
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nmcm20

Mathematical and Computer Modelling of Dynamical
Systems
Methods, Tools and Applications in Engineering and Related Sciences

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nmcm20

Autonomous navigation of ships by combining
optimal trajectory planning with informed graph
search

Luis Lüttgens, Benjamin Jurgelucks, Heinrich Wernsing, Sylvain Roy, Christof
Büskens & Kathrin Flaßkamp

To cite this article: Luis Lüttgens, Benjamin Jurgelucks, Heinrich Wernsing, Sylvain Roy,
Christof Büskens & Kathrin Flaßkamp (2022) Autonomous navigation of ships by combining
optimal trajectory planning with informed graph search, Mathematical and Computer Modelling of
Dynamical Systems, 28:1, 1-27, DOI: 10.1080/13873954.2021.2007138

To link to this article: https://doi.org/10.1080/13873954.2021.2007138

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 03 Feb 2022.

Submit your article to this journal

Article views: 1076

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=nmcm20
https://www.tandfonline.com/loi/nmcm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13873954.2021.2007138
https://doi.org/10.1080/13873954.2021.2007138
https://www.tandfonline.com/action/authorSubmission?journalCode=nmcm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nmcm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13873954.2021.2007138
https://www.tandfonline.com/doi/mlt/10.1080/13873954.2021.2007138
http://crossmark.crossref.org/dialog/?doi=10.1080/13873954.2021.2007138&domain=pdf&date_stamp=2022-02-03
http://crossmark.crossref.org/dialog/?doi=10.1080/13873954.2021.2007138&domain=pdf&date_stamp=2022-02-03

Autonomous navigation of ships by combining optimal
trajectory planning with informed graph search
Luis Lüttgens*, Benjamin Jurgelucks *, Heinrich Wernsing*, Sylvain Roy *,
Christof Büskens * and Kathrin Flaßkamp *

Center for Industrial Mathematics, Optimization and Optimal Control, University of Bremen, Bremen,
Germany

ABSTRACT
Autonomous trajectory generation plays an essential role in the
navigation of vehicles in space as well as in terrestrial scenarios, i.e.
in the air, on solid ground, or water. For the latter, the navigation of
ships in ports has specific challenges since ship dynamics are highly
nonlinear with limited agility, while the manoeuvre space in ports is
limited. Nevertheless, for providing support to humanly designed
control strategies, autonomously generated trajectories have not
only to be feasible, i.e. collision-free but shall also be optimal with
respect to manoeuvre time and control effort. This article presents
a novel approach to autonomous trajectory planning on the basis
of precomputed and connectable trajectory segments, the so-
called motion primitives, and an A*-search algorithm. Sequences
of motion primitives provide an initial guess for a subsequent
optimization by which optimal trajectories are found even in ter-
rains with many obstacles. We illustrate the approach with different
navigation scenarios.

ARTICLE HISTORY
Received 4 May 2021
Accepted 11 November 2021

KEYWORDS
Motion planning; optimal
control; autonomous
navigation; A* planning; ship
dynamics

1. Introduction

Today, autonomous transportation is one of the most active research areas all over the
world. Certainly, the most popular branch deals with self-driving cars. However, auton-
omous automobiles cover only a small fraction of transportation problems, since they are
mostly the solution for medium-ranged private transportation. A huge task for the
logistics industry is global trade. According to [1,2,3] about 90% of all goods are carried
by ships today. Thus, the development of techniques for autonomous ship navigation is
of great interest, too. Thereby, ship captains can be assisted in navigation tasks, which
could traditionally only be solved by well-trained and experienced personnel. Thus, this
article focuses on the autonomous1 navigation of ships by providing feasible and, even
more, optimal solutions in scenarios with challenging constraints. A sophisticated

CONTACT Kathrin Flaßkamp kathrin.flasskamp@uni-saarland.de Systems Modeling and Simulation, Saarland
University, 66123 Saarbrücken, Germany
*Present address: L. Lüttgens: Robert Bosch GmbH, 70839 Gerlingen, Germany; B. Jurgelucks: Mathematical
Optimization, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; H. Wernsing: Harris Orthogon GmbH, 28207
Bremen, Germany; S. Roy: LASE Industrielle Lasertechnik GmbH, 46485 Wesel, Germany; C. Büskens: Center for Industrial
Mathematics, Optimization and Optimal Control, University of Bremen, 28359 Bremen, Germany; K. Flaßkamp: Systems
Modelling and Simulation, Saarland University, 66123 Saarbrücken, Germany.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS
2022, VOL. 28, NO. 1, 1–27
https://doi.org/10.1080/13873954.2021.2007138

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0002-7516-0944
http://orcid.org/0000-0001-5297-6396
http://orcid.org/0000-0001-7385-4670
http://orcid.org/0000-0001-5983-1907
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/13873954.2021.2007138&domain=pdf&date_stamp=2022-02-02

modelling is an indispensable prerequisite to allow for mathematical optimization.
Classically, ship dynamics are modelled by ordinary differential equations, since for
this modelling approach, established simulation techniques are at hand. However,
trajectory optimization then requires nonlinear optimization techniques, which, in gen-
eral, rely on good initial guesses and are computationally costly. This paper does not
address the algorithmic barriers in optimization, but, instead, we reconsider the model-
ling step, i.e. propose and analyse a model abstraction that allows a combined application
of state-of-the-art optimization techniques for discrete and continuous models,
respectively.

The method’s development has been motivated by the research at the University of
Bremen within the project GALILEOnautic [4,5,6]. This project makes use of the global
navigation satellite system GALILEO for manoeuvring in safety-critical areas such as
ports. Optimized manoeuvring and automated navigation are realized by online-
optimization using the software WORHP and TransWORHP [7,8,9]. Further aspects to
investigate are cooperation of ships, model-based (feedback) control design, and a virtual
reality 3D test environment. The GALILEOnautic project plans an application to the ferry
crossing from the port of Rostock in Germany to Gedser in Denmark, a port with
demanding waters.

The proposed approach within this article is based on the idea of motion planning with
motion primitives by Frazzoli et al. [10]. In the offline phase of the method, a set of
motions which is consistent with the given vehicle dynamics, the so-called motion
primitives, are computed. The term ‘primitive’ originally refers to the motions being
simple in the sense that humans would intuitively choose them to e.g. stear a vehicle. In
a formal setting, primitives can be selected by model-based criteria as it is done in
optimization, e.g. the primitive duration or its energy efficiency. Exploiting symmetries
in the model allows to use and combine these primitives in various ways. Thus, during the
online phase, an optimal sequence of primitives is searched which solves the given
planning task by using a modified A* method. The size of the library of motion primitives
is crucial for online-applicability. However, a coarse representation of the ship model by
only using a few number of motion primitives generates suboptimal solutions. We address
this issue by using the sequence of motion primitives as an initial guess [11,12] and apply
an optimal control method using the full nonlinear dynamical model afterwards. Due to
the sophisticated initial guess, the local solver of the direct optimal control method is more
likely to converge quickly (cf. to the discussion and numerical studies in [11] or [13], for
instance). We apply this approach to a ship model. A crucial challenge for the planning
phase as well as for the post-optimization are restrictions due to environmental con-
straints. Using an occupancy grid to model port layouts, we guarantee that the motion
primitive sequence and the post-optimized trajectory are feasible solutions.

The combination of A* planning with optimal control overcomes several shortcom-
ings of the individual methods and thus provides a powerful approach to real-world
applications:

● While classical planning focuses on geometric paths only (which are not necessarily
always feasible), a sequence of motion primitives is feasible with respect to the
(nonlinear) dynamics model, thus the path can be realized with less corrective
feedback control.

2 L. LÜTTGENS ET AL.

● Using curves that combine states and controls within the A* (instead of sampling
the control space only), we always have the state trajectory and control curve at hand
which might be helpful for designing feedback controller to robustify solutions.

● Time-consuming optimal trajectory design can be done offline in the preparation
phase. The optimized manoeuvres are stored in the library and can be used
sequentially by the A* planning.

● Providing a sophisticated initial guess to the local optimization method within the
nonlinear optimal control is likely to speed up convergence. Moreover, since the
primitive sequence is an admissible solution, it can always be used as a fallback, if,
for instance in a real-time Model Predictive Control (MPC) scheme, an optimal
control solution cannot be provided in time.

Path planning for vehicles by concatenation of primitives has a long history dating back
to Dubin’s car, where arcs of circles have been used to find shortest paths, see [14] and
also Reed’s and Shepp’s curves as a crucial extension [15]. A number of further exten-
sions and variants are e.g. listed in the textbook [16]. Motion planning with motion
primitives, as introduced by Frazzoli et al. in [10,17,18], also falls into the class of
planning methods. In [19] a survey on planning methods suitable for applications to
autonomous vehicles was conducted.

Optimal control, as a field of mathematical research, emerged from studying varia-
tional problems, see e.g [20] for a historical review. However, it required improved
numerical techniques from the past 50–60 years in order to make optimal control
applicable to real-world examples. Among different numerical approaches, direct opti-
mal control has shown great applicability to large-scale problems [21]. A direct tran-
scription of the optimal control problem into a nonlinear constrained optimization
problem allows to use efficient NLP solvers such as IPOPT [22], KNITRO [23],
SNOPT [24], or WORHP [7].

A detailed study of the numerical methods is out of the scope of this article. Instead,
we focus on conceptually showing the combination of planning and optimal control
methods in ship navigation.

Planning and optimization in ship manoeuvring was studied e.g. in [25,26,27,28,29].
See [29] for a recent research overview on ship collision avoidance methods, which
identifies motion prediction as one of the crucial methods for collision prevention. In
[30], for instance, a modelling approach based on field theory and particle simulations for
collision avoidance is presented. Typically, collision avoidance considers much shorter
manoeuvres (in time, as well as in deplacement) than our path planning approach [31].
also considers collision avoidance scenarios instead of large planning tasks. However,
they build their solutions by pieces of trajectories and allow continuation of some pieces.
This resembles our formalism of trim primitives and manoeuvres, presented in detail in
the following. Contrarily to collision-avoidance, in [32] formation control of multiple
autonomous vessels is addressed. The focus is on feedback control in order to address
environmental disturbances induced by waves, wind and ocean currents. In e.g [26]., the
focus lies on the sensor aspects, which are not covered in our work.

In [33], an overview on planning and navigation for vessels and sailboats is given. The
presented methods for collision avoidance are based on discretized manoeuvres, thus
sharing some similarities with our approach. The path planning literature survey is

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 3

focused on sailboats. It lists graph-based search methods in contrast to potential field
methods and classical sailing. Closely related to our work [34], also considers autono-
mous navigation tasks of vessels and proposes a discrete planning method, called fast
marching method. While this method is originally a pure path planning method, the
authors integrator ship kinematics. Then, a PID controller has to be designed in order to
optimize the trajectory. Here, our post-optimization approach provides more flexibility
due to a general nonlinear optimization solver. However, we only provide an open-loop
solution, not a feedback controller.

As it is the case in our approach, the kinematics and dynamics model and also similar
objective functions, e.g. control effort, are considered in [28] for planning for autono-
mous marine vehicles. However, they apply a projection operator method instead of our
two-step approach of planning and direct optimal control. While their focus lies on
computing collision-free manoeuvres for multiple vessels, we focus on navigation in
ports; this makes it hard to compare the methods directly. In [25], planning on a base of
trajectories is performed. In contrast to our approach, the trajectories do not stem from
so-called trim primitives and optimal manoeuvres. Moreover, we use different optimiza-
tion methods (nonlinear gradient-based versus ant-colony optimization). Another quite
different approach is based on a potential flow design for path planning as presented in
[27]. Autonomous navigation has been successfully realized for a sailboat as reported in
[35]. Here, the focus is on the overall implementation and less on the guidance task.
Within the proposed control architecture, our motion planning with primitives approach
could provide optimal guidance trajectories as high-level control inputs.

1.1. Outline

We proceed by introducing a ship model in Section 2. Then, a formal definition of
motion primitives follows, and it is applied to compute symmetry and primitives of the
ship model in Section 3. In Section 4, we design a manoeuvre automaton for the ship
model, which forms the basis for our planning method. Also, the A* algorithm and the
occupancy map generated for port environments are introduced. The method is eval-
uated in several scenarios with numerical results presented and discussed in Section 5.
Finally, we give concluding remarks in Section 6.

2. Modelling

We are using the ship model proposed in [36] with the same choice of parameters,

_xðtÞ ¼ uðtÞ cosðΨðtÞÞ � vðtÞ sinðΨðtÞÞ (1)

_yðtÞ ¼ uðtÞ sinðΨðtÞÞ þ vðtÞ cosðΨðtÞÞ (2)

_ΨðtÞ ¼ rðtÞ (3)

XðtÞ ¼ _uðtÞ � vðtÞrðtÞ � rðtÞ2xG
� �

m (4)

4 L. LÜTTGENS ET AL.

YðtÞ ¼ _vðtÞ þ uðtÞrðtÞ þ _rðtÞxGð Þm (5)

NðtÞ ¼ _rðtÞIzz þ _vðtÞ þ uðtÞrðtÞð ÞxGm (6)

If we neglect Equations (4)–(6), we are left with first-order kinematic Equations (1)–(3).
The evolution of the spatial displacements x0 and y0 depend on the longitudinal and
lateral velocities u and v, and the current heading Ψ . The angular velocity is denoted by r.
Considering u; v; r as the control inputs, this model resembles simple vehicle models, also
known as holonomic robots, for instance (cf [37]). The system can instantaneously start
to move into any direction independent of the current orientation. This is in contrast to
a nonholonomic model, which includes constraints given by wheels.

Compared to street or aeronautic vehicles, a ship is far less agile. This is modelled in
Equations (4)–(6). Adding these equations to our model gives a system of six ordinary
differential equations. Here, m represents the mass of the ship, xG denotes the centre of
mass along the x-component of the coordinate system attached to the ship (see
Figure 1).

In [36], a port-starboard symmetry is assumed and the ship coordinate system’s origin
is chosen to lie on this symmetry axis. Thus, the centre of mass must lie on this axis, i.e. yG
is equal to zero. The term Izz denotes the moment of inertia with respect to the z-axis.

The capital letters X;Y denote forces and a N a moment acting on the ship. The ship
model we are using in this article is independent of external forces such as water depth,
wind, or time history effects, and there is no explicit dependency of the position of the
ship (see [36]). The control inputs of the full model are the propeller thrust and the
rudder angle, again we refer to [36] for details.

Figure 1. Introduction of coordinates and forces for the ship model (adapted from [36]).

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 5

3. Motion primitives for a ship model

3.1. General definitions

Many dynamical systems show symmetries. Here, we are interested in continuous
symmetries that express themselves in terms of invariances. Illustrative examples are
given by translational or rotational invariances of a mechanical system in the plane. We
consider a dynamical system on an n-dimensional manifold M, given by _xðtÞ ¼
f ðxðtÞ;uðtÞÞ with xðtÞ 2 M � R n and uðtÞ 2 R m. Let TM denote the tangent bundle
of M. We assume f : M � R m ! TM to be continuous and locally Lipschitz w.r.t. its first
argument in order to guarantee existence and uniqueness of the solution φuð�; x0Þ on
a compact time interval ½0;T�, 0<T <1, for u 2 L1ð½0;T�;R mÞ. L1ð½0;T�;R mÞ denotes
the space of Lebesgue-measurable and absolutely integrable functions on the domain
½0;T�. We recall from [38] the following definitions.

Definition 3.1 (Symmetry Group). Let M be a smooth manifold, ðG; �Þ a Lie-group, and
Γ a left-action of G on M. Then, we call the triple ðG;M; ΓÞ a symmetry group of the
system _xðtÞ ¼ f ðxðtÞ;uðtÞÞ if the property

φuðt; Γðg;~x0ÞÞ ¼ Γðg;φuðt;~x0ÞÞ " ðt; g;~x0Þ 2 R�0 � G�M (7)

holds for all u 2 L1ð½0;T�;R mÞ.

Definition 3.2 (Motion Primitive). Let ðG;M; ΓÞ be a symmetry group. Then, two
trajectories φuð�;~x0Þ and φuð�;~y0Þ are called equivalent, if there exists g 2 G such that

φuðt;~x0Þ ¼ Γðg;φuðt;~y0ÞÞ " t � 0:

A motion primitive is the equivalence class of all trajectories equivalent to φuð�;~x0Þ w.r.
t. the left action Γ.

Note that the same control function u is assumed for all members of a motion
primitive.

Definition 3.3 (Trim Primitive). Let ðG;M; ΓÞ be a symmetry group and let g denote
the associated Lie algebra of G. Then, a trajectory φuð�;~x0Þ is called a trim primitive if
there exists a Lie algebra element � 2 g such that

φuðt;~x0Þ ¼ Γðexpð�tÞ;~x0Þ and uðtÞ;�u ¼ const: "t 2 ½0;T�:

The original definition of trim primitives goes back to Frazzoli in [10]. Trim primitives
can be interpreted as the extension of relative equilibria (see e.g. [39],) to systems with
control inputs. Loosely speaking, trim primitives are simple motions (despite nonlinear
dynamics), which are generated by the symmetry action. The control input has to stay
constant along a trim primitive. In fact, the ’trimmed input’ is the reason why these
motion primitives are called trim primitives or trims for short.

6 L. LÜTTGENS ET AL.

3.2. Symmetry for ship models

The kinematic ship model

_~xðtÞ ¼
_xðtÞ
_yðtÞ
_ΨðtÞ

0

@

1

A ¼

uðtÞ cosðΨðtÞÞ � vðtÞ sinðΨðtÞÞ
uðtÞ sinðΨðtÞÞ þ vðtÞ cosðΨðtÞÞ

rðtÞ

0

@

1

A ¼: f ð~xðtÞ;~uðtÞÞ

on M ¼ R 2 � S1 and with control ~u ¼ ðu; v; rÞT is invariant w.r.t. pure translations as
well as w.r.t. a combination of rotations and translations, where the latter is less obvious
when just inspecting the equations of motions. A candidate for the symmetry group can
be represented in homogeneous coordinates as

G :¼ A 2 R 4�4 : A ¼

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A;

Δx
Δy
ΔΨ

0

B
B
@

1

C
C
A 2 R 3

8
>><

>>:

9
>>=

>>;

(8)

with group action Γ : G�M ! M acting by matrix multiplication on the homogeneous
representation of ~x ¼ ðx; y;ΨÞT 2 M, i.e. for A 2 G

ΓðA;~xÞ ¼
1 0 0 0
0 1 0 0
0 0 1 0

0

@

1

A

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A

x
y
Ψ
1

0

B
B
@

1

C
C
A:

Proposition 3.4. The kinematic ship model is invariant w.r.t. symmetry ðG;M; ΓÞ.

Proof. Note that the ship model can be written as a matrix-vector multiplication, i.e.

_xðtÞ
_yðtÞ
_ΨðtÞ

0

@

1

A ¼

cos Ψ � sin Ψ 0
sin Ψ cos Ψ 0

0 0 1

0

@

1

A
u
v
r

0

@

1

A

and the ODE’s analytic solution is given by

xðtÞ
yðtÞ
ΨðtÞ

0

@

1

A ¼ φμ

x0
y0
Ψ0

0

@

1

A; t

0

@

1

A

¼

x0 þ

ðt

0
uðsÞ cos

ðs

0
rðτÞdτ þ Ψ0

� �

� vðsÞ sin
ðs

0
rðτÞdτ þ Ψ0

� �

ds

y0 þ

ðt

0
uðsÞ sin

ðs

0
rðτÞdτ þ Ψ0

� �

þ vðsÞ cos
ðs

0
rðτÞdτ þ Ψ0

� �

ds

Ψ0 þ

ðt

0
rðsÞds:

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Then, direct calculations show that

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 7

φuðΓðA;~x0ÞÞ ¼ φu

1 0 0 0
0 1 0 0
0 0 1 0

0

@

1

A

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A

x0
y0
Ψ0
1

0

B
B
@

1

C
C
A; t

0

B
B
@

1

C
C
A

¼ φu

x0 cosðΔΨÞ � y0 sinðΔΨÞ þ Δx
x0 sinðΔΨÞ þ y0 cosðΔΨÞ þ Δy

Ψ0 þ ΔΨ

0

@

1

A; t

0

@

1

A

¼

1 0 0 0
0 1 0 0
0 0 1 0

0

@

1

A

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A

φu ~x0; tð Þ

1

� �

¼ ΓðA;φuð~x0; tÞÞ

3.3. Trim primitives for rigid bodies moving without restrictions in a plane

According to Definition 3.3, controls have to be constant along trim primitives. For the
kinematic ship model, two types of solutions are possible: moving on a straight line with
no angular velocity or moving on a circle with an angular velocity equal to the magnitude
of the ship’s velocity divided by the radius of the circle.

In these cases, we can analytically compute the flow.
For r;0 and u; v constant, we have

xðtÞ ¼ x0 þ ut cosðΨ0Þ � vt sinðΨ0Þ

yðtÞ ¼ y0 þ ut sinðΨ0Þ þ vt cosðΨ0Þ

ΨðtÞ ¼ Ψ0;

(9)

which means indeed following a straight line defined by the initial heading Ψ0 and the
constant controls ðu; vÞ.

Now assume r�0, but ðu; v; rÞ constant. Then, the motion is defined by

xðtÞ ¼ x0 þ
u
r

sinðrt þ Ψ0Þ � sinðΨ0Þð Þ þ
v
r

cosðrt þ Ψ0Þ � cosðΨ0Þð Þ (10)

yðtÞ ¼ y0 �
u
r

cosðrt þ Ψ0Þ � cosðΨ0Þð Þ þ
v
r

sinðrt þ Ψ0Þ � sinðΨ0Þð Þ (11)

ΨðtÞ ¼ Ψ0 þ r � t (12)

Trim primitives are generated by elements of the Lie algebra that corresponds to the
symmetry group. The kinematic ship model’s symmetry group G (cf. (8)) is a subgroup of
the special Euclidean group,

SEð3Þ ¼ A 2 R 4�4jA ¼ R t
0 1

� �

: RRT ¼ Id; detðRÞ ¼ 1; t 2 R 3
� �

;

8 L. LÜTTGENS ET AL.

that combines rotation and translation in three dimensions. With Definitions 1.3 and 1.4
from [40] it is easy to see, that G is a closed subgroup of SE(3), thus a Lie group itself. The
corresponding Lie algebra (cf. e.g [41].), denoted by seð3Þ, is given by seð3Þ ¼ soð3Þ�R 3

and can be interpreted as being comprised of the three rotational and three translational
velocities. The Lie algebra of rotational matrices is the group of skew symmetric matrices,
so seð3Þ can be written as

0 � ω3 ω2 ρ1
ω3 0 � ω1 ρ2
� ω2 ω1 0 ρ3

0 0 0 0

0

B
B
@

1

C
C
A

with parameters ω1;ω2;ω3; ρ1; ρ2; ρ3. Thus, for the kinematic ship model, the Lie algebra
is a subalgebra of seð3Þ with only three degrees of freedom

g :¼ Λ 2 R 4�4 : Λ ¼

0 � ω 0 �

ω 0 0 ζ
0 0 0 ω
0 0 0 0

0

B
B
@

1

C
C
A; � 2 R ; ζ 2 R ; 2 R

8
>><

>>:

9
>>=

>>;

(13)

The exponential map of λ 2 g can then, for instance, be computed via the Rodriguez
formula (see [41]).

Proposition 3.5. Trim primitives of the kinematic ship model are given by
(a) straight lines, if control values and Lie algebra elements satisfy

� ¼ u cosðΨ0Þ � v sinðΨ0Þ

ζ ¼ u sinðΨ0Þ þ v cosðΨ0Þ;

or

(b) circular arcs, if

ω ¼ r;
ζ ¼ � rx0 þ u sinðΨ0Þ þ v cosðΨ0Þ;

� ¼ ry0 þ u cosðΨ0Þ � v sinðΨ0Þ:

(14)

Proof. Case (a), ‘Straight lines’: Here, ω ¼ 0 in Equation (13). On the one hand, a suitable
Lie algebra element ð�; ζ; 0Þ can be parametrized by t and mapped under the exponential
map, such that it acts on a vector ~x0 by

Γðexp Λt;~x0Þ ¼

1 0 0 �t
0 1 0 ζt
0 0 1 0
0 0 0 1

0

B
B
@

1

C
C
A

x0
y0
Ψ0
1

0

B
B
@

1

C
C
A ¼

x0 þ �t
y0 þ ζt

Ψ0
1

0

B
B
@

1

C
C
A:

On the other hand, from Equation (9) we know that solutions on straight lines have to
be of the form

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 9

xðtÞ ¼ x0 þ ut cosðΨ0Þ � vt sinðΨ0Þ

yðtÞ ¼ y0 þ ut sinðΨ0Þ þ vt cosðΨ0Þ

ΨðtÞ ¼ Ψ0:

Component-wise comparison leads to the following conditions for a trim primitive

� ¼ u cosðΨ0Þ � v sinðΨ0Þ

ζ ¼ u sinðΨ0Þ þ v cosðΨ0Þ:

Case (b), ‘Circular arcs’: Again, we have to show that Γðexp Λt;~x0Þ with a Lie algebra
element chosen according to Equation (14) generates valid solutions of the dynamics. By
Rodriguez formula, we obtain

expðΛtÞ ¼

cosðωtÞ � sinðωtÞ 0 �

ω sinðωtÞ � ζ
ω ð1 � cosðωtÞÞ

sinðωtÞ cosðωtÞ 0 �

ω ð1 � cosðωtÞ þ ζ
ω sinðωtÞ

0 0 1 ωt
0 0 0 1

0

B
B
@

1

C
C
A: (15)

Following the definition of trims, we compute

ΓexpðΛtÞð~x0Þ ¼

cosðωtÞ � x0 � sinðωtÞ � y0 þ
�

ω sinðωtÞ � ζ
ω ð1 � cosðωtÞÞ

sinðωtÞ � x0 þ cosðωtÞ � y0 þ
�

ω ð1 � cosðωtÞÞ þ ζ
ω sinðωtÞ

ψ0 þ ωt

0

@

1

A

¼

sinðωtÞ � ð� y0 þ
�

ωÞ þ cosðωtÞ � ðx0 þ
ζ
ωÞ �

ζ
ω

sinðωtÞ � ðx0 þ
ζ
ωÞ þ cosðωtÞ � ðy0 �

�

ωÞ þ
�

ω
ψ0 þ ωt

0

@

1

A

(16)

Now, comparing the third component of Equation (16) to the solution for ΨðtÞ, we see
that ω ¼ r must hold. Rewriting the first two components of the solution given in
Equation (10) using trigonometric identities, we see that these are equivalent to
Equation (16), if the following conditions to the parameters hold

ω ¼ r;
ζ ¼ � rx0 þ u sinðΨ0Þ þ v cosðΨ0Þ;

� ¼ ry0 þ u cosðΨ0Þ � v sinðΨ0Þ:

(17)

Thus, we have found the defining conditions of a trim.

The conditions derived in the proposition relate the Lie algebra elements to the
control values and, moreover, this relation depends on the initial point ðx0; y0;Ψ0Þ

T .
However, given the initial point and control values ðr; u; vÞ, the corresponding Lie
algebra element that generates a trim is uniquely defined. As a consequence of Prop.
3.5, we see that any triple of constant controls generates a trim. This is important for
designing the manoeuvre automaton.

10 L. LÜTTGENS ET AL.

3.4. Numerical computation of trims and connecting manoeuvres

We have not been able to take over the analytical computation of trim primitives via Lie
group symmetry action to the full ship dynamics. However, trim primitives of the
simplified ship model give crucial intuition about how trims for the full model may
look like. With that intuition, it is possible to numerically approximate the trim
primitives. To this aim, we have to find the corresponding controls for a given velocity.
There are multiple ways of solving this task. Forward integration over a long time
horizon does the trick as the forces will balance over time independent of the initial
state. Alternatively, velocity-control-pairs could be obtained by an optimal control
problem.

For the computation of trim-connecting manoeuvres, we formulated and solved
optimal control problems. Note that these problems are typically much less complicated
than the full original optimal control problem, as we solely have to connect two kine-
matics states of the ship without considering any geometric constraints. Thus, these
kinematics states are chosen to lie in the previously computed trim primitives. Within the
optimal control problem, corresponding boundary conditions are considered. Objective
functions can be chosen in correspondence with the cost function of the A* algorithm (cf.
Section 4) and, if applicable, consistent with the objective functions used within the post-
optimization (cf. Section 4.4).

4. Trajectory planning algorithm

Our approach to trajectory planning is fundamentally based on motion primitives.
Among them, trim primitives play a special role due to their properties derived in
Section 3. In the following, we first describe the general procedure of our trajectory
planning algorithm before we give more information on the application to our specific
problem.

As a reminder, the goal of the algorithm is to compute feasible trajectories and fill the
gap between optimal control problems, which heavily rely on sophisticated initial guesses
close to the optimal trajectory, and path planning algorithms, which work great with
a control algorithm, but provide too little information to be directly used as an initial
guess. This is precisely where motion primitives come in handy.

Motion primitives can be computed offline before planning a trajectory. Because of
their symmetry properties, these precomputed trajectory snippets can also be smoothly
glued together to form a smooth complete trajectory. Hence, the main problem is to
identify a sequence of motion primitives that form a smooth path from the initial starting
point to the sought final location.

In order to identify this sequence, we use a variation of the A* search algorithm. An
A* search algorithm works on a graph data structure and finds the shortest path from
one node to another. The standard A* algorithm is complete and optimal. From a given
current node, the A* algorithm explores all neighbouring nodes and adds them to a list
of visited nodes. In standard A* implementations, such a neighbour is typically
a discrete grid position right next to the current one (see Figure 2(a)). This is where
the motion primitives come into play in our case. We alter the definition of
a neighbour from the strict grid structure to a state that can be reached within the

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 11

execution of one motion primitive (see Figure 2(b)) and satisfy a few feasibility
conditions as detailed out below. This has the consequence that we still benefit from
the excellent properties on the A* algorithm but planning trajectories instead of simple
paths. Thus, we can use them far more effectively as an initial guess for a solver for NLP
(Nonlinear Programming) problems. Generally, the adaptation of the A* algorithm to
incorporate neighbours based on the dynamics of the system, not necessarily using
motion primitives, instead of a fixed neighbourhood map is known as a hybrid A*
approach, see e.g. [42].

4.1. Preparation phase

One shortcoming of many A* approaches to this setting in the literature is the search for
neighbours based on the system dynamics. Short portions of a trajectory are glued
together often without regard to the differential equations. This difficulty is sought to
be evaded by utilizing the more formal setting of motion primitives. The underlying
theory allows us to make a smart selection of trajectory snippets for the A* algorithm
with provable properties.

As a prerequisite to applying the A* algorithm, a motion primitive library has to
be computed, i.e. a finite number of motion primitives have to be chosen. Typically,
one starts with selecting trim primitives. Every type of trim primitive, which might
be of interest in control scenarios, shall be represented. An approach for generating
the set of trim primitives is to define a grid on the Lie algebra of appropriate size.
(Recall that Lie algebra elements typically correspond to rotational or translational
velocities.)

Considering the simple ship model, (1)-(3), trajectories on trim primitives can be
directly connected. Thus, it is possible to build a manoeuvre automaton with trim
primitives only. For more complex dynamics, e.g. the full ship model (1) – (6), a set of
manoeuvres have to be computed, which connects pairs of trim primitives. It is not
mandatory nor recommended to interconnect each trim primitive with all other trim
primitives because it increases the computational effort of the planning. However, since

Figure 2. Representation of different variations of the A* algorithm.

12 L. LÜTTGENS ET AL.

the motion primitive automaton approximates the continuous nonlinear dynamics,
larger automata have better reachability properties and allow for a better approximation
of optimal solutions of the original dynamics.

Based on the definition given in [10], we define manoeuvre automata for the simple
and full ship model.

We start with defining a minimal example automaton for the simple ship dynamics.
Definition 4.1 (Manoeuvre Automaton for Simple Ship Model). Given the ship model

in (1) – (3), the manoeuvre automaton is defined as

MASSD ¼ f�;Q; δ; q0; Fg

• Q is the collection of trim states

ID Type Controls

q1 ‘rest’ ðu; v; rÞ ¼ ð0; 0; 0Þ
q2 ‘straight ahead’ ðu; v; rÞ ¼ ð1; 0; 0Þ
q3 ‘clockwise turn’ ðu; v; rÞ ¼ ð1; 0; � 1Þ
q4 ‘anticlockwise turn’ ðu; v; rÞ ¼ ð1; 0; 1Þ

● � ¼ fπ1; . . . ; π12g, i.e. there are
4
2

� �

trivial manoeuvres (zero duration),

since instantaneous switches between any tuple of trims are possible
● δ defines the graph structure; here we have a fully connected graph, see Figure 3
● q0 ¼ Q is the initial state, which can be on any trim,
● F ¼ Q is the set of accepted final states, i.e. every trim is accepted as final trim.

Definition 4.2 (Manoeuvre Automaton for Full Ship Model). Given the ship model
(1) – (6), the manoeuvre automaton is defined as

Figure 3. The state machine to the set of motion primitives in Definition 4.1.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 13

MAFSD ¼ f�;Q; δ; q0; Fg

● Q is the collection of trim states: ‘resting’, ‘going straight with 3:0 kn velocity’ (generated by a propeller rps of
0:602402)

● � the set of manoeuvres
● δ is the mapping between trims according to Figure 4,
● q0 is the initial state ‘rest’.
● F ¼ Q is the set of accepted states, i.e. every trim is accepted as final trim.

ID Type Description

0 trim primitive resting state
1 trim primitive going straight
2 manoeuvre rotation 45 degrees counter clockwise
3 manoeuvre rotation 45 degrees clockwise
4 manoeuvre rotation 90 degrees counter clockwise
5 manoeuvre rotation 90 degrees clockwise
6 manoeuvre rotation 180 degrees clockwise
7 manoeuvre rotation 180 degrees counter clockwise
8 manoeuvre rotation 10 degrees clockwise
9 manoeuvre rotation 10 degrees clockwise
10 manoeuvre accelerating from rest
11 manoeuvre decelerating until rest

Note that the automatons defined in Definition 4.1 and Definition 4.2 do not allow
backward motion.

4.1.1. Time discretization
The manoeuvre automata from Definition 4.1 and Definition 4.2 cannot be used in the
A* algorithm, yet. The last step is a time-discretization of the trims. That is, the trims are
transformed into manoeuvres of fixed duration, cf [43]. However, by applying multiple
discretized trim snippets, which each have a short time duration, in a row, a continuous
duration can be approximated.

Once we have constructed the entire graph, we are done with the preparation phase of
the algorithm. In the next sections, we introduce the other building blocks of the
algorithm and see how we can put motion primitives to good use.

Figure 4. The state machine to the set of motion primitives in Definition 4.2.

14 L. LÜTTGENS ET AL.

4.2. Building blocks of the algorithm

4.2.1. A* search algorithm
The first building block of our algorithm is the (hybrid) A* search algorithm. This
algorithm is part of the informed graph-search algorithms and was discussed in the
literature many times e.g. [44]. As a quick reminder, the core steps of the A* algo-
rithm are:

Algorithm 1 (A* search algorithm).
1: Add initial state to the A* graph and initialize neighbouring nodes as unvisited
2: while List of unvisited nodes is non-empty do
3: Get cheapest node from the list of unvisited nodes and mark node as current node

and visited
4: if current node is the target node then return Success
5: else
6: Find all unvisited neighbours of current node and update costs
7: return error

We do not touch the first four steps of this algorithm. However, we will alter the
expansion step. Traditionally, the algorithm acts on a two-dimensional grid, and the
adjacent cells on that grid become the new neighbours of the current node. Our search
space, which we will introduce in the next section, is four-dimensional. This and the fact
that a huge ship is limited in its movement require a better fitting definition of
a neighbour cell. This is where we combine motion primitives and the A* search
algorithm. To find the neighbour cells, which become nodes in the A* graph, we first
execute each motion primitive from our motion primitive library. Note that, in contrast
to existing methods, this is particularly inexpensive as the finite set of motion primitives
can be precomputed due to the underlying symmetry conditions. However, a final check
whether the execution was feasible is still mandatory. If so, the final cell, together with
additional information is added to the A* graph as a node, the executed primitive is
added to the graph as an edge.

4.2.2. Search space
We ended the previous chapter with the statement that the motion primitives are being
executed to grow the A* graph. The A* graph is a discrete data structure, but motion
primitives are continuous motion, which has been discretized with a high resolution. We
need an object that acts as a link between the discrete A* graph and the continuous
motions of the ship. For that purpose, we introduce the search space.

Definition 4.3 (Search space). A search space is a four-tuple S½N;A; S;G� where:

N is a set of states
A is a set of arcs connecting the states
S is a nonempty subset of N that contains start states
G is a nonempty subset of N that contains goal states.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 15

In our case, a single state consists of four bits of information, a two-dimensional
position, the orientation of the vehicle and a discrete dynamic state of the vehicle. Thus,
the set of states N we are considering is a bounded subset of the following Cartesian
product:

N � R 2 � ½0; 2πÞ � N :

The set of arcs A is the library of motion primitives used for the exploration by the A*
algorithm. In our application, S is always a one-element set, and G is a one-dimensional
subspace of N where the free parameter is the orientation of the vehicle.

The search space is continuous in three dimensions. If we keep them continuous, our
planning algorithm will face difficulties planning a trajectory between two discrete points
in a continuous environment. A discretization of the set of states causes that we cluster
near points. Experiments have shown that a spatial discretization of 15m� 15m cells and
a resolution of π

50 for the orientation are reasonable choices. We further decided to
exclude geometrical constraints from the search space so that the search space is an
obstacle-free representation of the environment. A geometrical constraint is any obstacle
that blocks an edge to connect two states. An example of a geometrical constraint that is
particularly important for the examples below is quay walls. More sophisticated con-
straints, which we have not considered so far, but are possible in the future, are the ship’s
draft and a limitation of the velocity. We are using an occupancy grid for this job, which
is further discussed in the next chapter.

4.2.3. Occupancy grid
The final component we need is a binary occupancy grid that encodes for each cell in
the search space, whether it is occupied, i.e. blocked by land, or free. We decided to
separate the occupancy grid from the search space to allow different cell sizes. The
grid cell size of the occupancy grid should be at least as large as the cell sizes in the
search space. We were interested in the question of whether a lower resolution of the
occupancy map increases the quality of our results. The underlying idea is that
a single grid cell of the search space is smaller than the dimensions of a large ship
that means if the algorithm plans a trajectory very close to the quay walls, the ship
could interfere with the walls, and the planned solution is of poor quality. We can
prevent this from happening by increasing the cell sizes in the occupancy grid map.
However, this problem can also be overcome by using a barrier term. The barrier
term is half of the diameter of the ship. When we create the occupancy grid, we
block each cell that is closer to a quay wall than the barrier term. This technique
allows us to keep a higher resolution but prevents unexpected behaviour of the
algorithm. A second reason for the separation of the search space and the occupancy
grid is that it allows us to use the same search space for multiple ship models at the
same time, because ships with different lengths and widths need distinct occupancy
maps.

16 L. LÜTTGENS ET AL.

4.3. Function principle of the algorithm

Now we are all set to look at the algorithm at runtime, which combines the presented
building blocks. For that purpose, we start with the pseudo-code of the algorithm,
followed by a detailed explanation of each step.

Algorithm 2 (Motion planning with primitives algorithm).
1: Add initial state to the A* graph and initialize neighbouring nodes as unvisited
2: while List of unvisited nodes is non-empty do
3: Get cheapest node from the List of unvisited nodes and mark as current node and

visited
4: if current node is the final node then return Success
5: for each feasible motion primitive do
6: Execute motion primitive
7: if Motion primitive execution was collision-free then
8: Add the final state of the motion primitive execution to the list of unvisited nodes if

not already added
9: Add motion primitive as an edge to the A* graph
10: else continue
11: return error

The similarity to the pseudo-code of the A* search algorithm (see Algorithm 1) is not
surprising as we consider this algorithm to be an augmented version of the classic A*.
Both algorithms begin with the initialization. The initial state, consisting of position
orientation and a dynamic state of the ship in the form of a trim primitive, becomes the
root node of the A* graph and the first element in the list of unvisited nodes. We then
enter a while-loop, which begins with the extraction of the node with the cheapest
combined cost. The combined cost consists of the energy spent to reach the current
node, denoted as actual cost, and the Euclidean distance to the final position, as
a heuristic underestimation for the remaining future costs. In our implementation, the
final orientation is unrestricted. If the cheapest node is also the final node, then the
optimality property of the A* ensures that we can return successfully. For most nodes,
this test fails, and we continue with the loop. The next step is to explore the search space
and search for the neighbours of the currently cheapest cell. For that purpose, we enter
a second loop and iterate over each feasible motion primitive. We obtain the set of
feasible motion primitives by mapping δ from Definition 4.1 or Definition 4.2. The
execution takes place in the search space, where we begin at the current node, transcribed
into a cell, and track movement of the ship. We map the current location onto the
occupancy grid to monitor collisions. In the case of successful execution, the A* graph
and list of unvisited nodes grow. The outer loop gets repeatedly invoked until one of two
things happen. First, the list of unvisited nodes is empty, which means the algorithm was
unable to find a solution to the given problem. By the completeness property of the A*
algorithm, it is clear that there is no possible solution. Second, in order to assure that the
programdoes not crash due to insufficient memory, if the overall number of nodes
reaches a maximal value the program is stopped.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 17

For the numerical examples in the following section, a D*-software (i.e. a dynamic A*)
implementation for planning with primitives provided by Marin Kobilarov, Autonomous
Systems, Control and Optimization (ASCO) Laboratory, Johns Hopkins University,
available at https://github.com/jhu-asco/dsl was adapted.

4.4. Post-optimization

As shown in detail in the construction process in Sections 3 and 4, a resulting sequence of
motion primitives is admissible to the (nonlinear) ship model and the given constraints
as encoded in the occupancy grid. Moreover, A* provides an optimal sequence with
respect to the objective function used within the planning. However, the search space of
A* is only an approximation of the ship model state space. For that reason, we have not
found an optimal solution to the following optimal control problem (OCP), yet,

min
~x;~u;T

Jð~x;~uÞ ¼
ðT

t0

,ð~xðtÞ;~uðtÞÞdt þ Pð~xðTÞÞ

w:r:t: _~xðtÞ ¼ f ð~xðtÞ;~uðtÞÞ"t 2 ½t0;T� ðwith dynamics given by Eqs:ð1Þ � ð6ÞÞ;

~xðtÞ 2 X "t 2 ½t0;T�; ðX is the free space encoded in the occup:gridÞ;

~uðtÞ 2 Uðdefines control constraintsÞ;

~xðt0Þ 2 Sðthe set of start states; cf :Definition 4:3Þ:

For the cost functional Jð~x;~uÞ, the following criteria can be considered, for instance,

Jð~x;~u;TÞ ¼
ðT

t0

w1jj~uðtÞjj2 þ w2 � 1
� �

dt þ w3
xðTÞ
yðTÞ

� �

� G
�
�
�
�

�
�
�
�

2

;

which corresponds to 1) control effort, 2) duration,2 and 3) goal state stabilization with
weights w1;2;3 and G used to denote a single goal state in Definition 4.3.

In order to solve the OCP, we employ a direct transcription method: Based on a time-
discretization (not to be mixed up with the state-space discretizations used before) for the
trajectory ~x and control curve ~u, we transform the OCP into a nonlinear constrained
optimization problem (NLP) of typically high, but finite dimension. For details on this
standard approach in optimal control, we confer to the textbook [45], for instance. The
resulting NLP is typically high-dimensional but possess sparsity-structure in the Jacobians
[9],, and should therefore be addressed by sparsity-exploiting NLP solvers such as WORHP
[7] and a corresponding variant for optimal control problems called TransWORHP [9].
However, all local NLP solvers have in common that they require initial guesses and,
moreover, performance and successful termination highly depend on sophisticated choices
of initial guesses. Thus, we use the NLP solver WORHP for solving the OCP based on the
motion primitive sequences as initial guesses. This idea of how to implement the OCP for
motion primitive post-optimization is described in detail in [11,12]. In these works, the
sequence was an admissible solution to the OCP. Due to the occupancy grid discretization,

18 L. LÜTTGENS ET AL.

https://github.com/jhu-asco/dsl

this only holds up to grid cell coarseness when using Algorithm 2. Note that using an
already sophisticated feasible initial guess the occupancy-grid constraints do not pose as big
a challenge for the NLP solver as it would without the prior A* step.

Besides faster and more robust convergence of the optimization, the quality of the
resulting optimum is also important. While steered convergence to preferred local
optima is quite challenging and a topic of current research, providing motion primitive
sequences that are admissible to the OCP makes it likely to find an optimal solution in the
vicinity, i.e. with qualitatively similar dynamic behaviour. In the following chapter, we
present several scenarios for ship manoeuvring which strongly benefit from the two-step
approach and exactly reflect the expected behaviour of the post-optimization as a local
correction and optimization technique.

5. Numerical results

We will now illustrate the performance of the presented algorithm. As a preliminary step,
we apply the A* algorithm to the kinematic ship model, before we show the whole
methodology for a real scenario at the port of Rostock. Note that directly optimizing the
OCP without first gaining an initial A* solution is not feasible as the optimization
methods either take too long to reach an optimal solution or outright fail to converge.

5.1. A*-motion planning with primitives

Our first numerical example illustrates the concatenation of motion primitives. We
consider the kinematic ship model introduced in (1)-(3) with trim primitives computed
as detailed out in Section 3 and with the manoeuvre automaton defined in Definition 4.1.
An example scenario is created as depicted in Figure 5. The ship is required to perform
a turn manoeuvre, which cannot be done as turning on the spot due to its minimal

Figure 5. Motion primitive solution for a turning manoeuvre for the kinematic ship model. Different
colours/lines represent different motion primitives.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 19

turning radius. Start point and desired final point coincide at ðx; yÞ ¼ ð5:0; 6:0Þ. The
hybrid A* algorithm computes the optimal sequence of motion primitives that gives
a solution to the turning task. For illustration, we draw the different types of trim
primitives in blue (straight ahead), yellow (right turn), and purple (left turn) in
Figure 5. Note that the trim primitives are stored with a fixed duration, since the A*
algorithm requires a full discretization of the continuous-time problem. However, the
same trim can be concatenated several times for longer straight or turning phases. The
sequence of motion primitives is an approximation to the optimal solution of the original
problem with full nonlinear dynamics. A larger library with trims of different turning
radii, various speed, and shorter durations would lead to better results – at the cost of
high computational effort. Alternatively, we propose to perform a post-processing step
via an optimal control problem as discussed in Section 4.3.

5.2. Autonomous ship navigation in the port of Rostock

In this section, we apply the algorithm to large ships in the port of Rostock, see Figure 6.
We show in three examples that the motion primitive algorithm enables the post-
optimization to find optimal trajectories in a narrow environment. In all three cases
the automaton given by Definition 4.2 was used.

In the first experiment, we start with a long trajectory, see Figure 7 with parameters
given in Table 1. The starting point lies outside of the port in the Baltic sea and the final
position roughly 12 km away in the city port of Rostock. One can notice that the algorithm
did not take many explorations to connect the starting point with the end point. Most of
the visited positions are close to the start or to the end point, which is a consequence of the
geometry of the port and the fact that a specific cell must be reached. The cluster around

Figure 6. Map of the port of Rostock which is used as a testing environment. Map data copyrighted
OpenStreetMap contributors and available from https://www.openstreetmap.org, see [46].

20 L. LÜTTGENS ET AL.

https://www.openstreetmap.org

the starting point is due to the narrow entry of the port, so the algorithm explores this area
in more detail. One observes cone-shaped objects on both sides of the starting point,
which we assume to be caused by backward search within in the algorithm (cf. Section 4).

The next cluster is at the two berths, roughly at ð1000m; � 3000mÞ. Here, the algo-
rithm gets stuck for a few explorations steps as these dead ends are on the connecting line
between the harbour entry to the end point. Therefore, these positions have a small cost
associated with. It takes the algorithm only few explorations to make good progress in the
narrow canal starting at ð0m; � 2000mÞ to ð0m; � 8000mÞ. The final cluster is around the
final position, which is not surprising since the algorithm has to reach a very small cell
(225m2). As a comparison the footprint of our ship, the ferry Mecklenburg-
Vorpommern, is approx. 5800m2. The final motion primitive solution is indicated with
the green dashed line, after post-optimization we obtain the solid green line.

Figure 7. Computed ship manoeuvre into the port of Rostock. Sequence of motion primitives with
repositioning on the search space grid is given in red (dashed), post-optimized trajectory is given in
green (solid). Visited states are depicted in blue. Distances given in Metres.

Table 1. Parameters for first example.
Parameter Value

Starting state (lat, long, degree) 54.198314, 12.072334, 170.0
final position (lat, long) 54.094846, 12.121948
discretization of the search space 15 m � 15 m � π

50
Motion primitive computation time 1,301,236 sec.
A* graph 5939 vertices, 7075 edges
Number of motion primitive segments in solution 31

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 21

Recall that the ship has limited agility. In particular, it has a minimal turning radius
and cannot turn on the spot. Similar to our preliminary example in Figure 5, in the next
scenario, the ship has to perform a turning manoeuvre before entering the port. As one
can see in Figure 8 (with parameters in Table 2), this starting condition leads to many
more visited states by the A* algorithm. Due to the narrow entrance of the port, the
resulting optimal sequence of primitives (depicted by the dashed red line) performs
a large turning circle. The large detour is worsen due to the small-sized manoeuvre
automaton (cf. Definition 4.2). To obtain a better manoeuvre, we perform the post-
processing step as proposed in Section 4.4. The result is depicted by the solid green line.
One can observe that the optimized trajectory is able to minimize the detour while still
finding a feasible entering path into the port.

In our last example, the ship has to perform a 180°-turn starting directly in the narrow
port entrance. For this scenario, the exploration nature of the A* algorithm is particularly
crucial in order to find feasible solutions. In Figure 9 (corresponding parameters in Table 3),
the resulting motion primitive solution is depicted by a dashed red line again. It performs

Figure 8. Resulting sequence of motion primitives (dashed red line) and post-optimized solution (solid
green line) for a scenario, in which the ship has to turn before entering the port. Distances given in
Metres.

Table 2. Parameters for second example.
Parameter Value

Starting state (lat, long, degree) 54.194175, 12.084501, 350.0
final position (lat, long) 54.168907, 12.098929
discretization of the search space 15 m � 15 m � π

50
Motion primitive computation time 16,243,933 sec.
A* graph 63,166 vertices, 77,825 edges
Number of motion primitive segments in solution 20

22 L. LÜTTGENS ET AL.

the turning within the inner port, obeying the obstacles, i.e. Island. Again, we observe that
the turning phase has a big detour due to the limited amount of primitives in the library.
However, as in the previous example, the optimal solution that is obtained from the post-
processing step (solid green line) minimized the detour. Note that the optimal solution
seems to violate the state constraints given by the Island in the inner port. When checking
the TransWORHP output, one sees that the constraints are fulfilled at each discretization
point. To obtain obstacle avoidance also at intermediate time points, a finer time discretiza-
tion has to be used. This is not within the scope of our numerical analysis, though.

6. Conclusion and future work

This article proposes a methodology for autonomous navigation of ships based on
combined mathematical techniques:

(1) Modelling of ship dynamics and identifying structural properties (i.e. symmetry),

Figure 9. Motion primitive solution (dashed red line), post-optimization (green line) and explored
states (blue dots). Distances given in Metres.

Table 3. Parameters for third example.
Parameter Value

Starting state (lat, long, degree) 54.175922, 12.095341, 170.0
final position (lat, long) 54.177127, 12.094783
discretization of the search space 15 m � 15 m � π

50
Motion primitive computation time 20,99,941 sec.
A* graph 62,392 vertices, 84,444 edges
Number of motion primitive segments in solution 22

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 23

(2) Quantization of the dynamics to a finite set of motion primitives (i.e. trim
primitives and manoeuvres as in [10]),

(3) Modelling of environmental constraints (i.e. the port layout) via occupancy maps,
(4) Graph-based planning via the A* algorithm on motion primitives, and
(5) Post-optimization by solving optimal control problems using a direct method.

While, individually, these methods are well established, e.g. A* algorithms in compu-
ter science or direct optimal control with nonlinear optimization in numerical mathe-
matics, their combination and application to specific tasks in autonomous control is less
well investigated. Thus, the presented case study of ship navigation via graph-based
motion planning provides a helpful validation of the approach. The second and third
scenarios in Section 5 show the advantages if planning and nonlinear optimization are
combined: the A* algorithm performs a global search but provides a primitive sequence,
which is only suboptimal w.r.t. the optimization criteria since it does not use the full
dynamics. Contrarily, the direct optimal control method considers the nonlinear ship
model, but requires a good initial guess for the nonlinear optimizer to converge to
a globally efficient solution. As pointed out in the introduction, the navigation of ships
in comparison to street or aeronautical vehicles has particular challenges due to limited
agility of large ships and narrow, possibly congested space in a port. Since the agility and
dynamics of ships are limited compared to those of road vehicles, for instance, computa-
tion times for real-world scenarios are less of a problem. Thus, autonomous navigation of
ship in ports seem to be realistic in near future. Moreover, current research in
GALILEOnautic [4,5,6] addresses the interaction of several ships.

Future work shall address robustness analyses of the computed solutions w.r.t. uncer-
tainty in states and model parameters, as well as the design of a feedback control. In [38],
for instance, model predictive control is designed using a motion primitive library and
stability of this control scheme is shown for an academic robot example.

Notes

1. Since this article focuses on a proof-of-concept for the proposed method and does not
include a real-world application, we omit a discussion whether a future version of this
method would technically be considered as an assisted, an automated or an autonomous
navigation system.

2. Note that
ðT

t0

w2 � 1dt ¼ w2 � ðT � t0Þ, i.e. the duration of the solution.

Acknowledgments

BJ and KF acknowledge funding by the Deutsche Forschungsgemeinschaft (German Research
Foundation) within the Priority Program SPP 1835 ‘Cooperative Interacting Automobiles’ (grant
number: FL 989/3-1).

Disclosure statement

No potential conflict of interest was reported by the author(s).

24 L. LÜTTGENS ET AL.

ORCID

Benjamin Jurgelucks http://orcid.org/0000-0002-7516-0944
Sylvain Roy http://orcid.org/0000-0001-5297-6396
Christof Büskens http://orcid.org/0000-0001-7385-4670
Kathrin Flaßkamp http://orcid.org/0000-0001-5983-1907

References

[1] U.N.C. on Trade and D. (UNCTAD), Review of maritime transport 2018, 2021; available at
https://unctad.org/webflyer/review-maritime-transport-2018. [Online, accessed 14-
September-2021].

[2] OECD, Ocean shipping and shipbuilding, 2021; available at https://www.oecd.org/ocean/
topics/ocean-shipping/. [Online, accessed 14-September-2021].

[3] ICS, Shipping and world trade, 2020; available at https://www.ics-shipping.org/shipping-
facts/shipping-and-world-trade. [Online, accessed 23-July-2020].

[4] S. Roy, H. Wernsing, and C. Büskens, Optimization of ship manoeuvring within the project
galileonautic, PAMM 17 (2017), pp. 813–814. Available at https://onlinelibrary.wiley.com/
doi/abs/10.1002/pamm.201710374

[5] R. Zweigel, J.J. Gehrt, S. Liu, S. Roy, C. Büskens, M. Kurowski, T. Jeinsch, A. Schubert,
M. Gluch, O. Simanski, E. Pairet-Garcia, F. Siemer, and D. Abel, Optimal maneuvering and
control of cooperative vehicles as case study for maritime applications within harbors, in 2019
18th European Control Conference (ECC), Naples, Italy, 2019, pp. 3022–3027.

[6] M. Kurowski, S. Roy, J. Gehrt, R. Damerius, C. Büskens, D. Abel, and T. Jeinsch, Multi-
vehicle guidance, navigation and control towards autonomous ship maneuvering in confined
waters, in 2019 18th European Control Conference (ECC), Naples, Italy, 2019, pp. 2559–2564.

[7] C. Büskens and D. Wassel, The ESA NLP solver WORHP, in Modeling and Optimization in
Space Engineering 73 Fasano, G., and Pintér, J., Springer, 2012, pp. 85–110 doi:10.1007/978-
1-4614-4469-5_4.

[8] T. Nikolayzik, C. Büskens, and M. Gerdts, Nonlinear large-scale Optimization with WORHP,
in AIAA/ISSMO Multidisciplinary Analysis Optim. Conf. Fort Worth, Texas, Vol. 13
doi:10.2514/6.2010-9136, 2010.

[9] C. Büskens and M. Knauer, From WORHP to TransWORHP, in Proceedings of the 5th
International Conference on Astrodynamics Tools and Techniques Noordwijk, Netherlands,
May, 2012.

[10] E. Frazzoli, M.A. Dahleh, and E. Feron, Maneuver-based motion planning for nonlinear
systems with symmetries, IEEE Trans. Rob. 21 (2005), pp. 1077–1091. doi:10.1109/
TRO.2005.852260.

[11] K. Flaßkamp, S. Ober-Blöbaum, and M. Kobilarov, Solving optimal control problems by
exploiting inherent dynamical systems structures, J. Nonlinear Sci. 22(2012), pp. 599–629.
doi:10.1007/s00332-012-9140-7.

[12] K. Flaßkamp, On the optimal control of mechanical systems – Hybrid control strategies and
hybrid dynamics, Ph.D. diss., University of Paderborn, 2013.

[13] K. Flaßkamp, J. Timmermann, S. Ober-Blöbaum, and A. Trächtler, Control strategies on
stable manifolds for energy-efficient swing-ups of double pendula, Int. J. Control (2014).
doi:10.1080/00207179.2014.893450.

[14] L.E. Dubins, On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents, American, J. Math. 79 (1957), pp.
497–516. doi:10.2307/2372560.

[15] J. Reeds and L. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific,
J. Math. 145(1990), pp. 367–393

[16] S.M. LaValle, Planning Algorithms, Cambridge: Cambridge university press. doi:10.1017/
CBO9780511546877, 2006.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 25

https://unctad.org/webflyer/review-maritime-transport-2018
https://www.oecd.org/ocean/topics/ocean-shipping/
https://www.oecd.org/ocean/topics/ocean-shipping/
https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade
https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201710374
https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201710374
https://doi.org/10.1007/978-1-4614-4469-5_4
https://doi.org/10.1007/978-1-4614-4469-5_4
https://doi.org/10.2514/6.2010-9136
https://doi.org/10.1109/TRO.2005.852260
https://doi.org/10.1109/TRO.2005.852260
https://doi.org/10.1007/s00332-012-9140-7
https://doi.org/10.1080/00207179.2014.893450
https://doi.org/10.2307/2372560
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1017/CBO9780511546877

[17] E. Frazzoli and F. Bullo, On quantization and optimal control of dynamical systems with
symmetries, in Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas,
NV, USA, 2002, pp. 817–823. doi:10.1109/CDC.2002.1184606.

[18] E. Frazzoli, Robust hybrid control for autonomous vehicle motion planning, Ph.D. diss.,
Massachusetts Institute of Technology, 2001.

[19] B. Paden, M. Čáp, S.Z. Yong, D. Yershov, and E. Frazzoli, A survey of motion planning and
control techniques for self-driving urban vehicles, IEEE Trans. Intell. Veh. 1 (2016), pp.
33–55. doi:10.1109/TIV.2016.2578706.

[20] H.J. Sussmann and J.C. Willems, 300 years of optimal control: From the Brachystochrone to
the maximum principle, IEEE Control Syst. Mag. 17 (1997), pp. 32–44. doi:10.1109/
37.588098.

[21] T. Binder, L. Blank, H.G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder,
W. Marquardt, J.P. Schlöder, and O. Von Stryk, Introduction to model based optimization
of chemical processes on moving horizons, in Online Optimization of Large Scale Systems:
State of the Art, M. Grötschel, S.O. Krumke, and J. Rambau, eds., Springer Berlin
Heidelberg: Springer, 2001, pp. 295–340.

[22] A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Math. Program. 106 (2006), pp. 25–57.
doi:10.1007/s10107-004-0559-y.

[23] R.H. Byrd, J. Nocedal, and R.A. Waltz, Knitro: An integrated package for nonlinear optimi-
zation, in Large-Scale Nonlinear Optimization, G. Di Pillo and M. Roma, eds., Springer US,
Boston, MA, 2006, pp. 35–59. doi:10.1007/0-387-30065-1_4.

[24] P.E. Gill, W. Murray, and M.A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev. 47 (2005), pp. 99–131. doi:10.1137/
S0036144504446096.

[25] A. Lazarowska, A trajectory base method for ship’s safe path planning, Procedia Comput. Sci.
96 (2016), pp. 1022–1031. knowledge-Based and Intelligent Information & Engineering
Systems: Proceedings of the 20th International Conference KES-2016. doi:10.1016/j.
procs.2016.08.118.

[26] M. Schuster, M. Blaich, and J. Reuter, Collision avoidance for vessels using a low-cost radar
sensor, in 19th IFAC World Congress, Vol. 47, 2014, pp. 9673–9678 IFAC Proceedings.
doi:10.3182/20140824-6-ZA-1003.01872

[27] M.D. Pedersen and T.I. Fossen, Marine vessel path planning & guidance using potential flow,
in 9th IFAC Conference on Manoeuvring and Control of Marine Craft, Vol. 45, 2012, pp.
188–193 . IFAC Proceedings. doi:10.3182/20120919-3-IT-2046.00032

[28] A. Häusler, A. Saccon, A. Aguiar, J. Hauser, and A. Pascoal, Cooperative motion planning for
multiple autonomous marine vehicles, in 9th IFAC Conference on Manoeuvring and Control
of Marine Craft Vol 45, 2012, pp. 244–249 . IFAC Proceedings. doi:10.3182/20120919-3-IT-
2046.00042

[29] Y. Huang, L. Chen, P. Chen, R.R. Negenborn, and P. van Gelder, Ship collision avoidance
methods: State-of-the-art, Saf Sci 121 (2020), pp. 451–473. doi:10.1016/j.ssci.2019.09.018.

[30] Y. Li and J. Zheng, Real-time collision avoidance planning for unmanned surface vessels based
on field theory, ISA Trans. 106 (2020), pp. 233–242. doi:10.1016/j.isatra.2020.07.018.

[31] C. Tam and R. Bucknall, Cooperative path planning algorithm for marine surface vessels,
Ocean Eng. 57 (2013), pp. 25–33. doi:10.1016/j.oceaneng.2012.09.003.

[32] K. Shojaei, Observer-based neural adaptive formation control of autonomous surface vessels
with limited torque, Rob. Auton. Syst. 78 (2016), pp. 83–96. doi:10.1016/j.robot.2016.01.005.

[33] W. Jing, C. Liu, T. Li et al., Path planning and navigation of oceanic autonomous sailboats
and vessels: A survey, J. Ocean Univ. China 19 (2020), pp. 609–621. doi:10.1007/s11802-020-
4144-7.

[34] M.A. Hinostroza Muñoz, C. Guedes Soares, and H. Xu, Motion planning, guidance and
control system for autonomous surface vessel, in Proceedings of the ASME 2018 37th
International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain.
doi:10.1115/OMAE2018-78537, 2018.

26 L. LÜTTGENS ET AL.

https://doi.org/10.1109/CDC.2002.1184606
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/37.588098
https://doi.org/10.1109/37.588098
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1016/j.procs.2016.08.118
https://doi.org/10.1016/j.procs.2016.08.118
https://doi.org/10.3182/20140824-6-ZA-1003.01872
https://doi.org/10.3182/20120919-3-IT-2046.00032
https://doi.org/10.3182/20120919-3-IT-2046.00042
https://doi.org/10.3182/20120919-3-IT-2046.00042
https://doi.org/10.1016/j.ssci.2019.09.018
https://doi.org/10.1016/j.isatra.2020.07.018
https://doi.org/10.1016/j.oceaneng.2012.09.003
https://doi.org/10.1016/j.robot.2016.01.005
https://doi.org/10.1007/s11802-020-4144-7
https://doi.org/10.1007/s11802-020-4144-7
https://doi.org/10.1115/OMAE2018-78537

[35] H.S. Stenersen, Construction and control of an autonomous sail boat, in 10th IFAC
Conference on Control Applications in Marine SystemsCAMS 2016. Trondheim, Norway,
Vol. 49, 2016, pp. 524–531. IFAC-PapersOnLine.

[36] P. Oltmann and S. Sharma, Simulation of combined engine and rudder maneuvers using an
improved model of hull-propeller-rudderinteractions, Schriftreihe Schiffbau (1984), pp. 1–24.
doi:10.15480/882.929.

[37] R. Holmberg and O. Khatib, Development and control of a holonomic mobile robot for mobile
manipulation tasks, Int. J. Rob. Res. 19(2000), pp. 1066–1074. doi:10.1177/
02783640022067977.

[38] K. Flaßkamp, S. Ober-Blöbaum, and K. Worthmann, Symmetry and motion primitives in
model predictive control, Math. Control Signals Syst. 31 (2019), pp. 455–485. doi:10.1007/
s00498-019-00246-7.

[39] J.E. Marsden and T.S. Ratiu, Introduction to mechanics and symmetry, in Texts in Applied
Mathematics, 2nd ed, Vol. 17. Springer, New York, NY: Springer, 1999.

[40] B. Hall, Lie groups, Lie Algebras, and representations: An elementary introduction, in
Graduate Texts in Mathematics, Cham at al: Springer, 2003.

[41] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic Manipulation, Boca
Raton et al.: CRC Press, 1994.

[42] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, Practical search techniques in path
planning for autonomous driving, Ann. Arbor. 1001 (2008), pp. 18–80.

[43] M. Kobilarov, Discrete geometric motion control of autonomous vehicles, Ph.D. diss.,
University of Southern California, USA, 2008.

[44] P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, in IEEE Transactions on Systems Science and Cybernetics, Vol. 4 (),
1968, pp. 100–107 10.1109/TSSC.1968.300136 .

[45] M. Gerdts, Optimal Control of ODEs and DAEs, De Gruyter, 2021. doi:10.1515/
97831102499962012.

[46] OpenStreetMap contributors, Planet dump, 2017. Available at: https://planet.osm.org;
https://www.openstreetmap.org.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 27

https://doi.org/10.15480/882.929
https://doi.org/10.1177/02783640022067977
https://doi.org/10.1177/02783640022067977
https://doi.org/10.1007/s00498-019-00246-7
https://doi.org/10.1007/s00498-019-00246-7
http://10.1109/TSSC.1968.300136
https://doi.org/10.1515/97831102499962012
https://doi.org/10.1515/97831102499962012
https://planet.osm.org;https://www.openstreetmap.org
https://planet.osm.org;https://www.openstreetmap.org

	Abstract
	1. Introduction
	1.1. Outline

	2. Modelling
	3. Motion primitives for a ship model
	3.1. General definitions
	3.2. Symmetry for ship models
	3.3. Trim primitives for rigid bodies moving without restrictions in a plane
	3.4. Numerical computation of trims and connecting manoeuvres

	4. Trajectory planning algorithm
	4.1. Preparation phase
	4.1.1. Time discretization

	4.2. Building blocks of the algorithm
	4.2.1. A* search algorithm
	4.2.2. Search space
	4.2.3. Occupancy grid

	4.3. Function principle of the algorithm
	4.4. Post-optimization

	5. Numerical results
	5.1. A*-motion planning with primitives
	5.2. Autonomous ship navigation in the port of Rostock

	6. Conclusion and future work
	Notes
	Acknowledgments
	Disclosure statement
	ORCID
	References

