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Autonomous navigation of ships by combining optimal 
trajectory planning with informed graph search
Luis Lüttgens*, Benjamin Jurgelucks *, Heinrich Wernsing*, Sylvain Roy *, 
Christof Büskens * and Kathrin Flaßkamp *

Center for Industrial Mathematics, Optimization and Optimal Control, University of Bremen, Bremen, 
Germany

ABSTRACT
Autonomous trajectory generation plays an essential role in the 
navigation of vehicles in space as well as in terrestrial scenarios, i.e. 
in the air, on solid ground, or water. For the latter, the navigation of 
ships in ports has specific challenges since ship dynamics are highly 
nonlinear with limited agility, while the manoeuvre space in ports is 
limited. Nevertheless, for providing support to humanly designed 
control strategies, autonomously generated trajectories have not 
only to be feasible, i.e. collision-free but shall also be optimal with 
respect to manoeuvre time and control effort. This article presents 
a novel approach to autonomous trajectory planning on the basis 
of precomputed and connectable trajectory segments, the so- 
called motion primitives, and an A*-search algorithm. Sequences 
of motion primitives provide an initial guess for a subsequent 
optimization by which optimal trajectories are found even in ter-
rains with many obstacles. We illustrate the approach with different 
navigation scenarios.
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1. Introduction

Today, autonomous transportation is one of the most active research areas all over the 
world. Certainly, the most popular branch deals with self-driving cars. However, auton-
omous automobiles cover only a small fraction of transportation problems, since they are 
mostly the solution for medium-ranged private transportation. A huge task for the 
logistics industry is global trade. According to [1,2,3] about 90% of all goods are carried 
by ships today. Thus, the development of techniques for autonomous ship navigation is 
of great interest, too. Thereby, ship captains can be assisted in navigation tasks, which 
could traditionally only be solved by well-trained and experienced personnel. Thus, this 
article focuses on the autonomous1 navigation of ships by providing feasible and, even 
more, optimal solutions in scenarios with challenging constraints. A sophisticated 
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modelling is an indispensable prerequisite to allow for mathematical optimization. 
Classically, ship dynamics are modelled by ordinary differential equations, since for 
this modelling approach, established simulation techniques are at hand. However, 
trajectory optimization then requires nonlinear optimization techniques, which, in gen-
eral, rely on good initial guesses and are computationally costly. This paper does not 
address the algorithmic barriers in optimization, but, instead, we reconsider the model-
ling step, i.e. propose and analyse a model abstraction that allows a combined application 
of state-of-the-art optimization techniques for discrete and continuous models, 
respectively.

The method’s development has been motivated by the research at the University of 
Bremen within the project GALILEOnautic [4,5,6]. This project makes use of the global 
navigation satellite system GALILEO for manoeuvring in safety-critical areas such as 
ports. Optimized manoeuvring and automated navigation are realized by online- 
optimization using the software WORHP and TransWORHP [7,8,9]. Further aspects to 
investigate are cooperation of ships, model-based (feedback) control design, and a virtual 
reality 3D test environment. The GALILEOnautic project plans an application to the ferry 
crossing from the port of Rostock in Germany to Gedser in Denmark, a port with 
demanding waters.

The proposed approach within this article is based on the idea of motion planning with 
motion primitives by Frazzoli et al. [10]. In the offline phase of the method, a set of 
motions which is consistent with the given vehicle dynamics, the so-called motion 
primitives, are computed. The term ‘primitive’ originally refers to the motions being 
simple in the sense that humans would intuitively choose them to e.g. stear a vehicle. In 
a formal setting, primitives can be selected by model-based criteria as it is done in 
optimization, e.g. the primitive duration or its energy efficiency. Exploiting symmetries 
in the model allows to use and combine these primitives in various ways. Thus, during the 
online phase, an optimal sequence of primitives is searched which solves the given 
planning task by using a modified A* method. The size of the library of motion primitives 
is crucial for online-applicability. However, a coarse representation of the ship model by 
only using a few number of motion primitives generates suboptimal solutions. We address 
this issue by using the sequence of motion primitives as an initial guess [11,12] and apply 
an optimal control method using the full nonlinear dynamical model afterwards. Due to 
the sophisticated initial guess, the local solver of the direct optimal control method is more 
likely to converge quickly (cf. to the discussion and numerical studies in [11] or [13], for 
instance). We apply this approach to a ship model. A crucial challenge for the planning 
phase as well as for the post-optimization are restrictions due to environmental con-
straints. Using an occupancy grid to model port layouts, we guarantee that the motion 
primitive sequence and the post-optimized trajectory are feasible solutions.

The combination of A* planning with optimal control overcomes several shortcom-
ings of the individual methods and thus provides a powerful approach to real-world 
applications:

● While classical planning focuses on geometric paths only (which are not necessarily 
always feasible), a sequence of motion primitives is feasible with respect to the 
(nonlinear) dynamics model, thus the path can be realized with less corrective 
feedback control.
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● Using curves that combine states and controls within the A* (instead of sampling 
the control space only), we always have the state trajectory and control curve at hand 
which might be helpful for designing feedback controller to robustify solutions.

● Time-consuming optimal trajectory design can be done offline in the preparation 
phase. The optimized manoeuvres are stored in the library and can be used 
sequentially by the A* planning.

● Providing a sophisticated initial guess to the local optimization method within the 
nonlinear optimal control is likely to speed up convergence. Moreover, since the 
primitive sequence is an admissible solution, it can always be used as a fallback, if, 
for instance in a real-time Model Predictive Control (MPC) scheme, an optimal 
control solution cannot be provided in time.

Path planning for vehicles by concatenation of primitives has a long history dating back 
to Dubin’s car, where arcs of circles have been used to find shortest paths, see [14] and 
also Reed’s and Shepp’s curves as a crucial extension [15]. A number of further exten-
sions and variants are e.g. listed in the textbook [16]. Motion planning with motion 
primitives, as introduced by Frazzoli et al. in [10,17,18], also falls into the class of 
planning methods. In [19] a survey on planning methods suitable for applications to 
autonomous vehicles was conducted.

Optimal control, as a field of mathematical research, emerged from studying varia-
tional problems, see e.g [20] for a historical review. However, it required improved 
numerical techniques from the past 50–60 years in order to make optimal control 
applicable to real-world examples. Among different numerical approaches, direct opti-
mal control has shown great applicability to large-scale problems [21]. A direct tran-
scription of the optimal control problem into a nonlinear constrained optimization 
problem allows to use efficient NLP solvers such as IPOPT [22], KNITRO [23], 
SNOPT [24], or WORHP [7].

A detailed study of the numerical methods is out of the scope of this article. Instead, 
we focus on conceptually showing the combination of planning and optimal control 
methods in ship navigation.

Planning and optimization in ship manoeuvring was studied e.g. in [25,26,27,28,29]. 
See [29] for a recent research overview on ship collision avoidance methods, which 
identifies motion prediction as one of the crucial methods for collision prevention. In 
[30], for instance, a modelling approach based on field theory and particle simulations for 
collision avoidance is presented. Typically, collision avoidance considers much shorter 
manoeuvres (in time, as well as in deplacement) than our path planning approach [31]. 
also considers collision avoidance scenarios instead of large planning tasks. However, 
they build their solutions by pieces of trajectories and allow continuation of some pieces. 
This resembles our formalism of trim primitives and manoeuvres, presented in detail in 
the following. Contrarily to collision-avoidance, in [32] formation control of multiple 
autonomous vessels is addressed. The focus is on feedback control in order to address 
environmental disturbances induced by waves, wind and ocean currents. In e.g [26]., the 
focus lies on the sensor aspects, which are not covered in our work.

In [33], an overview on planning and navigation for vessels and sailboats is given. The 
presented methods for collision avoidance are based on discretized manoeuvres, thus 
sharing some similarities with our approach. The path planning literature survey is 
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focused on sailboats. It lists graph-based search methods in contrast to potential field 
methods and classical sailing. Closely related to our work [34], also considers autono-
mous navigation tasks of vessels and proposes a discrete planning method, called fast 
marching method. While this method is originally a pure path planning method, the 
authors integrator ship kinematics. Then, a PID controller has to be designed in order to 
optimize the trajectory. Here, our post-optimization approach provides more flexibility 
due to a general nonlinear optimization solver. However, we only provide an open-loop 
solution, not a feedback controller.

As it is the case in our approach, the kinematics and dynamics model and also similar 
objective functions, e.g. control effort, are considered in [28] for planning for autono-
mous marine vehicles. However, they apply a projection operator method instead of our 
two-step approach of planning and direct optimal control. While their focus lies on 
computing collision-free manoeuvres for multiple vessels, we focus on navigation in 
ports; this makes it hard to compare the methods directly. In [25], planning on a base of 
trajectories is performed. In contrast to our approach, the trajectories do not stem from 
so-called trim primitives and optimal manoeuvres. Moreover, we use different optimiza-
tion methods (nonlinear gradient-based versus ant-colony optimization). Another quite 
different approach is based on a potential flow design for path planning as presented in 
[27]. Autonomous navigation has been successfully realized for a sailboat as reported in 
[35]. Here, the focus is on the overall implementation and less on the guidance task. 
Within the proposed control architecture, our motion planning with primitives approach 
could provide optimal guidance trajectories as high-level control inputs.

1.1. Outline

We proceed by introducing a ship model in Section 2. Then, a formal definition of 
motion primitives follows, and it is applied to compute symmetry and primitives of the 
ship model in Section 3. In Section 4, we design a manoeuvre automaton for the ship 
model, which forms the basis for our planning method. Also, the A* algorithm and the 
occupancy map generated for port environments are introduced. The method is eval-
uated in several scenarios with numerical results presented and discussed in Section 5. 
Finally, we give concluding remarks in Section 6.

2. Modelling

We are using the ship model proposed in [36] with the same choice of parameters, 

_xðtÞ ¼ uðtÞ cosðΨðtÞÞ � vðtÞ sinðΨðtÞÞ (1) 

_yðtÞ ¼ uðtÞ sinðΨðtÞÞ þ vðtÞ cosðΨðtÞÞ (2) 

_ΨðtÞ ¼ rðtÞ (3) 

XðtÞ ¼ _uðtÞ � vðtÞrðtÞ � rðtÞ2xG
� �

m (4) 
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YðtÞ ¼ _vðtÞ þ uðtÞrðtÞ þ _rðtÞxGð Þm (5) 

NðtÞ ¼ _rðtÞIzz þ _vðtÞ þ uðtÞrðtÞð ÞxGm (6) 

If we neglect Equations (4)–(6), we are left with first-order kinematic Equations (1)–(3). 
The evolution of the spatial displacements x0 and y0 depend on the longitudinal and 
lateral velocities u and v, and the current heading Ψ . The angular velocity is denoted by r. 
Considering u; v; r as the control inputs, this model resembles simple vehicle models, also 
known as holonomic robots, for instance (cf [37]). The system can instantaneously start 
to move into any direction independent of the current orientation. This is in contrast to 
a nonholonomic model, which includes constraints given by wheels.

Compared to street or aeronautic vehicles, a ship is far less agile. This is modelled in 
Equations (4)–(6). Adding these equations to our model gives a system of six ordinary 
differential equations. Here, m represents the mass of the ship, xG denotes the centre of 
mass along the x-component of the coordinate system attached to the ship (see 
Figure 1).

In [36], a port-starboard symmetry is assumed and the ship coordinate system’s origin 
is chosen to lie on this symmetry axis. Thus, the centre of mass must lie on this axis, i.e. yG 
is equal to zero. The term Izz denotes the moment of inertia with respect to the z-axis.

The capital letters X;Y denote forces and a N a moment acting on the ship. The ship 
model we are using in this article is independent of external forces such as water depth, 
wind, or time history effects, and there is no explicit dependency of the position of the 
ship (see [36]). The control inputs of the full model are the propeller thrust and the 
rudder angle, again we refer to [36] for details.

Figure 1. Introduction of coordinates and forces for the ship model (adapted from [36]).
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3. Motion primitives for a ship model

3.1. General definitions

Many dynamical systems show symmetries. Here, we are interested in continuous 
symmetries that express themselves in terms of invariances. Illustrative examples are 
given by translational or rotational invariances of a mechanical system in the plane. We 
consider a dynamical system on an n-dimensional manifold M, given by _xðtÞ ¼
f ðxðtÞ;uðtÞÞ with xðtÞ 2 M � R n and uðtÞ 2 R m. Let TM denote the tangent bundle 
of M. We assume f : M � R m ! TM to be continuous and locally Lipschitz w.r.t. its first 
argument in order to guarantee existence and uniqueness of the solution φuð�; x0Þ on 
a compact time interval ½0;T�, 0<T <1, for u 2 L1ð½0;T�;R mÞ. L1ð½0;T�;R mÞ denotes 
the space of Lebesgue-measurable and absolutely integrable functions on the domain 
½0;T�. We recall from [38] the following definitions. 

Definition 3.1 (Symmetry Group). Let M be a smooth manifold, ðG; �Þ a Lie-group, and 
Γ a left-action of G on M. Then, we call the triple ðG;M; ΓÞ a symmetry group of the 
system _xðtÞ ¼ f ðxðtÞ;uðtÞÞ if the property 

φuðt; Γðg;~x0ÞÞ ¼ Γðg;φuðt;~x0ÞÞ " ðt; g;~x0Þ 2 R�0 � G�M (7) 

holds for all u 2 L1ð½0;T�;R mÞ.

Definition 3.2 (Motion Primitive). Let ðG;M; ΓÞ be a symmetry group. Then, two 
trajectories φuð�;~x0Þ and φuð�;~y0Þ are called equivalent, if there exists g 2 G such that 

φuðt;~x0Þ ¼ Γðg;φuðt;~y0ÞÞ " t � 0:

A motion primitive is the equivalence class of all trajectories equivalent to φuð�;~x0Þ w.r. 
t. the left action Γ.

Note that the same control function u is assumed for all members of a motion 
primitive.

Definition 3.3 (Trim Primitive). Let ðG;M; ΓÞ be a symmetry group and let g denote 
the associated Lie algebra of G. Then, a trajectory φuð�;~x0Þ is called a trim primitive if 
there exists a Lie algebra element � 2 g such that 

φuðt;~x0Þ ¼ Γðexpð�tÞ;~x0Þ and uðtÞ;�u ¼ const: "t 2 ½0;T�:

The original definition of trim primitives goes back to Frazzoli in [10]. Trim primitives 
can be interpreted as the extension of relative equilibria (see e.g. [39],) to systems with 
control inputs. Loosely speaking, trim primitives are simple motions (despite nonlinear 
dynamics), which are generated by the symmetry action. The control input has to stay 
constant along a trim primitive. In fact, the ’trimmed input’ is the reason why these 
motion primitives are called trim primitives or trims for short.
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3.2. Symmetry for ship models

The kinematic ship model 

_~xðtÞ ¼
_xðtÞ
_yðtÞ
_ΨðtÞ

0

@

1

A ¼

uðtÞ cosðΨðtÞÞ � vðtÞ sinðΨðtÞÞ
uðtÞ sinðΨðtÞÞ þ vðtÞ cosðΨðtÞÞ

rðtÞ

0

@

1

A ¼: f ð~xðtÞ;~uðtÞÞ

on M ¼ R 2 � S1 and with control ~u ¼ ðu; v; rÞT is invariant w.r.t. pure translations as 
well as w.r.t. a combination of rotations and translations, where the latter is less obvious 
when just inspecting the equations of motions. A candidate for the symmetry group can 
be represented in homogeneous coordinates as 

G :¼ A 2 R 4�4 : A ¼

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A;

Δx
Δy
ΔΨ

0

B
B
@

1

C
C
A 2 R 3

8
>><

>>:

9
>>=

>>;

(8) 

with group action Γ : G�M ! M acting by matrix multiplication on the homogeneous 
representation of ~x ¼ ðx; y;ΨÞT 2 M, i.e. for A 2 G 

ΓðA;~xÞ ¼
1 0 0 0
0 1 0 0
0 0 1 0

0

@

1

A

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A

x
y
Ψ
1

0

B
B
@

1

C
C
A:

Proposition 3.4. The kinematic ship model is invariant w.r.t. symmetry ðG;M; ΓÞ.

Proof. Note that the ship model can be written as a matrix-vector multiplication, i.e. 

_xðtÞ
_yðtÞ
_ΨðtÞ

0

@

1

A ¼

cos Ψ � sin Ψ 0
sin Ψ cos Ψ 0

0 0 1

0

@

1

A
u
v
r

0

@

1

A

and the ODE’s analytic solution is given by 

xðtÞ
yðtÞ
ΨðtÞ

0

@

1

A ¼ φμ

x0
y0
Ψ0

0

@

1

A; t

0

@

1

A

¼

x0 þ

ðt

0
uðsÞ cos

ðs

0
rðτÞdτ þ Ψ0

� �

� vðsÞ sin
ðs

0
rðτÞdτ þ Ψ0

� �

ds

y0 þ

ðt

0
uðsÞ sin

ðs

0
rðτÞdτ þ Ψ0

� �

þ vðsÞ cos
ðs

0
rðτÞdτ þ Ψ0

� �

ds

Ψ0 þ

ðt

0
rðsÞds:

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

Then, direct calculations show that 
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φuðΓðA;~x0ÞÞ ¼ φu

1 0 0 0
0 1 0 0
0 0 1 0

0

@

1

A

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A

x0
y0
Ψ0
1

0

B
B
@

1

C
C
A; t

0

B
B
@

1

C
C
A

¼ φu

x0 cosðΔΨÞ � y0 sinðΔΨÞ þ Δx
x0 sinðΔΨÞ þ y0 cosðΔΨÞ þ Δy

Ψ0 þ ΔΨ

0

@

1

A; t

0

@

1

A

¼

1 0 0 0
0 1 0 0
0 0 1 0

0

@

1

A

cosðΔΨÞ � sinðΔΨÞ 0 Δx
sinðΔΨÞ � cosðΔΨÞ 0 Δy

0 0 1 ΔΨ
0 0 0 1

0

B
B
@

1

C
C
A

φu ~x0; tð Þ

1

� �

¼ ΓðA;φuð~x0; tÞÞ

3.3. Trim primitives for rigid bodies moving without restrictions in a plane

According to Definition 3.3, controls have to be constant along trim primitives. For the 
kinematic ship model, two types of solutions are possible: moving on a straight line with 
no angular velocity or moving on a circle with an angular velocity equal to the magnitude 
of the ship’s velocity divided by the radius of the circle.

In these cases, we can analytically compute the flow.
For r;0 and u; v constant, we have 

xðtÞ ¼ x0 þ ut cosðΨ0Þ � vt sinðΨ0Þ

yðtÞ ¼ y0 þ ut sinðΨ0Þ þ vt cosðΨ0Þ

ΨðtÞ ¼ Ψ0;

(9) 

which means indeed following a straight line defined by the initial heading Ψ0 and the 
constant controls ðu; vÞ.

Now assume r�0, but ðu; v; rÞ constant. Then, the motion is defined by 

xðtÞ ¼ x0 þ
u
r

sinðrt þ Ψ0Þ � sinðΨ0Þð Þ þ
v
r

cosðrt þ Ψ0Þ � cosðΨ0Þð Þ (10) 

yðtÞ ¼ y0 �
u
r

cosðrt þ Ψ0Þ � cosðΨ0Þð Þ þ
v
r

sinðrt þ Ψ0Þ � sinðΨ0Þð Þ (11) 

ΨðtÞ ¼ Ψ0 þ r � t (12) 

Trim primitives are generated by elements of the Lie algebra that corresponds to the 
symmetry group. The kinematic ship model’s symmetry group G (cf. (8)) is a subgroup of 
the special Euclidean group, 

SEð3Þ ¼ A 2 R 4�4jA ¼ R t
0 1

� �

: RRT ¼ Id; detðRÞ ¼ 1; t 2 R 3
� �

;
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that combines rotation and translation in three dimensions. With Definitions 1.3 and 1.4 
from [40] it is easy to see, that G is a closed subgroup of SE(3), thus a Lie group itself. The 
corresponding Lie algebra (cf. e.g [41].), denoted by seð3Þ, is given by seð3Þ ¼ soð3Þ�R 3 

and can be interpreted as being comprised of the three rotational and three translational 
velocities. The Lie algebra of rotational matrices is the group of skew symmetric matrices, 
so seð3Þ can be written as 

0 � ω3 ω2 ρ1
ω3 0 � ω1 ρ2
� ω2 ω1 0 ρ3

0 0 0 0

0

B
B
@

1

C
C
A

with parameters ω1;ω2;ω3; ρ1; ρ2; ρ3. Thus, for the kinematic ship model, the Lie algebra 
is a subalgebra of seð3Þ with only three degrees of freedom 

g :¼ Λ 2 R 4�4 : Λ ¼

0 � ω 0 �

ω 0 0 ζ
0 0 0 ω
0 0 0 0

0

B
B
@

1

C
C
A; � 2 R ; ζ 2 R ; 2 R

8
>><

>>:

9
>>=

>>;

(13) 

The exponential map of λ 2 g can then, for instance, be computed via the Rodriguez 
formula (see [41]). 

Proposition 3.5. Trim primitives of the kinematic ship model are given by
(a) straight lines, if control values and Lie algebra elements satisfy

� ¼ u cosðΨ0Þ � v sinðΨ0Þ

ζ ¼ u sinðΨ0Þ þ v cosðΨ0Þ;

or

(b) circular arcs, if 

ω ¼ r;
ζ ¼ � rx0 þ u sinðΨ0Þ þ v cosðΨ0Þ;

� ¼ ry0 þ u cosðΨ0Þ � v sinðΨ0Þ:

(14) 

Proof. Case (a), ‘Straight lines’: Here, ω ¼ 0 in Equation (13). On the one hand, a suitable 
Lie algebra element ð�; ζ; 0Þ can be parametrized by t and mapped under the exponential 
map, such that it acts on a vector ~x0 by 

Γðexp Λt;~x0Þ ¼

1 0 0 �t
0 1 0 ζt
0 0 1 0
0 0 0 1

0

B
B
@

1

C
C
A

x0
y0
Ψ0
1

0

B
B
@

1

C
C
A ¼

x0 þ �t
y0 þ ζt

Ψ0
1

0

B
B
@

1

C
C
A:

On the other hand, from Equation (9) we know that solutions on straight lines have to 
be of the form 
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xðtÞ ¼ x0 þ ut cosðΨ0Þ � vt sinðΨ0Þ

yðtÞ ¼ y0 þ ut sinðΨ0Þ þ vt cosðΨ0Þ

ΨðtÞ ¼ Ψ0:

Component-wise comparison leads to the following conditions for a trim primitive 

� ¼ u cosðΨ0Þ � v sinðΨ0Þ

ζ ¼ u sinðΨ0Þ þ v cosðΨ0Þ:

Case (b), ‘Circular arcs’: Again, we have to show that Γðexp Λt;~x0Þ with a Lie algebra 
element chosen according to Equation (14) generates valid solutions of the dynamics. By 
Rodriguez formula, we obtain 

expðΛtÞ ¼

cosðωtÞ � sinðωtÞ 0 �

ω sinðωtÞ � ζ
ω ð1 � cosðωtÞÞ

sinðωtÞ cosðωtÞ 0 �

ω ð1 � cosðωtÞ þ ζ
ω sinðωtÞ

0 0 1 ωt
0 0 0 1

0

B
B
@

1

C
C
A: (15) 

Following the definition of trims, we compute 

ΓexpðΛtÞð~x0Þ ¼

cosðωtÞ � x0 � sinðωtÞ � y0 þ
�

ω sinðωtÞ � ζ
ω ð1 � cosðωtÞÞ

sinðωtÞ � x0 þ cosðωtÞ � y0 þ
�

ω ð1 � cosðωtÞÞ þ ζ
ω sinðωtÞ

ψ0 þ ωt

0

@

1

A

¼

sinðωtÞ � ð� y0 þ
�

ωÞ þ cosðωtÞ � ðx0 þ
ζ
ωÞ �

ζ
ω

sinðωtÞ � ðx0 þ
ζ
ωÞ þ cosðωtÞ � ðy0 �

�

ωÞ þ
�

ω
ψ0 þ ωt

0

@

1

A

(16) 

Now, comparing the third component of Equation (16) to the solution for ΨðtÞ, we see 
that ω ¼ r must hold. Rewriting the first two components of the solution given in 
Equation (10) using trigonometric identities, we see that these are equivalent to 
Equation (16), if the following conditions to the parameters hold 

ω ¼ r;
ζ ¼ � rx0 þ u sinðΨ0Þ þ v cosðΨ0Þ;

� ¼ ry0 þ u cosðΨ0Þ � v sinðΨ0Þ:

(17) 

Thus, we have found the defining conditions of a trim.

The conditions derived in the proposition relate the Lie algebra elements to the 
control values and, moreover, this relation depends on the initial point ðx0; y0;Ψ0Þ

T . 
However, given the initial point and control values ðr; u; vÞ, the corresponding Lie 
algebra element that generates a trim is uniquely defined. As a consequence of Prop. 
3.5, we see that any triple of constant controls generates a trim. This is important for 
designing the manoeuvre automaton.
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3.4. Numerical computation of trims and connecting manoeuvres

We have not been able to take over the analytical computation of trim primitives via Lie 
group symmetry action to the full ship dynamics. However, trim primitives of the 
simplified ship model give crucial intuition about how trims for the full model may 
look like. With that intuition, it is possible to numerically approximate the trim 
primitives. To this aim, we have to find the corresponding controls for a given velocity. 
There are multiple ways of solving this task. Forward integration over a long time 
horizon does the trick as the forces will balance over time independent of the initial 
state. Alternatively, velocity-control-pairs could be obtained by an optimal control 
problem.

For the computation of trim-connecting manoeuvres, we formulated and solved 
optimal control problems. Note that these problems are typically much less complicated 
than the full original optimal control problem, as we solely have to connect two kine-
matics states of the ship without considering any geometric constraints. Thus, these 
kinematics states are chosen to lie in the previously computed trim primitives. Within the 
optimal control problem, corresponding boundary conditions are considered. Objective 
functions can be chosen in correspondence with the cost function of the A* algorithm (cf. 
Section 4) and, if applicable, consistent with the objective functions used within the post- 
optimization (cf. Section 4.4).

4. Trajectory planning algorithm

Our approach to trajectory planning is fundamentally based on motion primitives. 
Among them, trim primitives play a special role due to their properties derived in 
Section 3. In the following, we first describe the general procedure of our trajectory 
planning algorithm before we give more information on the application to our specific 
problem.

As a reminder, the goal of the algorithm is to compute feasible trajectories and fill the 
gap between optimal control problems, which heavily rely on sophisticated initial guesses 
close to the optimal trajectory, and path planning algorithms, which work great with 
a control algorithm, but provide too little information to be directly used as an initial 
guess. This is precisely where motion primitives come in handy.

Motion primitives can be computed offline before planning a trajectory. Because of 
their symmetry properties, these precomputed trajectory snippets can also be smoothly 
glued together to form a smooth complete trajectory. Hence, the main problem is to 
identify a sequence of motion primitives that form a smooth path from the initial starting 
point to the sought final location.

In order to identify this sequence, we use a variation of the A* search algorithm. An 
A* search algorithm works on a graph data structure and finds the shortest path from 
one node to another. The standard A* algorithm is complete and optimal. From a given 
current node, the A* algorithm explores all neighbouring nodes and adds them to a list 
of visited nodes. In standard A* implementations, such a neighbour is typically 
a discrete grid position right next to the current one (see Figure 2(a)). This is where 
the motion primitives come into play in our case. We alter the definition of 
a neighbour from the strict grid structure to a state that can be reached within the 
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execution of one motion primitive (see Figure 2(b)) and satisfy a few feasibility 
conditions as detailed out below. This has the consequence that we still benefit from 
the excellent properties on the A* algorithm but planning trajectories instead of simple 
paths. Thus, we can use them far more effectively as an initial guess for a solver for NLP 
(Nonlinear Programming) problems. Generally, the adaptation of the A* algorithm to 
incorporate neighbours based on the dynamics of the system, not necessarily using 
motion primitives, instead of a fixed neighbourhood map is known as a hybrid A* 
approach, see e.g. [42].

4.1. Preparation phase

One shortcoming of many A* approaches to this setting in the literature is the search for 
neighbours based on the system dynamics. Short portions of a trajectory are glued 
together often without regard to the differential equations. This difficulty is sought to 
be evaded by utilizing the more formal setting of motion primitives. The underlying 
theory allows us to make a smart selection of trajectory snippets for the A* algorithm 
with provable properties.

As a prerequisite to applying the A* algorithm, a motion primitive library has to 
be computed, i.e. a finite number of motion primitives have to be chosen. Typically, 
one starts with selecting trim primitives. Every type of trim primitive, which might 
be of interest in control scenarios, shall be represented. An approach for generating 
the set of trim primitives is to define a grid on the Lie algebra of appropriate size. 
(Recall that Lie algebra elements typically correspond to rotational or translational 
velocities.)

Considering the simple ship model, (1)-(3), trajectories on trim primitives can be 
directly connected. Thus, it is possible to build a manoeuvre automaton with trim 
primitives only. For more complex dynamics, e.g. the full ship model (1) – (6), a set of 
manoeuvres have to be computed, which connects pairs of trim primitives. It is not 
mandatory nor recommended to interconnect each trim primitive with all other trim 
primitives because it increases the computational effort of the planning. However, since 

Figure 2. Representation of different variations of the A* algorithm.
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the motion primitive automaton approximates the continuous nonlinear dynamics, 
larger automata have better reachability properties and allow for a better approximation 
of optimal solutions of the original dynamics.

Based on the definition given in [10], we define manoeuvre automata for the simple 
and full ship model.

We start with defining a minimal example automaton for the simple ship dynamics.
Definition 4.1 (Manoeuvre Automaton for Simple Ship Model). Given the ship model 

in (1) – (3), the manoeuvre automaton is defined as 

MASSD ¼ f�;Q; δ; q0; Fg

• Q is the collection of trim states 

ID Type Controls

q1 ‘rest’ ðu; v; rÞ ¼ ð0; 0; 0Þ
q2 ‘straight ahead’ ðu; v; rÞ ¼ ð1; 0; 0Þ
q3 ‘clockwise turn’ ðu; v; rÞ ¼ ð1; 0; � 1Þ
q4 ‘anticlockwise turn’ ðu; v; rÞ ¼ ð1; 0; 1Þ

● � ¼ fπ1; . . . ; π12g, i.e. there are 
4
2

� �

trivial manoeuvres (zero duration),  

since instantaneous switches between any tuple of trims are possible
● δ defines the graph structure; here we have a fully connected graph, see Figure 3
● q0 ¼ Q is the initial state, which can be on any trim,
● F ¼ Q is the set of accepted final states, i.e. every trim is accepted as final trim.

Definition 4.2 (Manoeuvre Automaton for Full Ship Model). Given the ship model 
(1) – (6), the manoeuvre automaton is defined as 

Figure 3. The state machine to the set of motion primitives in Definition 4.1.
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MAFSD ¼ f�;Q; δ; q0; Fg

● Q is the collection of trim states: ‘resting’, ‘going straight with 3:0 kn velocity’ (generated by a propeller rps of 
0:602402)

● � the set of manoeuvres
● δ is the mapping between trims according to Figure 4,
● q0 is the initial state ‘rest’.
● F ¼ Q is the set of accepted states, i.e. every trim is accepted as final trim.

ID Type Description

0 trim primitive resting state
1 trim primitive going straight
2 manoeuvre rotation 45 degrees counter clockwise
3 manoeuvre rotation 45 degrees clockwise
4 manoeuvre rotation 90 degrees counter clockwise
5 manoeuvre rotation 90 degrees clockwise
6 manoeuvre rotation 180 degrees clockwise
7 manoeuvre rotation 180 degrees counter clockwise
8 manoeuvre rotation 10 degrees clockwise
9 manoeuvre rotation 10 degrees clockwise
10 manoeuvre accelerating from rest
11 manoeuvre decelerating until rest

Note that the automatons defined in Definition 4.1 and Definition 4.2 do not allow 
backward motion.

4.1.1. Time discretization
The manoeuvre automata from Definition 4.1 and Definition 4.2 cannot be used in the 
A* algorithm, yet. The last step is a time-discretization of the trims. That is, the trims are 
transformed into manoeuvres of fixed duration, cf [43]. However, by applying multiple 
discretized trim snippets, which each have a short time duration, in a row, a continuous 
duration can be approximated.

Once we have constructed the entire graph, we are done with the preparation phase of 
the algorithm. In the next sections, we introduce the other building blocks of the 
algorithm and see how we can put motion primitives to good use.

Figure 4. The state machine to the set of motion primitives in Definition 4.2.
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4.2. Building blocks of the algorithm

4.2.1. A* search algorithm
The first building block of our algorithm is the (hybrid) A* search algorithm. This 
algorithm is part of the informed graph-search algorithms and was discussed in the 
literature many times e.g. [44]. As a quick reminder, the core steps of the A* algo-
rithm are: 

Algorithm 1 (A* search algorithm).
1: Add initial state to the A* graph and initialize neighbouring nodes as unvisited
2: while List of unvisited nodes is non-empty do
3: Get cheapest node from the list of unvisited nodes and mark node as current node 

and visited
4: if current node is the target node then return Success
5: else
6: Find all unvisited neighbours of current node and update costs
7: return error

We do not touch the first four steps of this algorithm. However, we will alter the 
expansion step. Traditionally, the algorithm acts on a two-dimensional grid, and the 
adjacent cells on that grid become the new neighbours of the current node. Our search 
space, which we will introduce in the next section, is four-dimensional. This and the fact 
that a huge ship is limited in its movement require a better fitting definition of 
a neighbour cell. This is where we combine motion primitives and the A* search 
algorithm. To find the neighbour cells, which become nodes in the A* graph, we first 
execute each motion primitive from our motion primitive library. Note that, in contrast 
to existing methods, this is particularly inexpensive as the finite set of motion primitives 
can be precomputed due to the underlying symmetry conditions. However, a final check 
whether the execution was feasible is still mandatory. If so, the final cell, together with 
additional information is added to the A* graph as a node, the executed primitive is 
added to the graph as an edge.

4.2.2. Search space
We ended the previous chapter with the statement that the motion primitives are being 
executed to grow the A* graph. The A* graph is a discrete data structure, but motion 
primitives are continuous motion, which has been discretized with a high resolution. We 
need an object that acts as a link between the discrete A* graph and the continuous 
motions of the ship. For that purpose, we introduce the search space.

Definition 4.3 (Search space). A search space is a four-tuple S½N;A; S;G� where: 

N is a set of states
A is a set of arcs connecting the states
S is a nonempty subset of N that contains start states
G is a nonempty subset of N that contains goal states.
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In our case, a single state consists of four bits of information, a two-dimensional 
position, the orientation of the vehicle and a discrete dynamic state of the vehicle. Thus, 
the set of states N we are considering is a bounded subset of the following Cartesian 
product: 

N � R 2 � ½0; 2πÞ � N :

The set of arcs A is the library of motion primitives used for the exploration by the A* 
algorithm. In our application, S is always a one-element set, and G is a one-dimensional 
subspace of N where the free parameter is the orientation of the vehicle.

The search space is continuous in three dimensions. If we keep them continuous, our 
planning algorithm will face difficulties planning a trajectory between two discrete points 
in a continuous environment. A discretization of the set of states causes that we cluster 
near points. Experiments have shown that a spatial discretization of 15m� 15m cells and 
a resolution of π

50 for the orientation are reasonable choices. We further decided to 
exclude geometrical constraints from the search space so that the search space is an 
obstacle-free representation of the environment. A geometrical constraint is any obstacle 
that blocks an edge to connect two states. An example of a geometrical constraint that is 
particularly important for the examples below is quay walls. More sophisticated con-
straints, which we have not considered so far, but are possible in the future, are the ship’s 
draft and a limitation of the velocity. We are using an occupancy grid for this job, which 
is further discussed in the next chapter.

4.2.3. Occupancy grid
The final component we need is a binary occupancy grid that encodes for each cell in 
the search space, whether it is occupied, i.e. blocked by land, or free. We decided to 
separate the occupancy grid from the search space to allow different cell sizes. The 
grid cell size of the occupancy grid should be at least as large as the cell sizes in the 
search space. We were interested in the question of whether a lower resolution of the 
occupancy map increases the quality of our results. The underlying idea is that 
a single grid cell of the search space is smaller than the dimensions of a large ship 
that means if the algorithm plans a trajectory very close to the quay walls, the ship 
could interfere with the walls, and the planned solution is of poor quality. We can 
prevent this from happening by increasing the cell sizes in the occupancy grid map. 
However, this problem can also be overcome by using a barrier term. The barrier 
term is half of the diameter of the ship. When we create the occupancy grid, we 
block each cell that is closer to a quay wall than the barrier term. This technique 
allows us to keep a higher resolution but prevents unexpected behaviour of the 
algorithm. A second reason for the separation of the search space and the occupancy 
grid is that it allows us to use the same search space for multiple ship models at the 
same time, because ships with different lengths and widths need distinct occupancy 
maps.
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4.3. Function principle of the algorithm

Now we are all set to look at the algorithm at runtime, which combines the presented 
building blocks. For that purpose, we start with the pseudo-code of the algorithm, 
followed by a detailed explanation of each step. 

Algorithm 2 (Motion planning with primitives algorithm).
1: Add initial state to the A* graph and initialize neighbouring nodes as unvisited
2: while List of unvisited nodes is non-empty do
3: Get cheapest node from the List of unvisited nodes and mark as current node and 

visited
4: if current node is the final node then return Success
5: for each feasible motion primitive do
6: Execute motion primitive
7: if Motion primitive execution was collision-free then
8: Add the final state of the motion primitive execution to the list of unvisited nodes if 

not already added
9: Add motion primitive as an edge to the A* graph
10: else continue
11: return error

The similarity to the pseudo-code of the A* search algorithm (see Algorithm 1) is not 
surprising as we consider this algorithm to be an augmented version of the classic A*. 
Both algorithms begin with the initialization. The initial state, consisting of position 
orientation and a dynamic state of the ship in the form of a trim primitive, becomes the 
root node of the A* graph and the first element in the list of unvisited nodes. We then 
enter a while-loop, which begins with the extraction of the node with the cheapest 
combined cost. The combined cost consists of the energy spent to reach the current 
node, denoted as actual cost, and the Euclidean distance to the final position, as 
a heuristic underestimation for the remaining future costs. In our implementation, the 
final orientation is unrestricted. If the cheapest node is also the final node, then the 
optimality property of the A* ensures that we can return successfully. For most nodes, 
this test fails, and we continue with the loop. The next step is to explore the search space 
and search for the neighbours of the currently cheapest cell. For that purpose, we enter 
a second loop and iterate over each feasible motion primitive. We obtain the set of 
feasible motion primitives by mapping δ from Definition 4.1 or Definition 4.2. The 
execution takes place in the search space, where we begin at the current node, transcribed 
into a cell, and track movement of the ship. We map the current location onto the 
occupancy grid to monitor collisions. In the case of successful execution, the A* graph 
and list of unvisited nodes grow. The outer loop gets repeatedly invoked until one of two 
things happen. First, the list of unvisited nodes is empty, which means the algorithm was 
unable to find a solution to the given problem. By the completeness property of the A* 
algorithm, it is clear that there is no possible solution. Second, in order to assure that the 
programdoes not crash due to insufficient memory, if the overall number of nodes 
reaches a maximal value the program is stopped.
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For the numerical examples in the following section, a D*-software (i.e. a dynamic A*) 
implementation for planning with primitives provided by Marin Kobilarov, Autonomous 
Systems, Control and Optimization (ASCO) Laboratory, Johns Hopkins University, 
available at https://github.com/jhu-asco/dsl was adapted.

4.4. Post-optimization

As shown in detail in the construction process in Sections 3 and 4, a resulting sequence of 
motion primitives is admissible to the (nonlinear) ship model and the given constraints 
as encoded in the occupancy grid. Moreover, A* provides an optimal sequence with 
respect to the objective function used within the planning. However, the search space of 
A* is only an approximation of the ship model state space. For that reason, we have not 
found an optimal solution to the following optimal control problem (OCP), yet, 

min
~x;~u;T

Jð~x;~uÞ ¼
ðT

t0

,ð~xðtÞ;~uðtÞÞdt þ Pð~xðTÞÞ

w:r:t: _~xðtÞ ¼ f ð~xðtÞ;~uðtÞÞ"t 2 ½t0;T� ðwith dynamics given by Eqs:ð1Þ � ð6ÞÞ;

~xðtÞ 2 X "t 2 ½t0;T�; ðX is the free space encoded in the occup:gridÞ;

~uðtÞ 2 Uðdefines control constraintsÞ;

~xðt0Þ 2 Sðthe set of start states; cf :Definition 4:3Þ:

For the cost functional Jð~x;~uÞ, the following criteria can be considered, for instance, 

Jð~x;~u;TÞ ¼
ðT

t0

w1jj~uðtÞjj2 þ w2 � 1
� �

dt þ w3
xðTÞ
yðTÞ

� �

� G
�
�
�
�

�
�
�
�

2

;

which corresponds to 1) control effort, 2) duration,2 and 3) goal state stabilization with 
weights w1;2;3 and G used to denote a single goal state in Definition 4.3.

In order to solve the OCP, we employ a direct transcription method: Based on a time- 
discretization (not to be mixed up with the state-space discretizations used before) for the 
trajectory ~x and control curve ~u, we transform the OCP into a nonlinear constrained 
optimization problem (NLP) of typically high, but finite dimension. For details on this 
standard approach in optimal control, we confer to the textbook [45], for instance. The 
resulting NLP is typically high-dimensional but possess sparsity-structure in the Jacobians 
[9],, and should therefore be addressed by sparsity-exploiting NLP solvers such as WORHP 
[7] and a corresponding variant for optimal control problems called TransWORHP [9]. 
However, all local NLP solvers have in common that they require initial guesses and, 
moreover, performance and successful termination highly depend on sophisticated choices 
of initial guesses. Thus, we use the NLP solver WORHP for solving the OCP based on the 
motion primitive sequences as initial guesses. This idea of how to implement the OCP for 
motion primitive post-optimization is described in detail in [11,12]. In these works, the 
sequence was an admissible solution to the OCP. Due to the occupancy grid discretization, 
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this only holds up to grid cell coarseness when using Algorithm 2. Note that using an 
already sophisticated feasible initial guess the occupancy-grid constraints do not pose as big 
a challenge for the NLP solver as it would without the prior A* step.

Besides faster and more robust convergence of the optimization, the quality of the 
resulting optimum is also important. While steered convergence to preferred local 
optima is quite challenging and a topic of current research, providing motion primitive 
sequences that are admissible to the OCP makes it likely to find an optimal solution in the 
vicinity, i.e. with qualitatively similar dynamic behaviour. In the following chapter, we 
present several scenarios for ship manoeuvring which strongly benefit from the two-step 
approach and exactly reflect the expected behaviour of the post-optimization as a local 
correction and optimization technique.

5. Numerical results

We will now illustrate the performance of the presented algorithm. As a preliminary step, 
we apply the A* algorithm to the kinematic ship model, before we show the whole 
methodology for a real scenario at the port of Rostock. Note that directly optimizing the 
OCP without first gaining an initial A* solution is not feasible as the optimization 
methods either take too long to reach an optimal solution or outright fail to converge.

5.1. A*-motion planning with primitives

Our first numerical example illustrates the concatenation of motion primitives. We 
consider the kinematic ship model introduced in (1)-(3) with trim primitives computed 
as detailed out in Section 3 and with the manoeuvre automaton defined in Definition 4.1. 
An example scenario is created as depicted in Figure 5. The ship is required to perform 
a turn manoeuvre, which cannot be done as turning on the spot due to its minimal 

Figure 5. Motion primitive solution for a turning manoeuvre for the kinematic ship model. Different 
colours/lines represent different motion primitives.
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turning radius. Start point and desired final point coincide at ðx; yÞ ¼ ð5:0; 6:0Þ. The 
hybrid A* algorithm computes the optimal sequence of motion primitives that gives 
a solution to the turning task. For illustration, we draw the different types of trim 
primitives in blue (straight ahead), yellow (right turn), and purple (left turn) in 
Figure 5. Note that the trim primitives are stored with a fixed duration, since the A* 
algorithm requires a full discretization of the continuous-time problem. However, the 
same trim can be concatenated several times for longer straight or turning phases. The 
sequence of motion primitives is an approximation to the optimal solution of the original 
problem with full nonlinear dynamics. A larger library with trims of different turning 
radii, various speed, and shorter durations would lead to better results – at the cost of 
high computational effort. Alternatively, we propose to perform a post-processing step 
via an optimal control problem as discussed in Section 4.3.

5.2. Autonomous ship navigation in the port of Rostock

In this section, we apply the algorithm to large ships in the port of Rostock, see Figure 6. 
We show in three examples that the motion primitive algorithm enables the post- 
optimization to find optimal trajectories in a narrow environment. In all three cases 
the automaton given by Definition 4.2 was used.

In the first experiment, we start with a long trajectory, see Figure 7 with parameters 
given in Table 1. The starting point lies outside of the port in the Baltic sea and the final 
position roughly 12 km away in the city port of Rostock. One can notice that the algorithm 
did not take many explorations to connect the starting point with the end point. Most of 
the visited positions are close to the start or to the end point, which is a consequence of the 
geometry of the port and the fact that a specific cell must be reached. The cluster around 

Figure 6. Map of the port of Rostock which is used as a testing environment. Map data copyrighted 
OpenStreetMap contributors and available from https://www.openstreetmap.org, see [46].
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the starting point is due to the narrow entry of the port, so the algorithm explores this area 
in more detail. One observes cone-shaped objects on both sides of the starting point, 
which we assume to be caused by backward search within in the algorithm (cf. Section 4).

The next cluster is at the two berths, roughly at ð1000m; � 3000mÞ. Here, the algo-
rithm gets stuck for a few explorations steps as these dead ends are on the connecting line 
between the harbour entry to the end point. Therefore, these positions have a small cost 
associated with. It takes the algorithm only few explorations to make good progress in the 
narrow canal starting at ð0m; � 2000mÞ to ð0m; � 8000mÞ. The final cluster is around the 
final position, which is not surprising since the algorithm has to reach a very small cell 
(225m2). As a comparison the footprint of our ship, the ferry Mecklenburg- 
Vorpommern, is approx. 5800m2. The final motion primitive solution is indicated with 
the green dashed line, after post-optimization we obtain the solid green line.

Figure 7. Computed ship manoeuvre into the port of Rostock. Sequence of motion primitives with 
repositioning on the search space grid is given in red (dashed), post-optimized trajectory is given in 
green (solid). Visited states are depicted in blue. Distances given in Metres.

Table 1. Parameters for first example.
Parameter Value

Starting state (lat, long, degree) 54.198314, 12.072334, 170.0
final position (lat, long) 54.094846, 12.121948
discretization of the search space 15 m � 15 m � π

50
Motion primitive computation time 1,301,236 sec.
A* graph 5939 vertices, 7075 edges
Number of motion primitive segments in solution 31
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Recall that the ship has limited agility. In particular, it has a minimal turning radius 
and cannot turn on the spot. Similar to our preliminary example in Figure 5, in the next 
scenario, the ship has to perform a turning manoeuvre before entering the port. As one 
can see in Figure 8 (with parameters in Table 2), this starting condition leads to many 
more visited states by the A* algorithm. Due to the narrow entrance of the port, the 
resulting optimal sequence of primitives (depicted by the dashed red line) performs 
a large turning circle. The large detour is worsen due to the small-sized manoeuvre 
automaton (cf. Definition 4.2). To obtain a better manoeuvre, we perform the post- 
processing step as proposed in Section 4.4. The result is depicted by the solid green line. 
One can observe that the optimized trajectory is able to minimize the detour while still 
finding a feasible entering path into the port.

In our last example, the ship has to perform a 180°-turn starting directly in the narrow 
port entrance. For this scenario, the exploration nature of the A* algorithm is particularly 
crucial in order to find feasible solutions. In Figure 9 (corresponding parameters in Table 3), 
the resulting motion primitive solution is depicted by a dashed red line again. It performs 

Figure 8. Resulting sequence of motion primitives (dashed red line) and post-optimized solution (solid 
green line) for a scenario, in which the ship has to turn before entering the port. Distances given in 
Metres.

Table 2. Parameters for second example.
Parameter Value

Starting state (lat, long, degree) 54.194175, 12.084501, 350.0
final position (lat, long) 54.168907, 12.098929
discretization of the search space 15 m � 15 m � π

50
Motion primitive computation time 16,243,933 sec.
A* graph 63,166 vertices, 77,825 edges
Number of motion primitive segments in solution 20
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the turning within the inner port, obeying the obstacles, i.e. Island. Again, we observe that 
the turning phase has a big detour due to the limited amount of primitives in the library. 
However, as in the previous example, the optimal solution that is obtained from the post- 
processing step (solid green line) minimized the detour. Note that the optimal solution 
seems to violate the state constraints given by the Island in the inner port. When checking 
the TransWORHP output, one sees that the constraints are fulfilled at each discretization 
point. To obtain obstacle avoidance also at intermediate time points, a finer time discretiza-
tion has to be used. This is not within the scope of our numerical analysis, though.

6. Conclusion and future work

This article proposes a methodology for autonomous navigation of ships based on 
combined mathematical techniques:

(1) Modelling of ship dynamics and identifying structural properties (i.e. symmetry),

Figure 9. Motion primitive solution (dashed red line), post-optimization (green line) and explored 
states (blue dots). Distances given in Metres.

Table 3. Parameters for third example.
Parameter Value

Starting state (lat, long, degree) 54.175922, 12.095341, 170.0
final position (lat, long) 54.177127, 12.094783
discretization of the search space 15 m � 15 m � π

50
Motion primitive computation time 20,99,941 sec.
A* graph 62,392 vertices, 84,444 edges
Number of motion primitive segments in solution 22
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(2) Quantization of the dynamics to a finite set of motion primitives (i.e. trim 
primitives and manoeuvres as in [10]),

(3) Modelling of environmental constraints (i.e. the port layout) via occupancy maps,
(4) Graph-based planning via the A* algorithm on motion primitives, and
(5) Post-optimization by solving optimal control problems using a direct method.

While, individually, these methods are well established, e.g. A* algorithms in compu-
ter science or direct optimal control with nonlinear optimization in numerical mathe-
matics, their combination and application to specific tasks in autonomous control is less 
well investigated. Thus, the presented case study of ship navigation via graph-based 
motion planning provides a helpful validation of the approach. The second and third 
scenarios in Section 5 show the advantages if planning and nonlinear optimization are 
combined: the A* algorithm performs a global search but provides a primitive sequence, 
which is only suboptimal w.r.t. the optimization criteria since it does not use the full 
dynamics. Contrarily, the direct optimal control method considers the nonlinear ship 
model, but requires a good initial guess for the nonlinear optimizer to converge to 
a globally efficient solution. As pointed out in the introduction, the navigation of ships 
in comparison to street or aeronautical vehicles has particular challenges due to limited 
agility of large ships and narrow, possibly congested space in a port. Since the agility and 
dynamics of ships are limited compared to those of road vehicles, for instance, computa-
tion times for real-world scenarios are less of a problem. Thus, autonomous navigation of 
ship in ports seem to be realistic in near future. Moreover, current research in 
GALILEOnautic [4,5,6] addresses the interaction of several ships.

Future work shall address robustness analyses of the computed solutions w.r.t. uncer-
tainty in states and model parameters, as well as the design of a feedback control. In [38], 
for instance, model predictive control is designed using a motion primitive library and 
stability of this control scheme is shown for an academic robot example.

Notes

1. Since this article focuses on a proof-of-concept for the proposed method and does not 
include a real-world application, we omit a discussion whether a future version of this 
method would technically be considered as an assisted, an automated or an autonomous 
navigation system.

2. Note that 
ðT

t0

w2 � 1dt ¼ w2 � ðT � t0Þ, i.e. the duration of the solution.
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