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Abstract 

In the paper a comparison between two agro-hydrological models, used to schedule irrigation of 

typical Mediterranean crop, is assessed. In particular the comparison between the model proposed 

by FAO, using a black box schematization of the processes, and the SWAP model based on the 

numerical analysis of Richards’ equation is showed for grapevine. The comparison carried out for 

irrigation season 2005 and 2006 focuses on hydrological balance components and on soil water 

contents. Then the ordinary scheduling parameters were identified and the performance of the two 

models, aimed to evaluate the seasonal water requirement and the irrigation times, assessed. In the 

validation phase both the models satisfactorily simulated the soil water content and allowed to 

obtain comparable values of cumulative evapotranspiration.  

With the aim to take into account the crop water stress condition recognized in the field, the 

original algorithm of FAO 56 model was modified. The experience conducted evidenced how the 

examined agro-hydrological models, although characterized by a different approach in modeling 

the phenomena, showed a similar behaviour when used for scheduling irrigation under soil water 

deficit conditions. 

Subject headings: Irrigation (NT), Crops (RT), Water Management (NT), Hydrologic Model 

(NT), Probe Instruments (NT), Evapotranspiration 

Keywords: Agro-hydrological models, FAO 56, SWAP, Irrigation Scheduling, Wine grape.  
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Introduction 

One of most appropriate ways to reduce water use in agriculture is to supply the exact amount of 

irrigation water to crops when it is required, so that water use efficiency can be maximized. 

Despite the farmer experience, irrigation scheduling established on the basis of the visual 

observation carried out on a few plants and on the soil, often leads to water overuse, as a 

consequence of the low effectiveness of the empirical evaluations; otherwise, a precise assessment 

of irrigation depth and/or irrigation timing, can allow to optimize the water use.  

The study of this issue becomes serious in the Mediterranean environment, characterized by 

semiarid climate (Cartabellotta et al., 1998), where the period of crops growth does not coincide 

with the rainy season. In these conditions the crop is subject to water stress periods that may be 

amplified due to the incorrect irrigation practice. The stress condition, linked to the outbreak of a 

soil water deficit period, can be clarified through the Taylor and Ashcroft (1972) assumption in 

which they define "Stress Day‖ when the average soil water potential was less than -7.35 kPa. 

Agro-hydrological models can be considered an economic and simple tool to optimize irrigation 

water use, where water represents a limiting factor for crop yield. In the last two decades, agro-

hydrological physically based models have been developed to simulate mass and energy exchange 

processes in the soil-plant-atmosphere (SPA) system (Feddes et al., 1978; Bastiaanssen et al., 

2007). In particular, deterministic models have been proposed to simulate all the components of 

the water balance, including actual crop evapotranspiration and water and solute transport (van 

Dam et al., 1997; Ragab, 2002).  

Unfortunately, the physically based agro-hydrological models, although very reliable, as a 

consequence of the high number of required variables and of the complex computational analysis, 

cannot often be used. Therefore, the use of simplified agro-hydrological models may represent a 

useful and simple tool for practical irrigation scheduling. 

The main objective of the paper is to assess the suitability of two different agro-hydrological 

models to schedule irrigation of wine grape. Validation of the models was initially carried out on 

the basis of the comparison between measured and predicted soil water content. Then, the SWAP 

model (Soil-Water-Plant-Atmosphere, van Dam et al., 1997) and FAO 56 procedure (Allen et al., 

1998) were compared to analyze the different scheduling options and to estimate irrigation water 

requirement for wine grape. Finally the two models, once fixed the scheduling parameter and the 

irrigation depth to apply, allowed to determine the number of days in which the crop is subject to 

water stress condition. 

 

The real time application of the models, under the examined pedo-climatic conditions, once fixed 

MAD or f and the irrigation depth, can therefore allow the farmer to identify when to proceed with 

irrigation. 
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Model Description  

Agro-hydrological models used for irrigation management, allow to explain the complex relations 

of water exchange occurring within the Soil-Plant-Atmosphere (SPA) continuum. SPA is a very 

complex system, not only for the high number of variables that must be defined, but especially for 

internal self-regulation phenomena involving the system components (Ritchie, 1981). 

Whatever be the modeling approach used to study the water relations within the SPA system, it is 

necessary to estimate the evapotranspiration terms, depending on the combination of water 

evaporation from soil and plant transpiration. According to FAO the reference crop 

evapotranspiration, ET0 [mm d
-1

], can be determined on the basis of the following Penman 

Monteith equation: 
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where [kPa °C
-1

] is the slope of saturation vapour pressure curve, es(T) [KPa] is the saturation 

vapour pressure at air temperature, Rn [MJ m
-2 

d
-1

] is the net radiation, G [MJ m
-2 

d
-1

] is the soil 

heat flux, (es-ea) [kPa] is the vapour pressure deficit,  [kPa °C
-1

] is the psychometric constant at 

air temperature Ta [°C] and U2 [m s
-1

] is the wind speed measured at 2 m from the soil. 

In the FAO 56 procedure the root zone depletion is calculated daily, with a water balance model 

based on a simple tipping Bucket approach: 

1 ,i i i i c i iD D P I ET DP            (2) 

where Di [mm] and Di –1 [mm] are the root zone depletions at the end of day i and i-1 respectively, 

Pi (mm) is the net precipitation, ETc,i [mm] is the actual evapotranspiration and DPi [mm] is the 

deep percolation of water moving out of the root zone. 

The domain of the depletion function, Di, is between 0, which occurs when the soil is at the field 

capacity, and a maximum value, corresponding to the total available water, TAW [mm], for the 

plant, given by the following equation: 

 1000 fc wp rTAW Z            (3) 

where fc [cm
3
 cm

-3
] and wp [cm

3
 cm

-3
] are the soil water contents at field capacity and wilting 

point respectively and Zr [m] the depth of the root system. 

In absence of water stress (potential condition), the crop potential evapotranspiration ETc is 

obtained multiplying the dual crop coefficients (Kcb + Ke) with the Penman-Monteith reference 

evapotranspiration rate, ET0, (Allen et al., 1998). In particular the ―dual crop coefficients 

approach‖, as explained in FAO 56 paper, splits the single Kc factor in two separate coefficients, a 

basal crop coefficient, Kcb, considering the plant transpiration, and a soil evaporation coefficient 

Ke.  
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When water represents a limiting condition, the dual crop coefficients (Kcb + Ke) have to be 

multiplied to a reduction factor, Ks, that can be variable between 0 and 1. The reduction factor can 

be express by: 

i
s

TAW D
K

TAW RAW





        (4) 

where RAW [mm] is the readily available water, that can be obtained multiplying TAW to a 

depletion coefficient, p, taking into account the crop water stress resistance. In particular when 

water the storage in the root zone is equal to RAW, the reduction coefficient Ks is equal to 1. 

Values of p for different crops are proposed in the original publication (Allen at al., 1996). 

Considered that fraction p depends of the atmospheric evaporative demand, a function for 

adjusting p for ETc should be used. The following empirical equation was proposed by van Diepen 

et al. (1988) to evaluate the depletion coefficient:  

 
1

- 0,1 5 - cg

p p c

p No
ET 




      (5) 

where p [-] and p [d cm-
1
] are two regression coefficients, that can be assumed equals to 0.76 

and 1.5 respectively (van Diepen et al., 1988) and Nocg [-] is the ―crop group number‖, that 

depends on the level of crop resistance to water stress. 

The soil evaporation coefficient, Ke, describes the evaporation component of ETc. When the topsoil 

is wet, i.e after rainfall event or irrigation, Ke is maximum. Dryer the soil surface, lower is Ke, with 

a value equal to zero when the soil surface water content is wp. In particular when the topsoil dries 

out, less and less water is available for evaporation: the soil evaporation reduction can be therefore 

considered proportional to the amount of water in the soil top layer, or:  
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where Ke is the soil evaporation coefficient, Kcb is the basal crop coefficient, Kr is a dimensionless 

evaporation reduction coefficient, depending on the cumulative depth of water evaporated from the 

topsoil, few is the fraction of the soil that is both exposed and wetted, i.e. the fraction of soil surface 

from which most evaporation occurs and Kc_max is the maximum value of Kc following rain or 

irrigation. The term Kc_max represents an upper limit on the evaporation and transpiration from any 

cropped surface and it is introduced to reflect the natural constraints placed on available energy 

represented by the energy balance difference Rn-G-H; where H is sensible heat flux density. The 

evaporation decreases in proportion to the amount of water in the surface soil layer: 

, 1




e i

r

TEW D
K

TEW REW
        (7) 

where De,i-1 is cumulative depth of evaporation (depletion) from the soil surface layer at the end of 

(i-1)th day [mm], TEW [mm] is the total evaporable water from an effective depth Ze of soil 
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surface subject to drying,, and REW [mm] is the readily evaporable water, representing the 

maximum depth of water that can evaporate from the topsoil layer without restrictions. 

When not known, TEW is estimated from the soil water retention characteristics of the upper soil 

layer as TEW =1000*(fc-wp )*Ze, with a depth Ze equal to  0.10-0.15 m, and REW is estimated 

from the soil textural characteristics (Allen et al., 1998). 

In FAO 56 procedure, the irrigation timing can be evaluated on the basis of the management 

allowed depletion (MAD, Merriam, 1966), defined as: 

 
 

limfc

fc wp

MAD
 

 





        (8) 

in which lim is the average soil water content below which it is necessary to irrigate. The values 

for MAD are influenced by management and economic factors in addition to the eco-physiological 

factors influencing p. When irrigation is scheduled in absence of crop water stress, the MAD 

parameter can be assumed equal to the p coefficient. On the contrary, when irrigation is managed 

under water deficit conditions the MAD parameter is higher than p. This last circumstance is 

typical of the semi-arid Mediterranean environments. 

The algorithm proposed in the FAO 56 paper (Appendix 8: Spreadsheet for applying the dual Kc 

procedure in irrigation scheduling) enables to schedule only full irrigation (MAD=p); not 

considering crops under water stress conditions. The absence of water stress cannot be assumed in 

Mediterranean environment, where water is often a limiting factor for crop production. Therefore, 

as will be better specified, it was necessary to modify the FAO 56 model, in order to schedule 

irrigation under water deficit conditions (MAD>p). 

SWAP (Soil-Water-Atmosphere-Plant) is a one-dimensional physically based model for water 

flow in saturated and unsaturated soil (van Dam at al., 1997) and simulates the vertical soil water 

flow and solute transport by considering the crop growth. Richards’ equation (Richards, 1931), 

including root water extraction, is applied to compute transient soil water flow under specified 

upper and lower boundary conditions. 

   ( ) 1 aC K S
t t z z

  
  

     
     

     
     (9) 

In equation (9), z [cm] is the vertical coordinate, assumed positive upwards, t [d] is the time, C 

[cm
-1

] is the differential moisture capacity (∂/∂), K() [cm d
-1

] is the soil hydraulic conductivity 

function and Sa [d
-1

] is the root uptake term that, for uniform root distribution, is defined by the 

following equations: 

    p

a w

r

T
S

z
           (10) 

 0 1 expp c grT K ET k LAI   
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       (11) 
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in which Tp [cm d
-1

] is the potential transpiration, Zr [cm] the rooting depth, w [-] is a -

dependant reduction factor accounting for water deficit and oxygen stress (Feddes et al., 1978), Kc 

[-] is the crop coefficient, ET0 [cm d
-1

] is the reference evapotranspiration, kgr [-] is an extinction 

coefficient for global solar radiation and finally LAI [-] is the leaf area index. 

The numerical solution of Eqs (9), (10) and (11) is possible after specifying initial, upper and 

lower boundary conditions as well as the soil hydraulic properties, i.e. the soil water retention 

curve, (), and the soil hydraulic conductivity function, K(); detailed field and/or laboratory 

investigations are therefore necessary. 

Different options are available in SWAP to schedule irrigation. In particular the timing criteria 

include allowable daily stress (as expressed by the reduction of potential crop transpiration), 

allowable depletion of readily available water in the root zone, allowable depletion of totally 

available water in the root zone and critical soil water pressure head or soil water content at a 

certain depth. The irrigation amounts can be prescribed, or can be calculated by SWAP as the 

difference between actual water storage in the root zone and water storage at field capacity. In this 

study, only the irrigation timing was assessed after defining an allowable depletion fraction, f, of 

readily available water in the root zone: 

 

 

lim

1

1

 

 















i i

i i

n

fc
i

i

n

fc wp
i

i

f         (12) 

in which lim is the minimum soil water content below which it is necessary to irrigate, and n is the 

number of layers of homogeneous soil, as defined in the model. 

The f factor as well as the MAD and the irrigation depth define the farmers’ irrigation strategy. 

Naturally, the farmer’s irrigation strategy is influenced by two components: the first is 

deterministically linked to the physical process, depending on the spatial and temporal variability 

of eco-physiological variables; the second stochastic component is represented by the farmer’s 

behavior for irrigation practice. Therefore, both parameters, to a certain extent, are site-specific, in 

the sense that they reflect the average perception of farmers to the soil water dynamics as well as 

the farmer’s attitude to induce or not crop water stress in order to improve qualitatively or 

quantitatively the production. The correct evaluation of f and MAD has a particular relevance for 

vineyard irrigation scheduling, when in particular crop water stress is controlled during fruit 

ripening, in order to reach specific wine quality objectives.  

Materials and methods 

The study area and data collection 

Investigation was carried out during irrigation seasons 2005 and 2006 in an experimental farm 

(fig.1) located in Castelvetrano (UTM EST: 310050, NORD: 4168561), where land use is mainly 
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characterized by arboreal crops (olives and wine grapes). The study area is included within 

―Agrigento 3‖ irrigation district.  

 

Fig. 1 - Geographic location and Google earth image of test area. The description of land use and 

the position of instruments are showed. S: agrometeorological station; P1: soil moisture 

measurement 

 

The data set for the validation of SWAP and FAO models includes the following information: (i) 

soil hydraulics parameters; (ii) groundwater data for the lower boundary condition; (iii) vegetation 

parameters for the upper boundary condition; (iv) irrigation calendar, defined with irrigation depth 

and timing. 

Fig. 2 shows the daily and cumulative values of rainfall during the investigated years.  

 

Fig. 2 – Daily and cumulate rainfall data collected during 2005 and 2006 years 

 

In the same period soil hydraulic characteristics were determined and the main agro–hydrological 

and physiological variables monitored. Traditional laboratory methods were used to evaluate the 

soil hydraulic properties of undisturbed soil cores, representative of four different depths of a soil 

profile. Hydraulic conductivity of saturated and near saturated conditions was measured with a 

tension infiltrometer at the soil surface and at depths of 0.3 m, 0.6 m and 1.0 m. At each depth two 

soil samples 0.05 m height and 0.08 m diameter were collected in order to determine some points 

of the water retention curve, in the range of potential between –0.05 and -153 m. Hanging water 

column apparatus (Burke et al., 1986) was used to evaluate soil water contents corresponding to 

matric potential values ranging from -0.05 to -1.5 m; pressure plate apparatus (Dane and Hopmans, 

2002) with sieved soil samples 0.05 m diameter and 0.01 m height, was used to measure soil water 

contents corresponding to matric potentials of -3.37 m, -10.2 m, -30.6 m and -153.0 m. For each 

undisturbed soil sample, dry bulk density was also determined. 

Soil texture was measured by the hydrometer method on the same soil samples used for the water 

retention curves. Soil textural class, according USDA classification, is silty clay loam.  

The Leaf Area Index (LAI) was monitored by means of the optical sensor Li-Cor LAI 2000. The 

root density distribution in the soil profile was estimated through an indirect methodology based 

on roots interference on the shape of soil moisture profile around the plant, when compared to the 

shape profile under bare soil condition (Cavazza, 1981). 

Temporal and spatial variability of soil water contents in the plot was measured, at several depths 

in the range between 0 and 1.0 m, using the Diviner 2000 capacitance probe (Sentek 

Environmental Technologies, 2000). The probe containing the sensor, if inserted in an access tube 

installed in the field, can measure the soil water content at different depths.  In order to obtain the 

average water content in the soil profile, the measured values were initially averaged at each depth 

and then weighted for the root density. In order to proceed to an homogeneous comparison 

between the soil water contents estimated by the two models, the humidity profiles obtained by 

SWAP were integrated in the root domain, taking also into account the root density distribution. 
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Irrigation water is applied by means of a trickle irrigation plant, with 8 l h
-1

 emitters spaced 1.0 m. 

Two irrigations, 30 and 50 mm depth, were supplied on August 3 and 17, 2005, whereas three 

watering with depths of 77, 61 and 27 mm were provided on July 3, July 27 and September 1 

respectively.    

Three access tubes having a length of 1.2 m were installed at distances of 0.10, 0.30 and 0.50 m 

from the point of falling water drops, following an axis-symmetric scheme, as shown in fig. 3. 

 

Fig. 3 – Position of the Diviner access tubes. Distances are measured from the point of falling 

water drops 

 

The van Genuchten-Mualem parameters of soil hydraulic characteristics, showed in tab. 1, were 

determined with the θi(i) and Ki(i) experimentally obtained, by using the RETention curve 

computer Code, RETC, (van Genuchten et al., 1991, Mualem, 1976). 

Tab. 1 - Soil parameters used in SWAP simulations. , n and arethe parameters of  van 

Genuchten-Mualem equations  

 

The farm where experiments were carried out is specialized in the cultivation of grape wine (Cv. 

Ansonica). Grape vines are planted in rows with distance between the rows equal to 2,40 m and 

between the plants of 1.0 m with a density of 4166 plants per 10.000 m
2
. 

The values of the variables used as input for simulations with SWAP and FAO 56 are showed in 

tabs. 2 and 3 respectively. The values of fc and wp used in FAO 56 simulations were obtained as 

average of the correspondent values measured in the four investigated soil layers, as considered in 

SWAP simulations. For both the irrigation seasons, the initial soil water content profile was 

assumed according to the measured values. In order to evaluate the ―ordinary‖ irrigation 

scheduling parameters (MAD and f) a preliminary simulation was carried out, considering the 

irrigation timing and the water volumes derived from observed data. 

 

Tab. 2 -Variables used for SWAP model simulations 

Tab. 3 –Variables used for FAO 56 model simulations. Value between brackets are assumed for 

the 2006 season 

 

Performance of the models 

The performance of the models was evaluated by calculating the root mean square error (RMSE), 

and the mean bias error (MBE), defined as: 

2

1

1 N

i

iRMSE d
N 


 
 
 

         (13) 
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1

1 N

i

i

MBE
N

d


          (14) 

where N is the number of measured data, di is the difference between the predicted and the 

measured values (Kennedy and Neville, 1986). 

An additional Student t-test was used, as proposed by Kennedy and Neville (1986): 

  2

2 2

1
t

N MBE

RMSE MBE





        (15) 

To determine if the difference between measured and simulated soil water content are statistically 

significant, the absolute value of the calculated t must be less than the critical t value (tcrit), for the 

fixed significance level. A significance level =0.05 was assumed and, for N-1 degrees of 

freedom, the value of tcrit is equal to 2.05. 

The performance evaluation of irrigation scheduling of the two models was carried out by 

analysing different irrigation scenarios, implemented by varying both the timing irrigation factors 

(MAD and f) and the water depth within domains chosen from ordinary parameters. In particular f 

and MAD were considered variables in the range 10-50 and 50-80 respectively, whereas irrigation 

water depth was assumed equal to 30, 40, 50 and 60 mm. 

Each single scenario was then assessed through a frequency analysis of the stress days occurring in 

the period between the crop vegetative recovery and the harvest. In particular a "Stress Day‖ was 

defined as the day in which the average value of simulated soil water potential is less than -7.35 

kPa (Taylor and Ashcroft, 1972).  

Other performance indicator irrigation scheduling was the number of irrigation supply suggested 

by the models in respect of each scenario. 

Results and discussion 

Model validation  

Fig. 4a,b shows the average soil water content in the root zone simulated by SWAP (dark lines) 

and FAO 56 model (light lines), for the considered irrigation seasons. The average water contents 

measured in the soil profile (white circles), as well as the rainfalls and the irrigation amounts 

(dashed lines) are also showed. 

Fig. 4c,d illustrates the cumulative soil evaporation and tree transpiration simulated with the two 

models.  

 

Fig. 4a-d. – Comparison between daily average soil water content simulated by the  models for the 

2005 (a) and 2006 (b) seasons with the measured values (white circles); cumulative soil 

evaporation and tree transpiration fluxes are showed below (c-d) 
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As can be observed in the fig. 4a,b both the models predict quite well the average soil water 

contents during the considered irrigation seasons. Differences between the two models are mainly 

observed at the begin of the first irrigation season (2005), when simulated values of soil water 

content obtained with the FAO 56 model are lower than those evaluated with the SWAP model, 

due to the higher simulated evaporation and transpiration fluxes, as showed in fig. 4c. The higher 

transpiration fluxes, partially counterbalanced by the lower soil evaporation obtained with FAO 56 

(fig. 4d), justify the minor difference on soil water contents observed at the begin of 2006 season 

(fig. 4b). Unfortunately, the absence of soil water content measurements observed during the 

initial phases of the considered period, does not allow to verify which model performs better.  

Fig. 5 shows the comparison between measured and estimate values of soil water content  [cm
3
 

cm
-3

].  

Fig. 5 – Estimated soil water content vs. measured values 

 

For both the models a substantial agreement between measured and estimated soil water contents 

is observed, especially for soil water contents lower than 20%. 

For each model, coefficient of determination (R
2
), root mean square error (RMSE), mean bias error 

(MBE) and t-statistic, calculated with measured and simulated soil water contents are shown in 

tab. 4. 

 

Tab. 4 – Statistics of the comparison between measured and simulated soil water contents 

 

As can be observed in tab. 4, R
2
 and

 
RMSE values for both the considered models are similar, 

according to the observed agreement between simulated and measured soil water contents. 

According to the t-statistic, SWAP model performs slightly better than FAO 56. Both the models 

can therefore be considered suitable to predict the dynamic of the average water contents in the 

soil profile and probably to provide a good approximation of the actual crop evapotranspiration 

fluxes. 

Model scheduling performance analysis 

In order to assess the scheduling performance of the models, different scenarios were considered, 

and compared to the ordinary farmer irrigation strategy. Firstly, the values of MAD and f were 

evaluated with eq. (8) and (12), in order to obtain the ―ordinary‖ scheduling parameters for the 

investigated area. Tab. 5 shows MAD and f obtained immediately before irrigation for the 

investigated seasons. The average values, MADav and fav, were identified as the ―ordinary‖ 

scheduling  parameters for the investigated area.  

 

Tab. 5. Values of MAD and f obtained for each irrigation practiced by the farmer and 

corresponding average values 
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Both the models were then runned in order to verify if the assumption of MADav and fav allowed to 

reproduce the actual dynamic of soil water contents and evapotranspiration fluxes. Relatively to 

SWAP model, fig. 6a,b shows, for the two investigated seasons, the comparison between 

simulated water contents, obtained by considering irrigation scheduled by the model (case A), with 

those simulated when the ordinary scheduling parameter fav is assumed (case B). On the other side 

fig. 6c, d shows simulated cumulative evapotranspiration fluxes obtained for both the considered 

cases. 

The analysis shows that SWAP model allows to identify the first irrigation as well as the 

distribution of water application during both the crop seasons. The actual cumulative 

evapotranspiration fluxes, showed in fig. 6c,d, obtained in case A are very similar to those 

estimated by considering the ordinary scheduling parameter (case B). 

Fig. 6 a-d. Daily average soil water content and watering distribution simulated by SWAP model 

in 2005 (a) and 2006 (b) seasons, for irrigation scheduled by the model (case A) or by using 

ordinary parameters (case B). The cumulated evapotranspiration fluxes (c-d) are shown below 

 

A similar analysis was performed with FAO 56 model. With the aim to take into account the crop 

water stress condition recognized in the field, the original algorithm of FAO 56 model was 

modified. In particular in the MAD factor, hereafter indicated by the acronym MAD*, the eco-

physiological parameter, p, was separated from the component related to economic management 

factors. This amendment was carried out in the original spreadsheet suggested in the FAO 56 

paper (Annex 8; BOX 8.1: Spreadsheet formulas and corresponding equations for Excel 

spreadsheet programs), as indicated in Tab. 6. 

 

Tab. 6 – Amendment of the FAO 56 algorithm 

 

Fig. 7a,c shows the soil water contents estimated by the modified FAO 56 model for case A and 

for case B.  

The modified model allows to evaluate three water application in 2005 and four in 2006, 

distributed within each crop cycle. fig. 7c,d shows the cumulative simulated evapotranspiration 

fluxes for case A and B.  

 

Fig. 7a-d. Daily average soil water content and watering distribution simulated by FAO 56 

modified model in 2005 (a) and 2006 (b) seasons, for irrigation scheduled by the model (Case A) 

or by using ordinary parameters (Case B). The cumulated evapotranspiration fluxes (c-d) are 

shown below 

 

Moreover when the scheduling parameters MADav and fav  are considered, the actual cumulative 

evapotranspiration fluxes estimated by SWAP and modified FAO 56 models are similar. 

Scientifically higher cumulative ET fluxes are obtained if the original FAO 56 model is 
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considered. In the latter case in fact the crop water stress conditions cannot be taken into account 

and the ―full irrigation‖ management is allowed. 

With reference to the analysis of performance of the two models examined, fig. 8a-d shows the 

relative frequency of stress day as a function of f or MAD, for different values of the irrigation 

depth.  

  

Fig. 8a-d. Scheduling irrigation scenarios. Values of the number of stress days for different 

scheduling parameters (MAD and f) and for several irrigation depth 

 

For each model, fig. 8a-d, highlights how the farmer’ irrigation strategy, characterized by 50 mm 

of water depth and fav and MADav equal respectively to 50 and 80%, maintained the crop at the 

water stress condition close to the maximum admissible. The upper limit of stress days relative 

frequency depends on the soil water status at the vegetation recovery (start model simulation), that 

is consequent to the previous rainfall regime. In 2006, when limited rainfall characterized by the 

initial period of the growing season a higher relative frequency of stress days was observed for 

both the models compared. Furthermore, the relative frequency of stress day estimated by two 

models for both season resulted in general different, with lower values obtained with SWAP (Fig 

8a,b and 8c,d) 

The higher relative frequency of stress days, obtained with FAO 56 model, is due to the higher 

water consumptions at the begin of the simulations, and consequently to the fast reduction of soil 

water content, determining the occurrence of water stress. 

It has to be noticed that for a fixed f or MAD values the relative frequency of stress day increase 

with decreasing irrigation depth. The higher number of watering consequent to the lower amount 

in FAO 56 determines in fact higher soil evaporation losses, considered that after irrigation soil 

surface is wet and the soil evaporation coefficient, Ke, is often close to 1. Despite the different 

approach to evaluate soil evaporation used by SWAP, the runned simulations showed that the 

relative frequency of stress days for a fixed f, increase at decreasing of the amount of irrigation 

depth and consequently at increasing of the number of watering. However, such behaviour cannot 

be generalized, considered that SWAP model evaluates evaporative losses according to the 

pressure head gradient between the atmosphere and the first soil layer. For these reasons a high 

values of hydraulic conductivity and/or root density in the soil surface layer could lead to a 

different result. 

The performed analysis allows a practical application that can help the farmer in scheduling 

regulated deficit irrigation (RDI) as well as during the day-to-day operations. Under the 

investigated conditions in fact, after establishing the irrigation depth to apply, the farmer can 

evaluate the scheduling parameters (MAD or f ) according to the relative frequency of stress days 

he wants to tolerate according to the adopted RDI management.  

The real time application of the models, under the examined pedo-climatic conditions, once fixed 

MAD or f and the irrigation depth, can finally allow the farmer to identify when to proceed with 

irrigation. 
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Fig. 9a-d shows, for each considered water depth, the number of irrigations suggested by the two 

models as function of f and MAD. 

 

Fig. 9a-d. Scheduling irrigation scenarios. Number of watering for different scheduling 

parameters (MAD and f) and irrigation depth 

 

For both the considered seasons the number of watering suggested by FAO 56 model is always 

higher than that obtained by SWAP for a fixed stress conditions. For example in 2005, for a fixed 

irrigation depth of 40 mm and a relative frequency of stress day equal to 0.30, f and MAD resulted 

approximately equal to 30 and 60% (fig. 8a, d) and the numbers of watering equal to 9 and 4 

respectively for FAO 56 and SWAP model. A higher number of watering can also be observed in 

2006, even if with lower differences between the models. The low differences we think are due at 

the different initial water content and rainfall distribution during the start simulation period.  

In fact, in the season 2006, characterized by a lower amount of precipitation, it is possible to 

observe that the differences in the number of water applications suggested by the two models are 

negligible. 

The examined models therefore, although characterized by a different modelling of the 

phenomena, showed a similar behaviour when used for scheduling irrigation under water stress 

conditions.  

Conclusions 

The paper shows the comparison between SWAP and FAO 56 agro-hydrological models applied 

to a vineyard. 

Both the models simulated with a satisfactory approximation the measured values of average soil 

water content in the root zone, with error of estimation equal to about 2.0%. Both the models 

provided similar results also in terms of estimation actual evapotranspiration fluxes.  

The models were then compared in order to verify their suitability for irrigation scheduling. In 

order to take into account the crop water stress conditions, the original algorithm of FAO 56 model 

was modified. Firstly the average scheduling parameters, fav and MADav, for the considered 

irrigation seasons were determined in order to characterize the ―ordinary‖ irrigation management 

practised in the area. Then the modified FAO 56 and SWAP outputs (scheduled volumes and 

irrigation timing) were compared.  

Modified FAO 56 simulates reliable values of average soil water content, even if, compared with 

the SWAP model, a certain overestimation of evapotranspiration fluxes is observed. Moreover for 

the examined crop, the modified FAO 56 model suggests to anticipate of some days the first 

irrigation and to supply slightly higher seasonal water volumes compared to the ordinary 

management.  

A performance analysis on different irrigation scenarios was finally implemented. The analysis 

showed that the models give similar outputs when seasons are characterized by low precipitation 

amount and therefore soil water content at the begin of growing season is lower. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 

Despite the models are characterized by a different modelling approach of the phenomena, they 

showed a similar behaviour when used for scheduling irrigation under soil water deficit conditions.  
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Notation  

The following symbols are used in the paper: 

APW = Available plant water [mm/m] 

C = (∂/∂) Differential moisture capacity , [cm
-1

] 

De = Cumulative depth of evaporation (depletion) from the soil surface layer [mm] 

D = Cumulative depth of evapotranspiration (depletion) from the root zone [mm] 

DP = Deep percolation [mm] 

es = Saturation vapour pressure for a given time period [kPa] 

ea  = Actual vapour pressure [kPa] 

es - ea = Saturation vapour pressure deficit 

ETo = Reference crop evapotranspiration [mm day
-1

] 

ETc = Crop evapotranspiration under standard conditions [mm day
-1

] 

f = Timing irrigation factor used in SWAP model 

few = Fraction of soil that is both exposed and wetted (from which most evaporation occurs) [-] 

fw = Fraction of soil surface wetted by rain or irrigation [-] 

G = Soil heat flux [MJ m
-2

 day
-1

] 

H = Maximum crop height, [m] 

I = Irrigation depth [mm] 

Jplant = Number of day of the year at time of planting [-] 

Jdev =  Number of day of the year at beginning of the development period [-] 
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Jmid = Number of day of the year at beginning of midseason period [-] 

Jharv = Number of day of the year at time of harvest or death [-] 

Jlate = Number of day of the year at beginning of late season period [-] 

Kc = Crop coefficient [-] 

Kc max = Maximum value of crop coefficient (following rain or irrigation) [-] 

Kcb = Basal crop coefficient [-] 

Kcb ini = Basal crop coefficient during the initial growth stage [-] 

Kcb mid = Basal crop coefficient during the mid-season growth stage [-] 

Kcb end = Basal crop coefficient at end of the late season growth stage [-] 

Ke = Soil evaporation coefficient [-] 

Kr = Soil evaporation reduction coefficient [-] 

Ks = Water stress coefficient [-] 

K() = Soil hydraulic conductivity [cm d
-1

] 

LAI = Leaf area index [m
2
 (leaf area) m

-2
 (soil surface)] 

MAD = Management allowed depletion [mm] 

Nocg = Crop group number, depending on the level of crop resistance to water stress 

P = Rainfall [mm] 

p = Evapotranspiration depletion factor [-] 

Rn = Net radiation [MJ m
-2

 day
-1

] 

RAW = Readily available soil water in the root zone [mm] 

REW = Readily evaporable water (i.e., maximum depth of water that can evaporate from the soil 

surface layer without restriction) [mm] 

RHmin = Daily minimum relative humidity [%] 

Sa = Root water uptake term [d
-1

] 

Ta = Air temperature [°C] 

Tp = Potential transpiration [cm d
-1

] 

TAW = Total available soil water in the root zone [mm] 

TEW = Total evaporable water (i.e., maximum depth of water that can evaporate from the soil 

surface layer) [mm] 

U2 = Wind speed at 2 m above ground surface [m s
-1

] 

Ze = Depth of surface soil layer subjected to drying by evaporation [cm] 

Zr = Rooting depth [cm] 

z= Vertical coordinate [cm] 

w = Reduction factor accounting for water deficit stress 
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p [-] = Regression coefficient [d cm-
1
] 

p = Regression coefficient [d cm-
1
] 

 = Psychrometric constant [kPa °C
-1

] 

 = Slope of saturation vapour pressure curve [kPa °C
-1

] 

 = Volumetric soil water content [cm
3
 cm

-3
] 

fc = Soil water content at field capacity [m
3
 (water) m

-3
 (soil)] 

lim = Average soil water content below which it is necessary to irrigate [cm
3
 cm

-3
] 

wp = Soil water content at wilting point [m
3
 (water) m

-3
 (soil)] 

kgr = Extinction coefficient for global solar radiation [-] 

 = Soil matric potential [cm] 
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Tab. 1 - Soil parameters used in SWAP simulations. , n and arethe parameters of  the van 

Genuchten-Mualem equations  

 Layers 

Parameters 
I 

0-20 cm 

II 

20-40 cm 

III 

40-60 cm 

IV 

60-80 cm 

θr 0.030 0.139 0.103 0.119 

θs 0.400 0.444 0.400 0.410 

Ks 10.00 3.00 30.00 0.24 

 0.0104 0.0118 0.0159 0.046 

n 1.838 2.128 1.548 1.487 

 0.5 0.5 0.5 0.5 
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Tab. 2 -Variables used for SWAP model simulations 

Variables Value 

Length of the crop cycle [d] 153 

Extinction coeff. for diffuse visible light, df [-] 0.45 

Extinction coeff. For direct visible light, dir [-] 1.0 

Minimum canopy resistance [s/m] 70.0 

Precipitation interception coefficient 0.25 

Critical soil water pressure head 

[cm.c.a] (Taylor e Ashcroft, 1972) 

sat.: 

fc: 

p_high: 

p_low: 

wp: 

-10 

-25 

-750 

-1000 

-10000 

Threshold level high atm. demand [cm] 

Threshold level low atm. demand [cm] 

0.5 

0.2 

Crop Factor Bare Soil, Ksoil 1 

Max. rooting depth [cm], Zr 100 

Root density,  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0



z i
/z

m
a
x

 

Leaf Area Index, LAI 

Crop coefficient, Kc 

DVS* LAI Kc 

0.00 0.5 0.50 

0.65 2.0 0.75 

1.88 2.0 0.75 

2.00 2.0 0.63 
 

Irrigation Timing,  f 0,48 

*DVS, Development Stage, is 0 or 2 when the crop stands in the initial or end cycle respectively 
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Tab. 3 –Variables used for FAO 56 model simulations. Value between brackets are assumed for the 2006 

season 

Variables Value 

fc [cm3/cm3] 0.32 

wp [cm3/cm3] 0.13 

APW [mm/m] 187.6 

TEW [mm] 32.2 

REW [mm] 9 

fw 0.53 

Development stage [J] 

Jplant 

Jdev 

Jmid 

Jlate 

Jharv 

105 (116) 

110 (120) 

160 (162) 

247 (249) 
258 (258) 

Basal crop coefficients 

Kcb ini 

Kcb mid 

Kcb end 

0,15 

0,65 

0,40 

Maximum crop height, H [m] 1.5 

Minimum rooting depth [cm] 80.0 

Midseason, Average, Wind Speed [m/s] 1.1 (1.2) 

Midseason, Average, RHmin [%] 47.7 (55.9) 

Management Allowed Depletion, MAD 0.83 
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Tab. 4 – Statistics of the comparison between measured and simulated soil water contents 

Statistic SWAP FAO 56 

R
2
 0.69 0.74 

RMSE 

[% vol.] 
2.09 2.14 

MBE 

[% vol.] 
-0.41 -0.83 

t value 1.04 2.18 

tcrit(=0.05) 2.05 2.05 
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Tab. 5. Values of MAD and f obtained for each irrigation practiced by the farmer and corresponding 

average values 

Irrigation Date DOY MAD f 

1 03-08-05 215 0.90 0.48 

2 16-08-05 228 0.72 0.34 

3 02-07-06 183 0.92 0.50 

4 29-07-06 207 0.79 0.47 

5 31-08-06 243 0.85 0.59 

 average  0.83 0.48 
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Tab. 6 – Amendment of the FAO 56 algorithm 

Cell 
Original Algorithm 

Test, Value or Formula 

Modified Algorithm 

Test, Value or Formula 

AE2 empty Nocg 

AF2 empty value 

AO2 empty MAD* 

AP2 empty value 

AH3 MAD during Initial Stage empty 

AK3 value empty 

AH4 MAD after Initial Stage empty 

AK4 value empty 

AM13 empty Depletion fraction, p 

AM14 empty 
=((1/(0,76+(1,5*H14/10)))-

(0,1*(5-$AF$2)))*100 

AF14 

=MAX(IF(D14<Q$4;AK

$3;AK$4)/100*AE14*$A

F$5;AF13) 

=AM14/100*$AF$5*$AF$3 

AH14 

=IF(D14>=Q$3;IF(D14<

(Q$6+Q$7)/2;IF(AG14>

AF14;AG14;0);0);0) 

=IF(D14>=Q$3;IF(D14<(Q$

6+Q$7)/2;IF(AG14>$AP$2;

AG14;0);0);0) 
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Figure Caption List 

 

Fig. 1 - Geographic location and Google earth image of test area. The description of landuse and 

the position of instruments is showed. S: agrometeorological station; P1: soil moisture 

measurement 

Fig. 2 – Daily and cumulate rainfall data collected during 2005 and 2006 years 

Fig. 3 – Position of the Diviner access tubes. Distances are measured from the point of falling 

water drops 

Fig. 4a-d. – Comparison between daily average soil water content simulated by the  models for the 

2005 (a) and 2006 (b) seasons with the measured values (white circles); cumulative soil 

evaporation and tree transpiration fluxes are showed below (c-d) 

Fig. 5 – Estimated soil water content vs. measured values 

Fig. 6 a-d. Daily average soil water content and watering distribution simulated by SWAP model 

in 2005 (a) and 2006 (b) seasons, for irrigation scheduled by the model (case A) or by using 

ordinary parameters (case B). The cumulated evapotranspiration fluxes (c-d) are shown below 

Fig. 7a-d. Daily average soil water content and watering distribution simulated by FAO 56 

modified model in 2005 (a) and 2006 (b) seasons, for irrigation scheduled by the model (Case A) 

or by using ordinary parameters (Case B). The cumulated evapotranspiration fluxes (c-d) are 

shown below 

Fig. 8a-d. Scheduling irrigation scenarios. Values of the number of stress days for different 

scheduling parameters (MAD and f) and for several irrigation depth 

Fig. 9a-d. Scheduling irrigation scenarios. Number of watering for different scheduling 

parameters (MAD and f) and irrigation depth 
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