T n〉
are given by

F(t) = 1 − e−( t
λ )k

〈Tn〉 = λnΓ
(

1 +
n

k

)

where Γ is the Gamma function. Therefore, the
relative moments of two independent Weibull
random variables T1, T2 [Weib(λ1, k), Weib(λ2, k)]
are

(
λ1/λ2

)n
. The immediate consequence is that

fixing relative mean values or scale parameters is
identical, if one uses the same form parameter for
both distributions. Furthermore, their minimum is
again Weibull distributed with form parameter k but

scale parameter λ = 1/ k

√
1

λk
1

+ 1

λk
2

. The probability

that T1 was the smaller random variable is given by

P [T1 � T2] =

∫ ∞

0
ρT1

(
1 − FT2

)
dx (A.1)

u= t
λ1=

∫ ∞

0
kuk−1 e

−uk
(

1+
(

λ1
λ2

)k
)

du (A.2)
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Table C1. Reference parameters and symbols.

Initial number of SI-cells 500
Initial number of WI-cells 500
Initial density ρ0 0.1
Scale parameter of SI- strain 1 h
Mean swap time relative to scale parameter of SI-strain rs 0.1
Stickiness of M- and WI-strain sg, sy 1
Stickiness of SI-strain sr 1
Mutation probability (in division) of SI- to M-strain pm 0

Mean division time of WIS strain relative to mean division time of SIS strain rd

Maximal amount of cells that can be pushed by the WIS strain P

=
1

1 +
(

λ1
λ2

)k . (A.3)

Let Xk be the minimum of l independent random
variables which are Weibull distributed with identi-
cal scale parameter λ and form parameter k. It is clear
from induction that this variable is again Weibull dis-
tributed with form parameter k but scale parameter
λ
k√l

. Therefore, the fraction of the mean values of Xk

and X1 is
〈Xk〉
〈X1〉

=
l

k
√

l
Γ

(
1 +

1

k

)
. (A.4)

Since for k = 2 Γ
(
1 + 1

2

)
is equal

√
π/2, the fraction

is smaller one for l = 1, but larger one for l � 2.

Appendix B. Computation of sector
angles

To compute the opening angles in section 3.2, we need
to find the left and right endpoint of the sectors (see
figure B1). From the coordinates (xi, y) relative to the
middle of the inoculation zone we can compute the
left and right angle αl,αr, as

αi = arctan
y

|xi|
.

The opening angle α is then defined as α = 180◦ −
(αl + αr). To compute y, we count the number of
WI-cells per layer and compute with the MATLAB
function ‘findechangepts’ the first layer where the
mean and slope change significantly. From the y value
we compute the corresponding x values by find-
ing the left and right closest points to the origin in
layer y.

Remark. To compute the angles we change from
hexagonal grid coordinates (x′, y′) to Cartesian coor-
dinates by

x = x′ +
y′

2
y =

√
3

2
y′.

Appendix C. Reference parameters

If not otherwise mentioned we used in the simula-
tions the parameters of table C1.
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