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Abstract

This paper is concerned with the well posedness of the Cauchy
problem for first order symmetric hyperbolic systems in the sense of
Friedrichs. The classical theory says that if the coefficients of the sys-
tem and if the coefficients of the symmetrizer are Lipschitz continuous,
then the Cauchy problem is well posed in L2. When the symmetrizer
is Log-Lipschtiz or when the coefficients are analytic or quasi-analytic,
the Cauchy problem is well posed C°°. In this paper we give coun-
terexamples which show that these results are sharp. We discuss both
the smoothness of the symmetrizer and of the coefficients.
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1 Introduction

This paper is concerned with the well posedness of the Cauchy proble 1 lfg |
first order symmetric hyperbolic systems in the sense of Friedrichs %;H]JT
who proved that if the coefficients of the system and if the coefficients of
the symmetrizer are Lipschitz continuous, then the Cauchy problem is well
posed in L?. This has been extended to Pk}]r%gc}erbolic systems which admits
Lipschitzean microlocal symmetrizers (see [Me]).

The main objective of this paper is to discuss the necessity of these
smoothness assumptions and ggsﬁggovcig\{a new counterexamples to the well
posedness. In the spirit of , CoNi|, we make a detailed analysis of
systems in space dimension one, with coefficients which depend only on
time. Even more, we concentrate our analysis on 2 X 2 system

— a(t) b(t) _
(1.1) Lu = Osu + (c(t) d(t) Ozu = Opu + A(t)u.
The symbol is assumed to be strongly hyperbolic or uniformly diagonalizabe,
which means that there is a bounded symmetrizer S(¢), with S~ is bounded,
which is a definite positive and such that S(t)A(¢) is symmetric. This is
equivalent to the condition that there is § > 0 such that

(1.2) 5((a—d)? +0*+2) < i(a—d)%rbc.

If the symmetrizer S and the coefficients are Lipschitz continuous then the
Cauchy problem is well posed in L?. Indeed, in this case, solutions on
[0,7] x R of Lu = f satisfy

(13 )| 2 < (a2 + 2l
with
C = Cyexp (/OT |8tS(s)]ds>.

Lipschitz smoothness of the symmetrizer is almost necessary for the well
posedness in L2, even for very smooth coefficients:



Theorem 1.1. For all modlrilgff of continuity w such that t~1w(t) — +oo
as t — 0, there is a system (II.I) with coefficients in Ns>1G*([0,TY]), with a
symmetrizer satisfying

(1.4) |S5(t) = S(t")] < Cw(|t — ')

such that the Cauchy problem is ill gggﬁ&n L? in the sense that there is no
constant C such that the estimate (I3) 15 satisfied.

Here and below, we denote by G*([0,T]] the Gevrey class of functions
of order s. They are C'°° functions f such that, for some constant C' which
depends on f, there holds

VieN,  [0lf] . < CITHGY®.

iCo
This theorem extends to systems a similar result obtained in :(11( o] for
the strictly hyperbolic wave equation

(1.5) O*u — a(t)0*u = f.

Indeed, there is a close parallel between the energy |0yu|?+ a(t)|0,u|? for the
wave equation and (S(t)u, u) for the system, and in this case, the smoothness
of S(t) plays a role analogue to the smoothness of a. For the wave equation,
when a is Log-Lipschitz, i.e. admits the modulus of continuity w(t) = t|Int|,
the Cauchy pri%l(%n is well posed in C*° with a loss of derivatives propor-
tional to time ([CDGS]). An intermediate cases between Lipschitz and Log-
Lipschitz, that is when (¢/Int|)~lw(t) — 0 and t~tw(t) — +oo, t}%&%the
loss of derivative is effective but is arbitrarily small on any intﬁi%/al (ICiCo)).
The proof of these results extends immediately to systems (T.T) where the
smoothness of the symmetrizer plays the role of the smoothness of the co-
efficient a. DGS. ColSpa

The next result extends to systems the result in %C‘DC’STC%Q] showing
that the Log-Lipschitz smoothness of the symmetrizer is a sharp condition
for the well posedness in C*°, even for C'*° coefficients:

Theorem 1.2. For all modulus g} continuity w satisfying (t|1n thtw(t) —

400 ast — 0, there are system cg ﬁll)lﬁiuc)ith C™ coefficients, with symmetriz-
ers which satisfy the estimate (I.ii such that the Cauchy problem is ill posed

in C'°°, meaning that for all n and all T > 0, there is no constant C' such
that the estimate

(1.6) [ullze < Cl[Luf[n
is satisfied for all w € C5°(]0,T] x R).



In %(%%Ni] the question of the well posedness of the Cauchy problem is
considered under the angle of the smoothness of the coefficients alone. In
this aspect, the waar‘}gl sis is related to the analysis of the weakly hyperbolic
wave equation (E‘S)_q(ysee citeCJS). If the coefficients are C°°, the problem is
well posed in all Gevrey classes G?, but the well posedness in C'* is obtained
only when the coefficients are analytic or belong to a quasi-analytic class.
Indeed, the next theorem shows that this is sharp.

Theorem 1.3. There are example of systems (Hélé) on [0,T] x R, with uni-
formly hyperbolic symbols and coefficients in the intersection of the Gevrey
classes NG?® for s > 1, admitting continuous symmetrizers, such that the
Cauchy problem is ill posed in C°.

oNi
This theorem improves the similar result obtained in FC’GNi] where the
counterexample had coefficients in NG® for s > 2. The same constr gignao
can be used to provide a similar improvement to the known result in §JSi
for the wave equation:

Theorem 1.4. There are nonnegative functions a € Ns>1G*([0,T]), such
that the Cauchy problem for the weakly hyperbolic wave equation (IL.5) is ill

posed in C°.

The theorems above show that the smoothness of both the coefficients and
the symmetrizer play a role in the well posedness in C'*°. The next ttlIleé)ngqls
is a kind élie%tgerpolation between the two extreme cases of Theorem [I.2 an
Theorem [I.3:

’ﬁ%forem 1.5. For all s > 1 and p < 1—1/s, there are example of systems
(I.T) on [0,T] x R, with uniformly hyperbolic symbols, coefficients in the

Gevrey classes G*, symmetrizer in the Holder space C*, and such that the
Cauchy problem is ill posed in C°.

This leaves open the question of the well posedness in C°° when the
coefficients belong to G* and the symmetrizer to C* when p+ 1/s > 1.

We end this introduction by several remarks about symmetrizers or 2 x 2
system (E—T) For simplicity, we assume that the coefficients are real. Write

1
At) = itrA(t)Id + Ai(2).
142
Then A? = hld with h = 1(a — d)? + be satisfying (h) In particular,

S(t) = AX(#) A1 (£) + h(t)1d
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is a symmetrizer for A in the sense that ¥ and $A = £ (trA)X + hA} + hA;
are symmetric. In general, ¥ is not a symmetrizer in the sense of Friedrichs,
since it is not uniformly positive definite, unless A > 0, which means that
the system is strictly hyperbolic. More precisely, ¥ ~ hld. But X has the
same smoothness as the coefficients of A.

On the other hand, since the system is uniformly diagonalizable, there
are bounded symmetrizers Y1 (¢) which are uniformly positive definite. For
instance h ™'Y is a bounded symmetrizer. More generally, writing

1 1 1 1
(1.7) i(a—d):iwal, b="bh2, c=ch2,
one has a? + bicy > §(a? + b2 + ¢2) > § > 0 and the symmetrizer are of the
form

(1.8) ¥ = <a 6) with 2a18 = bja — 1.
By

Therefore there is a cone of positive symmetrizers of dimensioP 2. Their

smoothness depend on the smoothness of a1, b1, c1, that is of A~ 2 A;. There

might be better choices than others. For instance, if the system is symmetric,

31 = Id is a very smooth symmetrizer. Our discussion below concerns the

smoothness of both ¥ and ¥ and their possible interplay.

2 The counterexamples

We consider systems of the form

0 a(t)

2.1 LU = .

(2.1) U:= 00U + <b(t) 0 >axU

with a and b real. We always assume that it is uniformly strongly hyperbolic,
that is'that o =a/b>0and 1/0 are bO}lnded. Our goal is jco contrad'ict
the estimates (I.3) and (I[.6). We contradict the analogous estimates which
are obtained by Fourier transform in x, and more precisely, we construct
sequences of functions wug, v and fr in C°°(]0,77), vanishing near ¢t = 0,
satisfying

(2.2) Oyuy + ihka(t)vk = fx, O, + thb(t)uk =0
with hy — 400 and such that

(2.3) | fl| 2/ || (s o) || ;2 — O as k — oo
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expdecayl

in the first case or, for all j and [ ,
(2.4) Hhi@ikaLQ/H(uk,vk)HLQ — 0 as k — oo

in the second case. Moreover, the support of these function is contained
in an interval Ij, = [t,t}] with 0 < t;, <t} and t}, — 0, showing that the
problem is ill posed on any interval [0, 7] with T > 0.

2.1 Exponentially amplified solutions of the wave equation

. . . . olSpa
In this section we review and adapt the construction of :(185 . The key
remark is that the function w_(t) = e=*?(®) cos t satisfies

(2.5) Ofw, +a.w, =0
if
¢
(2.6) o(t) = / (cos s)%ds, a.(t) =1+ 2esin2t — e?(cost)*.
0

The important property of the w, is their exponential decay at +o0o. More
precisely
Let

14 . -
e2®tw_(t) = e1°5" % cost  is 2mperiodic

and

(2.7) w,(t+2m) = e Tw_(t).

e

Next, one symmetrizes and localizes this solution. More precisely, con-
sider x € C*°(R), supported in | — 77, 77, odd, equal to 1 on [—67, —27]
and thus equal to —1 on [27,67], and such that for all ¢, 0 < x(¢) < 1 and
|0ix(t)| < 1. For v € N, let

(2.8) D,(t) = /0 xv(5)(cos s)2ds, xv(t) = x(t/v).

For € > 0, we,(t) = e®(®) cost satisfies
(29) atzwg,y + ey Wey = 0

where

(2.10) Qe (t) = 1+ ex, sin 2t — ed! — (@!))?
' =142y, sin2t — ey, (cost)? — e?x2(cost)?.



leml

For € < gy =1/10 and for all v

1
(2.11) s =11 5

and we always assume below that the condition € < g is satisfied. We note
also that a., =1 for |t| > Tvm since x, vanishes there.

The final step is to localize the solution in [—6vm, 6vr]. Introduce an
odd cut off function ((t) supported in | — 67, 67 and equal to 1 for [¢t| < 47
and let

(2.12) We(t) = C(t/V)we p(1).

It is supported in [—6v7, 6v7] and equal to w., on [—4vm,4vn]. Then
(213)  foo = 0Py + e piie, = 2071 (t/0)Opwe, + v (V)W
is supported in [—-6vm, —4vn| U [4vm, 6r).

Lemma 2.1. For all j, there is a constant C; such that for all e < eg and
allv>1

(2.14) 107 fo]| 1 < Civte = ||te ]| o
Proof. By symmetry, it is sufficient to estimate f., for ¢ > 0, that is on
[4vm, 6vr]. On [2vm, 6vn], x, = —1, hence @, — ¢ is constant and

We (1) = cyew (1), Cuve = =P (2,

Moreover, on this interval a., = a. is bounded with derivatives bounded
independently of € , and hence

Hagfa,uHLz < ijilcl/,EH(w{:ﬂatw
By (E% implies

Hagfa,VHLQ < ijilcl/,seisywu(ﬂgv atwg

E) HLQ([4V7T,6V7T]).

) HLQ([21/7r,41/7r}) ’

On the other hand

lwewll 2 = evellwe ] L2 aum aum)-

Therefore it is sufficient to prove that there is a constant C' such that for all
v and e:

H(M@ atwe)HLQ([Ql/ﬂ,lll/ﬂ'D = CHMEHL2([2V7T,4V7T])'

7
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Using again (2.7), one has
v—1

H@e’ atwf)”i2([2wr,4wr]) = Z e_Q(EkWMH@e’at%)Himo,zn])
k=0

and .
H%Hiﬁ([&/w,éhﬂr]) = Z6_2(€k+y)ﬂH%H;([O,zw])'
k=0

On [0,27] the H' norm of the w. are uniformly bounded while their L?
norm remain larger than a positive constant. O

2.2 Construction of the coefficients and of the solutions

For k > 1, let py, = k~2. We consider intervals I}, = [tg, t}] and Ji = [t} tx—1]
of the same length py =t} —t; = t,_1 — t}, starting at to =2 .~ p, and
thus such that ¢t — 0.

The functions a and b are defined on |0, ty] as follows: we fix a function
B € C*(R) supported in ]0, 1| and with sequences ¢, v and d to be chosen
later on,

_ a(t)
iz O { b(t) =
on Ji:  a(t) =b(t) = O + (Op—1 — &) B((t — 1)/ pr)

Because o, = 1 for |t| > Tvm, the coefficient a = J;, near the end points
of I. The use of the function S on Jj makes a smooth transition between
0 and dx_1. Therefore, a and b are C*° on ]0,tg]. The coefficients will be
chosen so that they extend smoothly up %ﬂN: 0.

This is quite similar to the choice in [CoNi], except that we introduce a
new sequence €x, which é% lqgus%ial to control the Holder continuity of o = a/b.

We use the family (}‘ZTZ’ano construct solutions of the system supported
in Iy, for k large. On I, b is constant and the equation (hTZT reads

(2.16) Oruy, + thibrarvy = fr, Oy, + thidpug = 0,
with

5kaak7yk( — 8T, + 167T(t — tk)l/k/pk),
k

Ozk(t) = O‘Sk,Vk( — 8y + 167T(t — tk)l/k/pk).
_ 146b ) _
Therefore, a C* solution of (b.Zi supported in Iy is

(2.17)

up(t) = i04ey 1, (— 8Tvp + 167 (t — ti)vi/pr)
Ok (t) = Wey o, (— 871 + 167 (t — b1 ) v/ pic)

8



with
(2.18) Jr(t) = 16im (i / pr.) feyp ( — 870k 4 167 (t — ti) v/ pi)

provided that

(2.19) hi = 16713/ pror.

3 Properties of the coefficients

We always assume that
(3.1) er < €9, EgVp— +oo, 0 — 0.

3.1 Conditions for blow up

Lemma 3.1. If

(3.2) (pr) " te s 5 0,
148
then the blow up property in L? (b?) is satisfied.

leml
Proof. By Lemma b?ml

1Fell 2 < Gy e og | -

lemblop| Lemma 3.2. If
1
(33) e ln(hkuk/pk) — 0,
EkVE

then the blow up property in C*° (E%) 1s satisfied.
Proof. By Lemma %%mrlone has
108 fiol| 1o/ || Cas 0) || 12 < Covy B, (1670 ) pi) e,
This tends to 0 if
epvm — jlnhg — (14 1) In(vg/pr) — +o0.

bl
If (ﬁf is satisfied, this is true for all j and [.



3.2 Smoothness of the coefficients

llemcoefCinfty‘ Lemma 3.3. If

(3.4) In(vk/pr)/| In(0ker)| — 0

then the functions a and b are C* up tot = 0.

Proof. a and b are O(6y) and thus converge to 0 when ¢ — 0. Moreover, for
J=1 '
ken(ve/pr)’ on I,

lﬁga‘ < Cj { —j

51€pk on Jk.

The worst situation occurs on I and the right hand side is bounded if

JIn(ve/pr) — | In(dker)|

inft
is bounded from above. This is true for all j under the assumtion (Ef’i;f =
implying that a is C*° on [0, tp]. The proof for b is similar and easier.  [J

Next, we investigate the possible Gevrey regularity of the coeflicients.
For that we need make a special choice of the cut-off functions x and g
which occur in the construction of a and b. We can choose them in a class

ontained in Ng~1G* and containing compactly supported function, (see e.g.
FM&D. We choose them such that there is a constant C' such that for all j

(3.5) sup (0] x(t)| + [&] B()[) < C7F11(In ).
t
G
Lemma 3.4. If (E%ei 15 satisfied, then for j > 1

wup (/at)] + 1050 <
superGa| (3.6) HElUT

Ky (v on)Y + (Ui 71 (m ) ).

Proof. On I}, we take advantage of the explicit form (E%Clﬁc—gfc' og it is a
finite sum of sin and cos with coefficients of the form x(¢/v). Scaled on I,
each derivative of the trigonometric functions yields a factor vy /pg, while the
derivatives (S)é e have only a factor 1/p;. Since x’ and x? satisfy estimates

similar to (B.5), we conclude that a satisfies
| a(t)| < exdp K7D (vr/pr) " CHHI(In 1)
1<j
G
implying the estimate (E%ei “on Ii,. On Iy, bis constant. On Ji things are
clear by scaling since the coefficients are functions of 5((t — t}.)/px)- O

10



To estimate quantities such as & (vx/pr )’ we use the following inequali-
ties fora >0 and z > 1

majl| (3.7) e "z <a®
and
o |Inal® when a>e
maj2| (3.8) e ‘<
1 when a < e.

Gsmooth| Corollary 3.5. Suppose that 0 = e "% and that for s > s > 1

Gparam| (3.9) (ve/pr) < Cnps (1/pr) < Cnlleil'

Then the coefficients belong to the Gevrey class G°.
If for some p > 0 and q¢ > 0,

superGparam| (3.10) ne > e, (vi/pr) < CkPny
then the coefficients belong to Ng=1G?.

Proof. We ne ;lae(it €, and only use the bound e < ¢¢. In the first case, we
obtain from (E%%i that

Sk(vi/pr)! < e (Cmi)™ < (CT5)7%,  6k(1/px)! < (€757
implying that ‘ ' '
107 (a,b)] < K7F15%.

L. ajl aj2
In the second case, combining (3.7) and (3.

e (v /pr)) < C59 kPie=aM < C"53(1 4 In 5)Pi/a.
aj2
Using again (% for the second term, we obtain that
0] (a,b)] < KI5 (In j)"?

with » = max{p,4}/q. In particular, the right hand side is estimated by
K¥+143s for all s > 1, proving that the functions a and b belong to Ny~1G*.
[

11
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modull

modul?2

indexHolder

indexSHolder

3.3 Smoothness of the symmetrizer

Lemma 3.6. Suppose that w is a continuous and increasing function on
[0,1] such that t~'w(t) is decreasing. If

(3.11) er < w(pr/vk)

then o = a/b satisfies

(3.12) lo(t) — o(t')| < Cw(|t —t']).
In particular, if p <1 and

(3.13) lim sup e (vg/ pr)V* < +00
k

then o is Holder continuous of exponent u. If
(3.14) ex(vi/pr) < Cn(vi/pr)’
then w(t) = t|Int|’ is a modulus of continuity for o.
Proof. On Ji, 6 = 0 — 1 vanishes and on I},

G = er0e, v, (—8mv + 167 (t — t)vi/ pr),
and thus
(3.15) 6| < Cey, |0:0| < Cegvr/ pi.-
Hence, for t and ¢’ in I,

5(t) — ()| < Cepmin{l, [t — '|vi/pi}-

If pr. /v < |t — t'| we use the first estimate and
5(t) — 5(¢)] < Cer < Culpr/m) < Caollt — ¥).

If [t—t'| < pr/vr we use the second estimate and the monotonicity of ¢~ 1w(t)
|5(t) =6 (t')| < Cep(vr/pr)lt —t'| < C(vr/pr)w(pr/vi)lt —t'| < Cw(|t —1']).

odul2
This shows that (E%l IZ% is satisfied when ¢ and ¢’ belong to the same interval
I
If t belong to I, and t’ € Jj, then 6(t') = &(t},) = 0 and

|5(t) — ()] < Cw(|t — 1)) < Cuw(|t —t']).

12



Similarly, if ¢ < ¢ and ¢t and ¢ do not belong to the same I U Jj, there
are end points ¢; and #; such that t; <t <t; 1 <t < t' < t;_1. Since &
vanishes at the endpoints of I and on Jj,

5(t) — ()] < Clo(t) — o(tj) + 6 (t) — &(t;)]
< Cuw(|t —tj1) + Cw(t = 1]) < Cw(|t — 1)

and the lemma is proved. ]

4 Proof of the theorems

We now adapt the choice of the the parameters ¢, v and d; so that the
coefficients and the symmetrizer satisfy the properties stated in the different
theorems. We will choose two increasing functions, f and g, on {z > 1} and
define ¢ and J; in terms of v through the relations:

(4.1) e/ Pk = f(V/pr), op =€ "™, m = g(v/pr).

Recall that p;, = k~2. The sequence of integers V/E 1(}2) be chosen to converge

W
to 400 and thus v /py — +00. The conditions (Con are satisfied if at +oo:

(4.2) flz) €z, g(x) = +oo.

Here ¢(z) < ¢(x) means that ¢(z)/¢(z) — oo. In particular, the first
condition implies that € — 0 so that the condition ¢ < g¢ is certainly

satisfied if k is large enough.
One has

| In(dkex)| = mi + In(vi/pr) + I f(vi/pk)
lemcoefCinfty |
Hence, by Lemma £3.3, the coei%ments a and b are C*° when

(4.3) hzr < g(z) < x.

d1
since with (Eogi it implies that |In(dxex)| ~ nr > In(vi/pr).

theol
4.1 Proof of Theorem 1.1

Given the modulus of continuity w, we choose f(x) = zw(z~!). The assump-
tion on w is that f is increasing and f(z) — 400 at infinity. The spirit of ‘E}ég .

theorem is that f can grow to infinity as slowly as one wants. Le ma 3.0,
implies that w is a 11gL]80(flulus of continuity for 0 = a/b. By Lemma % [, the

blow up property (bg) occurs when

Rk 0T

13



This condition is satisfied if v, satisfies
(4.4) F(Rv) > K2,
Let fi(z) = min{ f(z),Inx}. We choose g(x) = x/fi(x) and vy such that
2k3 < f1 (k) < 4K3.

condFL superGparam
Note that this implies (&I.Zlni. We show that the conditions (bul 07 are satis d
with p = ¢ = 3 and C = 4 and a suitable choice of v, so that by Corollary 3.

the coefficients belong to Ng~1G® and the theorem is proved.
Indeed, since fi(k%vy) < 4k3, the condition vy /p, < 4k3n; is satisfied.
Moreover, since In(k?vy) > 2k3,

_ 3 3
v, >k 26267 > k7

for k large.

theolbi
4.2 Proof of Theorem 1.eZO =

The proof is similar. Given the modulus of continuity w, we choose f(z) =
zw(z~1). The assumption on w is now that

(4.5) Inz < f(z).

The spirit of the theorem iy now that f (z)/Inx can grow to infinity as slowly
as one wants. By Lemma E%.G, w is a mod ]MS(“ of continuity for o = a/b.
By Lemma B.2, the blow up property (2.4) is satisfied if

Inhy = ni, + In(vg/px) + In(167) < epvy,
that is if
(4.6) pef (V/pr) > 9(vi/ i) + In(vie/pr.)-
Let ¢(z) = f(x)/Inz and g(x) = /¢ (x)Inz. Then
P(x) > 1, Inz < g(z) < f(z).

cond45
Therefore, the condition (b.ﬁni is satisfied when pp\/1(vg/pr) — +oo and for
that it is sufficient to choose v, such that

(4.7) V(K ) > K.

The condition g(z) > Inzx implies that the coefficients are C*° and the
theorem is proved.

14



4.3 Proof of Theorem }%
With s > 1and 0 < 4 < 1—1/s, we choose
(4.8) g(z) = 2'/* < fx) =zt M
The choice of f implies that ¢ = a/b € C*. The choice of g implies that
ve/pk < (9(vi/px))” = ;.
With s’ €]1, s[, the condition
Pt <!
is satisfied when k2 < (k2v3,)®~1/¢_ that is when
(4.9) ve > k%P, p=01+s-5)/(s—-1).

. Gsmooth .
In this case, Corollary b.S implies that the coefficients a and b belong to the
Gevrey class G°.
147 d45
The blow up property (b7[) is satisfied when (E?Bni holds, that is when

k72(1€21/k)17‘u > (kQI/k)l/s,
which is true if
ez K9, g= (-t 1/s)/(1—p—1/s).

Thertegggg, if v, > k2max{pa} the system satisfies the conclusions of Theo-
rem I.5.

theo?2
4.4 Proof of Theorem 1.3

The analysis above shows that if one looks for coefficients in Ng~1G?®, one
must choose g and thus f, close to z. We choose here

g(z)=z/(Inz)* < f(z)=z/Ilnr < x

Since f(z)/x — 0 at infinity, the symmetrizer is continuous up to ¢ = 0 but
in no C* for all u > 0. condds

The ill posedness in C° is again garantied by the condition (4.6), that
is In(k%vy) > k2. In particular, it is satisfied when

(4.10) v, > e’
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G th ‘theo2
By Corollary b%ﬂ,o %0 finish the pro Cfdgc)f Theorem I.3e,O is is sufficient to show
that one can choose vy satisfying (% [0) and such that vy /pp < 4k%n;. This
condition reads In(k?v;) < 2k3, or

_ 3

cdtl

which is compatible with (hﬁ) if k is large enough.

theo2bi
4.5 Proof of Theorem l.eZO =

Gt g€ Ns>1G* denotj%tgl%g coefficient constructed for the proof of Theorem
(T.3).” The definition (2.15) shows.that a > 0 and indeed a > 0 for ¢ > 0.
The functions vy defined at (2 are supported in I and are solutions of
the wave equation (H%g)e—qwith source term fj and we have shown that

Hhi:aékaLz/HUkHLz — 0 as k — oo.
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