
Saarland University

Department of Computer Science

Mitigating Security and Privacy Threats from
Untrusted Application Components on Android

Dissertation
zur Erlangung des Grades

der Doktorin der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Jie Huang

Saarbrücken, 2021

Tag des Kolloquiums: 28. November 2022

Dekan: Prof. Dr. Jürgen Steimle

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Benjamin Kaminski
Berichterstattende: Prof. Dr. Michael Backes

Prof. Dr. Andreas Zeller

Akademischer Mitarbeiter: Dr. Robert Künnemann

Zusammenfassung

Aufgrund von Androids datenzentrierter und Open-Source Natur sowie von fehler-
haften/bösartigen Apps durch das lockere Marktzulassungsverfahren, ist die Privatsphäre
von Benutzern besonders gefährdet.

Diese Dissertation präsentiert eine Reihe von Forschungsarbeiten, die die Bedro-
hung der Sicherheit/Privatsphäre durch nicht vertrauenswürdige Appkomponenten
mindern. Die erste Arbeit stellt eine Compiler-basierte Kompartmentalisierungslösung
vor, die Privilegientrennung nutzt, um eine starke Barriere zwischen der Host-App
und Bibliothekskomponenten zu etablieren, und somit sensible Daten vor der Kompro-
mittierung durch neugierige/bösartige Werbe-Bibliotheken schützt. Für fehleranfällige
Bibliotheken von Drittanbietern implementieren wir in der zweiten Arbeit ein auf API-
Kompatibilität basierendes Bibliothek-Update-Framework, das veraltete Bibliotheken
durch Drop-Ins aktualisiert, um das durch Bibliotheken verursachte Zeitfenster der
Verwundbarkeit zu minimieren. Die neueste Arbeit untersucht die missbräuchliche
Nutzung von privilegierten Accessibility(a11y)-Funktionen in bösartigen Apps. Wir
zeigen ein datenschutzfreundliches a11y-Framework, das die a11y-Logik wie eine Pipeline
behandelt, die aus mehreren Modulen besteht, die in verschiedenen Sandboxen laufen.
Weiterhin erzwingen wir eine Flusskontrolle über die Kommunikation zwischen den
Modulen, wodurch die Angriffsfläche für den Missbrauch von a11y-APIs verringert wird,
während die Vorteile von a11y erhalten bleiben.

iii

Abstract

While Android’s data-intensive and open-source nature, combined with its less-than-
strict market approval process, has allowed the installation of flawed and even malicious
apps, its coarse-grained security model and update bottleneck in the app ecosystem
make the platform’s privacy and security situation more worrying.

This dissertation introduces a line of works that mitigate privacy and security
threats from untrusted app components. The first work presents a compiler-based
library compartmentalization solution that utilizes privilege separation to establish
a strong trustworthy boundary between the host app and untrusted lib components,
thus protecting sensitive user data from being compromised by curious or malicious
ad libraries. While for vulnerable third-party libraries, we then build the second work
that implements an API-compatibility-based library update framework using drop-in
replacements of outdated libraries to minimize the open vulnerability window caused
by libraries and we perform multiple dynamic tests and case studies to investigate its
feasibility. Our latest work focuses on the misusing of powerful accessibility (a11y)
features in untrusted apps. We present a privacy-enhanced a11y framework that treats
the a11y logic as a pipeline composed of multiple modules running in different sandboxes.
We further enforce flow control over the communication between modules, thus reducing
the attack surface from abusing a11y APIs while preserving the a11y benefits.

v

Background of this Dissertation

This dissertation is based on the papers mentioned in the following. I contributed to all
papers as the main author.

The initial idea of CompARTist [P1] was developed together with Sven Bugiel. The
systematization of integration techniques for advertisement libraries is completed by
the author. The author was further responsible for the design, implementation, and
performance evaluation of CompARTist. Oliver Schranz contributed to the robustness
evaluation with his monkey-troop platform originally designed for evaluating his ARTist
Modules [1]. Sven Bugiel and Oliver Schranz contributed with general writing tasks.
All authors performed reviews of the paper.

Up2Crash [P2] is a follow-up work for Erik Derr’s library updatability paper [2]. The
author contributed to this work with the design of a two-stage updating experiment,
the implementation of an automated library update framework in Stage-1, and carrying
out dynamic tests on this framework in Stage-2. Nataniel Borges contributed by seeking
hidden malfunctions in Stage-2 with his DroidMate tool [3]. The further root cause
analysis, case studies, and library updatability re-estimation task are accomplished by
the author. Sven Bugiel and Nataniel Borges were involved in general writing tasks.
All authors are involved in the paper review work.

The idea of treating accessibility logic as a pipeline in accessibility feature misusing
paper [P3] was initialized in a discussion with Sven Bugiel. The author was further re-
sponsible for the concrete design, implementation, and evaluation of the framework. The
author took the advice from Usenix Security’20 anonymous reviewers by implementing
an information flow control mechanism to the pipeline to further improve the privacy
and security of the accessibility usage. Sven Bugiel contributed to general writing tasks.
All authors performed reviews of the paper.

[P1] Huang, J., Schranz, O., Bugiel, S., and Backes, M. The art of app compart-
mentalization: compiler-based library privilege separation on stock android. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). 2017, 1037–1049.

[P2] Huang, J., Borges, N., Bugiel, S., and Backes, M. Up-to-crash: evaluating third-
party library updatability on android. In: 2019 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. 2019, 15–30.

[P3] Huang, J., Backes, M., and Bugiel, S. A11y and privacy don’t have to be mutually
exclusive: constraining accessibility service misuse on android. In: 30th USENIX
Security Symposium (USENIX Security 21). 2021.

vii

Acknowledgments

After more than five years of effort, my journey of Ph.D. study is finally approaching
its end. I know that I could not have completed this dissertation without the help of
others. I would like to express my most sincere gratitude to the following people.

First of all, I would like to thank my supervisor Michael Backes for providing me with
such a great opportunity to be a member of the Information Security & Cryptography
group. Thanks to his openness and support for research, I had the freedom to choose
my topics and try new things. He also set an example for me with his sharp mind in
research and relentless passion for work. It’s my fortune to be his student and learn
from him.

I would also like to express my special gratitude to Sven Bugiel. In the past five
years, Sven has taught me a lot about how to do research and how to start an academic
career. From paper writing to conference presentations, he spared no effort to guide me
and provide helpful feedback. His dedication to excellence has always impressed and
motivated me. I am particularly grateful for his generous help with all of my research
projects. I am also thankful to other talented coauthors: Oliver Schranz and Nataniel
Borges. Working with them to identify and address problems in our research was a
pleasure for me.

I am also grateful to Andreas Zeller for taking the time to examine my thesis and
give me valuable feedback. Thanks to Benjamin Kaminski for chairing my defense and
Robert Künnemann for writing the protocol. My defense could not happen without
their efforts.

Many thanks to my officemates: Erik Derr, Tin Nguyen, Oliver Schranz, Milivoj
Simeonovski, Malte Skoruppa, Sebastian Weisgerber, and Yang Zou. Thank them
for their kindness and help once I first joined the group. Not only do we have many
productive research discussions, but we also chat about a variety of interesting topics,
which creates a productive and enjoyable work environment.

Thanks also to our group members. We shared a lot of wonderful experiences. No
matter it is a hallway conversation or a conference trip, they are all precious memories
for me. Thanks to the staff from all departments of CISPA for helping me process
documents, IT affairs, or business trips.

Last but not least, I want to thank my family for their unconditional love. Thank
them for respecting my sudden decision to study far away from home. Their support
and encouragement have been my best spiritual strength, accompanying me through all
my challenges.

ix

Contents

1 Introduction 1

2 Technical Background 7
2.1 Android Primer . 8

2.1.1 Android Software Stack . 8
2.1.2 Android Accessibility Framework 10

2.2 Android Security Mechanisms . 12
2.3 Android Software Update Ecosystem . 13

3 CompARTist 15
3.1 Motivation . 16
3.2 Problem Description . 16

3.2.1 Problem of Library Blocking . 16
3.2.2 Problem of Privileges Separating 17

3.3 Contributions . 19
3.4 Library Integration Techniques . 20
3.5 CompARTist Design . 21

3.5.1 System Overview . 21
3.5.2 Inter-Application Communication Channel 22
3.5.3 Compiler-based App Rewriting 26
3.5.4 Advertisement Service App . 29
3.5.5 Deployment . 32

3.6 Discussion . 32
3.6.1 Robustness Evaluation . 33
3.6.2 Performance Evaluation . 34
3.6.3 Deployment Alternatives . 36
3.6.4 Limitations . 37
3.6.5 Future Work . 38

3.7 Conclusion . 39

4 Up2Crash 41
4.1 Motivation . 42
4.2 Problem Description . 42
4.3 Contributions . 43
4.4 Related Work . 44

4.4.1 Software Patching Techniques . 44

xi

CONTENTS

4.4.2 Android Test Input Generation Techniques 46
4.5 Requirements Analysis . 47
4.6 Two-stage Updating Experiment . 48

4.6.1 Stage-1: Automated Library Update Framework 48
4.6.2 Stage-2: Automated User Interface Tests 55

4.7 Root Cause Analysis . 59
4.7.1 Findings from Monkey Testing 61
4.7.2 DroidMate Finding . 64
4.7.3 Case Study . 64
4.7.4 Library Updatability Re-Estimation 68

4.8 Discussion . 68
4.8.1 Research Sample . 68
4.8.2 Entangled Dependencies . 69
4.8.3 Framework and UI-based Testing Limitations 69
4.8.4 Efforts from Multiple Parties . 70
4.8.5 Updating in Automated App Testing 70

4.9 Conclusion . 70

5 Privacy-Enhanced Accessibility Framework 73
5.1 Motivation . 74
5.2 Problem Description . 74
5.3 Contributions . 75
5.4 Study of Accessibility Service Usage . 77

5.4.1 Accessibility App Sample Set . 77
5.4.2 Accessibility Service Configuration 79
5.4.3 Accessibility API Usage . 80
5.4.4 Complete Accessibility Pipelines 83

5.5 Key Idea and Threat Model . 84
5.6 Privacy-Enhanced Accessibility Framework 86

5.6.1 Overview and Design Concepts 86
5.6.2 Implementation . 88

5.7 Evaluation . 92
5.7.1 Case Study: TalkBack . 92
5.7.2 Case Study: EVA Facial Mouse 93
5.7.3 Performance Overhead . 94

5.8 Discussion . 95
5.8.1 Limits and challenges . 95
5.8.2 Strengthening the sandbox and IFC 96
5.8.3 User approval . 97
5.8.4 Threats to Validity . 97
5.8.5 Utility apps . 97
5.8.6 Other attacks and privacy issues 98

5.9 Related Work . 98
5.10 Conclusion . 99

xii

CONTENTS

6 Conclusion 101

A Appendix 115
A.1 APIs of CompARTist’s communication channel 116
A.2 Accessibility App Sample Set . 116

xiii

List of Figures

2.1 BackGround: Android Software Stack 8
2.2 BackGround: Accessibility Communication Channel 10
2.3 BackGround: Example for Authorizing an AccessibilityService 11
2.4 BackGround: Android Software Update Ecosystem 14

3.1 CompARTist: CompARTist Overview 21
3.2 CompARTist: Inter-application Communication Channel 23
3.3 CompARTist: Example Protocol Run for Ad Invocations 24
3.4 CompARTist: IR of Advertisement Loading Code 29
3.5 CompARTist: Synchronization Management 30
3.6 CompARTist: Breakdown of Robustness Evaluation 34

4.1 Up2Crash: Example Scenario for API-compatibility based Updatability 47
4.2 Up2Crash: Overview of Library Update Framework 49
4.3 Up2Crash: Update Execution Environment 50
4.4 Up2Crash: Update Handler . 52
4.5 Up2Crash: Monkey Evaluation Results 56
4.6 Up2Crash: Statistics for Deprecated APIs in Libraries 65
4.7 Up2Crash: Statistics for Deprecated API Usage in Apps 65
4.8 Up2Crash: Statistics for Apps Using Deprecated APIs 65
4.9 Up2Crash: Example for Entangled Dependencies 70

5.1 A11Y: Example Sandboxing for Screen Reader 86
5.2 A11Y: Example Sandboxing for Facial Access 86
5.3 A11Y: Accessibility Pipeline with Sandboxed Modules 87
5.4 A11Y: Privacy-enhanced Accessibility Framework 89
5.5 A11Y: Accessibility Pipeline for Screen Reader 94
5.6 A11Y: Accessibility Pipeline for Facial Mouse 94

xv

List of Tables

3.1 CompARTist: Comparison of Existing Privilege Separation Approaches 18
3.2 CompARTist: Advertising Library Integration Techniques 18
3.3 CompARTist: Performance Evaluation Results 35

4.1 Up2Crash: DroidMate Analysis Results 58
4.2 Up2Crash: Categorized Exceptions Reported by Monkey Test 60
4.3 Up2Crash: Library Manifest Changes across Different Versions 66
4.4 Up2Crash: Rules to Identify Incompatible Updates 66
4.5 Up2Crash: Library Updatability Re-estimation Results 67

5.1 A11Y: Accessibility Service Configuration in Sample Apps 78
5.2 A11Y: Allowlisted Package Names in Service Configurations 78
5.3 A11Y: Patterns of Accessibility API Usage 81
5.4 A11Y: Accessibility Pipelines for Different App Types and Scenarios . . 82
5.5 A11Y: Performance Evaluation Results 95

A.1 Appendix: A11y App Sample Set (Google Play Store) 116
A.2 Appendix: Utility App Sample Set (Google Play Store) 117
A.3 Appendix: Malicious App Sample Set (Github) 118

xvii

1
Introduction

1

The existence of mobile devices extended the application scenarios of computational
power. Handheld devices started to undertake tasks that are otherwise supposed to
be processed in a traditional computing environment. The recent development of
hardware and wireless communication technologies has further boosted the evolution
of mobile devices. The increasing computing capacity with a relatively low cost has
successfully empowered mobile devices to gain a broader reach rapidly. The latest two
decades witness the global rising of the mobile industry. The number of smartphone
users worldwide has surpassed 3.6 billion by the end of 2020 [4]. Among all the mobile
shipments, Android is the most popular mobile operating system worldwide. To meet the
needs of this large user base, the application market of Android continues to thrive today.
App developers can create their applications, integrate personalized functionalities, and
submit them to Google Play Store, which is Android’s official app market, or alternative
app markets freely. Google Play Store alone has 3.04 million available apps as of June
2020 [5].

While the growing number of Android applications enrich and facilitate daily life,
they also raise serious security and privacy concerns. Firstly, since mobile devices
have become closely connected to people’s social life, entertainment, education, etc.,
various personal data such as telephone number, bank account, and medical records
are available to mobile devices. The numerous amount of sensitive on-device data,
combined with the huge market share make Android naturally an attractive target for
attackers. Moreover, Android is an open-source platform. The openness of its internal
details makes Android easier to be exploited by malicious developers. Lastly, Android
has a less strict market approval process compared with other mobile platforms like
iOS. App developers are legitimately to distribute their apps to end users through
either marketplace, e.g., Google Play Store, or non-marketplace, like email or website,
making it hard to guarantee the quality of apps. Even on Android’s official Google Play
Store, which has Google Play Protect [6] deployed to scan newly uploaded apps to filter
malware, there is still a chance for malevolent apps to circumvent this mechanism.

Once a malevolent app is installed on a device, the existing Android security model
is not sufficient to protect user data. Android provides an application-based permission
management mechanism to restrict each app’s data access. When a user installs an
app, Android will list the app’s required permissions and ask for the user’s approval.
This mechanism bundles all the permissions together, thus gives the user an all-or-
nothing choice. Starting with Android 6.0, this install-time permission granting model
is replaced with a more flexible dynamic model. Permissions are now able to be granted
separately at runtime. However, the permission delegation in the updated model is
still based on application boundaries, which contradicts the purpose of prohibiting
untrusted or vulnerable third-party libraries from accessing user data with the host
application permissions. To make the matter worse, the current Android application
ecosystem involves multiple parties, resulting in an overly long update chain of libraries,
and therefore timely update delivery support for third-party components is absent. In
other words, even being discovered as defective, a library will remain inside the app for
a long period, which leads to a large vulnerability window and exposes sensitive data
to risks for quite a while. Furthermore, the design of some Android framework APIs

lacks privacy protection consideration, thus is inherently privacy-flawed. For example,
Android’s accessibility APIs, which construct a specific accessibility data communication
channel for assistive apps beyond the permission model and sandbox mechanism, could
be abused effortlessly by untrusted apps for sensitive data collection.

It is noted that the current Android security model and application update ecosystem
both have loopholes in preventing untrusted components from accessing user private
data. Based on this fact, this dissertation introduces a line of works to mitigate privacy
threats originating from untrusted application components, including optimizing the
integration model for untrusted components to support dedicated privilege restriction
on untrusted components, and by improving the application update ecosystem to
minimize the exposure of open vulnerability window from untrusted components. With
regard to restricting the privilege of untrusted components, this line of works transfers
the design concept for privilege separation, which better manages the privilege of
untrusted components by running the untrusted code in separate sandboxes, to our
optimized integration model for untrusted code. In this privilege-separated integration
model, the untrusted code is separated from the rest of the application code, and each
untrusted compartment is sandboxed separately and can be governed by a separate
set of permissions and access rights. Notably, this was applied in this dissertation to
two scenarios, advertisement libraries, and accessibility framework, solving concrete
challenges for each of these two settings. The key challenge of these works is that the
communication channel among those now isolated compartment sandboxes should be
reconstructed so that the functionality and UI of the original application can be retained.
Furthermore, a mechanism to apply the least-privileged privacy policy on those isolated
sandboxes is also required to achieve the goal of constraining the available privileges
for untrusted components separately. This dissertation also experiments with a new
library distribution approach, which breaks the library update bottleneck in the current
application ecosystem, to explore the potential of reducing privacy risks by minimizing
the in-app lifetime of untrusted components (here specifically vulnerable libraries).

Our work on mitigating security and privacy threats from untrusted application
components on Android includes peer-reviewed publications [P1, P2, P3], which each
contributed to a solution described in this dissertation. We list our contributions as
follows:

CompARTist. CompARTist is a new privilege separation approach for mitigating
privacy leakage from untrusted third-party libraries on stock Android. In a typical
Android application, the host components and its third-party libraries reside in the same
sandbox and share all privileges awarded to the host components by the user, putting
the users’ privacy at risk of intrusions by third-party libraries. Towards this problem,
the existing solutions all need either system modification or app rewriting, which makes
them difficult to be deployed widespread. In contrast to them, CompARTist partitions
Android applications at compile-time into isolated, privilege-separated compartments for
the host app and the included third-party libraries. A particular benefit of our approach
is that it leverages compiler-based instrumentation available on stock Android versions
and thus abstains from modification of the Software Development Kit (SDK), the app
bytecode, or the device firmware. A particular challenge for separating libraries from

3

CHAPTER 1. INTRODUCTION

their host apps is the reconstruction of the communication channels and the preservation
of visual fidelity between the now separated host app and its libraries. We solved this
challenge through new inter-process communication (IPC) protocols to synchronize
layout and lifecycle management between different sandboxes. We demonstrated the
efficiency and effectiveness of CompARTist by applying it to real-world apps from the
Google Play Store that contain untrusted advertisement libraries.

Up2Crash. Up2Crash is an automatic library update framework. Apart from privilege
separation for third-party libraries, updating outdated libraries timely also helps in
mitigating privacy leakage from the open vulnerability window exposed by vulnerable
libraries. Existing runtime apps’ updatability analysis work [7] has revealed that the
prevalence of outdated third-party libraries in Android apps is indeed a rampant problem
and suggested that there is a great opportunity for drop-in replacements of outdated
libraries, which would not even require cooperation by the app developers to update
the libraries. However, all those conclusions are based on static app analysis, which
can only provide an abstract view. Up2Crash framework is the practical extension
towards this runtime apps’ updatability analysis. We implemented this framework to
update third-party libraries with drop-in replacements by their newer versions. Two
dynamic tests are further carried out on this developer-independent update mechanism.
Our results challenge the results of previous work [7] and identify impeditive factors in
automatically updating libraries without involving app developers.

Privacy-enhanced Accessibility Framework. Privacy-enhanced accessibility frame-
work is an extension of Android’s original accessibility framework. In the current
accessibility framework, powerful accessibility features are commonly misused by shady
apps for malevolent purposes, such as stealing data from other apps. Unfortunately,
existing defenses do not allow apps to protect themselves and at the same time to be
fully inclusive to users with accessibility needs. To mitigate privacy leakage by misusing
untrusted accessibility components while preserving the accessibility features for assistive
apps, we first carried out a study to investigate how accessibility features are used in
95 existing accessibility apps of different types (malicious, utility, and a11y). Based
on the results, we proposed to redesign the accessibility APIs and modeled the usage
of the accessibility framework as a pipeline of code modules, which are all sandboxed
separately. By policing the data flows of those modules, we achieve more fine-grained
control over the access to accessibility features and the way they are used in apps,
allowing a balance between accessibility functionality for dependent users and reduced
privacy risks. We demonstrated the feasibility of our solution by migrating real-world
apps to our privacy-enhanced accessibility framework.

Outline

We organize the remainder of this dissertation as follows. Chapter 2 introduces the
technical background of the Android platform, the existing security mechanisms, and
the app update ecosystem. After that, we present CompARTist and Up2Crash in
Chapter 3 and Chapter 4, respectively, to describe our measures towards security and

4

privacy leakage in third-party libraries. Chapter 5 presents our efforts in mitigating
threats from the Android accessibility framework. This dissertation is concluded in
Chapter 6.

5

2
Technical Background

7

In this chapter, we introduce the Android platform and its security and privacy
specifics, as well as the Android software update ecosystem, to help you understand the
proposed solutions in the subsequent chapters.

2.1 Android Primer

2.1.1 Android Software Stack

Android is an open-source software stack built on top of a modified Linux kernel. It was
developed by the Open Handset Alliance [8], a business alliance of mobile and technology
leaders led by Google, and got unveiled in 2007. Since its initial launch with commercial
Android devices in 2008 [9], Android has grown and quickly dominated the mobile
operating system market share. A recent report shows that Android has occupied 71.93%
of the mobile OS market share in January 2021 [10]. Although primarily designed for
touchscreen mobile devices like smartphones and tablets, Android and its variants are
now used in a wide range of electronics such as televisions, wearables, and automobiles.

Java API Framework
Activity
Service

ContentProvider
BroadcastReceiver

Activity
Manager

Service
Manager

...

Location
Manager

Telephony
Manager

Accessibility
Manager

Linux Kernel

Power
Management

Memory
ManagementAudio Driver

Bluetooth Driver ...Camera Driver

Applications
Browser Camera Phone ...

Android Middleware
Android
Runtime

Native C/C++ Libraries
SQLite SSLOpenGL ES ...

Hardware Abstraction Layer (HAL)

Figure 2.1: Android Software Stack

The major components of the Android software stack include a Linux kernel, a
middleware infrastructure, an application framework, and various applications from
bottom to top as shown in Figure 2.1. We introduce each component in the following.

2.1. ANDROID PRIMER

Linux Kernel The bottom-most layer in Android architecture is a slightly modified
version of the Linux kernel. To adapt the Linux kernel to the resource-constrained mobile
embedded devices, Android made some architectural changes to the existing Linux. For
example, Android includes wakelocks to improve power management and anonymous
shared memory ashmem and Low Memory Killer to optimize memory management. It
is worth noting that Android facilitates its kernel with Binder driver, an inter-process
communication system based on OpenBinder [11], to provide flexible and reliable data
exchange across process boundaries.

Android Middleware On top of the Linux kernel resides the Android middleware
infrastructure which consists of a hardware abstraction layer (HAL), a runtime, and
a native library layer. The hardware abstraction layer provides higher-level system
interfaces to access hardware capabilities, such as audio, camera, and Bluetooth. It
makes higher-level services and components agnostic about low-level hardware driver
modifications. The runtime, together with its core libraries, is aimed at establishing
the execution environment for upper-level system services and applications. Prior to
Android version 5.0, the default runtime for Android was Dalvik, which is a register-
based virtual machine equipped with a just-in-time (JIT) compiler. Start with Android
version 5.0, Android implemented Android Runtime (ART) which utilizes ahead-of-
time (AOT) compilation to shift the compilation expense to installation time, thus
achieved better execution efficiency at runtime. Android further optimized the runtime
app performance with profile-guided JIT/AOT compilation based on ART in Android
version 7.0. Android also imported a set of native libraries to provide fundamental
implementations like graphics, database, etc. for services and components written in
C/C++.

Java API Framework Android exposes lower-level OS features to applications through
Java-based APIs in the framework layer. By integrating interfaces inside the framework
component ServiceManager, app developers can opt-in fundamental system features
like location, telephony, package management, etc. to applications. Most importantly,
the framework layer provides a dedicated ActivityManagerService service to
manage the lifecycle of the app’s basic components including Activity, Service,
BroadcastReceiver, and ContentProvider. All applications have to interact
with this service to launch, switch, and dispatch their components. Moreover, this
framework layer also includes an accessibility framework to enable the development of
assistive apps. You can find the detail in Section 2.1.2.

Applications Android developers can create both system and third-party applications
by integrating framework APIs and components with the help of Android SDK. These
apps offer users customized functionalities as well as high-level services exposing device
resources such as telephony, internet browsing, and so on. System apps are shipped as
part of the platform and maintained by platform developers, whereas third-party apps
are developed and maintained by third-party developers. Before being installed on the
device, each application must be signed by the developer. These signatures are utilized

9

CHAPTER 2. TECHNICAL BACKGROUND

Accessibility
Framework

position
text
url
...

AccessibilityEvent
AccessibilityNodeInfo

AccessibilityWindowInfo
...

O
th

e
r

A
p

p
s Browser

SMS
A

cc
e
ss

ib
il

it
y

 A
p

p

A
ccessibility
S
ervice

Activity

...

Service

Others

Facebook

Settings

...

Figure 2.2: Accessibility Communication Channel

to distinguish applications and to make future updates easier to deliver. The details of
Android’s application update ecosystem are introduced in Section 2.3.

2.1.2 Android Accessibility Framework

We here provide technical background knowledge on Android’s accessibility frame-
work. Android supports accessibility features since API level 4 via an accessibility
framework [12]. Figure 2.2 presents the overview of how this framework works. The
accessibility framework acts as an intermediary between applications and accessibility
apps. It monitors relevant events within applications and forwards them to accessibility
apps, which in turn can use the framework to retrieve certain information (e.g., UI
content) from those applications or inject events into those applications (e.g., inserting
text or clicking a button). AccessibilityService [13] is the key component for
an accessibility app to use accessibility features. Each accessibility app has to register
an AccessibilityService to listen for accessibility events. Through onAcces-
sibilityEvent callback, the app receives accessibility events that are wrapped as
AccessibilityEvent objects. The app can then perform custom logic to consume
and react to those events. For instance, a screen reader could read aloud a button
description that was contained in a received event for a user’s UI interaction. To register
the AccessibilityService in the system, the developer of the accessibility app
should declare it as such in the AndroidManifest.xml of the app. To ensure that
only the system’s accessibility framework can bind to this service of the app, the service
declaration should require the system permission BIND_ACCESSIBILITY_SERVICE
from any caller. Since no third-party app can successfully request this permission, the
accessibility app is ensured that any caller to the AccessibilityService is the
system. Lastly, since access to the accessibility framework is highly critical for user
privacy, Android requires the user to explicitly grant this access via the Settings app.
Figure 2.3 gives an example of this explicit activation for the 1Password app in the
system setting. Only after those steps, the accessibility app is able to assist the user (or
attack them and other apps).

10

2.1. ANDROID PRIMER

Figure 2.3: Example for explicitly authorizing an AccessibilityService, here of the 1Pass-
word app, in the Settings app

Accessibility Communication Channel To be able to provide assistive functionality,
an AccessibilityService is very powerful and can access a great amount of sensi-
tive data within other apps. Different from sensitive data that is usually protected by
Android’s permission model and id-based sandboxing from unauthorized access by apps,
the accessibility framework can easily leak such protected data across application bound-
aries to an accessibility app via the accessibility communication channel. In this channel,
accessibility objects, such as AccessibilityEvent, AccessibilityNodeInfo, or
AccessibilityWindowInfo, carry other apps’ sensitive data, e.g., screen text, to
enable the AccessibilityService in doing its intended job, e.g., reading screen text
aloud. An accessibility app can invoke either global or node actions. Listing 2.1 provides
a toy AccessibilityService to illustrate this. Global actions are not targeting any
specific app and include, for instance, invoking the device’s home button or opening the
recents screen (or recent task list screen) showing recently accessed apps (see Lines 6
and 8 in Listing 2.1). Node actions target a particular element in another app, for
instance, a button or text field (see Lines 13 and 20). A typical example for this data
access channel is that an accessibility app without READ_CONTACTS permission can
still get contact information stored in the Contacts app through reading the text fields
in AccessibilityEvents from the Contacts app.

11

CHAPTER 2. TECHNICAL BACKGROUND

1 public class MyAccessibilityService extends AccessibilityService {
2 @Override
3 public void onAccessibilityEvent(AccessibilityEvent event) {
4
5 // global action: back to home screen
6 performGlobalAction(AccessibilityService.GLOBAL_ACTION_HOME);
7 // global action: show activity history
8 performGlobalAction(AccessibilityService.GLOBAL_ACTION_RECENTS);
9

10 AccessibilityNodeInfo node = event.getSource();
11 if (isTargetButton(node)) {
12 // local action: click the target button
13 node.performAction(AccessibilityNodeInfo.ACTION_CLICK);
14 } else if (isTargetEditText(node)) {
15 // local action: input string "android" to an EditText
16 Bundle arguments = new Bundle();
17 arguments.putCharSequence(
18 AccessibilityNodeInfo.ACTION_ARGUMENT_SET_TEXT_CHARSEQUENCE,
19 "android");
20 node.performAction(AccessibilityNodeInfo.ACTION_SET_TEXT, arguments);
21 }
22 }
23 }

Listing 2.1: Code example for using the accessibility service

Accessibility vs. Privacy To restrict the monitoring scope for an Accessibili-
tyService, the app developer can specify an AccessibilityServiceInfo [14]
that lists the capabilities and accessible AccessibilityEvents to inform the acces-
sibility framework and the user about which events an AccessibilityService is
interested in. Thus, the AccessibilityServiceInfo informs about which data
is exposed to an AccessibilityService and what the service could do. For ex-
ample, by limiting the packageName attribute of AccessibilityServiceInfo to
"com.android.settings", the service will only receive events for the Settings app. This
configuration can be set either statically as meta-data inside an XML file or dynamically
at runtime through the setServiceInfo interface of the accessibility framework.
However, this configuration relies on the incentives of accessibility app developers.
Developers of other apps can further communicate to an AccessibilityService
that certain UI elements are not important for accessibility. This is in two different
ways fallible: first, every app developer has to become active and, second, this forces
app developers to choose between writing an app that is protected or that is inclusive.
Moreover, this is merely an indication by the app developer and an Accessibili-
tyService can decide to ignore this attribute and operate on all UI elements in a
targeted app [15].

2.2 Android Security Mechanisms

Android provides different protections in different layers of the Android security model.
For instance, the sandboxing mechanism in the Linux kernel, the application permission
and signing mechanisms, and so on. Among all of these mechanisms, sandboxing and
permission mechanisms are the most closely related to existing security and privacy
threats from untrusted application components.

12

2.3. ANDROID SOFTWARE UPDATE ECOSYSTEM

Application Sandbox The file system access control of Android is enforced through
the sandboxing system of the underlying Linux kernel. In the original Linux, each user
has a distinguish uid which the file access rights are assigned based on. Files generated
by one user are not available to other users by default. Android transfers this user
concept to application. By assigning each application with a distinct uid, Android
runs different applications in their own process sandboxes. The data and execution
status of one application are protected from being visited by other applications. In this
mechanism, all app components reside in the same app sandbox and are considered
as the same security principal. This kind of coarse authorization gives untrusted app
components, for example, third-party libraries, the opportunity to access all files and
status data from other app components, e.g., host components.

Permission Model On top of the sandbox mechanism, Android implements an
application-based permission model to restrict applications’ access to device resources.
In this model, framework APIs exposing sensitive resources are protected by permissions.
To invoke these APIs, application developers have to declare the concerned permissions
in the application manifest file AndroidManifest.xml beforehand. There are four
protection levels for Android permissions: normal, dangerous, signature, and signature-
OrSystem (or signature|privileged). Among them, dangerous permissions are highly
risky permissions that control the access to highly sensitive resources, e.g., location
information or user contacts. When an app wants to invoke a dangerous permission-
protected API, Android displays the permission request at installation time (before
Android 6) or runtime (Android 6 or higher), and the app logic can only proceed once
the user has confirmed the authorization. While this explicit consent mechanism works
well in most cases for resource access at the application granularity level, it fails to
prevent unwanted resource access from untrusted app components since all the applica-
tion components share the same permission set. Furthermore, there also exists some
permissions that are too powerful and coarse to protect sensitive data effectively. For
example, Android provides dedicated BIND_ACCESSIBILITY_SERVICE permission
for accessibility services. An accessibility app has to explicitly ask for the user’s approval
before activating any accessibility features. However, this permission is not fine-grained
enough to distinguish between applications that asking for different accessibility data,
and therefore violates the least-privileged privacy policy.

2.3 Android Software Update Ecosystem

We introduce the maintenance ecosystem for software on the Android platform. The
official sources for Android software updates can be differentiated into four classes:
app developers, Android Open Source Project (AOSP) by Google, upstream Linux
kernel, and System-on-Chip (SoC) manufacturers. The updates from those sources can
be delivered to end-users and take effect in their corresponding software stack layers
through different update routines as shown in Figure 2.4.

The Android platform is highly diversified and fragmented. The updates from the
lower layers are distributed in an arduous and time-consuming way. All the updates from
AOSP, Linux kernel, and SoC manufacturers should be delivered to device manufacturers

13

CHAPTER 2. TECHNICAL BACKGROUND

User Device

Java API Framework

Android Middleware

Linux Kernel

Google Play Application

Developers

Library
Developers

OEMs

Carriers

AOSP

SoC

upstream
Linux kernel

System
Apps

User
Apps lib

s

Figure 2.4: Android Software Update Ecosystem

first. After being integrated into the manufacturers’ specific systems, some of those
updates can be pushed to the end-users by device manufacturers, and some of them
should also go through a carrier technical acceptance test at the network operator
side before being delivered to users. Existing work [16] has pointed out that device
manufacturers are the bottleneck in this update chain. Despite the founding of the
Android Update Alliance [17], phone vendors generally lack the incentives to provide
updates frequently, resulting in a long update latency or, even worse, no updates at all.

The update routine for user applications is, in contrast, pretty straightforward. The
app developers submit new app versions to Google Play Store, then the target app on
end devices will be reinstalled and replaced with the updated version [18]. The app
updates can be delivered to user devices efficiently without any intermediate bottleneck.
It is noteworthy that the updating of third-party libraries inside an application follows
a similar mode to the lower layer components. New versions of third-party libraries are
released by the library developers first, and after integrating the new versions into the
application code by app developers, those libraries can be sent to end-users together
with upgraded apps through Google Play Store. Despite the "new library versions
available" warning provided by the built-in Lint plugin [19] of Android Studio which
is the most commonly used IDE for Android app development, the integration of the
updated library is highly dependent on the app developer incentives, and currently,
there is no official automatic mechanism to ease this process. Google Play Store rejects
apps (updates) that include libraries with known security vulnerabilities to force the
developers to update those libraries through their app security improvement program1,
but this mechanism only works for a small, limited set of libraries, e.g., Apache Cordova.
A lot more vulnerable libraries are still exempted from this vetting process.

1https://developer.android.com/google/play/asi

14

3
CompARTist

Compiler-based Library Privilege Separation on Stock
Android

15

3.1 Motivation

In this chapter, we address the privacy and security issues posed by the typical untrusted
application components—third-party libraries. Third-party libraries are frequently
imported into applications to quicken the app development process. Compared with
writing functional code from scratch, such as HTTP communication, image loading,
or advertising, an existing well-encapsulated third-party package is a preferable choice
for app developers. However, such external dependencies are a double-edged sword.
Since third-party libraries are developed by other organizations, it is hard to guarantee
their trustworthiness. As mentioned in Section 2.2, third-party libraries and their
host app share the same sandbox as well as permission set on Android. This fact has
been identified as a loophole for nosy libraries to exploit their ambient authority to
access device-local resources, for example, location, phone identifiers, and other personal
information, which can be of great interest to third parties like advertisement networks.
Existing research [20, 21, 22, 23] has confirmed that those third-party libraries not only
provide convenience but also bring significant risks to the users’ privacy and security. In
light of those risks, the security community has recently proposed various approaches
to tame overly curious or even maliciously acting libraries, where the focus lies on
either blocking the library functionality completely [24, 25] or privilege-separating the
notorious libraries [26, 27, 28, 29, 30, 31, 32, 33].

3.2 Problem Description

The proposed library blocking solutions involve either removing the library payload or
removing library code completely while library privilege-separating solutions range from
dedicated system services and system modifications to application bytecode rewriting.
Sadly, although these solutions greatly benefit the users’ privacy and security, they do
not entirely satisfy the interest of both app developers and end-users.

3.2.1 Problem of Library Blocking

Library blocking solutions are typically used in taming data-hungry advertisement
libraries. The growing number of mobile advertisements has given rise to a range
of approaches that follow the library blocking path in protecting user privacy and
security. Some network-based advertisement filtering tools, such as AdAway [34],
AdGuard [35], and AdblockPlus [36], suppress advertising functionality by either altering
the device’s hosts file or employing VPN-based content blocking. AdblockBrowser [37]
integrates advertisement blocking functionality into its fully-featured browser by design
to suppress advertising functionality. APKLancet [24] prunes a range of untrusted
code fragments, particularly advertisement libraries, by removing the library code
from the application codebase. App virtualization technology is also applied by in-app
ad-blocking solutions [25] to strip advertisement from applications. Unfortunately, all

3.2. PROBLEM DESCRIPTION

these approaches can harm the free app distribution model by cutting the developers’
revenue from showing advertisements.

3.2.2 Problem of Privileges Separating

Since protecting user privacy and security via library blocking inhibits the app distri-
bution ecosystem, more solutions propose separating library privileges through library
compartmentalization to eliminate privacy and security concerns while preserving the
functionality of third-party libraries. We summarize these solutions from 5 aspects,
including the existence of robust privilege separation (F1), whether the same-origin
model is preserved (F2), whether firmware modification or app developer effort can be ex-
empted (F3)(F4), and whether privilege elevation can be avoided (F5). We highlight their
respective advantages and drawbacks in Table 3.1. According to their deployment strate-
gies from an end user’s perspective, we divided the existing library compartmentalization
solutions into system-centric solutions and application-centric solutions.

System-centric Solutions Usually, system-centric solutions ship the compartmen-
talization approach as a part of the firmware (F3: 7). This generally provides the
possibility of constructing dedicated system services/processes for library code (F1: 3),
executing monitoring code with elevated privileges intentionally (F5: 3), and preserving
the original package and signature of the target apps (F2: 3). Trivially, we assign the
same-origin model preserving feature to all system-centric solutions since these solutions
can always whitelist their own changes by customizing the signature verification process.
Among the listed solutions, both AdDroid [26] and AFrame [28] include new system
services that expose public APIs to applications for advertisement library integration.
While these solutions achieve robust library privilege separation by executing adver-
tisement library code in a separate process, developer effort is necessarily required to
adapt their apps to the new system (F4: 7). On the contrary, AdSplit [27] is capable of
automatically retrofitting applications to use their customized system, which takes the
developer out of the loop (F4: 3). An even more involved approach, FlexDroid [29], mod-
ifies the operating system to implement inter-process stack inspection and fault isolation
techniques within app processes for secure per-component permission enforcement (F1:
7). Additionally, developers are requested to define per-component permission policies
in apps’ manifests (F4: 7). The typical drawback of system-centric solutions is that
system modifications are notoriously hard to distribute to end-user devices. Flashing
after-market ROMs that carry library compartmentalization solutions onto devices is
generally considered too high a technical hurdle for most layman end-users.

Application Layer Solutions Apart from system customization, some works take
advantage of application rewriting and inlined reference monitoring (IRM [38]) tech-
niques to abstain from firmware modification (F3: 3). Bytecode rewriting solutions
necessitate repackaging and resigning of the modified app, thus, in turn, violating
Android’s signature-based same-origin model. (F2: 7; F4: 3). Since these techniques
alter the application package before installation, no higher privileges are required to op-
erate (F5: 3). Such rewriting and IRM techniques are widely used in privacy-enhancing

17

CHAPTER 3. COMPARTIST
Ta

b
le

3.1:
C

o
m

p
a

riso
n

o
fe

xistin
g

p
rivile

g
e

se
p

a
ra

tio
n

a
p

p
ro

a
c

h
e

s

System
-centric

A
pplication

Layer
Features

F
lexD

roid
[29]

A
dD

roid
[26]

A
dSplit

[27]
A
Fram

e
[28]

N
ativeG

uard
[32]

P
E
D
A
L

[30]
W

IR
E
Fram

e
[33]

C
o
m
p
A
R
T
i
s
t

F1
7

3
3

3
3

7
3

3

F2
3

3
3

3
7

7
7

3

F3
7

7
7

7
3

3
3

3

F4
7

7
3

7
3

3
3

3

F5
3

3
3

3
3

3
3

7

F1:
R
obust

P
rivilege

Separation
F2:

P
reserves

Sam
e-O

rigin
M
odel

F3:
N
o
Firm

w
are

M
odification

F4:
D
eveloper

A
gnostic

F5:
N
o
privilege

escalation/A
pp

virt.
3
:
Solution

provides
feature

7:
Solution

does
not

provide
feature

Ta
b

le
3.2:

Te
c

h
n

iq
ue

s
use

d
to

in
te

g
ra

te
a

d
ve

rtisin
g

lib
ra

rie
s

w
ith

h
o

st
a

p
p

lic
a

tio
n

A
d
Lib

Share
[7]

M
ethod

Invocation
F
ield

A
ccess

Inherit
C
lass

Im
plem

ent
Interface

C
ustom

E
xception

Layout
A
rrangm

ent
A
ndroid

M
anifest

G
oogle

Play
Services

A
ds †

25.94%
3

3
3

7
7

3
3

Flurry
17.85%

3
3

3
3

7
3

3

Facebook
A
udience

12.11%
3

3
3

3
7

3
3

G
oogle

A
dm

ob
9.30%

3
3

7
3

7
3

3

InM
obi

6.45%
3

3
7

3
7

3
3

M
oPub

6.13%
3

3
3

3
3

3
3

M
illennialM

edia
5.41%

3
3

7
3

3
3

3

Tapjoy
4.29%

3
3

7
3

7
7

3

A
dC

olony
3.91%

3
3

3
3

7
3

3

A
m
azon

A
ds

3.11%
3

3
7

3
7

3
3

3
:
technique

used
by

library
7:

technique
not

used
by

library
†
G
oogle

P
lay

Services
A
ds

is
the

successor
ofA

dM
ob

and
com

prised
ofseveraladvertising

netw
orks;w

e
only

focus
on

the
basic

package
that

includes
B
anner

and
Interstitialads.

18

3.3. CONTRIBUTIONS

solutions [39, 40, 41, 42, 43, 44] while PEDAL [30] and NativeGuard [32] are aimed
specifically at privilege separation of libraries. NativeGuard moves native code libraries
to a dedicated process and reconnects the libraries to the host through inter-process
communication (F1: 3). In contrast, the host and library still share the same pro-
cess (F1: 7) in PEDAL, but with API hooking implemented, the library is restricted
to access sensitive resources. Lastly, the very recent WIREFrame [33], which uses app
rewriting techniques for privilege-separation of not a library in particular but WebView
components, establishes an inter-process communication-based channel between host
app and remote WebView for remote procedure calls, lifecycle management, or restoring
visual fidelity. All the application layer solutions concern repackaging and resigning,
which breaks the same-origin policy of Android application updates. As a consequence,
these repackaged application versions can no longer update automatically.

3.3 Contributions

To maintain the usability of library functionalities and at the same time mitigate privacy
and security threats from third-party code, we propose an alternative approach to achieve
privilege separation of untrusted components, in particular advertisement library, in
Android apps by using compiler-based instrumentation of apps. Since compilation is
an integrated, standardized part of app installation, compile-time modifications do not
require the target application to be repackaged and resigned, hence abstaining from
breaking the application signature. Moreover, Android’s dex2oat on-device compiler
can be operated entirely at the application layer and does not require changes to the
application framework or system image. As such, compiler-based instrumentation forms
a beneficial trade-off in the deployment of a library separation solution. The foundation
of our approach to compiler-based library separation is a systematic study of the ten
most frequently used advertisement libraries to identify the integration patterns between
advertisement library and their host apps. We discover that only a small number of
such patterns exist and that they establish only a loose coupling between libraries and
host apps (e.g., callbacks, field access, or method invocations). Based on those insights,
an extension for the Android on-device dex2oat compiler suite, which at compile-time
identifies the code segments that integrate the advertisement library into the app is
designed and implemented in this work. It then splits the app at those integration
points into two distinct apps to be installed with a strong (process) security boundary
in between and with being privileged separately. The challenge of this approach is
to reintegrate the now compartmentalized library with its host app, e.g., manage the
event-driven advertisement and application lifecycles or ensure visual fidelity by correctly
displaying advertisements. We solve this challenge through a new IPC-based protocol
for synchronizing lifecycle events between the host app’s and library’s sandboxes as well
as for synchronizing the layout management between an overlayed advertisement and
the app’s user interface. More concretely, this work makes the following contributions:

Study of advertisement library integration techniques In order to provide a solid
foundation for this work, we thoroughly analyzed the ten most prevalent advertisement
libraries in the Google Play Store that represent a large fraction of the market share of

19

CHAPTER 3. COMPARTIST

apps that include advertisements. Beyond motivating the design of our compartmen-
talization solution, we consider the results of our study to be useful for the academic
audience to facilitate independent research on the topic.

Compiler-based Application Compartmentalization We introduce CompARTist,
a compiler-based application compartmentalization system that enforces privilege sepa-
ration and fault isolation of advertisement libraries on Android. Our approach offers a
deployment alternative to existing solutions, since it does not require modifications of
the firmware and does not break Android’s signature-based same origin model. The
primary challenge for our solution is the reintegration of the library compartment with
the host through compile-time code instrumentations.

3.4 Library Integration Techniques

Statistical results from the freely available library detection tool LibScout [7] indicate a
low fragmentation of advertising libraries among the top apps on Google Play Store.
As shown in the first column in Table 3.2, between the first and the tenth most popular
advertisement library, the integration rate drops down significantly from 25.94% (Google
Play Services Ads) to 3.11% (Amazon Ads). In particular, this means that analyzing
the ten most popular advertisement libraries allows us to cover a large fraction of all
applications shipping advertisement code. Since the focus of our study is on how a host
app can integrate a library, we checked the possible integration patterns by analyzing
the libraries’ official API documentation. For those libraries that did not provide a full
list of public APIs, we use Oracle’s Java class file disassembler javap [45] to extract the
public fields and methods from the library’s codebase. Table 3.2 summarizes the results
of our study on possible integration techniques of advertisement libraries into host apps.

Method Invocation and Field Access are the two most common integration techniques
among all libraries. Typically, method invocation and field access are used to exchange
data between the host and the library, e.g., to request loading of an advertisement or to
retrieve advertisement information.

We observed two possible techniques for deriving subclasses from library code in order
to integrate the library into the app: Class Inheritance and Interface Implementation.
Libraries use those techniques to allow host apps to register callback components to
react to certain events, such as displaying or closing an advertisement. In many cases,
the callback methods are triggered with library-specific objects as parameter values.
This intertwines the library and the host tighter than, e.g., method invocations and
field accesses, making the library’s separation more challenging.

Furthermore, a small fraction of advertising libraries also propagate information to
their hosts by throwing customized Exceptions that the host needs to catch and react
to.

Layout Arrangement is an integration technique that allows banner advertisements
to occupy part of the host app’s user interface. To integrate this kind of non-full-screen
views, app developers need to make changes to their apps’ UI hierarchy. There are two
ways to integrate a banner view element: It can either be added in the XML resource

20

3.5. COMPARTIST DESIGN

Host App Ad AppOriginal App

host
permissions

host
MAC/DAC

ad
permissions

ad
MAC/DAC

Services/FileSys

shared
permissions

shared
MAC/DAC

Ad

Host Host
Support

Lib
Support

Ad
Ad

Host
process bou

n
dary

CompARTist

Services/
FileSys

Figure 3.1: CompARTist Overview

file of its corresponding user interface or it can be instantiated and added as a new view
element at runtime.

We found that all analyzed advertisement libraries require at least one permission
from their host app, INTERNET being the most prevalent one. Further, dedicated adver-
tisement components, e.g. Activity, BroadcastReceiver, or ContentProvider
need to be registered for the advertisement library as well. All this requires the host
app developer to make changes to the host app’s manifest file.

Based on our findings, we conclude that most advertisement libraries share a
common set of well-defined integration techniques, which makes them amenable targets
for efficiently separating them at those integration points from their host apps.

3.5 CompARTist Design

We present the design and implementation of CompARTist.

3.5.1 System Overview

The overall design of our CompARTist is depicted in Figure 3.1. The goal of Com-
pARTist is to privilege-separate advertisement libraries from their host apps with a
strong security boundary between library and host app. Since Android’s privileges
are bound to uids, we opted in our solution for splitting an ad-supported target app
into two different applications, each with a distinct uid. This separates advertisement
libraries into a separate process with separate privileges through a distinct uid (F1: 3).
Since advertisement libraries are usually integrated into their host app (see Section 3.4),
the primary challenge for such an approach is to re-integrated the host app and library
across process boundaries. While such separation and re-integration can be achieved
through firmware extensions or application rewriting (see Section 3.2.2), we present a

21

CHAPTER 3. COMPARTIST

new trade-off in the design space for Android security solutions by establishing such
separation and re-integration based on an extension of the dex2oat on-device compiler.
Operating entirely at application-level and at compile-time, this approach abstains
from firmware modifications (F3: 3), app repackaging and resigning (F2: 3), and app
developer involvement (F4: 3) by relying solely on the ability to load the app code
produced by an extended compiler backend1 (F5: 7).

In the remainder of this section, we explain the design and implementation of
the three main components of our solution: 1) a new IPC-based channel between
host app and library that makes the previously locally integrated library remotely
callable and, further, allows to synchronize the runtime states between library and
app (Section 3.5.2); 2) an extension for the dex2oat compiler that integrates host support
for the new communication channel into the host app and replaces the library through
an opaque proxy for the separated library (Section 3.5.3); and 3) a new advertisement
service app that encapsulates and privilege-separates the advertisement libraries as well
as displays the ads on screen (Section 3.5.4).

3.5.2 Inter-Application Communication Channel

Since the originally app-local procedure calls to advertisement libs are not possible
anymore in an isolated library design, we need an inter-application communication
channel to deliver such calls remotely across process boundaries. We take advantage
of the Binder framework [46], Android’s inter-process communication mechanism, to
replace the original calls to the advertisement library with remote procedure calls and
transfer data, such as method parameters, between the host app and advertising service
app. Figure 3.2 illustrates this channel and its components are explained in the following.

3.5.2.1 Communication Protocol and APIs

The first general challenge for our solution is the handling of data marshalling. On
Android, any data that should be transferred via Binder IPC has to be either a
primitive type (e.g., integer), String or a complex type, like a class, that implements the
Parcelable interface to marshal the complex type into primitive types for transmission.
However, library classes that were never intended to be sent via IPC, since they are
only used in local invocations, do not implement this interface and are by-design
not transmittable via Binder IPC. As a consequence, our channel cannot be used to
transmit them, because it is unclear how to marshal and unmarshal those complex
library classes. Thus, in CompARTist, we build on a generic protocol for remotely
creating and operating on objects of library classes: those objects are constructed and
stored at the advertisement service side and references to those objects are passed via
IPC to the host app, which can use those references to invoke methods or access fields
on the referenced objects. As generic, parcelable container data structure to transmit
method parameters, parameter type information, and references to class instances in our

1CompARTist requires access to a particular protected directory of an app to replace the oat file
that is loaded by the system. Escalated privilege, e.g., root access, is needed merely to overwrite the
original oat file.

22

3.5. COMPARTIST DESIGN

AdService

Ad
Components

AdHelper

Host
Components

Ad AppHost App

Binder IPC

Proxy Stub Proxy

Ad Invocation APIs
Sync APIs Callback APIs

primitives
String

WrapClass object
...

primitives
String

ad object
...

Stub

.identity:123

.classtype: adtype

.localId

.prim_object

wrapclass Ad
Object

Figure 3.2: Inter-application Communication Channel

protocol, we introduce a heterogeneous key-value store with corresponding serialization
and de-serialization logic called WrapClass.

We define three kinds of interfaces for our new inter-application communication
channel that host app and advertisement service app can use to call each other via
above mentioned WrapClass-based protocol: advertisement invocation API, callback
API, and synchronization API. For each of those interface types, we automatically
create Stub and Proxy classes using Android’s AIDL 2 feature. Those classes make
these communication channels more easily accessible for the host app and advertisement
service app, respectively. The full interfaces for each of those interface types are listed
in Appendix A.1. A particular benefit of these APIs is that they abstract from library
specific methods, thus avoiding the need to generate a tailored Stub and Proxy for
every available advertisement library and easing the process of adding support for new
libraries.

Advertisement Invocation API Generally speaking, there are three ways for host
components to communicate with the advertisement library (see also Section 3.4):
instance creation, field access, and method invocation. For each of those three operations,
the operation type, the operation target, and any optional parameters identify a concrete
library invocation event. To better illustrate this, consider the example library invocation
in Figure 3.3 where the host app creates a new AdView instance on which it then
calls the setAdUnitId(String) method. First (A1 in Figure 3.3), the host requests
to create an AdView object using the host’s context. This request will be processed
by AdHelper. AdHelper uses WrapClass to store the host’s Context instance
(A2). Since the Context is a non-parcelable class, WrapClass will only store the type
information of this context parameter, i.e., class type. This WrapClass instance forms

2https://developer.android.com/guide/components/aidl.html

23

CHAPTER 3. COMPARTIST

mAdView =
new AdView(host.context)

mAdView.setAdUnitId(adid)

newInstanceService(
"AdView",

wrapclass[])

storeObject(host.context)

wrapclass

getStoredObject(wrapclass)

adviewproxy

storeObject(adid)

wrapclass

wrapclass =
getWrapClassFromObject(

adviewproxy)

invokeVirtualMethodService(
"AdView.setAdUnitId",

wrapclass,
wrapclass[])

void

 A2
A1

A3

A7

B1

B2

B3

Host AdHelper WrapClass
(Host)

AdAdService WrapClass
(Service)

getStoredObject(wrapclass)

ad.context

AdView_constructor
.newInstance(ad.context)

adView

storeObject(adView)

HashMap(id, adView)

getStoredObject(wrapclass)

adView&adid

AdView_setAdUnitId
.invoke(adView, adid)

void

storeObject(void)

wrapclass

A4

A5

A6

B4

B5

B6

B7 getStoredObject(wrapclass)

wrapclass

Figure 3.3: Example protocol run for creating a new AdView instance and calling
method setAdUnitId(String) on this instance

the container of the original context instance and together with the type information of
the referenced target object (i.e., a Context), it is passed to the remote advertisement
app through our generic IPC API as parameter of a newInstanceSerivce (A3)
call for "AdView". This API call instructs AdService to create a new local object

24

3.5. COMPARTIST DESIGN

with the type "AdView" (1st argument) and constructor parameters stored in the
WrapClass (2nd argument). Thus, AdService first retrieves the stored object as the
local ad.context parameter from the WrapClass object (A4). With the target class
type "AdView" and constructor parameter, a new AdView object is created using the
AdService’s context (A5). Since the channel is agnostic towards the exact library,
AdService uses the Java reflection API to call the constructor of a class specified by
the target class type parameter. This new object is stored locally in a HashMap, using
a reference id as key. To reply to the host and return a reference to this new AdView
instance, AdService stores a reference (i.e., id) together with all type information in
a new WrapClass that it returns to the host (A6). The host creates a new proxy for
this remote AdView object using the received type information (A7). The WrapClass
object will also be stored in the proxy in order to establish the reference from the proxy
object to the remote object.

Using such proxies, the host can invoke methods on the referenced remote objects.
In Figure 3.3, the host invokes the setAdUnitid(String adid) method on the
proxy (B1). To this end, the host stores the adid parameter in a WrapClass object
and retrieves a WrapClass to reference the remote AdView object (B2). Afterwards
(B3), it instructs the AdService to invoke the method "setAdUnitId" of the class
"AdView" through the invokeVirtualMethodService IPC API call, where the
first WrapClass parameter is the reference to the existing AdView instance on which
this method should be invoked and the second WrapClass parameter is the argument
list (i.e., wrapped adid). As before, AdService will again retrieve all parameters
from the received WrapClass arguments (B4) and, through the reflection API, call the
method on the referenced local AdView object (B5). It then stores the return value,
here void, in a WrapClass instance (B6) and returns it to the host (B7).

Synchronization API Synchronization events only transfer meta information that
indicate the supposed lifecycle state and layout of the remote advertisement. It also
uses a WrapClass-based protocol to transfer those information, similar to invocation
of advertisement libraries explained above. The purpose of this API is the continuous
synchronization and smooth integration of the remote advertisement view within the
AdService app. More details about the operations that AdService executes in
addition to the advertisement invocations explained above are provided in Section 3.5.4.

Callback API As mentioned earlier, integrating callbacks requires a bidirectional
communication flow between host and library. To solve this problem, we implement
a set of callback specific APIs that the advertisement service app can use to trigger a
callback method in the host app. Thus, in this case the Proxy is located in the service
app and the Stub in the host app. In addition, we have to distinguish two types of
callbacks: interfaces and classes. In case the callback is implemented as an extension of
a library class, we additionally have to make sure that the concrete implementation’s
constructor is not calling its parent’s constructor and hence invoking library logic in
the host. Therefore, we rewrite the constructor to suppress the super call. For the
interface case, this is not necessary since there is no super constructor implementation.

25

CHAPTER 3. COMPARTIST

Otherwise, invoking callback APIs follows the same WrapClass-based mechanism we
described earlier for the advertisement invocation API in order to invoke the callback
methods of the host.

3.5.2.2 Communication Endpoints

The communication protocol is carried out between two communication entities: the
host side AdHelper within the host app and the AdService in the advertisement
service app, which in turn form the shim code between the host app components and
our IPC channel as well as between the advertisement library components and the IPC
channel, respectively (see Figure 3.2).

AdHelper serves as the encapsulation of our newly defined IPC APIs on the host
side. AdHelper takes care of wrapping and unwrapping data from and to WrapClass
and bridging the gap between our communication channel and the host components.
The interfaces provided by AdHelper are used by our compiler-based rewriter to re-
integrate the remote library into the host app by replacing local advertisement calls
with calls to AdHelper (see following Section 3.5.3). Similar to AdHelper on the host
side, AdService forms the shim between the IPC communication channel and the
library’s original API on the library side.

3.5.2.3 Service Connection Between Host App and Ad Service

In our current model, AdHelper binds itself to the AdService to establish the
communication channel. However, this channel has to be established before any library
code can be invoked by the host app in order to ensure the correct functionality of
the advertising function of the host app. To solve this problem, we inject during
the compilation code into the host app that scans the host app’s message queue at
application start to obtain the Binder handle of the AdService and then already
initializes the connection to the AdService in a very early stage of the app’s startup
phase, before any AdHelper function is invoked, thus ensuring any library invocation
finds a valid, established communication channel.

3.5.3 Compiler-based App Rewriting

In order to utilize our remote isolated advertisement library, we first need to retrofit
host applications to actually use the newly introduced communication channel instead
of the packaged library. Therefore, we need an application modification framework
that can replace invocations to the local library with those to our remote version by
redirecting all host-library interactions to the new IPC-based communication channel.
Splitting the host app and local library, and afterward reintegrating the host with the
IPC channel requires two essential steps: First, we need to identify the boundaries
between host and advertisement code. Second, we replace all those interactions with our
proxies and wrappers to restore the overall library integration across process boundaries.
This results in the host app being agnostic towards the fact that it no longer interacts
with the packaged advertisement library but with our remote library through an IPC
channel.

26

3.5. COMPARTIST DESIGN

3.5.3.1 Library Boundaries

The first step towards dissecting the host application is understanding the exact in-
teraction patterns between app and library. While we discussed general integration
techniques in Section 3.4, we analyzed real-world applications to identify actual code
patterns with which we can transform applications properly. We distinguish between two
cases: First, library objects or data are introduced into the host application by either
invoking a method, accessing a field, or instantiating a class from the advertisement
library. Second, library objects or data that have been introduced to the host code
earlier are passed around, characterized by method return, field access, type check, or
type cast within the host application. While only the first case depicts the boundary
between host and library, both cases need to be considered when rewriting interactions
to use our AdHelper instead. Apart from code boundary, special integration cases,
such as manifest defined components and customized exceptions, also need specific
proxy support.

3.5.3.2 Library Substitution

The second step is to utilize the information about the concrete code integration
patterns to resect the library code and replace it with components from our AdHelper.
Concretely, we utilize an app instrumentation framework that is capable of merging
AdHelper into the application and replacing said code parts with our alternatives. In
the following, we will first introduce the general structure of the host-side instrumentation
part of CompARTist and then deep-dive into the rewriting routines as they pose one
of the major challenges in establishing this new remote library connection.

3.5.3.3 ARTist Instrumentation

In this work, we leverage the Android app instrumentation capabilities of ARTist [1]3.
The rewriting part of ARTist is built on top of the dex2oat compiler of the Android
Runtime (ART) introduced in Android 5 Lollipop and provides a modular framework to
integrate various instrumentation solutions. We use ARTist to modify interactions with
the advertisement library to interact with our AdHelper instead by utilizing two of
ARTist’s main features: introducing customized instrumentation routines through the
module framework and injecting our AdHelper into the host app through the library
injection capabilities.

Module Framework ARTist instrumentation is based on the concept of so-called
modules. A module gets full access to the application’s code, allowing for arbitrary
modifications, e.g., adding or removing instructions or changing them altogether, which
will be reflected in the code after compilation. Internally, ARTist utilizes dex2oat’s
optimization framework to disguise modules as optimizations and let the existing
infrastructure execute them. Concretely, a module is then provided with the code of all
methods in the compiler’s internal intermediate representation (IR), one after another,

3ARTist is open source software available under Apache 2.0 license (https://github.com/Project-
ARTist).

27

CHAPTER 3. COMPARTIST

and can analyze and change it at will, as the compiler believes it is executing a regular
optimization algorithm. As it is designed to be utilized for optimization algorithms, the
compiler’s IR represents a method as a control flow graph of heavily interlinked nodes
that closely resemble dex bytecode instructions 4. We leverage this module interface to
implement the host side of CompARTist. More precisely, we introduce a specialized
module to take care of replacing the host-library interactions with corresponding versions
from our AdHelper.

Library Injection While the module framework is designed to modify existing code,
the injection capability allows the merging of arbitrary own code libraries into a target
application. ARTist will automatically make all of AdHelper’s APIs and other support
components available to our module so that we can safely redirect all interactions to
this new target.

3.5.3.4 Module Design

While ARTist only provides the integration into the compiler, the main challenge is
to design the CompARTist module to seamlessly connect the host application to the
communication channel without harming the app’s original semantics. Therefore, we
will focus here on the design of our rewriting module.

Collecting Instrumentation Targets From our analysis, we know the precise patterns
that bootstrap interactions between host and advertisement library. From this point, we
need to find all IR code nodes that operate on the obtained library data and modify them
accordingly. Since each node in the IR method graph is interlinked with its usages and
inputs already, we can apply forward slicing from our starting points to find all code nodes
that we need to modify. Derived from our earlier analysis, we define three types of start
nodes: class loading, field access, and method invocation. As we are operating on method
control flow graphs, we can find all those occurrences on a per-method base. In the IR
graph, those starting points are marked by the following instructions: LoadClass starts
a host-lib interaction by loading an advertisement library class that is subsequentially
used for, e.g., InvokeStaticOrDirect and NewInstance instructions; {Static,
Instance}FieldGet obtains previously-saved advertisement library data from a field
in a host component; InvokeVirtual receives previously-saved advertisement library
data from an invoked host method.

Instrumentation Policies Equipped with a list of entry nodes, we follow the slice
through the method graph and collect every instruction that interacts with the ad-
vertisement library. Afterward, every single node is transformed to use our generic
communication channel instead. This is possible since the IR graph provides us with
all the structural information required to properly interact with the AdHelper API:
operation type, operation target, and optionally, parameters. While we learn the opera-
tion type from the concrete IR node (e.g., instance creation for NewInstance nodes),

4The ARTist paper [1] provides in-depth documentation on the intermediate representation.

28

3.5. COMPARTIST DESIGN

 3: InstanceFieldGet, args: (0)
 5: LoadClass: Lcom/google/android/gms/ads/AdRequest$Builder
 7: NewInstance: Lcom/google/android/gms/ads/AdRequest$Builder, args: (5)
 8: InvokeStaticOrDirect: com.google.android.gms.ads.AdRequest$Builder.<init>, args: (7)
 9: InvokeVirtual: com.google.android.gms.ads.AdRequest$Builder.build, args: (7)
11: InvokeVirtual: com.google.android.gms.ads.AdView.loadAd, args: (3, 9)
12: ReturnVoid

Before Instrumentation

14: LoadClass: Lcom/hostsupport/localsupport/AdHelper, args: (4)
15: ClinitCheck, args: (14)
16: StaticFieldGet, args: (15)
17: NullCheck, args: (16)
 3: InstanceFieldGet, args: (0)
21: LoadString: 'Lcom/google/android/gms/ads/AdRequest$Builder', args: (4)
22: InvokeVirtual: com.hostsupport.localsupport.AdHelper.createObjectHelper, args: (17, 21)
24: LoadString: 'build', args: (4)
25: InvokeVirtual: com.hostsupport.localsupport.AdHelper.invokeMethodHelper, args: (17, 21, 24, 22)
18: LoadString: 'Lcom/google/android/gms/ads/AdView', args: (4)
19: LoadString: 'loadAd'(4), uses: [20]
20: InvokeVirtual: com.hostsupport.localsupport.AdHelper.invokeMethodHelper, args: (17, 18, 19, 3, 25)
12: ReturnVoid

After Instrumentation

Source Code

1 AdView adView;
2 ...
3 // show a banner advertisement
4 public void showBanner() {
5 AdRequest.Builder adRequestBuilder = new AdRequest.Builder();
6 AdRequest adRequest = adRequestBuilder.build();
7 adView.loadAd(adRequest);
8 }

Figure 3.4: Intermediate representation of advertisement loading code before and
after the CompARTist transformation

operation target and parameters are immediately available in the graph, too, and can
therefore be provided to the AdHelper API.

Example Transformation Figure 3.4 describes the code transformation applied to a
code snippet that creates and loads a Google Play Services Ads advertisement. The
right top part of Figure 3.4 depicts the intermediate representation of a small method
that loads an AdView. After loading the advertisement library class (instruction 5),
the result of the LoadClass node is used to create a new object (instruction 7 and 8).
Afterward, the newly created Builder is used to build an AdRequest (instruction 9)
that is consequently used to load an advertisement (instruction 11). Starting from the
LoadClass node, forward slicing provides us with all of the above-mentioned nodes
that interact with library components. The right bottom part of Figure 3.4 depicts
the transformed version of the advertisement loading code. First, instead of loading
and instantiating the original class, the instrumented version uses the createOb-
jectHelper method from our AdHelper to trigger the instantiation of said object
in the remote library (instruction 22). Second, the invokeMethodHelper allows
triggering the invoked build method remotely (instruction 25). It only requires the
name (instruction 24) and class (instruction 21) strings, and the object handle returned
from createObjectHelper (instruction 22) to be provided as arguments. Third, the
loadAd is remotely invoked via the invokeMethodHelper API (instruction 20).

3.5.4 Advertisement Service App

The advertisement service app encapsulates the advertisement library and forms the
sandbox for the lib. As a separate app, executed with a distinct uid and in separate
process, it effectively privilege-separates the advertisement library with a strong security
boundary. Additionally, this app is responsible for executing operations requested by
the host app on the library or for proxying callback methods from the library to the
host app (as explained in Section 3.5.2). Moreover, it is responsible for displaying the
advertisement on screen at the correct position to preserve visual fidelity. To correctly

29

CHAPTER 3. COMPARTIST

The original view of an app should not be
changed after advertisement removal.

The original view of an app should not be
changed after advertisement removal.

Banner Ad Empty View

Banner Ad

floating window

Original App Ad AppHost App

size
position

...

Figure 3.5: Synchronization Management

display ads, the AdService relies on lifecycle synchronization messages from the host
app, e.g., show/hide an advertisement or rotate the advertisement.

3.5.4.1 Synchronizing lifecycles and preserving visual fidelity

It is important to preserve the original look-and-feel of the advertisement library (visual
fidelity) by serving the advertisement as a part of the host application’s user interface. In
particular, sharing a screen with the host application is very prevalent in advertisement
libraries and therefore needs careful consideration. Most advertisements are directly
integrated into the layouts of their host activities and therefore share their lifecycle, such
as creation, pausing, and finishing events. Thus, in CompARTist we need a mechanism
to keep them in sync between the host app and the separately executing advertisement
library in the advertisement service app.

Proxy view and floating window Instead of simply removing the original advertise-
ment View, e.g., AdView, from the layout of the host, we replace it with a carefully
crafted and empty proxy View. In order to preserve the dimensions and placement of
the remaining GUI elements, this proxy View is located at the exact same position as
the original advertisement View and occupies the exactly same space. Concurrently,
advertisement service app creates a floating window that is placed on top of the proxy
View, again occupying the very same position and space as the original advertisement
View. It is important to note that the floating window, even though originating from
the advertisement service app, can still be displayed while the host app is running in the
foreground. Hence, the floating window effectively covers the same area on screen as the
proxy View (see Figure 3.5). In our solution, we use floating window type TYPE_TOAST
to overlay the proxy space with no additional permission needed. Whenever a lifecycle
callback from the Android system arrives at the proxy View, such as rotation events
between portrait and landscape orientation or create/pause/resume/destroy events,
the proxy View forwards them via our inter-application communication channel and

30

3.5. COMPARTIST DESIGN

AdService to the floating window. This allows the floating window to stay in sync
with the host app’s proxy View. As a result, while the advertisement is safely com-
partmentalized in the service app, the user perceives the advertisement as a part of the
host app’s layout because the occupied space and the lifecycles are synchronized. The
required layout information and lifecycle events are gathered through two user inter-
face callbacks: OnLayoutChangeListener and ActivityLifecycleCallbacks.
Since the proxy View is integrated into the host layout and instantiated in the host app’s
context, it obtains the exact position the advertisement should have on-screen through
implementation of the OnLayoutChangeListener and synchronizes this information
with the remote side. By implementing ActivityLifecycleCallbacks for the
proxy View, it is also straightforward to have synchronized displaying, hiding, and
finishing events in the remote advertisement View.

Advertisement view inflation Usually, an advertisement view can either be defined
explicitly in a layout file and inflated automatically by the system, or it can be instanti-
ated manually at runtime. While we can handle the runtime case with our rewriting
framework, supporting view replacement in case the advertisement instantiation is done
by the Android framework itself is more intricate. Modifying the layout file directly is a
possible solution, but it would again require to repackage the app and break the app
signature. To support view substitution in both cases, at runtime and via layout files
while still maintaining the app signature, we use reflection to additionally hook into
the inflation mechanism at runtime and inflate our proxy View instead of the original
advertisement View. Using this approach, the layout integration technique in Table 3.2
can be supported.

3.5.4.2 Multiplexing host apps

There are two approaches to achieve advertisement pairing while multiplex host apps
exist. One advertisement library app per app approach, where library runs in its own
remote app, can easily enforce per app privileges on the advertisement lib. This approach,
however, is not resource efficient. A centralized advertisement app, which contains
all advertisement libraries and serves all rewritten host apps would be more efficient.
Since our inter-application communication channel between client and advertisement
service app is built on top of service connections using Binder , the advertisement
service can identify the current caller app using Binder.getCallingUid() together
with information provided by the PackageManager. By using those client-specific
profiles, libraries can be shared between different clients. However, this approach
requires a strong domain isolation within the single user-level advertisement app to
privilege advertisement executions according to their host apps (similar to AdDroid’s [26]
advertisement system service). Each approach has its own merits and both of them can
be adopted to CompARTist, since it’s just a matter of redirecting the IPC calls.

To prevent a malicious host app from stealing advertisement revenue through
our CompARTist by continuously sending synchronization messages that instruct
AdService to overlay any other app with the malicious app’s advertisement, the
advertisement service app must be able to make synchronization events plausible. In

31

CHAPTER 3. COMPARTIST

our current solution, we rely on the simple heuristic that only the host app that is
on top of the system’s Activity stack, i.e., in foreground on screen (excluding the
floating window overlay), is able to send valid synchronization events, since it essentially
instructs the AdService to be overlayed or finish its own overlay, thus not affecting any
other app. The information about the current top Activity can be retrieved by third
party applications (like our advertisement service app) on older Android versions via the
ActivityManager and on newer Android versions via the UsageStatsManager.

3.5.5 Deployment

The key idea of our design lies in working out an application-layer-only solution that is
refrained from any firmware modification while still providing robust privilege isolation.
This in particular means that, as our discussion in Section 3.5.1, we tailor our solution
towards enabling as many advantageous features outlined in Table 3.1 as possible. Our
advertisement service app can be installed as a regular application and we here introduce
the deployment of the host-side instrumentation part of CompARTist.

Requirements As described in Section 3.5.3, our app rewriting solution is built on
top of the ARTist framework which is based on a modified compiler. However, to
meet the above-mentioned requirements, we cannot replace the system compiler directly
since not only does this concern modification of the firmware but also every single app
installed afterward will be rewritten by our mechanism automatically. Instead, we want
to support selective recompilation of apps, for example, the user should be able to
configure the set of apps to be instrumented.

ArtistGui We fulfill this goal by utilizing ARTistGUI 5 which is an open-source
application created for seamlessly executing ARTist modules from the application layer
without any modification to firmware. Inside ARTistGUI , the compiled version of our
app rewriting logic is shipped as a binary asset, and the instrumentation capabilities
are exposed to users through an easy-to-use graphical interface. Once our recompilation
routines are finished, the instrumentation is completely transparent to the user as the
instrumented application can still start from the launcher or other apps as usual.

Dependencies While CompARTist abstains from modifying the Android firmware,
it is still necessary to have at least elevated privileges to convince Android to run those
instrumented apps rather than the original ones. We will discuss this requirement and
its possible solutions as well as alternative deployment strategies for the rewriting part
in Section 3.6.3.

3.6 Discussion

We evaluate the robustness of the apps transformed by CompARTist and the perfor-
mance overhead introduced by our changes. Further, we summarize the limitation and

5ARTistGUI is open-source software available under Apache 2.0 license (https://github.com/Project-
ARTist/ArtistGui).

32

3.6. DISCUSSION

potential improvements of our system and discuss the future research directions.

3.6.1 Robustness Evaluation

The applicability of our approach principally relies on its capability of neatly recon-
structing the communication channel between the split application and advertisement
code across process and sandbox border. In order to assess the robustness of our system,
we carried out a large-scale evaluation of free apps from Google Play Store that contain
advertisements.

3.6.1.1 Target Apps

We first collected a list of applications that integrate the Google Play Services Ads library
as our evaluation targets. As Google Play Services Ads occupies a significant proportion
of the mobile advertising market, evaluating with this library can reflect compatibility
with a large market share of apps containing advertisements. We utilized LibScout [7],
an open-source tool that can distinguish different libraries used in apps, to generate
this list. Starting with top apps from Google Play Store, we filtered out apps that did
not contain target library integrations or did not meet the testing prerequisites, e.g.,
download failed, dysfunctional behaviors (i.e., crashed at launching), or are multidex6.

3.6.1.2 Testing Setup

To scale the evaluation of an app’s dynamic status to thousands of apps, automation
is the only achievable solution. We here make use of monkey-troop7, a freely available
testing framework designed for ARTist modules, to pre-filter, recompile, and explore
all target apps on real devices. Specifically, after filtering out apps that do not meet
our requirements, the qualified apps will be installed on the device, rewritten with
CompARTist, and automatically launched and explored using Android’s monkey [47]
tool. We choose Google Pixel C devices running rooted stock Android 7 Nougat as our
test platform and conduct the evaluation after both CompARTist and advertisement
service app are installed and configured on these devices.

3.6.1.3 Automated UI Testing

Gaining meaningful code coverage during automated UI exploration is still an open
issue. We currently take advantage of Google’s monkey [47] tool to generate and send
random touch gestures to target applications’ user interfaces. However, this strategy
makes the monkey only walk through the first few activities and all input-validated fields
will be missed. In addition, though monkey could be constrained to access activities
within a specific package, it still has the chance to leave the app UI by returning to the
home screen or changing the device’s quick settings randomly. Still, we use the monkey
as our evaluation tool for the following reasons: First, the event sequences generated

6Our implementation does not support multidex apps (apps packaging more than one dex file).
7monkey-troop is open-source software available under Apache 2.0 license (https://github.com/Project-

ARTist/monkey-troop).

33

CHAPTER 3. COMPARTIST

3,861

3253,536

2793,257

8412,416

Candidate apps

Unsupported

Supported

Failed

Success

No ad shown

Ad shown

Figure 3.6: Breakdown of our robustness evaluation on applications using the Google
Play Services Ads library

by monkey are reproducible. By re-executing monkey with the same seed value, the
filter and test phase can share the same test setting and are prevented from exploration
path mismatching. Second, code coverage is not crucial here, since there are already a
lot of code instrumentations at the application start (see Section 3.5.2), and therefore
launching the app to check if it crashes already suffices in most cases. So it is not a
mandatory requirement to trigger at least some functionalities but a plus.

3.6.1.4 Results

We start the large-scale robustness evaluation by feeding monkey-troop with an initial
application list of 3861 apps and show the evaluation result in Figure 3.6. After filtering
out apps that do not meet the aforementioned criteria, we have 3536 qualified apps in
our testing set. Among them, 3257 were tested, instrumented, and retested successfully,
resulting in a success rate of 92.11% that demonstrates the compatibility between
CompARTist and a large portion of in-app advertising applications. While the result
confirms the robustness of our approach, it also gives some further information about
the drawbacks of the current evaluation setting. Although we successfully instrumented
92.11% of the qualified applications, only 2416 out of 3257 (74.18%) reached an execution
state that actually triggered an advertisement request during testing according to the
topmost row of the result. As described in Section 3.6.1.3, the automatic monkey tool
has limited capability in exploring advertisements that are hidden beyond the first few
Activities. Nonetheless, please note that even for those apps that did not trigger
an advertisement request, the connection between the host application and the remote
advertisement service app has been successfully established, which has already involved
heavy rewriting work. Hence we expect our approach to nevertheless be compatible
with a significant proportion of these non-ad-triggered apps.

3.6.2 Performance Evaluation

We compare the runtime performance of the transformed app, which connects and
interacts with the advertisement service app remotely with the original app so as to
evaluate the performance of our approach. We focus on three representative scenarios:
application start, banner advertisements, and interstitial advertisements and assess
them with microbenchmarking respectively.

34

3.6. DISCUSSION

Table 3.3: Performance evaluation results for the app compart-
mentalization transformation (averaged over 50 runs)

Baseline (ms) Transformed (ms)

Application Start 6.52 149.44
Banner 2025.35 2101.50
Interstitial (Loading) 1923.05 2084.44
Interstitial (Displaying) 117.13 125.40
Interstitial (Overall) 2040.18 2209.84

3.6.2.1 Testing Setup

We again set Google Play Services Ads as our target library for microbenchmarking.
To eliminate interference from other host functionalities and measure the immediate
impact of our approach, we create a dedicated sample application that only integrates
banner and interstitial advertisements according to Google’s developer manual [48]. To
gather the precise time consumed by certain scenarios, we embed benchmarking code
into this sample application straightforwardly. By repeatedly launching the app in its
original and transformed states, we can precisely catch the overhead of each scenario
after applying our approach. The performance experiments are performed on a Google
Nexus 6 device with rooted stock Android 7 Nougat.

3.6.2.2 Results

We exhibit the test result of performance overhead for different scenarios in Table 3.3.

Application Start As described in Section 3.5.2, the transformed application needs to
establish the connection to the remote advertisement service app once upon launching,
hence all its local operations are blocked until it gets the service handle. More precisely,
we set a fixed amount of waiting time, which is 100 ms in our setting, before inspecting
the message queue so as to ensure the availability of the advertisement service Binder8.
Apart from that, it also takes the host side some time to accomplish the client-specific
initialization works before entering the app’s original logic, hence blocks the app further.
Table 3.3 depicts the combined one-time cost covering all of the above overheads.

Banner Advertisement Considering that loading and displaying banner advertise-
ments is a synchronous task, we start the microbenchmark when the banner is requested
and terminate the test as soon as the successful loading callback is invoked. According
to Table 3.3, our approach introduces an acceptable overhead of 3.62% for banner
advertisement.

Interstitial Advertisement Compared to banners, interstitials are larger in size, so we
follow Google’s official best practice [49] of pre-loading interstitials as early as possible

8https://developer.android.com/reference/android/os/Binder

35

CHAPTER 3. COMPARTIST

to ensure that it is fully loaded when display time comes. The implications of this best
practice are twofold: First, only the interstitial loading concerns network traffic. Once
the advertisement is fully loaded, the display of the interstitial is completely independent
of the network, so its results are more reliable and easier to replicate. Secondly, if most
app developers follow this best practice when integrating Google Play Services Ads, the
interstitials will be loaded earlier asynchronously, so the user experience will not be
hampered by ad-loading-induced deviations. Given those implications, we divide the
performance evaluation for interstitials into a loading phase and a display phase, and
set up separate microbenchmarks for these two phases. As shown in Table 3.3, the
loading phase dominates the overall interstitial time consumption. Since this phase is
significantly impacted by the involved network communication, we take the captured
overhead of 7.74 % with a pinch of salt. However, at the very least, the measurements
demonstrate that our approach has no significant impact on the loading performance.
For the interstitial display phase, as expected, we notice that our approach introduces
a small overhead of 6.59 % due to the additional computations and IPC roundtrips,
which is still within the range of being almost imperceptible to the users.

3.6.3 Deployment Alternatives

We here discuss the existing deployment alternatives, including their drawbacks and the
particular use cases that motivated them.

3.6.3.1 Host-side Deployment Alternatives

CompARTist is capable of being retrofitted to achieve a different subset of the objectives
listed in Table 3.1 based on the concrete use cases. We present potential host-side
deployment alternatives that substitute or combine the host-side modification of our
approach with existing solutions.

Instrumentation Frameworks Most of the long-established Android application in-
strumentation frameworks are based on bytecode rewriting techniques. CompARTist
inherits ARTist’s instrumentation capabilities which are on par with the existing works.
Hence, for cases that application signature preservation is not necessary, our host-side
rewriting can be replaced with one of the existing instrumentation frameworks [39, 40,
41, 42, 43, 44] without affecting the establishment of the new communication channel
between the host app and the remote library.

Virtualization Techniques File system virtualization techniques are used by existing
virtualization solutions [50, 51] to manage the interaction between applications and
middleware or kernel. They are operating at application granularity—every target
application is treated as a black box, thus, virtualization solutions themselves are not
sufficient in coping with application retrofitting works involved in our scenario, in
which case the ability to modify at instruction granularity is required so that the host
and library code can be clearly distinguished and our AdHelper can be applied to
reconstruct the communication channel. Nevertheless, we can combine virtualization
solutions such as Boxify [50] or NJAS [51] either directly with ARTist following the

36

3.6. DISCUSSION

suggestion in the ARTist paper [1], or with one of the above-mentioned instrumentation
frameworks to avoid the privilege elevation required in our approach.

3.6.3.2 System-centric Deployment Alternative

We then discuss the custom ROM cases where the compartmentalization functionalities
can be fully integrated into the firmware by design. In these cases, objectives like
application-layer-only deployment and preserving app signatures are no longer necessary,
thus it is sufficient to replace Android’s default dex2oat compiler with an ARTist version
running our CompARTist module straightforwardly, as this customized compiler will
instrument each application automatically to replace the local advertisement calls
with remote advertisement service calls. This deployment strategy can be applied to
security-focused ROMs where a hardened OS version is delivered.

3.6.4 Limitations

We explain the shortcomings of our approach as well as those inherited from our
prototype implementation.

Inherent Limitations As a result of the design decisions made during our system
build process, we understand the existence of some inherent drawbacks in our selected
approach. Whilst we establish CompARTist with the idea that arbitrary Android
libraries can be compartmentalized in mind, it might be too aggressive to target our
approach at isolating more tightly-integrated and deeply-coupled libraries like Guava [52].
As opposed to advertisement libraries that have well-defined interfaces and interact
rarely with the host app, more class proxying efforts are required to reconstruct the
IPC channel in isolating deeply-coupled libraries, which significantly increases the
performance overhead and impairs user experience. While a novel and robust approach
to compartment libraries in general is presented in this work, it is more suitable for
our approach to isolate loosely-coupled libraries like advertisement libraries. Another
problem of CompARTist is that it distinguishes advertisement libraries through a
whitelist, hence it cannot deal with new libraries beyond its knowledge. Even though
our current design enables the quick construction of the required remote advertisement
library package, explicit human efforts are still required to extend support for additional
libraries. Despite the advertisement market is not heavily fragmented at the time of
this work, there is still the possibility that some new libraries might emerge in the
future. One potential solution towards this could be sharing the above-mentioned library
supports through, e.g., the community.

Inherited Limitations Besides limitations in our approach, CompARTist also inherits
some inherent shortcomings of the utilized ARTist system. Android imported dex2oat
since Android 5 Lollipop while ARTist makes use of the Optimizing backend from
Android 6 Marshmallow. Only later Android versions can be used for the deployment
of ARTist, which inevitably reduces the applicability of our approach. In this work, we
built CompARTist on top of the Android 7 version of ARTist. Furthermore, ARTist has
the requirement for elevated privileges, e.g., root. Fortunately, as previously described,

37

CHAPTER 3. COMPARTIST

alternative deployment strategies based on use cases exist, which allows for more
relaxed requirements. Finally, as already mentioned in the robustness evaluation, our
approach lacks support for multidex applications. Therefore, larger applications cannot
be transformed with our current prototype if proper multidex supports are missing.

3.6.5 Future Work

We here present potential improvements to our prototype as well as future research
directions.

3.6.5.1 Improvements

We can improve our work by addressing issues from both CompARTist and the evalua-
tion pipeline.

Obfuscation Support To replace the original advertisement calls with calls to Ad-
Helper in our solution, the ARTist module traverses the target application’s code to
locate these intra-application invocations to the target library. Indeed obfuscation can
hide the real interfaces (that are available from the library documentation), but the
library structural information has a great opportunity to be preserved. For example,
LibScout [53] generates distinguishable features for different libraries based on package
structure information, allowing its library detection functionality to survive code-based
obfuscation. Hence, the robustness of advertisement call detection in our approach can
be optimized if these library detection techniques are imported to our solution.

Library Detection In our current implementation, we assume that the integrated
advertisement library is known beforehand. Given that the in-app library identification
problem has been proved to be solvable with a high probability in LibScout [53], we
can greatly improve the usability of CompARTist by adding such a library detection
module.

Callee-side Rewriting The remote advertisement in our solution is incorporated into
the host application by replacing the intra-application advertisement invocations with
proxy calls from our support library. However, library invocations triggered by reflection
methods or from native code are not supported in our current caller-side rewriting
setting. A possible solution is to shift our approach to callee-side rewriting, for instance,
hooking the library interfaces to redirect them to our proxies.

UI Testing Automation While precautions are taken to prevent some common pitfalls
from occurring in our automated large-scale evaluation, there are still some weaknesses
in the UI exploration tool we utilized. As described in Section 3.6.1.3, monkey in
theory should be able to specify the target application and restrict the exploration
to the user interfaces of that package. However, we observed several times that our
tests were interrupted by unexpected events, such as monkey-generated touch events
that overstepped the application UI boundaries during testing, disabling the device’s

38

3.7. CONCLUSION

USB debugging option, or even going as far as factory-resetting the device. It seems
that even though monkey is sufficient in presenting the feasibility of our approach, the
existence of these undesired behaviors can introduce uncertainties to our testing. The
current test infrastructure can be more reliable if a superior UI exerciser tool is provided.
Other dynamic exploration tools like Brahmastra [54] and DroidMate [55] could be the
possible alternatives for monkey.

3.6.5.2 Research Prospects

In addition to advertisement compartmentalization, CompARTist can also serve as the
foundation for many future research projects.

Library Hotpatching A handful of top advertising networks, such as Google Play
Services Ads, dominate the advertisement library market, so it is inevitable that many
applications will statically integrate the same popular advertisement library packages,
which leads to a considerable amount of library duplication between different applications.
Generally speaking, library update work is a task for application developers. However,
recent statistical work [53] has pointed out that developers often postpone, or in the
worst-case scenario, simply ignore these updates. A potential solution to this problem
is that we first provide an adapted instance of each library, each running in a dedicated
application environment, and then transform the original local static library calls to
references that dynamically link to the remote libraries. We’ve already shown that our
system has the capability of accomplishing this transformation task, hence, we only
need to create and maintain a system-centric repository of advertisement libraries. This
system-centric repository further eases the distribution of library updates. When a
new library update comes, all applications containing that library can be upgraded as
soon as the library in the system-centric repository is upgraded, which is completely
transparent to the app developer. The difficulty lies in that there may be backward
compatibility issues with the library updates, but in any case, this system can at least
be utilized to deliver security patches that have no public interface modification.

Beyond Advertisements As mentioned before, the loosely-coupled nature and well-
defined interfaces of advertisement libraries make them more suitable for applying our
approach than deeply-coupled libraries like Guava. However, there is also the possibility
of applying our approach to isolate other types of third-party components in-between
and even some new usage scenarios. For example, using our approach to compartment
untrusted components or to deploy a system-centric update distribution solution.

3.7 Conclusion

This work introduces CompARTist, a compiler-based library compartmentalization
solution to remedy the unsatisfactory situation of privacy and security threats induced
by untrusted advertisement libraries. Our solution splits the original app into host
and advertisement library components and moves the library to a dedicated app to
create a strong security barrier. We apply inter-process communication and lifecycle

39

CHAPTER 3. COMPARTIST

synchronization to seamlessly reintegrate both components without impairing user
experience. Our evaluation proves the robustness of our approach by successfully
applying our transformation routines to 3257 apps from the Google Play Store. In
conclusion, we introduce a new approach to library compartmentalization that abstains
from system or app modifications.

40

4
Up2Crash

Evaluating Third-Party Library Updatability on Android

41

4.1 Motivation

As described in Chapter 3, the privacy and security threats originated from overly
curious or even malicious third-party libraries can be greatly mitigated by establishing
a clear trustworthy boundary between the library and the host and managing different
entities with separate privileges. However, many libraries are not suitable for such a
mechanism as shown in Chapter 3. In light of this fact, we instead in this chapter focus
on the library itself, attempting to minimize the privacy and security risks associated
with the vulnerability of libraries while retaining the original in-app library integration
model. A number of studies [56, 57, 53, 58] have already looked at the problem of
vulnerable libraries for Android applications and have shown that vulnerable third-
party dependencies are actively in use within applications, e.g., a surprising ≈70% [59]
of vulnerable free apps owe their vulnerabilities to integrated libraries. The most
straightforward countermeasure against such vulnerabilities is to apply updates: a
third-party library provider releases a fixed version, and applications that include the
vulnerable version of the library can then be fixed by promptly updating the library.
Unfortunately, due to the update bottleneck in the Android library update ecosystem,
most library updates are not delivered to apps in this smooth manner as described in
Section 2.3. Recent studies of third-party library updates [2, 60] confirm that most
developers do not consider library updates as the reason for application version increment.
Developers tend to preserve the outdated versions of the library to avoid the extra effort
required for resolving incompatibility of their apps’ code with newer library versions.
Investigation of vulnerable apps’ lifetimes [61, 62] also reveals the lack of incentives for
non-functional updates. Given this situation, an automated update mechanism might
be a way out of this dilemma.

4.2 Problem Description

Prior work [2] proposed the idea of an automatic update mechanism based solely on API
compatibility between different library versions. Its statistics show that with such an
automated library update setting, 85.6% of the libraries have at least one higher version
available for update and 48.2% can even be updated to their latest version without any
additional host code adoption. The problem is that the achieved updatability rate is
derived solely from the results of static app analysis, which can only provide a glimpse
of automated library updating from a theoretical and syntactic perspective. It ignores
potential factors of version incompatibility that can immediately come into mind, such
as obsolete APIs, intra-function changes, or secondary dependencies. So far, no ground
truth exists about the existence and severity of those additional factors.

To bridge this gap, we try to answer in this paper the open questions "What is
the actual library updatability?", "Do the updated libraries exhibit incompatibilities that
prevent an easy drop-in replacement of library versions?" and "What are the primary
causes for those incompatibilities?". To answer those questions, we opt in this work for

4.3. CONTRIBUTIONS

studying apps’ runtime behavior before and after applying drop-in replacements of API-
compatible library updates. The best approach to do so could be 1) an implementation
of an automatic library updating solution and 2) behavioral profiling of apps’ runtime
for both the original app and the one with library updates deployed.

Several existing works have dug into the problem of patching vulnerabilities in
existing applications, such as Appsealer [63], PatchDroid [64], or Instaguard [65]. Unfor-
tunately, none of them specifically focuses on library code. PatchMan [66] considered
libraries, but only takes system libraries into account. Most importantly, the setting
for a library updatability solution, which has to consider multiple update candidate
versions, code changes beyond simple function-level changes, and potentially entangled
dependencies (see Section 4.8.2), differs a lot from vulnerability patching solutions (e.g.,
a static rewriting solution cannot deal with entangled dependencies, or in-memory
patching is limited to very local, small changes). Thus, none of the existing solutions is
applicable as a suitable solution to the automated library updatability problem.

4.3 Contributions

To extend the status quo and investigate in-depth the proposed drop-in replacement
of API-compatible library versions, this work presents a two-stage experiment. In
this experiment, an automatic drop-in replacement library update framework based on
classloader customization is put forward in the first stage, and then, in the second stage,
dedicated, dynamic tests are carried out to evaluate the runtime behavioral differences
between the original app and the one with an updated library. To the best of our
knowledge, this work is the first to investigate the semantic problems and consequences
for Android library updatability in a real-world setting in contrast to the previously
estimated numbers purely on syntactic updatability.

Our study focuses on three popular, previously studied libraries (OkHttp, Facebook
SDK , Facebook Audience). Our dynamic analysis results revealed that at runtime
4.08% (success rate 95.92%) of the tested updates experienced crashes after the drop-in
library update. We discovered that multiple factors impede the automatic integration of
a compatible library version. Through a source code study of crashed library versions, we
discover incompatibilities beyond the public API, including deprecated public methods,
changed data structures and library initializations that are only documented in the
library changelogs, or entangled dependencies between the updated library and other
libraries or the host app. Further analyzing the source code of 1,430 versions of 44
libraries showed that those discovered impeditive factors are prevalent in all kinds of
other libraries and the claimed library updatability rate by prior works [2] should be
adjusted. To provide a clear understanding of the library updatability, we re-calculate
the updatability rate on a set of 332,432 apps after considering all those discovered
factors. The comparison result shows that for OkHttp and Facebook SDK the picture is
rather bleak, and their updatability rates sink 93.40%↘45.45% and 94.06%↘53.69% in
the worst case, respectively, in comparison to previous estimates.

Thus, our work confirms the technical feasibility of an automatic drop-in replacement
for library updates, but our test results also clearly show the existence of impeditive
factors that prevent a drop-in library update from working correctly in practice. We

43

CHAPTER 4. UP2CRASH

think that our results provide valuable insights for the design of projected library update
solutions that are independent of the app developer (e.g., drop-in replacements at the
market or on-device) as well as for solutions that want to support app developers in
maintaining up-to-date dependencies (e.g., through an IDE extension). We summarize
our contributions as follows:

API-compatibility based library update framework To measure the realistic gap
for drop-in library updates on Android, we first need a library update framework that
follows the state-of-the-art proposal in prior work [2]. This work is first to present
the design and implementation of a drop-in based Android library update framework.
With this framework, a new library version can be opted into the original app at app
launching time and be used as a replacement for the previous library version, which
enables us to hunt library update-related runtime mal-functions further.

App runtime behavior profiling Using our library updating approach, two kinds of
dynamic tests are carried out on real-world apps to not only validate the feasibility of
our updating solution but also study the actual feasibility of drop-in library updates
and re-evaluate the results of static app analysis in existing work [2]. By profiling the
runtime behaviors of apps before and after library updates, we detect the occurrence
of malfunctions introduced by the library update despite the library versions being
API-compatible.

In-depth study of the obstacles for functional drop-in replacements By analyz-
ing the malfunctioning cases, we discovered several factors brought by library evolution
that prohibit the drop-in replacement of a target library to be functional. Based on
those discovered factors, a follow-up study is conducted to evaluate the prevalence of
those impeditive cases in other libraries. Our results show that those impeditive factors
are important considerations for future solutions that target automatic library updates
or that support app developers in their task of updating libraries.

4.4 Related Work

In this chapter, we introduce the related software patching techniques and the common
test input generation tools for app behavior evaluation on Android.

4.4.1 Software Patching Techniques

Apart from going through the standard update chain described in Section 2.3, an
Android software can also be fixed by third-party patches and application autonomous
hotfixes.

Third-Party Patching Third-party patching reduces the vulnerability window of soft-
ware as much as possible. Since the patches or patching framework are released by
neither software developers nor official sources, they are not bound to the standard
release procedure and can be deployed to fix software more efficiently. Patchdroid [64]

44

4.4. RELATED WORK

applies in-memory patching techniques to update both userspace native code and Dalvik
bytecode at runtime. Embroidery [67] uses both static and dynamic rewriting techniques
to patch vulnerabilities in the Android framework and kernel. To be resilient against
Android fragmentation and ensure system functionality across devices, Embroidery
rewrites binaries at code-line granularity. With reference hijacking [66] the underly-
ing system libraries are patched by redirecting library references to security-enhanced
alternatives. InstaGuard [65] takes advantage of debugging features to enforce rules
that block the vulnerability exploitation and avoid injecting new code while patching.
KARMA [68] establishes a multi-level adaptive patching model to filter malicious input
to the kernel. Appsealer [63] alters an app’s intermediate representation to mitigate
component hijacking attacks through a patched app version. None of the above solutions
focuses on patching third-party libraries inside user apps. OSSPATCHER [69] targets
at third-party libraries, but only open-sourced C/C++ libraries are concerned. There
are also more works [70, 71] that automatically generate patches from source code.
However, they do not apply to libraries included in applications that are usually not
open sourced. Most recent work [72] rewrites app code to provide a library updating and
sharing solution which is distinguished from our incompatibility root cause investigation
purpose.

Application Autonomous Hotfix Application autonomous hotfix is a technique for
self-healing apps in which the fix of the app is applied at runtime by the application
itself. A number of hotfix frameworks [73, 74, 75] have been proposed to ease the
distribution of minor patches. In those solutions, an official patch is first delivered
to the app, and then the patch code is dynamically loaded into memory instead of
outdated code. There is no need to reinstall the target app. With autonomous hotfixes,
small fixes can be distributed to users swiftly without any user disturbance or central
distribution point (e.g., Google Play Store). Unfortunately, those hotfix plugins are
required to be integrated by app developers and the patches should be released by
them as well, which highly depends on developer incentives and is not applicable to
efficiently update libraries within already existing apps. However, the flexibility of those
dynamic code integration techniques and plugin techniques [76] is quite inspiring and
our third-party library updating solution is established based on them.

Patching vs. Updating Most of the patching solutions use techniques, such as
static rewriting, in-memory function patching, or vulnerable path blocking, to mitigate
vulnerabilities. However, the scenario for library updatability includes but is not limited
to rolling out those pinpointed code fixes that are prevalent in patching scenarios.
Library updates usually concern not only intra-function changes, but also inter-function
changes, secondary dependency updates, and resource file changes, especially when
upgrading across multiple versions. For this reason, a full library drop-in replacement
update exceeds highly localized patching as described in the existing works. Prior
work [66] also applies full library replacement for system libraries. However, the
statically integrated third-party libraries in apps, in contrast, vary from app to app and
in their versions, which prohibits a central, system-wide replacement of a third-party
library. Furthermore, our paper studies the problem of library updatability and not

45

CHAPTER 4. UP2CRASH

specifically of patching security vulnerabilities since for the mobile library ecosystem,
prior work [2] reports that security and privacy patches are unfortunately commonly
mingled with minor/major releases, and unfortunately very few library developers report
security and privacy relevant changes in their logs. There is an expected high dark
figure of silent patches. Thus, patching security and privacy issues of libraries currently
boils down to keeping library dependencies up-to-date. Our work tries to investigate
the root causes of incompatibilities in this process for auto-updates.

4.4.2 Android Test Input Generation Techniques

We utilize Android test input generation techniques to capture potential differences in
the app behavior after applying library updates. The existing exploration engine for
testing tools can be categorized into three types: random, model-based, and systematic.

Random Exploration Testing tools with a random exploration engine explore an
application with generated semi-random sequences of events. Both Android’s official UI
exerciser monkey [47] and the open-sourced DroidMate [3] are equipping with a random
exploration engine. We here apply monkey to our large-scale experiment and apply
DroidMate to our runtime behavior profiling test. Despite the limitations that complex
tasks like logging in to an account are unlikely to be performed by random exploration
tools, existing work [77] has proved the effectiveness of these approaches. In this work,
we extend DroidMate with a plug-in that hard-codes some specific exploration actions,
such as registration and login to applications, so as to improve the overall exploration
efficiency (see Section 4.6.2.3).

Model-based Exploration Model-based exploration tools take advantage of the
results of static and/or dynamic analysis of the target application to build models
and create test cases. Among these tools, GUIRipper [78] explores an app’s GUI
structure and generates the app’s behavioral model in a state machine representation.
SmartDroid [79] utilizes static analysis to extract paths for further dynamic exploration.
DroidMate [3] is primarily dependent on dynamic analysis during which it obtains the
app model. By re-identifying UI elements with this model, DroidMate can prune out
the re-exploration of known UI elements and continuously guide the test to new ones.

Systematic Exploration Systematic exploration tools combine various algorithms to
traverse the application as far as possible or to generate test cases based on certain
expectations. Sapienz [80] employs search-based algorithms and random fuzzing to
achieve better test coverage. IntelliDroid [81] applies symbolic execution in test event
generation to trigger desired behaviors. While these approaches excel in specific ex-
ploration scenarios, their reliance on static information makes them underperform in
scenarios where the tested application involves external sources (e.g., web content),
native code, obfuscation, or dynamic code (e.g., reflection). Another closely related
work in this category is Brahmastra [54], which performs static analysis to gather
paths to target third-party code and jump-start that code directly through app binary
rewriting. While this approach significantly increases the probability of hitting target

46

4.5. REQUIREMENTS ANALYSIS

App A

CallAA CallBB

Host
Components

La Lb
API AA
API BB

Lc
API AA
API CC

Figure 4.1: A typical scenario for API-compatibility based updatability

third-party code, it alters the application, thus may introduce additional uncertainty to
the exploration results.

4.5 Requirements Analysis

Considering the alarming rate of outdated libraries and the inefficient third-party library
updating chain explained in Section 2.3, we put our focus in this work on evaluating the
runtime library updatability situation under an automatic third-party library updating
framework, as well as tracing the root causes for potential side-effects brought by
updating.

Typical scenario for API-compatibility based updatability Existing studies have
highlighted thrilling API compatibility across different library versions. Here, we describe
a typical scenario based on Derr’s et al. work [2] and their LibScout tool (see Figure 4.1).
App A contains library L in version a with invocations AA and BB. If interfaces AA
and BB still exist in the successor version Lb, but only partially exist in version Lc (e.g.,
parameters or types of a method have changed or a method was removed), LibScout
reports library Lb as compatible with library La inside App A but not Lc.

Implementation of an automated library update framework To investigate the
updatability and catch potential incompatibilities beyond the theoretical results of prior
works, we need a library update framework that follows the methodology proposed in
the existing studies. In our paper, we follow the proposal of Derr’s et al. study [2].
Given the scenario above, an implementation of an automated library update framework
should try to update library L from version a to version b. Another precondition of
this API-compatibility based library updating solution is that the update should be a
drop-in replacement and no host code adoption performed. The library upgrade could
be done before or after app build without new host code adoption. In our work, we
focus on a post-build upgrade, because compared with a pre-build upgrade, which is
done through IDE plugins by app developers, a post-build upgrade is more flexible
and can deliver the updated library version promptly, circumventing the upgrading
bottleneck brought by the developer-dependence. Considering the complexity of the
library updating scenario, which can include changes, such as inter-function code changes,
secondary dependencies, or resource files, a naive static rewriting solution would cause

47

CHAPTER 4. UP2CRASH

an immediate crash/misbehavior (e.g., app failed to log into Facebook when the app’s
signature was changed by static rewriting), which is then detrimental to exploring
update incompatibilities. To try our best to eliminate unnecessary interferences and
explore incompatibilities as reliably as we can while upholding conditions proposed in
prior work [2], here we borrow the idea of opting in codes by classloader customization
from existing frameworks [73], [76] and carefully design a dynamic library drop-in
replacement framework (with secondary dependencies included) to support automatic
library upgrading across both minor and major versions.

Automated library update testing The API-compatibility based library updatability
results presented in previous work [2] are based on static app analysis, which can only
reflect a theoretical and syntactic situation. To understand the actual feasibility of
an API-compatibility based library update, further runtime testing is necessary. The
most established dynamic app testing is automated user interface (UI) testing, which
performs a series of UI operations on the target app. By doing so, the app behavior can
be profiled, and potential failures and dysfunctional behavior after library updating be
discovered by comparing the runtime profiles of the original and the updated app. It is
noteworthy that the feasibility of our library update framework can be confirmed in
this context since behavioral correctness is a strict baseline for our testing.

4.6 Two-stage Updating Experiment

The goal of our study is to evaluate if a simple drop-in replacement update is a viable
option to solve the problem of outdated libraries on Android. In this section, we describe
a two-stage experiment to test apps’ runtime behaviors before and after a library update.
In the first stage, we apply an automated library updating framework that we developed
according to the proposal of prior work [2]. This framework allows replacing an outdated
library inside an app with a newer version without additional host code adoption. During
the second stage, two automated user interface (UI) tests are performed to evaluate
the behavioral correctness of target apps after drop-in replacements of library updates.
This approach allows us to report on the gap between the theoretical updatability rate
in the literature and the actual runtime rate and its impeditive factors.

4.6.1 Stage-1: Automated Library Update Framework

To support automated library updating without host code adoption, this work imple-
ments a dynamic updating framework that takes advantage of the class domain isolation
and dynamic code loading features of Android’s classloader hierarchy. The outdated
libraries are automatically updated at app load-time by loading the new library from a
well-defined place by a customized classloader, and in this process no additional code
adoption is required for the host app’s code.

The framework is composed of three modules as shown in Figure 4.2: Update
Execution Environment, Update Handler, and LibCenter. Update Execu-
tion Environment is established on a customized build of Android, which is extended

48

4.6. TWO-STAGE UPDATING EXPERIMENT

App Entrance
Diversification Component

Update Status
Management Component

Target App LibCenter

F
ram

ew
ork Update Execution Environment

II I

User Interface

U
pdate

Provider

Update Repo/
Configurations

User Configurations

App/Lib
MetaData

Update Handler

Host Components

Updated
Library

Outdated
Library

UpdateApplication

 ClassLoader Chain
Resource Loader II

I

III

Figure 4.2: Overview of Library Update Framework with three modules: Update Execu-
tion Environment, Update Handler, and LibCenter

with components to support library updates. Update Handler is a customized class-
loader chain together with auxiliary components for applying library updates at app
load-time. This customized classloader chain isolates the loading of library code and
host components at runtime. As a result, the library update can be opted-in as a
replacement of the original library by solely altering the library class loading path.
LibCenter is the centralized library management module. All the library updates and
included library information for installed apps are maintained by it. It is also the user
interface for update configuration. Through this app, the library update for a target
app can be configured and delivered to the target app. Together those three modules
enable automatic distribution and application of library updates without developer
support and ease our testing by allowing us to flexibly roll-out library updates to the
installed apps-under-test.

4.6.1.1 Update Execution Environment

To update a library of an app, the updated version should be available to the app.
However, we have to abstain from modifying the app to avoid malfunctions due to
induced bugs and also to adhere to the proposed methodology we are testing. Thus, the
system should opt in the updated version before app initialization, which we accomplish
through an Update Execution Environment as an extension to vanilla Android.
This environment consists of two key components (see also Figure 4.2): I an Update
Status Management Component to maintain a global update status of apps; and
II an App Entrance Diversification Component to enable library updating
for an app. The internals of Update Execution Environment are illustrated in

49

CHAPTER 4. UP2CRASH

App Entrance
Diversification Component

LibCenter

 mPackageInfo
mApplicationInfo

false true

Updated App
Entrance

Original App
Entrance

Update Handler

isUpdated(com.packageN)
O4 O5

Other
System
Services

system
_server

UpdateStatusManager

UpdateStatusService
mUpdateStatus

<com.package1, true>
<com.package2, false>
...
<com.packageN, statusN>

O3

O1O2

I

II

Figure 4.3: Update Execution Environment

Figure 4.3.
I Update Status Management Component manages the update status for

each app and allows us to control if an app runs with its original or an updated li-
brary version. Its UpdateStatusService is a dedicated system service that records
each app’s update status according to update events sent by LibCenter and unifies
the update operations from system-side in the II App Entrance Diversifica-
tion Component and the update configuration from user-side in LibCenter. Client
processes can reach the service over Binder IPC via a custom manager, UpdateSta-
tusManager (O3), to set and get the update status for each app. LibCenter sets
the status of target apps (O1) and II App Entrance Diversification Compo-
nent retrieves (O2) at app load-time the status for the loading app to determine which
library update actions should be taken.

II App Entrance Diversification Component is the actual update de-
ployment site and takes care of loading the updated library version into the application
process. As can be seen in Figure 4.3, App Entrance Diversification Com-
ponent is implemented as a customized app launching process with an additional
Application class interface. The Application class is the first class loaded in each
app’s process life-cycle. Initialization of the app and of the included library is usually

50

4.6. TWO-STAGE UPDATING EXPERIMENT

executed inside the Application class to ensure they take effect at an early stage in
the process’ lifetime. Through this Application class, we added a new app entrance
to an UpdateApplication (Section 4.6.1.2) to the original app launching process so
as to control which library version should be loaded during app launching based on
the updating status gained from the I UpdateStatusService, which was set via
LibCenter. With this modified launch process, the target app can switch between the
original library version (O4) or the updated version (O5). In case of a library update,
Update Handler continues the app launch process.

4.6.1.2 Update Handler

As shown in Figure 4.4, Update Handler is a bridge connecting host app and library
update and is responsible for activating a library update for the app. To ensure any app
on our modified Android can activate library updates, we integrated Update Handler
into the Android framework as a static library that is automatically loaded into all app
processes. Update Handler is composed of an I Update ClassLoader Chain
for separating the target library code loading from the rest of the app code loading, an
II Update Resources Loader to attach resources of the updated library to the
original app, and an III UpdateApplication to activate Update ClassLoader
Chain and Update Resources Loader before the initialization of the app-under-
test.

I Update ClassLoader Chain is a customized classloader chain specifically
for dynamic library updating. Android inherited Java’s parent-delegation mode in which
a series of classloaders are chained together and each non-root classloader will delegate
a class loading request to its parent classloader first before loading the requested
class by itself. Only the root classloader will try to load the target class by itself
directly. This parent-delegation mode separates the loaded code into different security
domains according to their path, which prohibits a low priority classloader from exposing
high priority code. For instance, PathClassLoader is in charge of loading installed
application classes (class path in /data/app/package.name) and cannot load non-installed
packages (e.g., class path in /sdcard/). Same class loaded by different classloaders is
treated as different classes and cannot be cast to each other. In our design, classes
from the updated library version should be loaded instead of the original outdated ones.
However, the app package, including both the app code and libraries code, is a fixed
bundle and the classes inside a user application are in general loaded by Android’s
default PathClassLoader. To suppress the loading of the originally contained library
and opt-in the classes of the updated library, a new classloader chain is introduced
in our design to isolate the loading of the updated library from the host application.
Different with existing classloader customization based patching solutions [73, 82] which
replace all outdated classes to updated ones directly, our solution constructs an isolated
container for the interaction between updated library and its updated dependencies.
Thus, both of the original and updated secondary dependencies are preserved in this
design while updating the target library (first dependency) so as to provide better
updating compatibility for cases where host codes involve invocations to secondary
dependencies. Figure 4.4 shows how the two classloaders are customized for this new
classloader chain.

51

CHAPTER 4. UP2CRASH

C
lassL

oader C
h

ain

Target App

Path*

Boot*

Updated
App

Entrance

Original
App

Entrance

UpdateAppication

Update Handler

Proxy*

Update*

Boot*

H5

H4

H6

LibCenter

Update
Provider

H3

Update Res Loader

Outdated Lib Classes

Host Classes

Update Res

Update Classes

App.apk

Update.apk

Update Config

H2

H1

I
II

III

Figure 4.4: Update Handler (Suffix * indicates ClassLoader)

UpdateClassLoader is an extension of BaseDexClassLoader, which is capable
of loading dex files from a designated path. It is responsible for loading updated
libraries without additional app code merging (H1 in Figure 4.4). This update-specific
classloader is independent of the update, i.e., as soon as a newer library version becomes
available, that version can be integrated with the host app by simply replacing the
library file for updates and without touching the app package itself. However, objects
created by different classloaders are not available to each other, which could complicate
the interaction between the library and host application. To alleviate this problem,
UpdateClassLoader has to be a node in the system classloader chain. It is linked as
a child to ProxyClassLoader, the newly created classloader for application code.

ProxyClassLoader is an extension of PathClassLoader, which can only load
installed applications files. Apart from loading the updated library’s classes, the original
host application should also be loaded. The app code is simply loaded by the default
PathClassLoader. However, the original library code is intertwined with the host
components inside the original app package (i.e., dex file). The original library code will
also be loaded automatically by PathClassLoader when being invoked by the host
components. To create a clear boundary between the host components and the library
code that should be replaced with the updated version, ProxyClassLoader is con-

52

4.6. TWO-STAGE UPDATING EXPERIMENT

structed to delegate the loading of all updated library classes to UpdateClassLoader.
To minimize the impact of this modification, ProxyClassLoader is initialized on
the basis of the original PathClassLoader. Everything of PathClassLoader is
preserved (H2) except for an additional class name filter when loading classes. When
the class to load is from the target library, the name filter in ProxyClassLoader
will distinguish the library package prefix in the class name and the loading request
for this class is delegated to UpdateClassLoader (H3), which will finish the class
loading (H1). This way, the original, tightly integrated library will be replaced at app
loading time with the newer library version.

II Update Resources Loader integrates the resources of the updated library (H4)
into the app. Though not all libraries require additional resources, still a large fraction
does in order to enhance their functionality, e.g., Facebook SDK requires resources
to customize the login button. Since Android resources are labeled with a 32-bit ID,
there could be id conflicts between the original app resources and resources of the
drop-in library. Our solution is to compile the library update within a wrapper ap-
plication (com.wrapper) as a shared library, so the generated resource ids will not be
constants and can be reassigned to a separate range at runtime. To enable the usage of
resources inside the added library update, its resources should be attached to the app
space through addAssetPathAsSharedLibrary interface. Since the assigned IDs
for the new resources might differ from the resource ids used with the library code, we
rewrite all of the individual library R classes with values in the merged resource file
from wrapper package. After that, the new resources are available to both the library
code and host application and no id collision can happen between the original and the
new library resources.

III UpdateApplication is a customized Application class. The main idea is
to ensure the updated library is activated before any host application code takes control.
Considering that some library initialization is by default done in app’s Application
class, the activation of the new library should be handled before that. The most
convenient and least intrusive solution is to hook the application initialization process
by replacing the original app Application class with UpdateApplication class
that is described in Section 4.6.1.1. After the replacement, the system will treat it just
as the original Application class and finish the application initialization process. In
this initialization process, a request for library updates will be sent to LibCenter
from the target app’s process space (H5). LibCenter will return an authorized URI
that can be used to copy the library package and configuration files to the target
app’s storage (H6). Furthermore, the creation and initialization of both I Update
ClassLoader Chain and II Update Resources Loader are also accomplished
here based on the files retrieved from LibCenter. Last but not least, the newly
generated classloader chain is enabled and the application can be launched as usual. To
minimize system modifications in integrating the new classloader chain, we follow the
classloader hooking approach used in former works [73, 76].

4.6.1.3 LibCenter

LibCenter acts as a centralized library repository from which library updates are
retrieved. All pre-compiled library packages and metadata are stored here. Using

53

CHAPTER 4. UP2CRASH

LibScout1 as part of LibCenter, we collect all installed apps’ metadata including
information about used libraries and library compatibility information based on the
library API calls from the host apps. LibCenter uses that information together with
user preferences set via LibCenter’s UI to create linking information about which
API-compatible library update can be exposed to the Update Handler in target apps
through an Update Provider (see Figure 4.2).

Precompiled updates in Update Repo are a set of wrapper applications containing
different versions of different libraries. Once an update is activated, its corresponding
wrapper application will be copied to the app’s process space so the updated library
version inside the wrapper is available to the target app (see description earlier). The
generation of wrappers for each library version is automated using Gradle [83] build tool
with a template app. By altering the dependency library information in the build.gradle
file of the template app, Gradle can synchronize the specific library version from its
central repository and build the final wrapper application for this library version. There
are two advantages in wrapping the updated library in an application with Gradle.
First, considering that those target libraries also need their own dependencies, e.g.,
OkHttp depends on okio, we automatically bundle the target library together with its
dependencies to avoid conflicts between the newly added library and the original library
dependencies. Second, by wrapping the library bundle into an apk file, the resource
file R.java can be generated and automatically arranged with aapt2, which is necessary
when invoking library calls that need resources. Here we compile libraries as shared
libraries to avoid resource id conflicts as described earlier.

Update Configurations are a set of files that describe the generated wrapper
packages. As mentioned in Section 4.6.1.2, information such as library class prefix and
resource classes are necessary for correctly loading library code and resources. Update
Configurations carry all the requested information of a library update and are sent
to the target app together with the library package.

User Interface allows personalized settings for library updates, e.g., the target
app, target library, and update version and is used by us to set up our test scenarios.

Update linking rules are created to dispatch a proper library update to a target
app. They depend on both the LibScout generated library API Compatibility
Metadata and User Configurations (e.g., targeted library version). Library API
Compatibility Metadata records the relationship between the host application
and target libraries gained from offline library detection. For example, in the scenario
described in Figure 4.1, a profile for the relation between app A and library L version a
will be created in a form of quintuple [A, A’s version, L, a, [b]], where [b] is the list of
API-compatible library versions. User Configurations designates the target app
and library as well as the target library version. Combining the quintuple and user
preference for an app, LibCenter can link a specific library update to the target app.
This linking information will be used by Update Provider for exposing the correct
wrapper application to the target app.

Update Provider is simply a FileProvider to share files, here wrapper appli-
cations, between target apps and LibCenter. It uses Intents containing the URI for

1https://github.com/reddr/LibScout
2https://android.googlesource.com/platform/frameworks/base/+/master/tools/aapt

54

4.6. TWO-STAGE UPDATING EXPERIMENT

the corresponding wrapper application in response to requests by Update Handler
to allow Update Handler to retrieve the library update from LibCenter.

4.6.2 Stage-2: Automated User Interface Tests

In the second stage of this experiment, we choose top ranking libraries as our case studies
for library updates and run multiple dynamic tests on real-world apps from Google
Play Store that include those libraries in order to have a close look at apps’ runtime
behaviors after API-compatible library updates. To ensure the comprehensiveness of this
experiment, firstly, we carried out a large-scale dynamic test to provide a macro-view of
not only the feasibility of our update framework but also of immediate malfunctions,
like crashes, in target apps brought by those drop-in library replacements. Second, we
execute a more intensive test to explore more app functionality so as to trigger more
hidden malfunctions introduced by the updates, e.g., changed side-effects of library
methods, although a full anomaly detection is beyond the scope of this paper.

4.6.2.1 Target Libraries & Apps

Different libraries have different integration approaches with their host apps. We
carefully select three libraries, with 78 library versions in total, from different library
categories [84] as target libraries: OkHttp from Development Tools, Facebook SDK from
Social SDKs and Facebook Audience from Ad Networks. Those three libraries are the
most popular libraries from reputable companies which are well-maintained and include
secondary dependencies. Instead of targeting more libraries, the experiment setting here
is more to utilize limited dynamic testing in highlighting a lower bound on the existence
of incompatibilities when considering various library versions. To compile a list of apps
that contain those libraries, we run LibScout on an app repository containing 332,432
free apps crawled from Google Play Store with 128 library profiles for three libraries
from the LibScout project. We found 379,429 library-app pairs. LibScout can not only
provide a list of apps that contain a target library but also the detailed API usage of
the library. To make the evaluation more comprehensive, we extend LibScout with a
ranking module to cluster apps into different sets based on the library APIs invoked in
the host app components. For dynamic testing, we select 3,000 apps, 10 apps from each
of the top 100 frequently used API sets for each target library. There are 78 library
versions (25 from OkHttp, 33 from Facebook SDK , 20 from Facebook Audience) in our
final data set.

4.6.2.2 Monkey Test

Our update execution environment is deployed on Android version 7.0. We test our
framework on two Pixel C devices that are flashed with our customized system. In
this large-scale evaluation, we try to update each library to the latest, API-compatible
version. To measure the hit rate of (updated) libraries during testing, we used soot3 to
inject log statements into the frequently invoked interfaces of each library. To better

3https://github.com/Sable/soot/wiki/Tutorials

55

CHAPTER 4. UP2CRASH

Figure 4.5: Monkey evaluation results for apps including OkHttp, Facebook SDK , Face-
book Audience

scale the dynamic testing, we chose the open source monkey-troop tool4 to install test
apps and execute them using Google’s official application exerciser, monkey [47], on
both devices in parallel and automatically. In each monkey run, 500 random events will
be explored. During this process, the execution log is recorded for measuring the library
hit rate.

Ground truth Considering that some apps could be malfunctioning for reasons like
failed download, obsolete APIs for our test platform, buggy design, etc., we first run
monkey-troop on the original apps. Only if the first run executes successfully without
errors, those apps remain in the test app set and are considered for library updates.

Test results UI exploring results for the 3 libraries are shown in Figure 4.5. The
uppermost graph describes the update result for OkHttp library, where 781 of 804
supported tested apps passed monkey without a crash, giving a success rate 97.14%.
Among all those apps supported, 60.95% of them hit the updated library. For Facebook
SDK library, 813 of 880 supported target apps did not crash during monkey exploration,
resulting in a 92.39% success rate, and 61.48% of those supported cases hit the library.
The result for Facebook Audience is quite similar with a 98.31% success rate for the 890

4https://github.com/Project-ARTist/monkey-troop

56

4.6. TWO-STAGE UPDATING EXPERIMENT

supported apps and a 62.58% hit rate. From all those results, we can see a success rate
of 95.92% in total, which is close to ideal. However, the overall hit rate of 61.69% is not
very inspiring. More than 38 percent of apps passed monkey without hitting the library.
The reason could be, for instance, that the library is integrated at a hidden position,
which cannot be hit easily (e.g., the target library is only invoked after purchasing a
product successfully), or the monkey failed to explore the specific path (e.g., clicking at a
specific position on screen to jump to another page). Those are the common limitations
of large-scale dynamic testing with random exploration by monkey and have already
been noticed in various existing works. To complement our results, a more in-depth but
also time-intensive testing based on DroidMate is conducted to evaluate the internal
misbehaviors of the host app after library updating.

4.6.2.3 DroidMate Test

In our second test, we randomly select 5 applications from the monkey test set for
each library and run DroidMate on all 15 apps to trace their runtime behaviors before
and after applying library updates. By comparing the DroidMate tracing results for
the original application and the app with library updates, we can catch more intricate
behavioral changes other than crashes. More specifically, we treat the blocks of an
app’s source code containing libraries as app functionality and a variation of the blocks
reached before and after applying library update as behavioral change. Whenever the
library update alters the app’s original execution routines (e.g., exception handling
routines), the tracing results for the updated app will deviate from the original one, and
the behavioral change caused by the update can be noticed and reported by DroidMate.
As mentioned in Section 4.4.2, DroidMate has limited support for complex tasks, such as
app registration and login. To further improve the exploratory capabilities of DroidMate
and reach deeper application functionalities, we extend the DroidMate [3] platform5

with a dedicated plug-in that would bypass the restrictions of the original DroidMate
and monkey tool, for example, by providing an app’s registration and login information.
This second test is carried out on four Pixel C devices and four Pixel C emulators. Both
the real devices and emulators are running the same customized version of Android 7.0
as the monkey-based testing. In consideration of test consistency and accuracy, the two
runs of each app should be performed on the same device or emulator. Here we use the
list of all possible blocks, which is gathered by instrumenting each test app with the
open-source ARTist6 [1], as the ground truth. Given the fact that some blocks may be
unreachable by cause of our test configuration or app usage, this list may represent an
over-approximation of the actual possible behavior. At test time, all executed blocks
will be recorded, except for those from the target library. Block information for the
target library can differ between versions by design, so we omit any reached blocks from
the target library to keep test accuracy. Furthermore, we set a library reached tag for
the target library. By monitoring the existence of this tag, we can check if the target
library has been hit. Any runs that did not reach the target library should be discarded.

5https://github.com/uds-se/droidmate
6https://github.com/Project-ARTist

57

CHAPTER 4. UP2CRASH

Ta
b

le
4.1:

Re
sults

o
fin-d

e
p

th
a

na
lysis

w
ith

D
ro

id
M

a
te

p
lug

-in
(c

o
m

p
a

riso
n

b
e

tw
e

e
n

c
o

d
e

c
o

ve
re

d
fo

ro
rig

ina
la

nd
up

d
a

te
d

a
p

p
)

A
pp

N
am

e
A
pp

V
ersion

Library
O
riginal

U
pdated

C
hange

A
pp

O
verall

St.D
ev.

A
pp

O
verall

Shalom
Shalom

R
adio

2.0
O
kH

ttp
18.59%

17.81%
3.17%

19.36%
16.76%

N
o

M
aurin

H
yundai

3.0.4
O
kH

ttp
13.33%

48.93%
1.06%

13.33%
48.93%

N
o

B
lur

Effect
K
eyboard

1.185.1.102
O
kH

ttp
31.36%

37.36%
2.87%

33.58%
35.85%

N
o

U
K

O
nline

FM
1.0

O
kH

ttp
48.35%

60.86%
0.71%

48.35%
60.46%

N
o

Sanim
edius

A
potheke

2.1.10
O
kH

ttp
56.58%

37.94%
3.07%

57.89%
37.90%

N
o

LO
O
M

C
LU

B
4.785

Facebook
SD

K
23.62%

29.03%
2.26%

20.25%
23.98%

N
o

Farm
acia

C
haro

Ferrá
0.01

Facebook
SD

K
11.76%

36.80%
4.16%

11.76%
34.62%

N
o

SnapO
do

0.1.0
Facebook

SD
K

11.76%
51.61%

1.24%
11.76%

46.53%
Yes

C
lose

U
p

2.2
Forest

Facebook
SD

K
58.60%

54.38%
0.17%

57.67%
54.26%

N
o

Stevenson
Student

A
ctivities

5.63
Facebook

SD
K

42.72%
48.29%

0.46%
42.55%

46.91%
N
o

M
etalTom

bstone
4.1

Pea
G
reen

Facebook
A
udience

60.50%
19.88%

0.12%
61.00%

19.65%
N
o

PersonalTracker
1.5

Facebook
A
udience

54.72%
30.54%

1.14%
64.15%

30.78%
N
o

Paris
M
etro

M
ap

1.1
Facebook

A
udience

23.08%
25.72%

2.81%
23.08%

25.83%
N
o

B
urak

Yeter
Songs

1.4
Facebook

A
udience

50.00%
50.00%

0.00%
50.00%

50.00%
N
o

M
aquillaje

H
allow

een
2017

13.0.0
Facebook

A
udience

24.49%
12.66%

1.55%
24.23%

12.56%
N
o

58

4.7. ROOT CAUSE ANALYSIS

Test design For each app, we repeated the execution separately for the original app
and the application with the library update until we had collected 10 runs each with
library hit. Given that the exploration is random and the target app may contain
non-deterministic content, such as advertisements, we choose to conduct 10 runs for each
app version to mitigate the variability of testing while still maintaining a reasonable time
trade-off for the overall test procedure. 500 events, including clicks, long clicks, swipes,
etc., are applied on visible, enabled, and clickable UI elements at each run. During
testing, our DroidMate plug-in first performs predefined actions such as entering user
information and clicking the login/registration button to unlock further app screens. It
then explores the target app with DroidMate’s standard biased-random approach, which
assigns a higher priority to unvisited UI elements to increase the chances of discovering
new paths and thus improve code coverage. To simplify the display of the results, we
group the execution results into two categories: original (O) and updated (U). For each
category, we put the blocks that have been reached by at least one run into his hit set (BO

and BU). By comparing the intersection of these two sets (BI = BO∩BU) against the set
of blocks only reached in the original runs (|BO −BI |), we achieve the behavior change
between the two app versions. If this difference is greater than 3× standard deviation of
the average coverage among the elements in BO (|BO −BI | > 3× σ(O))—which covers
99.7% of the values assuming the coverage variation follows a normal distribution—we
considered that there was a behavioral change.

Test results Table 4.1 lists the test results. For each app, we collect application code
coverage data, which includes only blocks within the same package as the application,
as well as overall block coverage data that includes both application blocks and library
blocks. These coverage data can indicate the depth and relevance of the test. According
to Table 4.1, the DroidMate plug-in achieves an app block coverage of 35% on both
the original app and the one with library updates, with a minimum of 11.76% and
a maximum of 60.50%, and overall block coverage of 37% for the original apps and
36% for the updated ones, with a minimum of 12.66% and a maximum of 60.86%.
Results show that both sets of coverage data fall within the range of expected coverage
for state-of-the-art test input generation tools [77]. We use the 3 standard deviation
tolerance as the analysis metric and find out that only the SnapOdo app, which includes
the Facebook SDK , is noticed a behavioral change. The further manual inspection of
the app confirms that this app stuck at the Facebook login page after applying library
update, thus reducing the number of reachable blocks at exploration. In addition,
LOOM CLUB app also displays a significant coverage difference (5%), but the same
discrepancy could be found in its original application run as well. Given its high degree
of non-determinism, we regard this application as exploration noise.

4.7 Root Cause Analysis

Our two-stage experiment in Section 4.6 demonstrates the occurrence of app runtime
behavioral deviations after API-compatible library updates and shows that library
updating is not as straightforward as the existing work [2] claimed it to be. In this
section, we deep-dive into the failure cases in our tests to study the factors that impede

59

CHAPTER 4. UP2CRASH

Ta
b

le
4.2:

C
a

te
g

o
rize

d
e

xc
e

p
tio

n
s

re
p

o
rte

d
b

y
M

o
n

ke
y

te
st

E
xception

#
A
pp

%
Failure

Library
V
ersion

E
rror

M
essage

E
xam

ple
O
riginal

–
U
pdated

(#
)

A
bstractM

ethodError
17

73.91%
O
kH

ttp

A
bstractM

ethodError:
abstract

m
ethod

"void
okhttp3.C

allback.onResponse
(okhttp3.C

all,okhttp3.Response
)"

3.0.0-rc1
–
3.9.0

(17)

C
lassN

otFoundException
4

17.39%
O
kH

ttp

N
oC

lassD
efFoundError:

Failed
resolution

of:
Lokhttp3/internal/Platform

3.2.0
–
3.9.0

(2)
3.3.0

–
3.9.0

(1)
3.3.1

–
3.9.0

(1)

FacebookException
52

77.61%
Facebook

SD
K

R
untim

eException:
A

valid
Facebook

app
id

m
ust

be
set

in
the

A
ndroidM

anifest.xm
lor

set
by

calling
FacebookSdk.setA

pplicationId
before

initializing
the

sdk

4.0.1
–
4.26.0

(1)
4.1.0

–
4.26.0

(2)
4.2.0

–
4.26.0

(1)
4.3.0

–
4.26.0

(1)
4.5.0

–
4.26.0

(1)

4.6.0
–
4.26.0

(8)
4.7.0

–
4.26.0

(1)
4.8.0

–
4.26.0

(1)
4.8.2

–
4.26.0

(8)
4.9.0

–
4.26.0

(15)

4.16.0
–
4.26.0

(1)
4.17.0

–
4.26.0

(12)

T
his

table
only

lists
library

related
exception

cases.
#
A
pp:

the
num

ber
offailed

apps
that

reported
this

exception
%
Failure:

the
percentage

ofapps
that

failed
for

this
exception

am
ong

allthe
m
onkey

failures
ofthis

library

60

4.7. ROOT CAUSE ANALYSIS

library updating.

4.7.1 Findings from Monkey Testing

We analyze the monkey logs of the failed apps and categorize all failures according
to the reported exception messages. Though we did a pre-run on monkey for each
app to filter out those apps with innate faults, a flawed app can still survive the first
run and crash in the second run because of the random behavior triggered by monkey.
Since we are not working on app debugging, investigating the failure reasons for all
failure cases would be a wild-goose chase. Here, we concentrate only on the failures that
have an obvious relationship with updating libraries. We consider all the failures that
contain library specific keywords in their exception messages. Table 4.2 provides an
overview of those failure instances. It can be observed that both OkHttp and Facebook
SDK have interesting exceptions at runtime after updating them, while we discovered
nothing of interest for Facebook Audience. For OkHttp, 17 apps failed because of
AbstractMethodError and 4 apps failed because of ClassNotFoundException,
which together make 91.30% of all failure cases for OkHttp. Library Facebook SDK has
52 apps throwing FacebookException, which equals 77.61% of all failures for that
library.

4.7.1.1 AbstractMethodError

This exception is thrown when an abstract method is called but the definition of a target
class, here class okhttp3.Callback, is incompatible with the currently executing
method. All of the 17 crashes happened when updating OkHttp from version 3.0.0-rc1 to
3.9.0. Version 3.0.0-rc1 is the first version with the 3.x API. This is a breaking upgrade
that even changed their package name from com.squareup.okhttp to okhttp3 . Version
3.9.0 is the latest OkHttp version in our library repository. With all those background
information and our test setting that libraries are always updated to their newest version
among all the compatible versions, this is a strong indication for incompatible changes
between those two library versions.

Source code analysis Library OkHttp is open source, and we investigate the source of
okhttp3.Callback and find its evolution trace, which is shown in Listing 4.1. We find
that in version 3.0.0, OkHttp modified the interfaces defined in Callback by taking
an additional Call object as a parameter for both onFailure and onResponse
interfaces to facilitate invocations to the Call object inside the Callback as described
in its changelog. This change remained up to the newest version. This kind of mismatch
should be detected as an incompatibility between versions, and its update should be
disallowed in our test settings. However, LibScout detects library invocations via root
package matching. Since interface implementations are usually named under a host
package prefix (e.g., com.host.package.Callback), they are attributed as a host call by
LibScout when invoking onResponse interfaces of a Callback host implementation
and escape from the library compatibility check. To eliminate this kind of false positive
cases, LibScout should also take the library’s public interfaces into consideration. In

61

CHAPTER 4. UP2CRASH

1 // version 3.0.0-rc1 release date: 2016-01-02
2 public interface Callback {
3 void onFailure(Request request, IOException e);
4 void onResponse(Response response) throws IOException;
5 }
6
7 // version 3.0.0 release date: 2016-01-13
8 public interface Callback {
9 void onFailure(Call call, IOException e);

10 void onResponse(Call call, Response response) throws IOException;
11 }
12
13 // version 3.9.0 release date: 2017-09-03
14 // the same as 3.0.0

Listing 4.1: Evolution trace of okhttp3.Callback class

this case, all of the 17 apps will be non-updatable under these new constraints. Also,
the claimed update rate by earlier work should be updated.

4.7.1.2 ClassNotFoundException

This exception is thrown when a classloader failed to load the target class by name in
the classloader chain. While updating OkHttp from various versions to the newest one,
four apps were reported as a crash because of a failure in finding Platform class in
the path of the library update.

Source code analysis We discovered that Platform class in versions before 3.4.0-
rc1 of OkHttp is named as okhttp3.internal.Platform, which conflicts with the
one named okhttp3.internal.platform.Platform in version 3.9.0. From the
exception stack, we know that those failed apps all include OkHttp Logging Intercep-
tor (okhttp3.logging.HttpLoggingInterceptor) library, which is a sibling library of OkHttp
and uses it as a dependency. As mentioned before, LibScout uses a root package match-
ing to detect library invocations. That way, invocations between sibling libraries like
OkHttp Logging Interceptor and OkHttp, whose method signatures start with the same
root package, will be misreported as a library internal call. Thus, changes in interfaces
exposed to sibling libraries will be missed by LibScout. Even finding such cases with
auxiliary information besides the library API is hard, for instance, the OkHttp changelog
for the whole okhttp family does not mention an internal Platform class renaming,
since this class is not supposed to be invoked from outside this library family. To update
the library based on API compatibility more effectively, a more fine-grained matching
filter for sibling libraries and internal public interfaces should be applied to the lib
usage detection logic of LibScout, which would very likely decrease the reported rate for
updates to the max version. For example, in this case, 3 out of 4 apps could still be
updated to the intermediate library version 3.3.1, the last version before Platform
renaming.

62

4.7. ROOT CAUSE ANALYSIS

1 // version 4.18.0 November 30, 2016
2 public static synchronized void sdkInitialize(...){}
3
4 // version 4.19.0 January 25, 2017
5 @Deprecated
6 public static synchronized void sdkInitialize(...) {
7 ...
8 // We should have an application id by now if not throw
9 if (Utility.isNullOrEmpty(applicationId)) {

10 throw new FacebookException("A valid Facebook app id must be set in the y
↪→ AndroidManifest.xml or set by calling FacebookSdk.setApplicationId before y
↪→ initializing the sdk.");

11 }
12 ...
13 }
14
15 // version 4.26.0 August 24, 2017
16 // the same as 4.18.0

Listing 4.2: Evolution trace of sdkInitialize method

4.7.1.3 FacebookException

This exception is a custom exception that is thrown when an internal error happened in
Facebook SDK . In our test set, 52 Facebook SDK failure apps reported an application
id missing error during SDK initialization after update to version 4.26.0 (the newest
Facebook SDK version in our repository) and the original library versions vary from 4.0.1
to 4.17.0. Thus, the Facebook SDK initialization must have changed with some version
after 4.17.0. We look into the Facebook SDK upgrade guide and find a description about
upgrading 4.18.0 to 4.19.0: "The Facebook SDK is now auto-initialized on Application
start. If you are using the Facebook SDK in the main process and don’t need a callback on
SDK initialization completion, you can now remove calls to FacebookSDK.sdkInitialize."

Source code analysis To verify if this modification is the main reason of failures, we
check the source code of Facebook SDK and discover that before version 4.19.0, the Face-
book SDK is usually initialized manually via interface FacebookSdk.sdkInitialize
(see Listing 4.2). The application id could be set either in AndroidManifest.xml file
or setApplicationId method. The id could be set either before or after sdkIni-
tialize. However, starting from version 4.19.0, interface sdkInitialize is labeled
as deprecated, and now it is called by Facebook SDK automatically without explicit
code invocation in host components. Deep within the initialization code, we find that
the application id must be set before invoking sdkInitialize as shown in Listing 4.2
or otherwise an exception is thrown. Thus, the application id should be set as early as
possible to avoid any failure. In fact, to support automatic initialization, Facebook SDK
imported a new ContentProvider component FacebookInitProvider in 4.19.0.
ContentProvider components can be initialized at the beginning of app launch-
ing ahead of any other components. By invoking FacebookSdk.sdkInitialize
in FacebookInitProvider, the Facebook SDK can be initialized at a very early
stage. In a standard Facebook SDK integration, FacebookInitProvider in Facebook
SDK ’s custom library AndroidManifest.xml file will be merged with the app’s
AndroidManifest.xml file during app building, and the application id should be

63

CHAPTER 4. UP2CRASH

1 // file assets/www/js/services.js
2 facebookConnectPlugin.api(’/me?fields=about,bio,
3 email,name,first_name,last_name&access_token=’ + authResponse.accessToken, null, y

↪→ ...);

Listing 4.3: Graph Request in SnapOdo

configured in AndroidManifest.xml file to ensure the application id is available
during FacebookInitProvider initialization at app launching time. Changes to
the AndroidManifest.xml are excluded from our test settings, and all the original
library SDK configuration is kept as in the original app. Thus, some apps with lower
library versions that set the application id after invoking sdkInitialize will fail
with the newer library versions.

4.7.2 DroidMate Finding

To explore the incompatibility of libraries beyond crashes, we investigate the case
for which we found a deviation in the runtime behavior in the DroidMate test after
updating the Facebook SDK library. The Facebook SDK of app SnapOdo is updated from
version 4.15.0 to the latest version 4.26.0 and after that failed to login to the facebook
account. From the official changelog, we know that a Graph API upgrade occurred in
version 4.16.1. According to the changelog of Graph API version 2.8, some deprecations
happened, including the removal of a "bio" field on the User node. In Android apps,
GraphRequest is usually created by either JavaScript or Java code integration with
some fields defined in the graph path string. We decompile the SnapOdo package and
find the GraphRequest creation in a JavaScript file as shown in Listing 4.3. The usage
of the "bio" field is incompatible with the new Graph API used in newer Facebook SDK
versions and leads to the login failure in this app. This case reflects potential updating
obstacles beyond API-compatibility. For both integration options, field "bio" works just
as a part of a string parameter that is definitely out of the range of LibScout detection.

4.7.3 Case Study

From those failure cases, we noticed that even though the APIs of different library
versions are compatible, some internal execution logic changes could prohibit a simple
drop-in update. We use the factors discovered in case of the Facebook exception as
a case study and perform a large-scale analysis to evaluate the prevalence of such
impeding factors for drop-in replacements in other libraries. It is worth noting that
1) Facebook SDK labeled interfaces which are not recommended to use after some
updates with a "deprecated" annotation instead of removing them directly, which puts
them outside of LibScout’s API compatibility analysis; 2) a drop-in update cannot
change the configurations defined in AndroidManifest.xml file, which could be
different between different versions.

Deprecated methods We carried out a statistical analysis of the source code of 1430
different versions of 44 open source libraries that we gathered from maven repository.

64

4.7. ROOT CAUSE ANALYSIS

1

10

100

1.000

FasterXM
L-

Jackson-Core

glide

Dropbox

Am
azon-AW

S-

M
obile-Analytics

log4j

Am
azon-AW

S-

Cognito

Facebook

Am
azon-AW

S-

S3

M
apBox

G
uava

#Deprecated APIs #Deprecated APIs (exist in more than 5 versions)

Figure 4.6: Number of public deprecated APIs in libraries source code and the number
of them that exist in more than 5 versions

1

10

100

Facebook
Am

azon-AW
S-

Cognito

ACRA

universal-

im
age-loader

HockeyApp
Am

azon-AW
S-

S3

Picasso
FasterXM

L-

Jackson-Core
glide
Guava
Am

azon-AW
S-

M
obile-Analytics

Segm
ent

Joda-Tim
e

Parse
OkHttp

#APIs have real world usage
#APIs have real world usage (with “deprecated” label)

Figure 4.7: Number of public deprecated APIs that exist in more than 5 versions and
that are used in apps (total vs. with "deprecated" label)

1

1.000

1.000.000

Facebook
Am

azon-AW
S-

Cognito

ACRA

universal-

im
age-loader

HockeyApp
Am

azon-AW
S-

S3

Picasso
FasterXM

L-

Jackson-Core
glide
Guava
Am

azon-AW
S-

M
obile-Analytics

Segm
ent

Joda-Tim
e

Parse
OkHttp

#apps #apps (with “deprecated” label)

Figure 4.8: Number of apps that use public deprecated APIs (exist in more than 5
versions) and their usage (total vs. with "deprecated" label)

65

CHAPTER 4. UP2CRASH
Ta

b
le

4.3:
Lib

ra
ry

m
a

n
ife

st
c

h
a

n
g

e
s

a
c

ro
ss

d
iffe

re
n

t
ve

rsio
n

s

M
anifest

E
ntries

#
C
hanged

C
ases

#
Library

C
oncerned

A
ctivities

16
A
C
R
A
,C

leverTap,Facebook
A
udience,Facebook

SD
K
,H

ockeyA
pp,

Paypal,B
raintree

Paym
ents,LeakC

anary,V
kontakte

Services
7

A
C
R
A
,M

apB
ox,Parse,B

raintree
Paym

ents

C
ontent

Providers
2

A
C
R
A
,Facebook

SD
K

B
roadcast

R
eceivers

3
C
leverTap,V

kontakte

Perm
issions

10
A
C
R
A
,C

leverTap,Facebook
A
udience,H

ockeyA
pp,Parse,Paypal,

B
raintree

Paym
ents,LeakC

anary

Ta
b

le
4.4:

Rule
s

to
id

e
n

tify
in

c
o

m
p

a
tib

le
up

d
a

te
s

w
h

e
n

c
o

n
sid

e
rin

g
o

urd
isc

o
ve

re
d

fa
c

to
rs

Library
Side

E
ffect

O
riginal

U
pdated

Features

O
kH

ttp
A
bstractM

ethodError
=

3.0.0-rc1
>

3.0.0-rc1
E
xisting

host
im

plem
entation

of
o
k
h
t
t
p
3
.
C
a
l
l
b
a
c
k

C
lassN

otFoundException
<

3.4.0-rc1
>
=

3.4.0-rc1
U
sing

library
LoggingInterceptor

together
w
ith

O
kH

ttp

Facebook
SD

K
FacebookException

<
4.19.0

>
=

4.19.0
Invoking

s
d
k
I
n
i
t
i
a
l
i
z
e
w
ithout

either
invoking

s
e
t
A
p
p
l
i
-

c
a
t
i
o
n
I
d
or

defining
applicationId

in
A
ndroidM

anifest.xm
l

Login
Failed

<
4.16.1

>
=

4.16.1
U
sing

field
"bio"

in
graph

requests

66

4.7. ROOT CAUSE ANALYSIS

Table 4.5: Results of library updatability re-estimation

Library #Apps #Updatable #Latest Updatable
LibScout Re-Estimation LibScout Re-Estimation

OkHttp 104,046 97,176 (93.40%) 94,550 (90.87%) 45,962 (44.17%) 37,934 (36.46%)
Facebook SDK 199,007 187,191 (94.06%) 187,189 (94.06%) 145,817 (73.27%) 134,035 (67.35%)

We extend javadocextractor7, which is a wrapper of javaparser8, to check the occurrence
of deprecated interfaces in libraries. We find that 32 of 44 (72.73%) libraries have
deprecated methods. Among all those libraries with deprecated interfaces, 24 of them
have deprecated interfaces present in more than 5 versions, which indicates the prevalence
and permanence of deprecated methods. Figure 4.6 lists the deprecated API details for
10 libraries. To quantify the impact of those deprecated methods in real-world apps, we
compared those deprecated interfaces that exist in more than 5 library versions with
library invocation calls detected by LibScout from a more extensive app repository which
contains 9,902,533 profiles for 2,041,017 apps. Since an interface is usually used before
being deprecated, we also distinguished the usage situation for both non-deprecated
versions and deprecated versions. Our results show that 20 of 24 libraries, 158 APIs in
total, are detected as used in real-world apps. In those 20 libraries, 15 of them with 94
(59.49%) APIs in total, are used under deprecated status. Figure 4.7 shows the target
API usage details and highlights the deprecated usage for 15 libraries. The amount of
apps affected by deprecated APIs is also remarkable. In our results, 561,671 app profiles
are reported containing target API calls, while 47,966 of them include those calls under
deprecated status. Figure 4.8 lists the number of apps that include target APIs under
deprecated status for 15 libraries. From the results above, we can see that most of the
libraries have deprecated methods. A deprecated method is supposed to be removed in
the near future, but based on our results, those methods usually remain for an extended
period, which gives developers the chance to keep using outdated code and also brings
false positives to API-compatible library updating. The prevalence of deprecated cases
further shows that a plain drop-in replacement cannot work as good as expected.

Manifest changes Usually, library developers define necessary components and
permissions in library manifest files which will be automatically merged with the app’s
manifest file when building the app with Gradle. This process could be opaque to app
developers. In a drop-in replacement library updating, those manifest modifications,
e.g., FacebookInitProvider registration in our test, will be ignored since no app
rebuilding is performed. This can impede the library updating as we have discovered
for the Facebook SDK . To gain insights on the extent of this problem, we gathered 362
Android Archive packages (i.e., manifest plus code) for 15 libraries and analyze the
component and permission changes in manifest files across different versions. The result
is shown in Table 4.3. Among all 15 libraries, 16 Activity changes happened in 9
libraries, 7 Service changes happened in 4 libraries, 2 ContentProvider changes in

7https://github.com/ftomassetti/javadoc-extractor
8https://github.com/javaparser/javaparser

67

CHAPTER 4. UP2CRASH

2 libraries, 3 BroadcastReceiver changes in 2 libraries, and 10 permission changes
in 8 libraries. In other words, 11 out of 15 libraries have at least one entry modified
between versions. These frequent changes indicate a high potential for incompatible
drop-in replacements despite API compatibility.

4.7.4 Library Updatability Re-Estimation

Our dynamic testing results reveal that failed library updates come from both flaws in
the LibScout tool and library internal changes. Our case study confirms the prevalence
of those factors across different libraries. The API-compatibility based updatability
rate reported by LibScout should be adjusted. Here, we set OkHttp and Facebook SDK
libraries as two typical examples and re-estimate the API-compatible based updatability
rate after considering the discovered factors. We use the same app set as in our automated
UI tests (332,432 apps in total). First, we gathered the theoretical API-compatible
based updatability rate according to the compatibility definition of LibScout [53]. Then,
we create rules to identify apps with incompatible library updates when considering
our findings, as shown in Table 4.4. Lastly, we scan app profiles and filter out all
the apps that match one of the rules. Method call information like sdkInitialize
and setApplicationId is gathered by LibScout already, we only need to extend it
with host interface implementation checking, manifest metadata (applicationId), and
JavaScript analysis results (field "bio"). Considering field "bio" can be added to graph
requests through not only JavaScript but also Java code, we take advantage of the
ARTist [1] tool to filter any field "bio" usage in graph request construction relevant
string flows. The final re-estimation results are shown in Table 4.5. We find that
the updatability rate varies between 93.40% to 90.87% for OkHttp and stays (94.06%)
for Facebook SDK . However, the updatability rate to the latest version varies more
significantly between 44.17% and 36.46% for OkHttp and between 73.27% and 67.35%
for Facebook SDK . The re-estimation result exhibits a decrease of the updatability rate
compared to plain LibScout, in particular, the latest version updatability rate, when
taking our discovered impeding factors into consideration. With runtime app behavior
profiling, we find that a drop-in replacement for library updates is technically possible,
but if a functioning continuous updating model is expected, the joint efforts from library
developers, app developers, and LibScout tool developers are necessary to address those
factors.

4.8 Discussion

We discuss the limitations and prospects of our study.

4.8.1 Research Sample

We used three libraries from different categories for our study. Although those are popular
libraries, their results might not generalize and cover all kind of potential problems.
However, our work still revealed important issues of library updates and shows that API-
compatibility alone is not a good indicator for library updates. Further, we investigated
1.4k other library versions and 2M real word apps for identical problems and could

68

4.8. DISCUSSION

confirm the prevalence of those problems, which we think makes them representative.
Moreover, scaling the analysis to larger-scale and more intricate problems is naturally
limited by the small-scaling of dynamic testing. Future work could investigate certain
problem classes in a focused way.

4.8.2 Entangled Dependencies

A crucial observation of our tests is entangled dependencies between different libraries
and even the host app. For instance Figure 4.9: both the app and the library La depend
on library Lb. When updating La, not only Callha but also Callab should be taken
into consideration. A more complicated case is that the host application creates an
object from secondary dependency Lb and passes it to La as a parameter. It is not
supported by our classloader customization based test framework. API static analysis
result from our test samples shows that 1.7% of library APIs could be affected by
this problem and also two failure cases in the unknown crashes of the dynamic test
are confirmed to be related to this problem. This exceptional case is the limitation
of our framework setting, but we here only focus on incompatibility cases brought
by library updating. The crash cases reported in Section 4.7 are not affected by this
exceptional case. Apart from that, our framework ensures that all dependencies are
correct for host app and updated library respectively since the original library and
its dependencies are still in the app. Obviously, the numbers reported in previous
Section 4.7.4 are an optimistic estimate when no direct dependency conflicts occur. The
situation for entangled dependencies in real-world might be far from desirable. We
looked into the impact of dependencies on library updatability. We crawled library
dependency information from Maven Repository9 and limit a library’s possible update
to only versions that share the same dependency set with the original one. Compared to
a purely API-compatibility based update, this API/dependency-based update shrinks
the updatability rate significantly. The rate for the same 332,432 apps reduces by
47.95% (93.40%-45.45%) for OkHttp, 40.37% (94.06%-53.69%) for Facebook SDK , and
36.38% (99.94%-63.56%) for Facebook Audience. This multiple dependency situation
is not a corner case. Static analysis of those apps shows that 57.50% of the apps that
integrate OkHttp have invocations to OkHttp’s dependencies in either their host code or
other libraries and even 96.03% for Facebook SDK and 97.76% for Facebook Audience.
Hence, whether a lib can be updated in reality might also be constrained by further
dependencies by other libs or app code to its own dependencies and, hence, in case of a
conflict, prevent an update of the target lib without doing extensive updates of other
libraries (potentially creating a "dependency hell").

4.8.3 Framework and UI-based Testing Limitations

Although very carefully designed to avoid errors/crashes of the apps and libraries
due to erroneous drop-in replacements, we cannot entirely exclude that some of the
crashes of apps come from our framework, since it is unrealistic to debug all the failed
apps from our testing. However, our investigation focused on those crashes with clear

9https://mvnrepository.com/

69

CHAPTER 4. UP2CRASH

Host
Components

La

Lb

Callha

Callhb

Callab

Figure 4.9: An example of entangled dependencies inside an app

problems stemming from the library integration and internal changes. Further, we
only test control flows starting at Activities and achieve with this on average 35%
app block coverage. Thus, our results form a lower bound on the potential problems
of the tested libraries. The emphasis of our work is on confirming the existence of
API-compatibility based update problems and identifying advice for future library
update tool developers/researchers about what impedes library updatability.

4.8.4 Efforts from Multiple Parties

The main idea of this work is evaluating ways of (supporting developers in) maintaining
dependencies, starting with evaluating the feasibility of drop-in updates and discussing
the relevance of our results for library updatability. Our discovered problems are
intricate, and hence any support for automatic lib updates or even tools that help
developers in making a judgment of the library updatability have to consider those
non-trivial problems, e.g., clear connections to changelogs, changed data structures, or
code annotations. Multiple parties are involved in the library update chain and there is
a call for action to better support lib updates in the mobile ecosystem, including better
tools for app developers to judge and realize library updates or a call to system vendors
to rethink the static linking of libraries in favor of more dynamic approaches (e.g., on
Linux) that not only can profit compartmentalization of third-party code [26] but also
its updatability.

4.8.5 Updating in Automated App Testing

In our DroidMate test, we observed a case of a highly non-deterministic app that
resulted in exploration noise. The reason for the non-determinism is that the app has a
lot of random actions, for example, loading different advertisements in different runs.
Considering that our update framework opts in library updates as a replacement of the
original library without any actual app code modification, we plan to investigate the
possibility of migrating our lightweight framework to blacklisting unwanted libraries in
automatic app testing.

4.9 Conclusion

Outdated third-party libraries are prevalent in apps. To alleviate the unpleasant
situation, prior work suggested an API-compatibility-based library update solution
using drop-in replacements of outdated libraries. In this work, we study the library

70

4.9. CONCLUSION

updatability using such drop-in updates. We implemented a library update framework
for Android and used it on 3,000 real-world apps for 3 popular libraries. Using dynamic
testing of those apps, gave us insights into the runtime behavior of an API-compatibility-
based updating solution. To discover more intricate incompatibility cases, automated
user interface testing was carried out on 15 apps both before and after library updates.
Our tests revealed intricate factors that prevent a drop-in replacement of libraries.
Studying the source code of libraries that failed to update and using static app analysis,
we confirm the prevalence of those problems in other libraries. Our re-estimation of
prior estimates of the library updatability rate under consideration of the discovered
impeding factors shows a decrease in the rate by more than half due to entangled library
dependencies. This work is the first to confirm the existence of API-compatibility-
based update problems and can provide valuable insights for future library update tool
developers/researchers on what should be taken into account when updating libraries.

71

5
Privacy-Enhanced Accessibility

Framework
Constraining Accessibility Service Misuse on Android

73

5.1 Motivation

Chapter 3 and Chapter 4 present our mitigation solutions against privacy and secu-
rity issues from untrusted third-party libraries. In this chapter, we draw attention
to Android’s accessibility services, which are another type of untrusted component
frequently included in applications. Accessibility features, also known as a11y services1,
are meant to assist people with disabilities or impairment using their computer systems.
Since Android version 1.6, Android has included an accessibility framework that allows
authorized third-party apps to act as accessibility apps, such as screen reader apps or
alternative navigation apps via voice commands and head gestures. As accessibility apps
necessarily have to be exempted to a certain extent from the usual isolation between
apps, Android provides a dedicated permission BIND_ACCESSIBILITY_SERVICE to
restrict access to the accessibility framework. Applications can retrieve information
from the accessibility framework about other apps, or send events to other apps (e.g.,
UI interactions) only if they are explicitly authorized by the user as described in Sec-
tion 2.1.2. However, this permission is coarse-grained and very powerful. Once an app
has been granted access to the accessibility framework, it has the privilege to access
private data from all other apps, including sensitive data normally protected by other
permissions, or to mimic users’ actions (like button clicks). According to Google’s
guidelines, the accessibility features are supposed to be used only by accessibility apps
that help disabled and impaired users to operate their devices and apps. Despite this
guideline, there exist a lot of apps that use these powerful features for their own purposes,
for example, automatization of tedious user actions (e.g., easy uninstallation of apps
via injected button clicks that navigate the Settings app or auto-filling of credentials
by password manager apps). Given the power of accessibility apps and the widespread
usage of accessibility features, it is reasonable to assume that not all apps use this power
appropriately [85] and that the current accessibility framework has potential threats
to user privacy. Even worse, recent reports have confirmed the existence of various
malicious applications [86, 87, 88] that utilize accessibility features to monitor and
mimic user interactions with third-party applications in order to steal sensitive data,
such as user credentials or banking information, while the risks of accessibility features
have been emphasized in academic works [89, 90]. What should be clear by today is
that the current restrictions to access the accessibility framework are not sufficient to
protect user data and defend against malicious intents.

5.2 Problem Description

Security and privacy concerns from accessibility frameworks Already in 2013,
Kraunelis et al. [91] demonstrated a malware that utilizes Android’s accessibility frame-
work. Jang et al. [89] studied the security of assistive technologies and identified multiple
vulnerabilities on four popular platforms. Their result shows that the trade-off between

1a11y is the abbreviation of accessibility.

5.3. CONTRIBUTIONS

security, compatibility, and usability is the root cause of these vulnerabilities. Kalysch et
al. [92] assessed the weakness of accessibility features and proposed corresponding devel-
oper side countermeasures. Diao et al. [85] evaluated Android’s accessibility APIs with
an analysis of the framework as well as a large-scale app analysis. Their result reveals the
intrinsic shortcomings in Android’s current design and confirms the broad misuse of the
accessibility APIs. Fratantonio et al. [90] presented attacks when combining Android’s
SYSTEM_ALERT_WINDOW and BIND_ACCESSIBILITY_SERVICE permissions, thus,
further highlighting the shortcomings in privacy protection of the accessibility framework.
Follow-up work [93] demonstrated the usage of these permissions by malicious apps.
Those works highlight the existing privacy concerns in the accessibility framework, but
did not create an appropriate defense.

Problem of the existing defenses against malicious accessibility apps The burden
to establish any defense today rests on the shoulders of the app developers that might
fall victim to misuse of accessibility features. App developers can pro-actively exempt
components or UI elements of their apps from being monitored by the accessibility
framework in an effort to protect sensitive data or prevent misuse of UI elements. Naseri
et al. [94] proposed a developer side defense against eavesdropping through accessibility
features. In their work, multiple tools are implemented to detect apps that are vulnerable
to eavesdropping, to automatically fix discovered vulnerabilities, and to notify users of
potential accessibility service misuse. Unfortunately, not only do many app developers
abstain from those defenses [94], but even worse, those defenses defeat the very purpose
of the accessibility services. For example, an app developer of a mobile banking app
that exempts the input field for the account number to avoid leakage via accessibility
services would also exclude screen readers or voice command apps from reading back or
writing that number. What is needed to not make accessibility and privacy mutually
exclusive is an accessibility framework that supports a more fine-grained control over
how its features can be used.

5.3 Contributions

In this work, we propose an extension to Android’s default accessibility framework that
enables the configuration of more fine-grained control over how accessibility features
are used by accessibility apps. We start by investigating the integration and usage
of the accessibility framework in 95 real-world apps that are either benign a11y apps,
apps repurposing a11y features (e.g., automatization), or malware abusing accessibility
features in order to better understand what kind of policy enforcement such a solution
has to provide and which potential limits exist. Our results exhibit a clear tendency of
how malware is currently misusing the accessibility features. However, our results also
raise the challenge that malicious behavior and benign behavior are not distinguishable
at the API boundary (e.g., which accessibility data and features are being accessed)
and that a suitable solution has to control the data flows within accessibility apps.

Noticing parallels between our setting and that of IoT and augmented reality apps,
we take inspiration from the ideas of data processing pipelines for AR apps [95] and of
quarantined code modules with opaque data handles for IoT apps [96]. Transferring those

75

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

ideas to our problem setting for a11y, accessibility apps access certain information from
the framework and process them in a particular way, or they trigger certain accessibility
actions as reaction to certain triggers. For example, a screen reader accesses text
information and outputs an audio stream, or a virtual mouse app tracks eye movement
and clicks buttons. The key idea of our solution is to make the single steps in such
processing pipelines explicit and sandbox them in least-privileged service components.
Accessibility apps then build their pipelines by chaining those services together and
orchestrate their interactions. We enforce policies at their input/output boundaries
to govern to which data and features each module has access. By keeping the overall
pipeline in mind, those policies control how data can propagate within a single pipeline—
sources to sinks—or under which circumstances a pipeline can trigger (accessibility)
actions.

Although our study of existing malicious and a11y apps indicates that a policy that
universally maximizes functionality for benign apps while simultaneously eliminating
the potential for misuse seems unlikely, our solution allows configuration of a trade-
off between functionality and protection according to users’ needs (e.g., disabling
accessibility features that are not necessary for the desired a11y apps). This is a clear
benefit over stock Android’s all-or-nothing protection against misuse of the accessibility
framework. Since our design only changes the public APIs of the default accessibility
framework (e.g., apps needs to register and orchestrate their modules), only developers
of a11y apps need to adapt their code to the new setting but no other app developers
are affected. We demonstrate this by porting two open-source accessibility apps to our
enhanced accessibility framework. We make the following contributions:

Systematization of accessibility service integration We study the actual usage of
accessibility features in real-world benign, utility2, and malicious apps. Our results
reveal patterns and behaviors how the accessibility API is misused. We believe those
results contribute to a deeper understanding of how a11y features are being (mis-)used
and can help future work in creating better defenses against a11y attacks.

Privacy-enhanced accessibility framework Based on the results of our systemati-
zation, we propose a privacy-enhanced accessibility framework. Privacy here means that
data retrieved via the accessibility framework should not leak without authorization and
that all accessibility actions should be authorized or triggered by the user or at most be
inefficiently misused. Our framework separates a11y logic of apps into sandboxed code
modules and allows enforcement of privacy policies at the input/output boundary of
those modules. This enables a more fine-grained control over how accessibility features
are used, how data propagates in the pipelines formed by those modules, and, hence,
offers a more effective protection against misuse of the accessibility framework than
stock Android.

Real-world app migration and evaluation We migrate two real-world open-source
accessibility apps to our privacy-enhanced framework to demonstrate how our framework

2We refer in the context of this paper to apps that repurpose the a11y features for user desired but
by Google unintended use-cases as utility apps.

76

5.4. STUDY OF ACCESSIBILITY SERVICE USAGE

provides better protection in those cases. Further, micro-benchmarks show that the
performance overhead imposed by our solution is acceptable.

5.4 Study of Accessibility Service Usage

Considering the high privileges of an accessibility service and the diverse ways to use
it—for a11y as intended, as a user-desired utility, or for malevolent purposes—we are
interested in how real-world apps make use of this service and whether there exist
distinguishing features in the usage patterns between a11y, utility, and malicious apps.
Prior work [85] evaluated the usage of accessibility services in normal3 apps based on
natural language processing of the app descriptions. This approach highly relies on the
accurate (and honest) developer documentation. A missing, ambiguous, or dishonest
description could hide the actual usage of the accessibility features from the results.

To gain a more comprehensive and reliable understanding of the usage of accessibility
features, we base our study of accessibility (mis-)usage directly on the apps’ code,
including utility and malicious samples. By collecting each sample app’s access to
the accessibility framework and then comparing the integration between each app’s
components and their accessibility services, we discover patterns how accessibility apps
actually make use of the a11y framework and we gain an overview how accessibility
can undermine the users’ privacy in practice. We look at the different ways how
an AccessibilityService is configured (e.g., which events are being subscribed),
which APIs are being used, and which behavioral patterns can be detected in accessibility
apps in the remainder of this section. The key question we want to answer is if the
different types of accessibility apps—a11y, utility, and malicious—are distinguishable in
their configuration, API access, or use of accessibility services?

5.4.1 Accessibility App Sample Set

While gathering app samples, we differentiate between three classes of accessibility apps:
malicious, utility, and a11y.

Malicious apps take advantage of accessibility service to attack users, e.g., logging
sensitive user input, mounting phishing attacks, stealing private data from other apps,
or surreptitiously granting permissions and installing apps. To collect a representative
and timely set of malicious apps for our investigation, we turn to renown malware
repositories on GitHub. From GitHub, we collected 608 reported Android malware
samples from top ranking malware repositories [97, 98, 99, 100]. After filtering out
samples without an AccessibilityService, we obtained 55 malicious accessibility
app samples (57 AccessibilityService implementations).

In contrast, a11y apps use specific accessibility features to assist people with dis-
abilities or impairments. The use of the accessibility service in those apps meets the
intended purpose by Google. For example, a screen reader app reads aloud the text
label on a touched button to assist users with visual impairments in using the device.
By keyword search on Google Play Store, we gathered 5 a11y sample apps. Lastly,
utility apps are neither typical assistive apps nor malicious. They ignore Google’s

3Here normal refers to apps in official markets.

77

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

Table 5.1: Accessibility service configuration in sample apps

Attribute #Malicious (57) #Utility (36) #A11y (8)

events from all apps1 49 (86%) 24 (67%) 8 (100%)
canRetrieveWindowContent 42 (74%) 30 (83%) 6 (75%)

∪ 57 (100%) 34 (94%) 8 (100%)
∩ 34 (60%) 20 (56%) 6 (75%)

1 Service does not define an allowlist of package names

Table 5.2: Allowlisted package names in service configura-
tions (no a11y app configured an allowlist)

Package #Malicious (8) #Utility (12)

com.android.settings 0 5
com.android.packageinstaller 0 2

browser* 0 3
communication* 2 1

shopping* 2 0
transportation* 2 0

tool* 2 0
self* 6 3

* Category of apps (since multiple packages of this type are monitored)

accessibility developer guide [12] by using accessibility features for user-desired func-
tionality beyond supporting people with disabilities, such as optimizing user experience
(e.g., automatization of tedious tasks or password auto-fill). Google once announced
to remove apps that use accessibility features for purposes other than the intended
way [101], but this ban was paused after Google realized the popularity of accessibility
features in supporting non-accessibility functionality. We crawled 2,751 top Google
Play Store apps in December 2018 and found 36 accessibility apps of this kind, which
we use as our utility app samples. To check that both the utility and a11y apps are
not malware in disguise, we scan those two sample sets with VirusTotal [102].One
app, Avira, was reported as malware by VirusTotal. Considering it was flagged by
only 1 of 60 engines, we conservatively removed it from our set but did not think this
significant enough to report to Google Play Store. Our non-malicious app sets finally
consist of 5 a11y apps with 8 AccessibilityService and 35 utility apps with 36
AccessibilityService.

In total, we collected 95 accessibility app samples (101 AccessibilityService
implementations) for our investigation.

78

5.4. STUDY OF ACCESSIBILITY SERVICE USAGE

5.4.2 Accessibility Service Configuration

As introduced in Section 2.1.2, app developers can control the capabilities and types of
events that their AccessibilityService will receive by customizing the Accessi-
bilityServiceInfo configuration. This configuration provides a statement about
which sensitive data from other apps is potentially exposed to the Accessibility-
Service via the accessibility framework. Among the different available configuration
attributes, packageNames and canRetrieveWindowContent effectively constrain
the accessibility app’s access to other apps. Attribute packageNames allow-lists the
source packages for AccessibilityEvents the AccessibilityService will re-
ceive. If this attribute is not set, the AccessibilityService will receive events from
all other packages. If developed with least privilege principle in mind and if applicable,
the AccessibilityService should specify all the necessary source app packages
here. The attribute canRetrieveWindowContent controls if the accessibility app
can access the window content of other apps, including sensitive data contained within
those windows. Obviously, this access to window content is a great way to steal data.

We compare the accessibility service configurations for those two highly sensitive
attributes within our app samples to understand the extent of sensitive data to which
different accessibility apps have access to. Since this configuration can be set both
statically and dynamically, we extract the static configuration file from the apps and
combine this with runtime information from tracing the setServiceInfo system
API. Table 5.1 shows the number of packages that do not declare a package name (i.e.,
monitor broadly) and that are able to inspect the window content of other apps. The
results show that all malicious and a11y apps in our sample set monitor broadly, i.e.,
every malicious and a11y app is at least able to inspect window content or receive events
of all other apps, while 34 (60%) of the malicious and 6 (75%) of the a11y services can
do both. While this is intuitive, given the nature of those apps, also 34 (94%) of the
utility services make use of those features, where 20 (56%) utility services use both
features. For those services that specified an allowlist of package names, we also check
the package name details. Of all malicious apps, 8 services set an allowlist and receive
only events from listed packages, while 12 utility services set an allowlist. None of the
8 a11y services set an allowlist and all of them monitor broadly. The distribution of
the (types of) allow-listed packages by the malicious and utility apps can be found in
Table 5.2. Those results show that while utility apps listen primarily to events from
system apps, like settings, installer, or browser, malware targets specifically packages in
certain categories, such as communication or shopping.

Summary From those results, we conclude that the currently available constraints
on accessibility service do not prevent the risk of abuse of a11y features, since all app
types, including legitimate accessibility apps, configure a broad monitoring. Further,
the similarity between the configurations makes it hard to distinguish purely on the
configurations between a targeted attack and compliance to the least privilege principle.

79

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

5.4.3 Accessibility API Usage

Since the accessibility service configuration does not show a distinguishable pattern be-
tween different app types, we further investigated the accessibility framework API usage
within accessibility services. After a review of the accessibility framework documenta-
tion, we categorize the accessibility API into three categories: 1) retrieve information,
2) perform node action, and 3) perform global action. Retrieve information APIs
refer to interfaces that request information about other apps, including on-screen text,
window position and so on. Perform node action API refers to interfaces that perform
an action on a specified UI element (node), e.g., clicking a button. Perform global action
API refers to interfaces for issuing a global operation, like clicking the "home" button
or showing the recent task list. Based on this categorization, we analyzed the types
of accessibility APIs that are used in our sample apps and with which goal they were
used by the apps (i.e., scenario). To this end, we manually interacted with the app
UI and pinpointed possible usages based on the service descriptions and hints of UI
elements. Since malicious apps by nature might mislead the user in those descriptions,
we further collected accessibility-related behavior descriptions from technical reports
by malware analysts and reverse engineers. For each discovered usage scenario, we
manually inspected one app in depth through either reverse engineering or source code
analysis where possible to find patterns how accessibility services are integrated into
their apps. In the end, we found four common patterns for the usage of accessibility
methods:

Pattern P1: retrieve information =⇒ accessibility app operation The accessibility
apps digest the retrieved information about other apps locally, but do not trigger any
global/local accessibility action. For example, a screen reader app gathers screen texts
and then processes this information in a separate TextToSpeech component to read
it aloud.

Pattern P2: retrieve information =⇒ node action Here, first a node is selected
based on information retrieved from the accessibility framework (e.g., locating a specific
button) and then an action is triggered on that specific node (e.g., clicking). For instance,
a facial access app that allows controlling the device via facial and head gestures can
perform a click on a button to which the users points with such a gesture.

Pattern P3: retrieve information =⇒ global action Different from pattern P2,
information gathered from the accessibility framework about another app is used to
trigger a global action. One typical scenario is a switch access app that captures the
"home" key event from an external keyboard and then performs the global action to go
back to the home screen.

Pattern P4: accessibility app operation =⇒ global action In this pattern, the app
triggers a global action purely based on app-internal results but without first retrieving
any information about other apps from the accessibility framework. For instance, a soft
key mapping is one example for this pattern.

80

5.4. STUDY OF ACCESSIBILITY SERVICE USAGE

Table 5.3: Patterns of accessibility API usage

PatternsScenario
P1 P2 P3 P4

M
al
ic
io
us

Content Eavesdropping 3 7 7 7

Phishing 3 7 7 7

Process Persistence 3 7 7 7

Silent Installation 7 3 3 7

Silent Privilege Elevation 7 3 3 7

E-Banking Fraud 7 3 3 7

U
ti
lit
y

Fingerprint Gesture 3 7 7 7

App Locker 3 7 7 7

App Usage Tracing 3 7 7 7

Browser Usage Tracing 3 7 7 7

TextView Mapping 3 7 7 7

Notification Replay 3 7 7 7

Smart Reply 3 7 7 7

Auto Permission Grant 7 3 7 7

Password Auto Fill 7 3 7 7

Web Control 7 3 3 7

(Un)Installation Protection 3 7 7 7

Auto Uninstallation 7 3 7 7

Deep Clean 7 3 3 7

Battery Save 7 3 7 7

Global Menu 7 7 7 3

A
11

y

Screen Reader 3 7 7 7

Speech to Text 3 7 7 7

Facial Access 7 3 3 7

Gesture Access 7 3 3 7

Voice Access 7 3 3 7

Switch Access 7 3 3 7

3: uses pattern 7: does not use pattern

Summary Table 5.3 shows the mapping between usage scenarios and the integration
patterns for different types of apps. From those results, we can see that scenarios from
different categories can have the same API integration pattern. For instance, silent app
installation, deep clean, and voice access share patterns P2 and P3. This makes a static
detection of accessibility API misuse based on the integration pattern infeasible. Thus,
also heuristics based on which APIs are being used—a common technique for malware
detection—cannot sufficiently distinguish the different app types purely based on the
observed API usage patterns.

81

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

Ta
b

le
5.4:

A
c

c
e

ssib
ility

p
ip

e
lin

e
s

fo
rd

iffe
re

n
t

a
p

p
typ

e
s

a
n

d
sc

e
n

a
rio

s

Scenario
T
rigger

Intention
Malicious

C
ontent

Eavesdropping
A
uto

enabled
Send

to
rem

ote
Phishing

Target
app

operation
Load

a
phishing

page
Process

Persistence
Target

app
operation

B
ack

hom
e

Silent
Installation

A
d
click

C
lick

specific
buttons

in
specific

app
Silent

Privilege
Elevation

A
uto

enabled
C
lick

specific
buttons

in
specific

app
E-B

anking
Fraud

A
uto

enabled
Text

input
&

click
specific

button
in

specific
app

A11y

Screen
R
eader

Finger
select

R
ead

text
aloud

Speech
to

Text
A
uto

enabled
Enable

shortcut
button

FacialA
ccess

C
am

era
detection

Screen
navigation

G
esture

A
ccess

Finger
gesture

Screen
navigation

Voice
A
ccess

M
icrophone

detection
Screen

navigation
&

text
editing

Sw
itch

A
ccess

H
ardw

are
keyboard

Screen
navigation

&
text

editing

82

5.4. STUDY OF ACCESSIBILITY SERVICE USAGE

5.4.4 Complete Accessibility Pipelines

Table 5.3 shows the high-level API-based patterns for interacting with the accessibility
framework, which contain both retrieving data (patterns P1, P2, and P3) and triggering
actions (patterns P2, P3, and P4). Since different app types cannot be distinguished
at that abstract level, we now take app-specific contexts around those patterns into
consideration and zoom in to apps to investigate the various events that trigger access
to the accessibility framework, how data retrieved from the accessibility framework is
used, and to which sinks such data flows. For simplicity, we call those app-specific
combinations of triggers and usage the apps’ accessibility pipelines. By comparing the
pipelines of malicious applications and benign applications of the accessibility framework,
we can pinpoint further similarities and differences between different app categories. The
results of investigating the accessibility pipelines for different app types and scenarios
are summarized in Table 5.4. We explain this table in the following, when we discuss
the similarities and differences between malicious apps and a11y apps after comparing
their triggers and intentions.

Similarities 1) Although the triggers of the two app categories vary a lot, the common-
ality is that all apps determine trigger events themselves. Here, target app operation
means that an app that is monitored with the help of the accessibility framework per-
forms a specific operation (e.g., comes to foreground on screen), while in the remaining
triggers the accessibility app reacts to specific stimuli from the user (e.g., finger or
facial gestures) or it reacts to arbitrary custom logic (e.g., auto-start when service is
registered). In any case, evaluation whether a trigger condition is met resides entirely
within the apps. 2) We found that 2 out of 4 prominent intended operations in a11y
apps overlap with the intended operations in malicious apps: voice access provides voice
controlled text editing support, which overlaps with the text input in malware that
mimics user interactions in e-banking fraud; and facial access provides screen navigation
through a camera-based mouse that performs button clicks, which are also used by
malware for, e.g., silent package installation and granting permissions. 3) Although the
intentions of screen reader, voice access, and content eavesdropping are not the same,
all of them require raw data processing within the app. Hence, the raw data usage
is opaque without precise data flow analysis and constraints. This also affects utility
apps. For instance, McAfee Safe Family transmits user web and app usage tracking
data to their server to support multi-device parental control—behavior that uses the
accessibility framework similarly to content eavesdropping malware.

Differences 1) We noticed that although some apps from different categories share
the same intentions, a11y apps usually require more powerful accessibility functions.
For example, the silent installation scenario requires clicking specific buttons in the
settings app, while facial access supports users in clicking any button in any app on
screen for navigation. That means, in fact, malicious apps can be easily over-privileged
without raising immediate suspicion. 2) Both benign and malicious apps require raw
content processing within other components of the apps, but their final data destinations
are different. For example, we found audio as data sink for screen reader, UI as the

83

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

destination for voice access text editing, and network interface as sink for malicious
content eavesdropping. 3) By comparing the triggers of the pipelines, we found that
malicious apps are more likely to perform operations silently or against users’ intentions.
Three of the malicious pipelines are auto enabled after accessibility service activation.
No user involvement is needed. The other three triggers react to specific user operations
on itself or third-party apps (similar to a11y apps), however, the reaction violates the
users’ expectations (e.g., a phishing page is shown). In contrast, triggers in benign
apps are more likely to be user-explicit and the corresponding reactions are always in
conformity with user intentions. For example, switch access clicks the same buttons
as silent installation, but this click action is explicitly triggered by the user through a
keyboard press.

Summary The fact that a11y apps need a more general access to accessibility fea-
tures (e.g., being able to press any button in any app) prevents a simple least-privilege
policy on access to the accessibility framework in order to constrain misuse of acces-
sibility features. Further, the comparison shows that the pipelines of different app
categories share similar triggers and actions, thus, like API patterns (see Section 5.4.3),
differentiation of app types purely on only concrete triggers or concrete actions is not
feasible. The crucial difference between the app categories that we find is that driven
by the category of the app, the complete pipeline is distinguishable when being able
to detect the combination of which trigger lead to which action or data leak. For
instance, a screen reader has full access to all screen content but only needs the audio
API as a data sink to read discovered texts and labels. Or, a facial access app needs to
click an arbitrary position that was determined from the user’s head movement in the
camera feed. Unfortunately, all apps evaluate their trigger conditions themselves and
the accessibility pipelines in stock Android are opaque to any fine-grained enforcement
of control and data flows. This leads us to our key insight for our solutions.

5.5 Key Idea and Threat Model

From our study, we learned that benign accessibility apps distinguished themselves
from malicious ones through different data destinations in combination with explicit
user-consented node actions, both of which are dependent on the purpose of the a11y
app. Benign accessibility apps usually gather user intentions through either on-device
sensors or peripherals. Then they take advantage of accessibility features to either
perform specified UI operation based on user intention (e.g., clicking a button) or collect
necessary user-requested information from the application framework and other apps.
These gathered sensitive information may finally be consumed by components that
provide feedback to the user (e.g., audio output). Thus, we define privacy in the context
of our work as data retrieved via the accessibility framework should not leak without
user authorization and all node actions should be authorized or triggered by the user or
at most be inefficiently misused.

In consideration of those insights, a potential privacy-enhanced accessibility frame-
work should 1) associate the UI operations by an AccessibilityService with
user intentions to avoid (covert) malicious node actions or at least withhold crucial

84

5.5. KEY IDEA AND THREAT MODEL

information for efficient, malevolent node actions; and 2) prevent the on-screen infor-
mation of apps that is gathered by an AccessibilityService from being misused
by malicious accessibility apps (e.g., unauthorized leakage of sensitive information).
To illustrate, consider Figures 5.1 and 5.2. The accessibility app in Figure 5.1 acting
as a supposed screen reader can consume textual information from the accessibility
framework as input and can write arbitrary output streams to audio sinks. To avoid
the screen information from leaking or the app from issuing malicious node actions,
it should not be allowed to issue node clicks or use any other output channel (i.e.,
least-privilege). Thus, it can work as intended as a screen reader while preventing
sensitive data leakage or surreptitious interactions with other apps. Similarly, the
accessibility service in Figure 5.2, acting as a facial access app, can receive arbitrary
input from other components of the accessibility app (e.g., results of processing video
data or motion sense API for gesture recognition), but should only issue clicks "blindly"
to certain UI elements or global events. That means the coordinates for button clicks
should come from the video processing component, which in turn can only consume
camera feeds, but the app should not be able to analyze the screen content otherwise.
Then, since then the app cannot efficiently explore other apps’ UI since it lacks feedback
about screen hierarchy, misusing accessibility features for maliciously installing apps or
granting permissions is impeded.

Key idea The key idea of our solution, whose implementation we present in the
following Section 5.6, is 1) to treat the accessibility pipeline of accessibility apps as a
sequence of steps, such as trigger detection, local processing, and output streams or
node actions; and 2) to redesign the accessibility framework such that those steps are
made explicit and each step’s privileges and I/O can be individually governed by a
least-privilege privacy policy, however, the content of each step is treated as a blackbox.
By keeping the overall pipeline in mind when authoring the privacy policy, we establish
a control over the possible data flows of accessibility apps. With a suitable policy that
allows benign flows to proceed while preventing potentially malicious flows, privacy
protection and enabling accessibility services do not need to be mutually exclusive
anymore.

Threat model We assume that an accessibility app is malicious, meaning that all
code, even when divided into individual sandboxed steps, can collaboratively still be
malicious and steps be tailored to each other to use their individual access rights and
I/O to implement an attack (i.e., unauthorized action via the accessibility framework or
leakage of data obtained via the accessibility framework). Picking up the example in
Figure 5.2, although the video processing component cannot inspect the screen content
anymore to detect buttons, it could send hard-coded coordinates for click events that
are independent of the camera feed in order to trigger clicks at coordinates desired
by the attacker. We discuss the efficiency of our solution under this threat model in
Section 5.8.

85

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

Accessibility App
(Screen Reader)

A
ccessibility F

ram
ew

ork...

Screen Text

Button Label

Edit Text

Button Click

A
pp

li
ca

ti
on

 F
ra

m
ew

or
k

...

Audio

Network

Log

Figure 5.1: Example sandboxing for Screen Reader

Accessibility App
(Facial Access)

A
ccessibility F

ram
ew

ork...

Screen Text

Button Click

Global ActionA
pp

 C
om

po
n

en
ts

...

Click Events

Global Events

Figure 5.2: Example sandboxing for Facial Access

5.6 Privacy-Enhanced Accessibility Framework

In the following, we present the design concepts and implementation to realize our idea
for constraining misuse of the accessibility framework.

5.6.1 Overview and Design Concepts

The key idea in our solution is that we treat the accessibility pipeline as a sequence of
connected, individual steps and apply flow constrains to control the data flows along
the pipeline to prevent unauthorized data leaks or actions. We categorize the steps of
those pipelines into three types of code modules that are chained (see Figure 5.3): a
frontend module (optional) to gather user intentions (e.g., from sensors or peripherals),
an accessibility module to perform UI operations or retrieve sensitive information via
the accessibility framework, and a backend module (optional) that creates the output of
the pipeline (e.g., audio or text output). Those types have been directly derived from
our previous observations about how a11y apps operate and we find them sufficient
to implement the accessibility pipelines with minimum-function, least-privilege steps.
Although such a logical pipeline exists in real accessibility apps, clearly distinguishable
modules do not necessarily exist in current apps and their logic is commonly mixed
together in app components. We demonstrate in Section 5.7 how accessibility apps can
be retrofitted to our solution. To prevent misuse of the accessibility API in this pipeline,
we transfer design concepts for privilege separation and information flow control to
our solution. In particular, we found strong parallels to opacified computation for IoT
apps [96] and to recognizers in augmented reality data processing pipelines [95].

Privilege separation We implement privilege separation of the involved modules, a
common practice in other areas of privacy protection on Android, such as constraining
third party libraries [27, 26, P1]. By default, all code running within the same app

86

5.6. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

Accessibility App

Other Components

A
cc

es
si

bi
lit

y
P

ip
el

in
e

Backend
Module

Speech
Textview

...

Accessibility
 Module

Accessibility
Service

Frontend
Module

Camera
Voice

Keyboard
...

Figure 5.3: Accessibility pipeline with sandboxed modules

sandbox (i.e., under the same id in Android) would share the same privileges. Thus, to
privilege-separate untrusted code, it is moved into a separate sandbox in form of another
id under which it executes with a distinct set of permissions and access rights. This
establishes a clear boundary between sandboxed (or quarantined [96]) code modules
and allows access control at the process boundaries. Further, it allows control over the
interactions between modules that are in separate sandboxes. We transfer this idea to
the accessibility framework by composing the pipeline of actual, distinguishable code
modules in their own sandboxes. Thus, we can control to which resources or APIs
each module has access and designating each module for a certain step in the pipeline
makes the overall process more transparent. No module by itself should have enough
privileges to conduct the malicious operation. For instance, if a backend module of a
text-to-speech app has to produce audio output, we allow this module to only access
Android’s audio API but not leak any data to the filesystem, other modules, or network
sockets.

Information flow control To build the pipeline, modules must interact with each
other in a coordinated fashion. For instance, an accessibility module could accept screen
coordinates as input and will output the on-screen information of the node (reference to
UI element) at this particular location, which another module might receive to operate
on (e.g., read out text elements of the UI element). One way to build these pipelines
would be with direct IPC connections between modules. However, this would necessitate
that the I/O interfaces of modules are tailored to each other, which would make the setup
inflexible (e.g., if a frontend module could provide data to several kinds of accessibility
modules) at no apparent security benefit. Instead, in our design, components of the
accessibility app that are outside the pipeline connect modules and orchestrate the
pipeline (e.g., forward the data between modules), which only requires each module
to expose their own IPC interfaces to those app components via newly introduced
I/O functions.This creates the risk that private data can leak to the components of
the accessibility app that are not sandboxed or that those components can modify or
counterfeit data exchanged between modules. To solve this problem, we take inspiration
from opaque handles [96]: hidden references to raw data that are associated with a taint
label and that can only be dereferenced within a sandboxed module. By only releasing

87

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

handles to the orchestrating components outside the pipeline we prevent leakage of
potentially private data to code that is not sandboxed and protect the integrity of
that data from modifications by code outside the pipeline. By tainting the handles
with the tag of the code module that output the data and checking those taints when
handles are given as input to another module, we can ensure the authenticity of the
received data and, further, can enforce simple flow constraints that govern how the
modules have to be chained together. Originally [96], the taint labels also propagate
to the taint label sets of module sandboxes and are forwarded to outgoing handles.
That was necessary, since multiple flows might converge at a module and the context
of the sandbox and of its outgoing data need to be distinguishable. Our design is
simpler, since we have only a single flow in the pipeline and hence do not need to keep
taint sets on sandboxes. Moreover, in contrast to the original work, we noticed that
in some pipelines non-privacy-critical data could be released to the host app to allow,
for instance, customizations (see Section 5.7.2 for such a scenario). Thus, our policy
supports specifying that raw data can be released to components outside the pipeline
by dereferencing the handle. To ensure the integrity and origin of all data, our solution
allows only handles to be passed as input arguments to other modules.

Recognizers Lastly, we borrow the concept of recognizers used to limit sensitive
data sharing in augmented reality data processing pipelines [95]: in place of getting
raw video data, augmented reality apps subscribe to the output of certain trustworthy
video processors (e.g., object recognizers) and only receive the minimal amount of
data necessary for their operation. We noticed a similar setting in accessibility apps.
Accessibility apps can depend on a pre-processing of raw data from sensors or peripherals,
e.g., the camera. For instance, a facial mouse detects with the camera the user’s head
movements and gestures, and maps this to screen coordinates and click events. This
would be done in our solution in the frontend modules (see Section 5.7.2). Although
our threat model assumes all modules can be malicious and the output of the frontend
module is generally not trustworthy, it is not unreasonable to assume that also scenarios
exist in which the frontend module could be pre-installed or be coming from a trusted
source, similar to recognizers in AR data pipelines that move common pre-processing to
trusted system-provided component. A crucial benefit of a trusted frontend module in
accessibility pipelines is that it provides a trusted source for detecting user intentions.
In our design, we use this concept of recognizers by recording the outputs of frontend
modules and later comparing them against the parameters of node actions. If the
frontend is a trusted recognizer , this allows verification of node actions and to link user
intentions with node actions.

5.6.2 Implementation

Figure 5.4 gives an overview of our implemented solution. We extend Android with a
new service PASManagerService and its corresponding UI application PASServer.
PASManagerService is the core component in our implementation. It provides ac-
cessibility apps with a new set of APIs to orchestrate their accessibility pipelines. It
works as a central accessibility event dispatcher that bridges between Android’s original

88

5.6. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

accessibility features

AccessibilityManagerService
PA

S
M

an
ag

er
S
er

vi
ce

A
M

S
B
ri

dg
eInfoFlowController

PipelineFilter

ActionFilter

TextFilter

PASServer

CommunicationManager

IPC System Space

Client Side

PASManager

P
ip

el
in

e

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er
F

ro
n

te
n

d
S

an
db

ox

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er

PA
S
M

an
ag

er
A
S
Li

st
en

er
A

cc
es

si
bi

lit
y

S
an

db
ox

M
od

ul
e

C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er
B

ac
ke

n
d

S
an

db
ox

H
os

t
C
od
e

PA
S
M

an
ag

er
PA

S
M

an
ag

er

H
os

t A
pp

Figure 5.4: Privacy-enhanced Accessibility Framework

accessibility system service AccessibilityManagerService and the accessibility
modules of client apps, i.e., client apps that want to make use of a11y features use
our PASManagerService instead of the default AccessibilityManagerService.
The PASManagerService itself is a system-side client (AMSBridge) to the Acces-
sibilityManagerService. We implement the flow control for accessibility pipelines
within the InfoFlowController of the PASManagerService. In the following, we
will first introduce the details of the system-side PASManagerService, PASServer,
and their components (Section 5.6.2.1). Then the new accessibility APIs and client-side
integration will be introduced (Section 5.6.2.2).

5.6.2.1 System-Side Components

PASManagerService consists of three key components: CommunicationManager,
AMSBridge and InfoFlowController.

CommunicationManager CommunicationManager is the IPC communication
hub between host apps, the modules in their pipelines, the AccessibilityMan-
agerService (via the AMSBridge), and a new settings app PASServer. We use the

89

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

standard Android proxy-stub concept for Binder IPC, where every client to the Commu-
nicationManager uses a PASManager to call the CommunicationManager and
to receive callbacks from CommunicationManager. The host app and its modules
also exchange data via the CommunicationManager with each other. If the host app
and its modules could communicate directly with each other, this would necessitate
that all opaque handles are set as part of the IPC communication (e.g., within Binder).
This would be a very invasive change to a fundamental component of Android. By
prohibiting direct communication between the host app and its modules as part of the
modules’ sandboxes, using a custom permission4 unavailable to third party apps, and
ensuring policies that prevent modules from leaking data to locations readable by the
host app or other modules (e.g., SD card), we force modules and their host app to
communicate via CommunicationManager with each other. Hence, while modules
can be chained together, this solution ensures that they can only be chained through
the CommunicationManager as a channel controlled by our framework. This places
CommunicationManager in the position of a reference monitor to enforce information
flow control (see further down).

AMSBridge Accessibility modules additionally need to communicate with the Ac-
cessibilityManagerService to make use of accessibility features. Instead of
direct access to the AccessibilityManagerService, the CommunicationMan-
ager together with the AMSBridge bridges this communication. They provide to
the accessibility module in a new manager class ASListener as much of the vanilla
AccessibilityManagerService API as possible in order to reduce the effort of
migrating apps from the original framework to our solution. In turn, AMSBridge is
registered as an event listener to the original AccessibilityManagerService and
dispatches these events to registered modules or forwards requested actions from the
modules to the AccessibilityManagerService. This puts AMSBridge into a
great position to enforce access control on the accessibility features used by modules.

InfoFlowController InfoFlowController realizes flow constraints on the commu-
nication passing through the CommunicationManager. It implements three types of
flow constrains: PipelineFilter, TextFilter and ActionFilter.

PipelineFilter PipelineFilter implements the opaque handles and taint-based flow
control. It maintains a set of unique identities for all modules as well as the host apps,
and it keeps a mapping between module outputs and their handles and taints (i.e.,
identity of module that created the output). Thus, when a module sends an output
to the host app, the data will be replaced by a new handle and the data be stored in
PipelineFilter. The host app cannot use the handle to modify the referenced data.
Every time the host app sends a handle to a module as input and the corresponding
data is supposed to come from a specific other module as output, PipelineFilter
uses the stored taint to validate this claim or otherwise abort the release of the data
as input to the receiving module. Similarly, it releases raw data to the host app if the

4A future version of our solution could also use new SELinux types.

90

5.6. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

policy allows this and the host app requests dereferencing a handle. However, only a
handle can be passed as input to another module, hence, integrity and origin of released
data is always ensured when being further processed in the pipeline.

TextFilter TextFilter implements a similar control but for textual elements within
AccessibilityNodeInfos returned from AMSBridge to modules. It replaces the
plain text with a random uuid before sending the node info back to the host app. This
uuid and plain text pair is stored in a map in TextFilter and only on input to an
authorized module TextFilter releases this text. Thus, if AccessibilityNodeIn-
fos is released to a module, TextFilter can decide whether that module is authorized
to also receive textual content that could be privacy sensitive. Modules that are not in
need of such information, e.g., because they only need the node for information about
screen layout, can thus operate with lower-privileges. This can be easily applied to
other content besides textual information, however, we have not encountered the need
to hide other content yet.

ActionFilter ActionFilter validates the user intentions for action events when the
frontend module is trusted, i.e., is a trusted recognizer component. ActionFilter
records the output of frontend modules, e.g., the coordinate of a UI element that the user
wants to click. Once AMSBridge receives a call to perform an action from a module, it
asks ActionFilter to validate if the target UI conforms to the user intention recorded
before. If the frontend module is trusted, a successful validation links the action to the
user intention. Thus, a pipeline with a trusted frontend module is hindered in issuing
actions that were not authorized (triggered) by the user. If the frontend module is not
trusted, ActionFilter cannot help, since the frontend module and the accessibility
module could be colluding to issue malicious actions.

PASServer Lastly, PASServer is a new settings app for our solution to assist users
with accessibility feature management. Users can en-/disable a pipeline or (de-)activate
the centralized accessibility service through this app.

5.6.2.2 Client-Side Integration

Modules are started by the PASManagerService very similarly to regular app sand-
boxes and their launch establishes a bi-directional communication between a module’s
process and the PASManagerService. When PASManagerService launches a mod-
ule’s application sandbox, it already receives a Binder reference to this process from
Android, which allows PASManagerService to send messages to the module. After
the module’s application sandbox has been started and the module’s code been loaded,
it requests a Binder reference to the PASManagerService, which is encapsulated in a
PASManager and allows it to send messages to PASManagerService. With this two
Binder references a bi-directional communication is established. Modules that make use
of accessibility features additionally register an ASListener with PASManagerSer-
vice through which they can receive accessibility events and issue actions. The host app
also has a PASManager that allows it to issue commands to PASManagerService,

91

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

e.g., invoke modules and pass/receive data handles via CommunicationManager. For
a full-fledged implementation, we envision that accessibility apps carry their modules as
payload (separate dex files) and register them during installation in the privacy-enhanced
framework, similar to how prior works proposed sandboxing third party libraries [27,
P1]. Alternatively, modules could be provided as standalone packages on a market
and accessibility apps declare which ones should be retrieved and installed into the
pipeline of the app, similar to emerging app-in-app ecosystems [50, 103]. In any case,
the host app declares the modules in its manifest, where it also states their required
privileges and the flow policy, which can hence be inspected and approved (e.g., by
the user during app installation). For our prototypical implementation, we create the
module sandboxes as dedicated apps as a fixed part of our modified Android image in
order to test functional correctness and evaluate our solution in terms of performance
overhead (see next Section 5.7).

5.7 Evaluation

In this section, we take two open-source accessibility apps, TalkBack [104] and EVA
Facial Mouse [105], as examples to test the performance of our solution and show how
to enhance the privacy protection in accessibility services.

5.7.1 Case Study: TalkBack

We use Google’s official screen reader app for visually impaired users, TalkBack, to
evaluate the protection of on-screen text against leakage. This app has been installed
more than 5 billion times according to Google Play Store (see Table A.1 in Appendix A.2).
TalkBack is a complex app containing multiple modules and multiple preference settings.
We focus on its core module—touch-based screen reader with default settings. The
accessibility pipeline for this module can be seen in Figure 5.5: the app has an accessibility
module and a text-to-speech backend module. Once the user touches the screen,
accessibility module collects the textual information about the touched node from the
accessibility framework. That information is passed to the text-to-speech component
that reads the text aloud via Android’s TTS service.

Migration We build the accessibility module by moving the touch detection logic,
which includes accessibility event processing and cursor controls, to an accessibility
module in the pipeline. When a touch event is detected, the module outputs the textual
information about the UI element at the touch coordinates. Similarly, we establish the
backend module here by moving TalkBack’s original text-to-speech code to a backend
module and exposing the necessary interfaces like isSpeaking(), speak(String)
and shutdown() to the host app. To orchestrate this pipeline from the host app, we
replace the original local calls in the host app with calls to the API exposed by the two
modules (i.e., callbacks for text output from the accessibility module and calls to, e.g.,
speak()). Thus, the host app can forward the text from the touch detection to the
text-to-speech logic, each executing in their own sandbox. We made 3k+ LOC changes
on a code base 27k+ LOC for this migration.

92

5.7. EVALUATION

Privacy enhancement In our design, all modules and host app are running in their
own sandbox with distinct permission sets. The accessibility module has the privilege
to receive touch events but nothing else, thus, it is unable to scavenge through another
app’s screen content and leak it. The backend text-to-speech module can only access the
TTS API of Android to play the result of the text processing, but cannot leak the text
to another sink (e.g., network socket or filesystem). Neither module has the privilege to
issue node actions, e.g., pressing buttons in an unauthorized way. By only releasing
handles for the output of the accessibility module to the host app, the host app cannot
inspect the textual content, which might be privacy-sensitive. Using flow control on
those handles, we ensure that the backend module only receives data as input that was
generated by the accessibility module.

5.7.2 Case Study: EVA Facial Mouse

We use EVA Facial Mouse app to confirm the feasibility of restricting the misuse of
node actions. The app provides a virtual mouse that is controlled by facial movements,
e.g., if the user cannot use their hands. The accessibility pipeline in Figure 5.6 contains
a frontend that uses the camera to capture user intentions and an accessibility module
to perform user-intended clicks. The frontend module has access to the device camera
and when it detects a head gesture that indicates a click, the coordinates of the virtual
mouse on screen will be output. Based on the coordinates, the accessibility module can
retrieve the target node from the accessibility framework and perform the actual click
on this node.

Migration We put the app’s original camera-tracing code to the frontend module and
expose necessary callback interfaces, like onMouseEvent(location, click), to
the host app. We also allow the necessary accessibility features for node detection based
on coordinates and performing click actions on nodes to the accessibility module. As for
TalkBack, we replace the original calls to the camera and accessibility features inside
the host app with calls and callbacks to/from the two modules, such that the host app
orchestrates the pipeline and forwards data between the modules. The frontend module
traces the user’s head movements and outputs the corresponding mouse tracing events,
i.e., coordinates of the mouse cursor. To maintain the look and feel of a mouse cursor
the host app can in this case dereference the handle to the coordinates data to draw
a mouse cursor on screen and also easily allow the user to customize the cursor (e.g.,
size, color). When a click event is detected by the frontend, the host app invokes the
accessibility module with the coordinates for which to retrieve the UI element and to
which to issue a click. We changed 1k+ LOC on a code base 9k+ LOC for this app.

Privacy enhancement Again, the modules and host app are in separate sandboxes
with distinct permission sets. The frontend module has access to the camera, but nothing
else. The accessibility module can retrieve nodes from the accessibility framework based
on screen coordinates and issue click actions to those nodes. Applying the text filter to
the node infos released to the accessibility module, we prevent that this module learns
the content of the UI element (e.g., button label or content of a text view). Further,

93

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

user touch

Function:
 – touch event detection
Permission:
 – receive touch event

Accessibility Module

Function:
 – text to speech
Permission:
 – TTS

Backend Module

text

Figure 5.5: Accessibility pipeline for Screen Reader

Accessibility Module
Function:
 – screen navigation
Permission:
 – click node
 – access node info(w/o text)

 Function:
 – face tracing
Permission:
 – camera

Frontend Module

click
position

Figure 5.6: Accessibility pipeline for Facial Mouse

neither module can investigate the screen content and hence produce targeted clicks,
e.g., to navigate the settings app without user approval to grant permissions or install
new apps silently. However, the modules could issue node actions "blindly" and without
feedback, e.g., the coordinates are hard-coded in either module, which could succeed in
navigating the device surreptitiously when the coordinates fit to the current screen-size
and the device screen was in a well-known state (e.g., home screen). A countermeasure
to this would rely on our ActionFilter, i.e., assuming that the frontend module is
trusted and that the coordinates output by this module can be validated against the
coordinates of a node when the accessibility module issues a node action. In that case,
forging or manipulating coordinates would not succeed.

Further, it should be noted that this app could misuse the camera permission to spy
on user input. The trace of cursor coordinates and click events allows the app to monitor
where on screen the user clicked. While our solution prevents the app (concretely,
the accessibility module) from misusing the accessibility framework to learn and leak
the information about clicked UI elements, the app can use side-channels to infer this
information independently of the accessibility features. For instance, if the host app has
a valid assumption about the screen content (e.g., an onscreen keyboard), coordinate
trace together with click events would allow the host app to derive which input the
user gave (e.g., mapping coordinates with click to the screen position of keys of the
soft-keyboard). However, this is purely an abuse of the camera permission and not of the
accessibility framework. Although being outside of our threat model, our solution could
offer a potential solution in this concrete case as well by moving the cursor rendering to
a module that cannot leak the derived information and only releasing non-dereferencable
handles to the host app.

5.7.3 Performance Overhead

Our framework is deployed on Android version 8.1 on a Pixel 2 XL device. We use the
two migrated apps to estimate the performance impact of our framework. We utilize

94

5.8. DISCUSSION

Table 5.5: Performance evaluation results

Application Original (ms) Migrated (ms) ∆

TalkBack 10.75±1.35 18.55±2.26 7.80 (73%)
EVA Facial Mouse 15.60±1.26 29.50±3.55 13.90 (89%)

Intervals for 95% confidence

microbenchmarking to measure the overhead. Since the runtime of an accessibility
operation is affected by complex user interfaces (e.g., time to find a specific node), we
develop a dedicated test app with only one TextView and one Button. Thus, our
measurements approximate the upper bound for the overhead, since we minimize the
runtime for common operations and thus give more weight to the overhead. We run the
test 20 times for the original and migrated versions of the TalkBack and EVA Facial
Mouse app. Table 5.5 summarizes the results.

TalkBack Result We measure the time the screen reader module needs to read the
TextView text aloud after a user touched on it. We start the measurement as soon
as a touch event is detected. The measurement completes when the text-to-speech’s
speak instruction is executed. The average overhead for the migrated app is 7.80ms or
about 73%.

EVA Facial Mouse Result We measure the time from click generation in the frontend
module until the onClick() callback of the target button is triggered. The result
shows that the induced overhead is 13.90ms or about 89%.

Summary Although the relative overhead is high, we want to 1) note again that this
is an upper bound since our test app optimizes the common operations and weights the
overhead higher and 2) point out that those affected operations occur in many cases
with low frequency and the absolute overhead in our measurements is well below the
average human perceptible latency. Thus, while overhead due to the additional IPC
between modules and host app was expected, we think the overall overhead is still in an
acceptable range.

5.8 Discussion

5.8.1 Limits and challenges

Sandboxing the modules in the pipelines and controlling to which APIs (sources and
sinks) they have access together with the opaque, tainted handles for data exchanged
between modules provides control over data flows in the same fashion as in similar
solution in IoT settings [96]. Thus, we are facing some similar challenges as well as new
challenges in protecting the users’ privacy.

95

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

Indistinguishable data flows Like other solutions, we treat the modules as blackboxes
and control the data flows to and from modules. But we cannot control how the modules
generate their outputs, and we have only limited means to control the exchanged
data (e.g., text filters). As a result, if the data flows including sources and sinks are
indistinguishable between a11y and malicious apps, our solution can likely not prevent
unauthorized leakage—although, we did not find an example in our study of malicious
accessibility apps where this was case, as shown in Section 5.4.

Authorized node actions Further, we face the additional requirement that not
only the unwanted leakage of data should be prevented but also unauthorized node
actions. The challenge is to connect a node action with a user action. Our current
solution tries to validate the parameters of actions (i.e., action filter) but at least limits
the effectiveness of malicious node actions by limiting the data on which actions are
based (e.g., preventing the reconnaissance of the screen content, see Section 5.7.2).

Off-device processing Accessibility apps can depend on off-device services, for
instance, for image or audio processing. As for other information flow control solutions,
like [96, 106, 107], the device boundary is a hard boundary for our enforcement. However,
by strengthening the sandbox (see below) our solution can provide control over the
network destinations (e.g., URL) to which modules can connect and, hence, ensure that
only trusted, user-approved services are used as part of the pipeline.

Side-channels We cannot exclude side-channels that can be used by modules to
secretly exchange data or that modules use to conduct reconnaissance (e.g. [108]).

Summary While the ideal result would be to prevent all potential leakage of private
data and all malicious node actions as described in Section 5.4.4 while at the same time
upholding all benign, legitimate a11y app functionality, there currently exist potential
cases in which malicious and a11y apps are not distinguishable for our policies. However,
compared to stock Android’s all-or-nothing protection, our solution provides a trade-off
where required assistive apps can function while the potential for misuse of accessibility
features is drastically reduced. For instance, a user that requires a facial mouse and
allows the corresponding policy might still fall victim to "blindly" injected click events
but none of the other malware could operate as usual, such as e-banking fraud and
content eavesdropping.

5.8.2 Strengthening the sandbox and IFC

An obvious improvement to our solution would be better information flow control along
the entire data flow even within sandboxes. This could help to validate that node
actions indeed depend on input generated by user actions or that leaked data does not
depend on private data. On Android, taint tracking [106, 107, 109] techniques have
been proposed to this end. Unfortunately, taint tracking suffers from a hard to defend
reference monitoring. A malicious app can always win by dropping the taint (e.g.,
native code, indirect control flows) and currently these solutions would only apply to

96

5.8. DISCUSSION

curious-but-honest modules. Further, we currently consider every module to be used
only in one pipeline, which makes the information flow control between modules (e.g.,
the tainting of the handles) and the non-interference within a single module trivial. A
more advanced scenario could allow the re-use of modules in different, simultaneously
executing pipelines (e.g., re-using pre-installed modules) and in that case an integration
of distributed information flow control (e.g., [110] or [96]) would be necessary to ensure
non-interference. Our sandboxes rely on the stock Android mechanisms (i.e., uids with
permissions). However, those only provide a very coarse-grained access control to the
application framework or filesystem. Since the way how we start modules from the
PASManagerService resembles the procedure how virtualized apps are started [50], we
could integrate "module virtualization" in the future where the PASManagerService
takes the role of the broker and puts modules into an isolated process (the least privileged
execution environment that stock Android supports). Similarly, frameworks [111] for
more fine-grained and context-sensitive access control policies could be integrated to
provide better control over the functionality and data each module can access from the
Android API.

5.8.3 User approval

In our current prototype, we assume that the user approves the policies via the
PASServer app or writes custom policies that satisfy their individual privacy prefer-
ences via this app. We are aware that the history of permission prompts on Android
has shown that users are not capable of this and that there is ongoing research into
improving the user experience (e.g., seminal work by Porter Felt et al. [112]). Since the
user in our solution even has to approve flows and the goal of this work is to show that
a11y and privacy protection do not have to be mutually exclusive per se, we defer the
question of how to improve the user experience in approving or configuring policies in
our solution to future work.

5.8.4 Threats to Validity

We specifically looked for collections of malware samples in actively maintained, popular
GitHub projects. However, we cannot guarantee that those collections are the most
representative ones for malicious accessibility apps. Further, we searched for supposedly
benign a11y and utility apps by keyword search among the top apps on Google Play
Store. Thus, we think our collection of utility apps is representative. Unfortunately,
the number of a11y apps is limited and many of the top apps are written by Google.
Thus, there might be a bias in our collection of a11y apps towards Google’s software
engineering practices.

5.8.5 Utility apps

Our solution reduces the chances for misuse of the accessibility API while preserving
the functionality of a11y apps. However, utility apps might depend on pipelines that
differ from those of a11y apps when providing innovative usages of the accessibility
framework. For example, password managers take advantage of it to fill-in passwords.

97

CHAPTER 5. PRIVACY-ENHANCED ACCESSIBILITY FRAMEWORK

Since this is an abuse of the accessibility features, Google introduced the auto-fill
framework [113] as an alternative to support password managers. However, for cases in
which no alternative framework or API exists in Android, it remains an open question
how to support those utility apps while maintaining a high level of privacy protection
or whether those use-cases can be generally implemented in accessibility pipelines as
well. For instance, the pipeline for a utility app that automates tedious user actions
through sequences of automated button clicks might not be distinguishable enough from
malware secretly navigating user interfaces.

5.8.6 Other attacks and privacy issues

Apart from the attacks we analyzed in Section 5.4, other attacks might leverage
the accessibility framework as a building block or stepping stone. For instance, the
accessibility API might be used for reconnaissance. A typical example is a phishing
attack, in which a malicious app uses the accessibility framework to monitor the name
of the foreground activity and time the launch a phishing activity. However, in such
cases, the accessibility framework is often just the path of least resistance to gather
information and alternatives exist (e.g., foreground activities can also be identified via
side-channels [108]), thus we did not separately study and evaluate those attacks in
our work. Further, our defense relies on proper policies, thus, if the user is involved in
setting and granting them, we exclude attacks against the user from our threat model,
such as deceptive overlays [90, 93]. Lastly, there exist apps to support impaired or
disabled users via crowdsourcing instead of relying on the accessibility framework. For
example, camera-based assistive apps to support visually impaired users. Those apps
outsource the users’ questions, e.g., about their physical surroundings, to volunteers
with whom the users have to share sensitive information, such as photo or video stream.
Prior work [114] investigated the privacy concerns raised in using camera-based assistive
apps under different scenarios. Their results confirm the request by dependent users for
privacy protection in using assistive technologies, which we take as further motivation
for our research although those particular cases of sharing camera data with volunteers
are not covered by our work. Similarly, other data stealing attacks, such as taking
screenshots or recording audio that do not rely on the accessibility framework are out
of scope of what we can defend against.

5.9 Related Work

We briefly present the related works to our work on enhancing the privacy of Android’s
accessibility framework.

Process-based privilege separation on Android A few solutions separate sensitive
or untrusted components into isolated processes to mitigate privacy violations. Works
focusing on advertisement libraries [27, 26, P1] demonstrated different solutions to
isolate said libraries from their host apps and privilege separate them. Roesner et
al. [115] sandboxed untrusted UI components in isolated processes to support secure UI
embedding. Davidson et al. [33] provided a dedicated WebView service app to protect

98

5.10. CONCLUSION

host apps from untrusted web content. Starting with Android O, Google officially put
the WebView renderer into an isolated process [116]. Other works privilege separate
entire apps, e.g., Backes et al. [50] create a virtualized environment for untrusted apps
and, similarly, Bianchi et al. [51] demonstrated an approach that sandboxes an untrusted
app inside a separate non-privileged context to enforce privacy and security policies.
Our work transfer those concepts to the accessibility framework by sandboxing the code
modules that form an accessibility pipeline.

Information flow control in IoT applications Closest to our work is FlowFence [96],
which introduced information flow control for IoT apps to prevent unwanted data
leakage. It introduced the concepts of quarantined modules and opaque handles that we
also used in our implementation. In contrast to FlowFence, our flows are very simple
and linear. For instance, in FlowFence multiple flows might converge on the same
module, necessesitating taint sets for modules, and modules can set custom taints on
output to prevent their data from reaching certains sinks. Our modules only consume
output from a single predecessor module within a short pipeline for which the user sets
the policy. Thus, while we could support the same taint arithmetic and taint sets as
FlowFence, this is currently not necessary and simplifies our setup, avoiding the issue of
overtainting module sandboxes. On the other hand, our solution has to additionally deal
with the problem of authorizing actions by modules. We addressed this by adopting the
concept of recognizers [95] and using data flow control to limit the information needed
for (effective) malicious actions.

5.10 Conclusion

Android’s accessibility framework is a powerful service intended to allow assistive apps in
supporting impaired and disabled users in navigating their devices. Unfortunately, the
service is also a popular building block for utility and malevolent apps that do not apply
accessibility features as originally intended and might violate the users’ privacy. Existing
defenses in stock Android force users and app developers to choose between inclusiveness
and privacy protection. To improve on this situation, we propose a privacy-enhanced
accessibility framework forward. By representing a11y logic as pipelines, sandboxing
every code module in a pipeline, and enforcing flow constraints, our solution allows
more fine-grained control over accessibility features and reduces the attack surface while
upholding the functionality of a11y apps. We showcase the feasibility of our solution
by migrating two a11y apps. We also discuss the shortcomings of our approach and
hope this work will raise further interest in building solutions that protect a particular
dependent user group.

99

6
Conclusion

101

Untrusted application components, including third-party libraries and app compo-
nents that abuse the privacy-sensitive framework APIs, pose many privacy and security
problems to application users. The permission model and the sandboxing mechanism
under the current Android security model are ineffective in protecting user data from
being violated by untrusted app components. In addition, the lack of timely update
support for flawed third-party components in the current Android app ecosystem exposes
a large vulnerability window to the public, which further worsens the risk of privacy
leakage.

This dissertation presents a line of works that mitigate the privacy and security
threats originated from untrusted application components on Android. The emphasis
of this dissertation lies on either optimizing the integration model for untrusted app
components to provide more fine-grained privilege restriction straightforwardly or
otherwise providing timely remediations to those components once they are detected to
be vulnerable or exploitable. Towards implementing a more fine-grained privilege access
control mechanism, we borrow the idea of privilege separation from existing works where
the privilege sets of the untrusted components and other parts of the app are distinct
and capable of being policed separately. This dissertation chooses to split the code of the
untrusted components from other parts of the app code and make them run in different
processes where each process has its own uid and permission set. With the Android
sandboxing mechanism, strong trustworthy boundaries can be established among the
untrusted processes and other app processes, and then sensitive data access in different
sandboxes can now be managed separately. The primary challenge of this line of works is
to rebuild the communication channel between those isolated sandboxes to synchronize
the now physically separated untrusted components and the other parts of the app
across processes while maintaining the original app’s functionality and user interface.
Aside from that, another critical aspect of these works is to apply a least-privileged
privacy policy to each sandbox, which allows for fine-grained control of privileges
to different compartments, thus significantly reducing the sensitive data exposure to
untrusted components. Apart from implementing more fine-grained privilege access
control mechanisms, this dissertation also focuses on the remediation measurement for
known vulnerable third-party components, which can also help mitigate privacy and
security threats originating from untrusted app components. More specifically, this
work explores the possibility of reducing the open vulnerability window caused by the
untrusted components through an improved app update ecosystem.

Our work on mitigating security and privacy threats from untrusted application
components consists of three peer-reviewed publications [P1, P2, P3]. Among them,
CompARTist (see Chapter 3) is a compiler-based library compartmentalization solution
that utilizes the sandboxing-based privilege separation technique to prevent host data
from being compromised by third-party advertisement libraries. Building on top of
Android’s dex2oat on-device compiler, CompARTist transforms the target application
and replaces the original local library calls with inter-process communication calls
to the remote library service app seamlessly during a recompilation. Through this
newly established IPC channel, the remote advertisement service app can sync with
the host app, and thus the advertising functionality and user interface of the original

application can be preserved while effectively mitigating privacy and security threats
from the advertising library without modifying any systems or applications. While
CompARTist protects user privacy from overly curious or malicious third-party libraries
by altering the integration model for those libraries, our second work, Up2Crash (see
Chapter 4), emphasizes minimizing those threats from vulnerable third-party libraries
within the original in-app library integration model. More specifically, Up2Crash
focuses on reducing the open vulnerability window caused by vulnerable third-party
libraries by breaking through the bottleneck of the library update chain inside the
Android app ecosystem and updating vulnerable libraries to their successor (patched)
versions timely without involving app developers. It explores the feasibility of an
API-compatibility-based library update solution that updates the outdated libraries
through drop-in replacement as proposed by prior work [2]. Multiple dynamic tests on
real-world applications uncovered intricate factors that impede a drop-in replacement of
libraries. Further case studies verified the prevalence of those discovered issues in other
libraries and pinpointed entangled library dependencies as the main challenging issue
of the drop-in replacement solution. Up2Crash is the first work to study the factors
influencing an API-compatibility-based library update solution. Our findings provide
valuable insights for future improvements to the library update ecosystem or library
update tool development. Both CompARTist and Up2Crash aim to mitigate privacy
and security threats from libraries created by untrusted third-party. However, there also
exists privacy leakage from untrusted components implemented by the app developer
themselves. The third work of this dissertation is dedicated to reducing the risk of
privacy leaks due to the misuse of powerful accessibility features by untrusted application
components through a privacy-enhanced accessibility framework (see Chapter 5). In
this work, the complete accessibility logic is treated as a pipeline consisting of multiple
modules. Similar to CompARTist, the privilege separation technique is also applied
here, enabling a more fine-grained privilege control over the usage of accessibility features
by loading all code modules inside the pipeline to different sandboxes. Moreover, we
deployed a flow control mechanism on this pipeline to further improve the management
of sensitive data transfers between modules. This approach upholds the functionality
of accessibility apps while significantly reducing the attack surface. Real-world app
migration cases also proved the feasibility of our solution.

Future Research Directions We note several future research directions for this
dissertation. All solutions in this line of works mitigate the privacy and security threats
through on-device measures. These measures prohibit unwanted app components from
accessing sensitive user data, but they do not prevent data from being leaked by
apps that involve off-device processing, for example, image recognition, as discussed
in Section 5.8.1. Restricting the remote data destinations with a whitelist could be
a potential solution, but again this involves the methodology used to generate this
whitelist. Ranking-based whitelist makes the solution inflexible and non-adaptable, e.g.,
some post-ranking changes in the remote server may cause information leakage, while
pure user-decision-based solutions are not reliable enough. Based on this situation,
our vision is to extend the protection domain of the security mechanism beyond the
device, for example, to a hardware-secured cloud platform. Under this new architecture,

103

CHAPTER 6. CONCLUSION

remote services can preserve their usability by submitting data preprocessing modules
to this platform and let these modules work as the gateway between user data and
remote service. The secure hardware will protect the intellectual property of the data
preprocessing modules. The data preprocessing module can minimize and desensitize
the raw data from users, thus enhancing user privacy in using those off-device services.

Apart from that, we also notice some application scenarios of our solution beyond
mobile apps, e.g., IoT devices. Chapter 4 highlights the bottleneck of library update in
the current Android software ecosystem. When it comes to IoT devices, this problem has
not diminished but has become more complex. IoT devices usually rely on companion
apps to prompt update installation requests to users and further install the updated
firmware. Considering the data sensitivity in IoT devices, such as fitness monitors, and
the tedious one-by-one upgrading and permission management work, we do see the need
to have an easy-to-use mechanism, e.g., a centralized auto-updating and permission
management system service, on the current Android to keep the firmware of these IoT
devices updated in time.

104

Bibliography

Author’s Papers for this Thesis

[P1] Huang, J., Schranz, O., Bugiel, S., and Backes, M. The art of app compart-
mentalization: compiler-based library privilege separation on stock android. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). 2017, 1037–1049.

[P2] Huang, J., Borges, N., Bugiel, S., and Backes, M. Up-to-crash: evaluating third-
party library updatability on android. In: 2019 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. 2019, 15–30.

[P3] Huang, J., Backes, M., and Bugiel, S. A11y and privacy don’t have to be mutually
exclusive: constraining accessibility service misuse on android. In: 30th USENIX
Security Symposium (USENIX Security 21). 2021.

Other references

[1] Backes, M., Bugiel, S., Schranz, O., Styp-Rekowsky, P. von, and Weisgerber, S.
Artist: the android runtime instrumentation and security toolkit. In: 2017 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE. 2017, 481–495.

[2] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M. Keep me updated: an
empirical study of third-party library updatability on android. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
2017, 2187–2200.

[3] Borges, N. P., Hotzkow, J., and Zeller, A. Droidmate-2: a platform for android test
generation. In: 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE. 2018, 916–919.

[4] Number of smartphone users worldwide from 2016 to 2023. https://www.s
tatista.com/statistics/330695/number-of-smartphone-users-
worldwide. Accessed: 2021-04-23.

[5] Number of available applications in the Google Play Store from December 2009 to
December 2020. https://www.statista.com/statistics/266210/nu
mber-of-available-applications-in-the-google-play-store/.
Accessed: 2021-04-23.

[6] Cloud-based protections. https://developers.google.com/android/
play-protect/cloud-based-protections. Accessed: 2021-09-30.

105

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developers.google.com/android/play-protect/cloud-based-protections
https://developers.google.com/android/play-protect/cloud-based-protections

BIBLIOGRAPHY

[7] LibScout. https://github.com/reddr/LibScout. Accessed: 2021-04-23.
[8] Open Handset Alliance Releases Android SDK. http://www.openhandseta

lliance.com/press_111207.html. Accessed: 2021-05-31.
[9] HTC Dream. https://en.wikipedia.org/wiki/HTC_Dream. Accessed:

2021-05-31.
[10] Mobile Operating System Market Share Worldwide. https://gs.statcount

er.com/os-market-share/mobile/worldwide. Accessed: 2021-04-23.
[11] OpenBinder. http://www.angryredplanet.com/~hackbod/openbinde

r/docs/html/. Accessed: 2021-09-31.
[12] Build more accessible apps. https://developer.android.com/guide/

topics/ui/accessibility. Accessed: 2021-04-23.
[13] AccessibilityService. https://developer.android.com/reference/

android/accessibilityservice/AccessibilityService. Accessed:
2021-04-23.

[14] AccessibilityServiceInfo. https://developer.android.com/referen
ce/android/accessibilityservice/AccessibilityServiceInfo.
Accessed: 2021-04-23.

[15] android:importantForAccessibility. https://developer.android.com/
reference/android/view/View.html#attr_android:importantFo
rAccessibility. Accessed: 2021-04-23.

[16] Thomas, D. R., Beresford, A. R., and Rice, A. Security metrics for the android
ecosystem. In: Proceedings of the 5th Annual ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices. 2015, 87–98.

[17] What happened to the Android Update Alliance? https://arstechnica.
com/gadgets/2012/06/what-happened-to-the-android-update-
alliance/. Accessed: 2021-04-23.

[18] Update your Android apps. https://support.google.com/googleplay/
answer/113412?hl=en. Accessed: 2021-04-23.

[19] Improve your code with lint checks. https://developer.android.com/
studio/write/lint. Accessed: 2021-04-23.

[20] Stevens, R., Gibler, C., Crussell, J., Erickson, J., and Chen, H. Investigating user
privacy in android ad libraries. In: Workshop on Mobile Security Technologies
(MoST). Vol. 10. Citeseer. 2012.

[21] Demetriou, S., Merrill, W., Yang, W., Zhang, A., and Gunter, C. A. Free for all!
assessing user data exposure to advertising libraries on android. In: NDSS. 2016.

[22] Son, S., Kim, D., and Shmatikov, V. What mobile ads know about mobile users.
In: NDSS. Citeseer. 2016.

[23] Meng, W., Ding, R., Chung, S. P., Han, S., and Lee, W. The price of free: privacy
leakage in personalized mobile in-apps ads. In: NDSS. 2016.

106

https://github.com/reddr/LibScout
http://www.openhandsetalliance.com/press_111207.html
http://www.openhandsetalliance.com/press_111207.html
https://en.wikipedia.org/wiki/HTC_Dream
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://developer.android.com/reference/android/view/View.html#attr_android:importantForAccessibility
https://arstechnica.com/gadgets/2012/06/what-happened-to-the-android-update-alliance/
https://arstechnica.com/gadgets/2012/06/what-happened-to-the-android-update-alliance/
https://arstechnica.com/gadgets/2012/06/what-happened-to-the-android-update-alliance/
https://support.google.com/googleplay/answer/113412?hl=en
https://support.google.com/googleplay/answer/113412?hl=en
https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint

OTHER REFERENCES

[24] Yang, W., Li, J., Zhang, Y., Li, Y., Shu, J., and Gu, D. Apklancet: tumor payload
diagnosis and purification for android applications. In: Proceedings of the 9th
ACM symposium on Information, computer and communications security. 2014,
483–494.

[25] Backes, M., Bugiel, S., Styp-Rekowsky, P. von, and Wißfeld, M. Seamless in-app
ad blocking on stock android. In: 2017 IEEE Security and Privacy Workshops
(SPW). IEEE. 2017, 163–168.

[26] Pearce, P., Felt, A. P., Nunez, G., and Wagner, D. Addroid: privilege separation
for applications and advertisers in android. In: Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security. 2012, 71–
72.

[27] Shekhar, S., Dietz, M., and Wallach, D. S. Adsplit: separating smartphone
advertising from applications. In: 21st USENIX Security Symposium (USENIX
Security 12). 2012, 553–567.

[28] Zhang, X., Ahlawat, A., and Du, W. Aframe: isolating advertisements from
mobile applications in android. In: Proceedings of the 29th Annual Computer
Security Applications Conference. 2013, 9–18.

[29] Seo, J., Kim, D., Cho, D., Shin, I., and Kim, T. Flexdroid: enforcing in-app
privilege separation in android. In: NDSS. 2016.

[30] Liu, B., Liu, B., Jin, H., and Govindan, R. Efficient privilege de-escalation for
ad libraries in mobile apps. In: Proceedings of the 13th annual international
conference on mobile systems, applications, and services. 2015, 89–103.

[31] Zhou, Y., Patel, K., Wu, L., Wang, Z., and Jiang, X. Hybrid user-level sandboxing
of third-party android apps. In: Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security. 2015, 19–30.

[32] Sun, M. and Tan, G. Nativeguard: protecting android applications from third-
party native libraries. In: Proceedings of the 2014 ACM conference on Security
and privacy in wireless & mobile networks. 2014, 165–176.

[33] Davidson, D., Chen, Y., George, F., Lu, L., and Jha, S. Secure integration of web
content and applications on commodity mobile operating systems. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security.
2017, 652–665.

[34] Ad-blocking for your Android. https://adaway.org/. Accessed: 2021-04-23.
[35] Surf the Web Ad-Free and Safely. Shield up! https://adguard.com/en/

welcome.html. Accessed: 2021-04-23.
[36] Surf the web with no annoying ads. https://adblockplus.org/. Accessed:

2021-04-23.
[37] Browse fast, safe and free of annoying ads with Adblock Browser. https://

adblockbrowser.org/. Accessed: 2021-04-23.
[38] Erlingsson, U. The inlined reference monitor approach to security policy enforce-

ment. Tech. rep. Cornell University, 2003.

107

https://adaway.org/
https://adguard.com/en/welcome.html
https://adguard.com/en/welcome.html
https://adblockplus.org/
https://adblockbrowser.org/
https://adblockbrowser.org/

BIBLIOGRAPHY

[39] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster, J. S.,
and Millstein, T. Dr. android and mr. hide: fine-grained permissions in android
applications. In: Proceedings of the second ACM workshop on Security and privacy
in smartphones and mobile devices. 2012, 3–14.

[40] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky, P. von.
Appguard–enforcing user requirements on android apps. In: International Con-
ference on TOOLS and Algorithms for the Construction and Analysis of Systems.
Springer. 2013, 543–548.

[41] Davis, B. and Chen, H. Retroskeleton: retrofitting android apps. In: Proceeding
of the 11th annual international conference on Mobile systems, applications, and
services. 2013, 181–192.

[42] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H. I-arm-droid: a rewriting
framework for in-app reference monitors for android applications. Mobile Security
Technologies 2012, 2 (2012), 1–7.

[43] Rasthofer, S., Arzt, S., Lovat, E., and Bodden, E. Droidforce: enforcing com-
plex, data-centric, system-wide policies in android. In: 2014 Ninth International
Conference on Availability, Reliability and Security. IEEE. 2014, 40–49.

[44] Xu, R., Saïdi, H., and Anderson, R. Aurasium: practical policy enforcement for
android applications. In: 21st USENIX Security Symposium (USENIX Security
12). 2012, 539–552.

[45] javap - The Java Class File Disassembler. https://docs.oracle.com/
javase/7/docs/technotes/tools/windows/javap.html. Accessed:
2021-09-01.

[46] Schreiber, T. Android binder. A shorter, more general work, but good for an
overview of Binder. http://www. nds. rub. de/media/attachments/files/2012/03/binder.
pdf (2011).

[47] UI/Application Exerciser Monkey. https://developer.android.com/
studio/test/monkey.html. Accessed: 2021-04-23.

[48] Set up Google Play services. https://developers.google.com/android/
guides/setup. Accessed: 2021-04-23.

[49] interstitial. https://developers.google.com/admob/android/inter
stitial#some_best_practices. Accessed: 2021-07-05.

[50] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P. von.
Boxify: full-fledged app sandboxing for stock android. In: 24th USENIX Security
Symposium (USENIX Security 15). 2015, 691–706.

[51] Bianchi, A., Fratantonio, Y., Kruegel, C., and Vigna, G. Njas: sandboxing unmod-
ified applications in non-rooted devices running stock android. In: Proceedings of
the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices. 2015, 27–38.

[52] Guava: Google Core Libraries for Java. https://github.com/google/
guava. Accessed: 2021-04-23.

108

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developers.google.com/android/guides/setup
https://developers.google.com/android/guides/setup
https://developers.google.com/admob/android/interstitial#some_best_practices
https://developers.google.com/admob/android/interstitial#some_best_practices
https://github.com/google/guava
https://github.com/google/guava

OTHER REFERENCES

[53] Backes, M., Bugiel, S., and Derr, E. Reliable third-party library detection in
android and its security applications. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 2016, 356–367.

[54] Bhoraskar, R., Han, S., Jeon, J., Azim, T., Chen, S., Jung, J., Nath, S., Wang, R.,
and Wetherall, D. Brahmastra: driving apps to test the security of third-party
components. In: 23rd USENIX Security Symposium (USENIX Security 14). 2014,
1021–1036.

[55] Jamrozik, K. and Zeller, A. Droidmate: a robust and extensible test generator
for android. In: Proceedings of the International Conference on Mobile Software
Engineering and Systems. 2016, 293–294.

[56] Wei, T., Zhang, Y., Xue, H., Zheng, M., Ren, C., and Song, D. Sidewinder:
targeted attack against android in the golden age of ad libraries. Black Hat 14
(2014).

[57] AppLovin Security Notice. https://blog.applovin.com/applovin-
security-notice/. Accessed: 2021-04-23.

[58] JS-Binding-Over-HTTP Vulnerability and JavaScript Sidedoor: Security Risks
Affecting Billions of Android App Downloads. https://www.fireeye.c
om/blog/threat- research/2014/01/js- binding- over- http-
vulnerability-and-javascript-sidedoor.html. Accessed: 2021-04-
23.

[59] Watanabe, T., Akiyama, M., Kanei, F., Shioji, E., Takata, Y., Sun, B., Ishi,
Y., Shibahara, T., Yagi, T., and Mori, T. Understanding the origins of mobile
app vulnerabilities: a large-scale measurement study of free and paid apps. In:
2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). IEEE. 2017, 14–24.

[60] Salza, P., Palomba, F., Di Nucci, D., D’Uva, C., De Lucia, A., and Ferrucci, F.
Do developers update third-party libraries in mobile apps? In: Proceedings of the
26th Conference on Program Comprehension. 2018, 255–265.

[61] Thomas, D. R., Beresford, A. R., Coudray, T., Sutcliffe, T., and Taylor, A.
The lifetime of android api vulnerabilities: case study on the javascript-to-java
interface. In: Cambridge International Workshop on Security Protocols. Springer.
2015, 126–138.

[62] Beresford, A. R. Whack-a-mole security: incentivising the production, delivery
and installation of security updates. In: IMPS@ ESSoS. 2016, 9–10.

[63] Zhang, M. and Yin, H. Appsealer: automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in android applications. In:
NDSS. Citeseer. 2014.

[64] Mulliner, C., Oberheide, J., Robertson, W., and Kirda, E. Patchdroid: scalable
third-party security patches for android devices. In: Proceedings of the 29th
Annual Computer Security Applications Conference. 2013, 259–268.

109

https://blog.applovin.com/applovin-security-notice/
https://blog.applovin.com/applovin-security-notice/
https://www.fireeye.com/blog/threat-research/2014/01/js-binding-over-http-vulnerability-and-javascript-sidedoor.html
https://www.fireeye.com/blog/threat-research/2014/01/js-binding-over-http-vulnerability-and-javascript-sidedoor.html
https://www.fireeye.com/blog/threat-research/2014/01/js-binding-over-http-vulnerability-and-javascript-sidedoor.html

BIBLIOGRAPHY

[65] Chen, Y., Li, Y., Lu, L., Lin, Y.-H., Vijayakumar, H., Wang, Z., and Ou, X. In-
staguard: instantly deployable hot-patches for vulnerable system programs on an-
droid. In: 2018 Network and Distributed System Security Symposium (NDSS’18).
2018.

[66] You, W., Liang, B., Shi, W., Zhu, S., Wang, P., Xie, S., and Zhang, X. Reference
hijacking: patching, protecting and analyzing on unmodified and non-rooted
android devices. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). IEEE. 2016, 959–970.

[67] Zhang, X., Zhang, Y., Li, J., Hu, Y., Li, H., and Gu, D. Embroidery: patching
vulnerable binary code of fragmentized android devices. In: 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). IEEE.
2017, 47–57.

[68] Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., and Wei, T. Adaptive android
kernel live patching. In: 26th USENIX Security Symposium (USENIX Security
17). 2017, 1253–1270.

[69] Duan, R., Bijlani, A., Ji, Y., Alrawi, O., Xiong, Y., Ike, M., Saltaformaggio, B.,
and Lee, W. Automating patching of vulnerable open-source software versions in
application binaries. In: NDSS. 2019.

[70] Kim, D., Nam, J., Song, J., and Kim, S. Automatic patch generation learned
from human-written patches. In: 2013 35th International Conference on Software
Engineering (ICSE). IEEE. 2013, 802–811.

[71] Long, F. and Rinard, M. Automatic patch generation by learning correct code.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 2016, 298–312.

[72] Li, B., Zhang, Y., Li, J., Feng, R., and Gu, D. Appcommune: automated third-
party libraries de-duplicating and updating for android apps. In: 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE. 2019, 344–354.

[73] Amigo. https://github.com/eleme/Amigo. Accessed: 2021-04-23.
[74] AndFix. https://github.com/alibaba/AndFix. Accessed: 2021-04-23.
[75] Tinker. https://github.com/Tencent/tinker. Accessed: 2021-04-23.
[76] Droid Plugin. https://github.com/DroidPluginTeam/DroidPlugin.

Accessed: 2021-04-23.
[77] Choudhary, S. R., Gorla, A., and Orso, A. Automated test input generation for

android: are we there yet?(e). In: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE. 2015, 429–440.

[78] Amalfitano, D., Fasolino, A. R., Tramontana, P., De Carmine, S., and Memon,
A. M. Using gui ripping for automated testing of android applications. In: 2012
Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. IEEE. 2012, 258–261.

110

https://github.com/eleme/Amigo
https://github.com/alibaba/AndFix
https://github.com/Tencent/tinker
https://github.com/DroidPluginTeam/DroidPlugin

OTHER REFERENCES

[79] Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., and Zou, W. Smartdroid:
an automatic system for revealing ui-based trigger conditions in android applica-
tions. In: Proceedings of the second ACM workshop on Security and privacy in
smartphones and mobile devices. 2012, 93–104.

[80] Mao, K., Harman, M., and Jia, Y. Sapienz: multi-objective automated testing
for android applications. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis. 2016, 94–105.

[81] Wong, M. Y. and Lie, D. Intellidroid: a targeted input generator for the dynamic
analysis of android malware. In: NDSS. Vol. 16. 2016, 21–24.

[82] Build and run your app. https://developer.android.com/studio/
run#instant-run. Accessed: 2021-04-23.

[83] Gradle Build Tool. https://gradle.org/. Accessed: 2021-09-31.
[84] Android Ad Network statistics and market share. https://www.appbrain.

com/stats/libraries/ad. Accessed: 2021-04-23.
[85] Diao, W., Zhang, Y., Zhang, L., Li, Z., Xu, F., Pan, X., Liu, X., Weng, J.,

Zhang, K., and Wang, X. Kindness is a risky business: on the usage of the
accessibility apis in android. In: 22nd International Symposium on Research in
Attacks, Intrusions and Defenses ({RAID} 2019). 2019, 261–275.

[86] Android Trojan steals money from PayPal accounts even with 2FA on. https:
//www.welivesecurity.com/2018/12/11/android-trojan-steals-
money-paypal-accounts-2fa/. Accessed: 2021-04-23.

[87] Skygofree — a Hollywood-style mobile spy. https://www.kaspersky.com/
blog/skygofree-smart-trojan/20717. Accessed: 2021-04-23.

[88] Anubis Strikes Again: Mobile Malware Continues to Plague Users in Official
App Stores. https://securityintelligence.com/anubis-strikes-
again-mobile-malware-continues-to-plague-users-in-officia
l-app-stores/. Accessed: 2021-04-23.

[89] Jang, Y., Song, C., Chung, S. P., Wang, T., and Lee, W. A11y attacks: exploiting
accessibility in operating systems. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 2014, 103–115.

[90] Fratantonio, Y., Qian, C., Chung, S. P., and Lee, W. Cloak and dagger: from
two permissions to complete control of the ui feedback loop. In: 2017 IEEE
Symposium on Security and Privacy (SP). IEEE. 2017, 1041–1057.

[91] Kraunelis, J., Chen, Y., Ling, Z., Fu, X., and Zhao, W. On malware leveraging
the android accessibility framework. In: International Conference on Mobile
and Ubiquitous Systems: Computing, Networking, and Services. Springer. 2013,
512–523.

[92] Kalysch, A., Bove, D., and Müller, T. How android’s ui security is undermined by
accessibility. In: Proceedings of the 2nd Reversing and Offensive-oriented Trends
Symposium. 2018, 1–10.

111

https://developer.android.com/studio/run#instant-run
https://developer.android.com/studio/run#instant-run
https://gradle.org/
https://www.appbrain.com/stats/libraries/ad
https://www.appbrain.com/stats/libraries/ad
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.welivesecurity.com/2018/12/11/android-trojan-steals-money-paypal-accounts-2fa/
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717
https://www.kaspersky.com/blog/skygofree-smart-trojan/20717
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/
https://securityintelligence.com/anubis-strikes-again-mobile-malware-continues-to-plague-users-in-official-app-stores/

BIBLIOGRAPHY

[93] Yan, Y., Li, Z., Chen, Q. A., Wilson, C., Xu, T., Zhai, E., Li, Y., and Liu, Y.
Understanding and detecting overlay-based android malware at market scales.
In: Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services. 2019, 168–179.

[94] Naseri, M., Borges Jr, N. P., Zeller, A., and Rouvoy, R. Accessileaks: investigating
privacy leaks exposed by the android accessibility service (2019).

[95] Jana, S., Molnar, D., Moshchuk, A., Dunn, A., Livshits, B., Wang, H. J., and
Ofek, E. Enabling fine-grained permissions for augmented reality applications
with recognizers. In: 22nd USENIX Security Symposium (USENIX Security 13).
2013, 415–430.

[96] Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., and Prakash,
A. Flowfence: practical data protection for emerging iot application frameworks.
In: 25th USENIX security symposium (USENIX Security 16). 2016, 531–548.

[97] Android-Malwares. https://github.com/hxp2k6/Android-Malwares.
Accessed: 2021-04-23.

[98] Android Malware Samples. https://github.com/ashishb/android-
malware. Accessed: 2021-04-23.

[99] Android Malware - 2018. https://github.com/sk3ptre/AndroidMalwa
re_2018. Accessed: 2021-04-23.

[100] AndroidMalware_2019. https://github.com/sk3ptre/AndroidMalwar
e_2019. Accessed: 2021-04-23.

[101] Google pauses removal of apps that want to use accessibility services. https:
//www.zdnet.com/article/google-pauses-crackdown-of-access
ibility-api-apps/. Accessed: 2021-04-23.

[102] VirusTotal. https://support.virustotal.com/hc/en-us. Accessed:
2021-04-23.

[103] Lu, H., Xing, L., Xiao, Y., Zhang, Y., Liao, X., Wang, X., and Wang, X. Demys-
tifying resource management risks in emerging mobile app-in-app ecosystems. In:
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security. 2020, 569–585.

[104] TalkBack. https://github.com/google/talkback. Accessed: 2021-04-23.
[105] EVA Facial Mouse. https://github.com/cmauri/eva_facial_mouse.

Accessed: 2021-04-23.
[106] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung,

J., McDaniel, P., and Sheth, A. N. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS) 32, 2 (2014), 1–29.

[107] Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D. These aren’t
the droids you’re looking for: retrofitting android to protect data from imperious
applications. In: Proceedings of the 18th ACM conference on Computer and
communications security. 2011, 639–652.

112

https://github.com/hxp2k6/Android-Malwares
https://github.com/ashishb/android-malware
https://github.com/ashishb/android-malware
https://github.com/sk3ptre/AndroidMalware_2018
https://github.com/sk3ptre/AndroidMalware_2018
https://github.com/sk3ptre/AndroidMalware_2019
https://github.com/sk3ptre/AndroidMalware_2019
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://www.zdnet.com/article/google-pauses-crackdown-of-accessibility-api-apps/
https://support.virustotal.com/hc/en-us
https://github.com/google/talkback
https://github.com/cmauri/eva_facial_mouse

OTHER REFERENCES

[108] Chen, Q. A., Qian, Z., and Mao, Z. M. Peeking into your app without actually
seeing it: ui state inference and novel android attacks. In: 23rd USENIX Security
Symposium (USENIX Security 14). 2014, 1037–1052.

[109] Sun, M., Wei, T., and Lui, J. C. Taintart: a practical multi-level information-flow
tracking system for android runtime. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 2016, 331–342.

[110] Nadkarni, A., Andow, B., Enck, W., and Jha, S. Practical DIFC enforcement
on android. In: 25th USENIX Security Symposium (USENIX Security 16). 2016,
1119–1136.

[111] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R. ASM: a programmable
interface for extending android security. In: 23rd USENIX Security Symposium
(USENIX Security 14). 2014, 1005–1019.

[112] Felt, A. P., Egelman, S., Finifter, M., Akhawe, D., Wagner, D. A., et al. How to
ask for permission. HotSec 12 (2012), 7–7.

[113] Autofill framework. https://developer.android.com/guide/topics/
text/autofill. Accessed: 2021-04-23.

[114] Akter, T., Dosono, B., Ahmed, T., Kapadia, A., and Semaan, B. " i am un-
comfortable sharing what i can’t see": privacy concerns of the visually impaired
with camera based assistive applications. In: 29th USENIX Security Symposium
(USENIX Security 20). 2020, 1929–1948.

[115] Roesner, F. and Kohno, T. Securing embedded user interfaces: android and
beyond. In: 22nd USENIX Security Symposium (USENIX Security 13). 2013,
97–112.

[116] What’s new in WebView security. https://android-developers.goo
gleblog.com/2017/06/whats-new-in-webview-security.html.
Accessed: 2021-04-23.

113

https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html
https://android-developers.googleblog.com/2017/06/whats-new-in-webview-security.html

A
Appendix

115

A.1 APIs of CompARTist’s communication channel
1 void invokeListenerCallbackHelper(int objectId, String method);
2 void invokeListenerCallbackHelper_1(int objectId, String method, in WrapClass y

↪→ param);
3 void invokeListenerCallbackHelper_2(int objectId, String method, in WrapClass y

↪→ param_1, in WrapClass param_2);
4 void invokeListenerCallbackHelper_3(int objectId, String method, in WrapClass y

↪→ param_1, in WrapClass param_2, in WrapClass param_3);
5 void invokeListenerCallbackHelper_4(int objectId, String method, in WrapClass y

↪→ param_1, in WrapClass param_2, in WrapClass param_3, in WrapClass param_4);

Listing A.1: Callback API

1 WrapClass getStaticFieldService(String ctype, String field);
2 WrapClass invokeStaticMethodService_2(String ctype, String method,in WrapClass[] y

↪→ params);
3 WrapClass invokeStaticMethodService(String ctype, String method);
4 WrapClass invokeVirtualMethodService_2(String ctype, String method, in WrapClass y

↪→ object, in WrapClass[] params);
5 WrapClass invokeVirtualMethodService(String ctype, String method, in WrapClass y

↪→ object);
6 WrapClass newInstanceService_2(String ctype, in WrapClass[] params);
7 WrapClass newInstanceService(String ctype);

Listing A.2: Advertisement Invocation API

1 void removeWindow(int viewId, boolean destroy);
2 void createWindow(int viewId, in Rect rect);
3 void updateWindow(int viewId, in Rect rect);

Listing A.3: Lifecycle API

A.2 Accessibility App Sample Set

Table A.1: A11y App Sample Set (Google Play Store)

Package #Installed
com.google.android.marvin.talkback 5,000,000,000+
com.sesame.phone_nougat 10,000+
com.crea_si.eviacam.service 1,000,000+
com.google.audio.hearing.visualization.accessibility.scribe 50,000,000+
com.google.android.apps.accessibility.voiceaccess 1,000,000+

A.2. ACCESSIBILITY APP SAMPLE SET

Table A.2: Utility App Sample Set (Google Play Store)

Package #Installed
com.amazon.tahoe 1,000,000+
com.antivirus 100,000,000+
com.antivirus.tablet 10,000,000+
com.apusapps.emo_launcher 100,000+
com.apusapps.launcher 100,000,000+
com.avast.android.cleaner 10,000,000+
com.avast.android.mobilesecurity 100,000,000+
com.avg.cleaner 50,000,000+
com.bitdefender.security 5,000,000+
com.bitspice.automate 500,000+
com.cleanmaster.mguard 1,000,000,000+
com.eset.ems2.gp 10,000,000+
com.eset.parental 100,000+
com.gau.go.launcherex 100,000,000+
com.italia.autovelox.autoveloxfissiemoibli 1,000,000+
com.kaspersky.safekids 500,000+
com.kms.free 50,000,000+
com.ksmobile.launcher 100,000,000+
com.lastpass.lpandroid 5,000,000+
com.lionmobi.battery 50,000,000+
com.mcafee.security.safefamily 100,000+
com.microsoft.launcher 10,000,000+
com.oneapp.max.cleaner.booster 10,000,000+
com.piriform.ccleaner 50,000,000+
com.pleco.chinesesystem 1,000,000+
com.server.auditor.ssh.client 500,000+
com.teslacoilsw.launcher 50,000,000+
com.wsandroid.suite 10,000,000+
dreamy.earth.theme.natural.launcher 1,000,000+
galaxy.iphone.hd.wallpaper.live.screen.lock 10,000,000+
ginlemon.flowerfree 10,000,000+
mobi.infolife.appbackup 10,000,000+
org.malwarebytes.antimalware 10,000,000+
panda.keyboard.emoji.theme 100,000,000+
red.love.rose.theme.valentine.launcher 1,000,000+

117

APPENDIX A. APPENDIX

Table A.3: Malicious App Sample Set (Github)

MD5 Classification (VirusTotal-Alibaba)

007ae04ac52f17d5d637f2c41658f824 TrojanSpy:Android/Banker.a30eb151
03e5d8ece783245b28cb97373e739842 Trojan:Android/Agent.3fc9b0c7
042f2f3a0df4aef0460d1ee74f1df033 Backdoor:Android/Agent.8f28ba9e
09b60aa78291e7ef8b0ddfc261afb9f9 TrojanDropper:Android/Skeeyah.a026644f
10f8097ef0db6adbed3b314055491ca4 Trojan:Android/Rootnik.efbca116
1512c3fa688ca107784b3c93cd9f3526 TrojanDropper:Android/Hqwar.657ae279
18a3c09ce58b3db05cf248730adb6bd0 TrojanDropper:Android/Hqwar.9e0b0668
2254002370c03cf14c3eabb27b3b826d TrojanBanker:Android/Anubis.58e63764
2f07c9b2a67104f8bc08d831c8922b6a TrojanBanker:Android/Riltok.32dfd36e
31ba565fcc1060ad848769e0b5b70444 Trojan:Android/Agent.4c52deda
39fca709b416d8da592de3a3f714dce8 Trojan:Android/Skygofree.355eb294
3b07862da0b78632d8e4486444adbbfd Backdoor:Android/Agent.3ebcdecc
3ffedf4759a001417084c64db48b549a TrojanSpy:Android/AndroRAT.afe389c9
4aea3ec301b3c0e6d813795ca7e191bb TrojanSpy:Android/Donot.60880405
519018ecfc50c0cf6cd0c88cc41b2a69 TrojanSpy:Android/ZooPark.436e912a
51f388f9ca606812d7fb4d5330e42ce7 TrojanBanker:Android/Anubis.75cc2361
55366b684ce62ab7954c74269868cd91 Trojan:Android/Ztorg.6ff5f73b
5cc953f25deeff951c38a5c118a81fe9 Trojan:Android/Agent.008476da
63a56f3867ef4b4a3cf469e81496aee7 TrojanDropper:Android/Agent.ac60e49b
647f6b2503205dd1f1da5ea490b6c71f Trojan:Android/Rootnik.977d3960
64e374807d87102cfc27489a91f8a13d AdWare:Android/Batmob.cbf4dda9
6a3ae5a916bc109e0186b40093084a78 Backdoor:Android/Agent.63d66ab9
6c39197bb2c2fd5fc9253ed18467d0d7 Backdoor:Android/Brata.7b8ffc88
70a937b2504b3ad6c623581424c7e53d Trojan:Android/Skygofree.f9b277e6
71b80c162001f9d2f4872f2efb7431fe TrojanSpy:Android/AndroRAT.a2734e43
75f1117cabc55999e783a9fd370302f3 TrojanBanker:Android/Banker.4650457b
880540d10cca559f68db96314f206225 Trojan:Android/Rootnik.1fce124c
8a266e277c61ffd6afa3d15b8691b9fb Backdoor:Android/Agent.48e611ae
8a9540fa5541054074d1efdc7729da43 Backdoor:Android/Lucbot.5aac9302
8d1f5637dc0bc76064d6f3283482a7c5 Trojan:Android/Agent.7c517cfb
8df5b22cabc10423533884da7648e982 TrojanBanker:Android/Asacub.3fc31d6b
91f0daa8cb837a9d3e815da8db999a08 TrojanSpy:Android/Banker.35c71d45
957ce53315496083a43c6765f5ed9e42 TrojanSpy:Android/AndroRAT.d9b0b7c8
9ae53ef2a4f2d40b06cc85e5c3778f48 Trojan:Android/Agent.14c930cd
a287a434a0d40833d3ebf5808950b858 Trojan:Android/Skygofree.639ce6ec
a2a921c0e8a9171300a805c5b1df78b8 TrojanSpy:Android/Banker.f9398502
a384a27681df0ed1732d4346f6c52d0a TrojanBanker:Android/Generic.ba1d86be
a44a9811db4f7d39cac0765a5e1621ac Trojan:Android/Agent.34c921b3
a8a8479dab8fbdee1fb058b8de97e89b Trojan:Android/Agent.a87db02a
a962759a71f899a9bbe4d27790e91b00 Backdoor:Android/Lucbot.69116e3e
a97eb28853eeeecffb749bf49b68af55 TrojanSpy:Android/AndroRAT.6fd591ab
ac613a7dee1ee8c47321403ab8fa1372 Trojan:Android/Agent.f483d3f4
ac67f1b22d6c7812003609de284a9ad9 TrojanDropper:Android/Hqwar.20f8d210
ac92258ff3395137dd590af36ca2d8c9 Trojan:Android/Agent.c1ade2d1
c148c63c974e2312d8f847d07242a86b TrojanBanker:Android/Anubis.65b2e27e
c580e7807fbd18106d2659af3cc58f8d AdWare:Android/Gibdy.2f426bf5
cdf10316664d181749a8ba90a3c07454 TrojanSpy:Android/Donot.d27afe4a
d0641eb22198c346af6c22284fca38a6 TrojanBanker:Android/Riltok.b7c88ed6
d3f53bcf02ede4adda304fc7f03a2000 TrojanSpy:Android/Donot.ecf77e96
d6ef4e16701b218f54a2a999af47d1b4 TrojanBanker:Android/Banker.a4cbd698
dc74daf70afc181471f41fd910a0dec0 TrojanDropper:Android/Hqwar.ef5f2c4a
e105b0fd0eadc5db26bf979e4e96007c Trojan:Android/Rootnik.1c8d7a29
e4187a74e6bef1a8cd30116500ed10f8 TrojanBanker:Android/Banker.3457c734
ef8493089deecbef6e459434ec7fee0b TrojanDropper:Android/Hqwar.04dcccff
ffacd0a770aa4faa261c903f3d2993a2 TrojanBanker:Android/Banker.522c0eb4

118

	Introduction
	Technical Background
	Android Primer
	Android Software Stack
	Android Accessibility Framework

	Android Security Mechanisms
	Android Software Update Ecosystem

	CompARTist
	Motivation
	Problem Description
	Problem of Library Blocking
	Problem of Privileges Separating

	Contributions
	Library Integration Techniques
	CompARTist Design
	System Overview
	Inter-Application Communication Channel
	Compiler-based App Rewriting
	Advertisement Service App
	Deployment

	Discussion
	Robustness Evaluation
	Performance Evaluation
	Deployment Alternatives
	Limitations
	Future Work

	Conclusion

	Up2Crash
	Motivation
	Problem Description
	Contributions
	Related Work
	Software Patching Techniques
	Android Test Input Generation Techniques

	Requirements Analysis
	Two-stage Updating Experiment
	Stage-1: Automated Library Update Framework
	Stage-2: Automated User Interface Tests

	Root Cause Analysis
	Findings from Monkey Testing
	DroidMate Finding
	Case Study
	Library Updatability Re-Estimation

	Discussion
	Research Sample
	Entangled Dependencies
	Framework and UI-based Testing Limitations
	Efforts from Multiple Parties
	Updating in Automated App Testing

	Conclusion

	Privacy-Enhanced Accessibility Framework
	Motivation
	Problem Description
	Contributions
	Study of Accessibility Service Usage
	Accessibility App Sample Set
	Accessibility Service Configuration
	Accessibility API Usage
	Complete Accessibility Pipelines

	Key Idea and Threat Model
	Privacy-Enhanced Accessibility Framework
	Overview and Design Concepts
	Implementation

	Evaluation
	Case Study: TalkBack
	Case Study: EVA Facial Mouse
	Performance Overhead

	Discussion
	Limits and challenges
	Strengthening the sandbox and IFC
	User approval
	Threats to Validity
	Utility apps
	Other attacks and privacy issues

	Related Work
	Conclusion

	Conclusion
	Appendix
	APIs of CompARTist's communication channel
	Accessibility App Sample Set

