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Abstract. Given a potential V and the associated Schrödinger operator −∆+V , we consider
the problem of providing sharp upper and lower bound on the energy of the operator. It is
known that if for example V or V −1 enjoys suitable summability properties, the problem has
a positive answer. In this paper we show that the corresponding isoperimetric-like inequalities
can be improved by means of quantitative stability estimates.

1. Introduction

1.1. Aim of the paper. Let Ω ⊂ RN be an open set not necessarily with finite measure (it
could be Ω = RN ) and V : Ω → R be a potential. We consider the associated Schrödinger

operator −∆+V defined on the homogeneous Sobolev space W 1,2
0 (Ω). The latter is the closure

of C∞0 (Ω) with respect to the norm

‖u‖
W 1,2

0 (Ω)
:=

(∫
Ω
|∇u|2 dx

)1/2

.

We also denote by W−1,2(Ω) its dual space and by 〈·, ·〉 the duality pairing between W 1,2
0 (Ω)

and W−1,2(Ω). In this paper we are concerned with the following problem: given a source
term f ∈ W−1,2(Ω), find lower and upper bounds on the energy of the relevant Schrödinger
operator, i.e.

Ef (V ) = −1

2

∫
Ω
|∇uV |2 dx−

1

2

∫
Ω
V u2

V dx.

Here the state function uV is a W 1,2
0 (Ω) solution of

−∆u+ V u = f, in Ω.

In the recent paper [10], this problem has been solved for summable potentials or for confining
potentials, i.e. for potentials blowing-up at infinity such that 1/V enjoys some summability
properties. For example, the harmonic–like potential

V =
(
δ2 + |x|2

)γ/2
, δ > 0,

belongs to this class, for suitable γ > 0. In order to provide a deeper insight into the scopes
of this work, it is useful to briefly recall some of the results in [10]. In that paper it has been
shown that Ef (V ) can be universally bounded from above in the class (see [10, Proposition 5.1])

V1 =

{
V :

∫
Ω
|V |p ≤ 1

}
,

and from below in the class (see [10, Proposition 5.4])

V2 =

{
V ≥ 0 :

∫
Ω
V −p ≤ 1

}
.

The value 1 above plays no special role and can be replaced by any constant c > 0. Indeed,
one can show that there exist two potentials V0 and U0 such that∫

Ω
|V0|p dx = 1 =

∫
Ω
|U0|−p dx,
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and

(1.1) Ef (V ) ≤ Ef (V0), for every V ∈ V1,

(1.2) Ef (V ) ≥ Ef (U0), for every V ∈ V2.

In both the estimates (1.1) and (1.2), the equality sign holds if and only if V = V0 and V = U0,
respectively. Moreover, the extremal potentials V0 and U0 can be characterized in terms of the
solutions v0 and u0 of the semilinear non-autonomous PDEs

−∆v0 + c v
(p+1)/(p−1)
0 = f and −∆u0 + c u

(p−1)/(p+1)
0 = f,

through the relations

V0 =

(∫
Ω
|v0|2 p/(p−1) dx

)−1/p

|v0|2/(p−1) and U0 =

(∫
Ω
|u0|2p/(p+1) dx

)1/p

|u0|−2/(p+1).

For completeness, we point out that a special class of potentials from the sets V1 and V2 are
given respectively by

(1.3) V (x) =

{
|E|−1/p, x ∈ E,
0, otherwise

and V (x) =

{
|E|1/p, x ∈ E,
+∞, otherwise,

where E ⊂ Ω is an open set and |E| denotes its N−dimensional Lebesgue measure. If we
suppose for simplicity that |E| = 1, the corresponding operators are given by

W 1,2
0 (Ω) 3 u 7→ −∆u+ u · 1E and W 1,2

0 (E) 3 u 7→ −∆u+ u.

Thus from (1.1) and (1.2) we get

min
u∈W 1,2

0 (Ω)

[
1

2

∫
Ω
|∇u|2 dx+

1

2

∫
E
|u|2 dx− 〈f, u〉

]
< Ef (V0),

and

min
u∈W 1,2

0 (E)

[
1

2

∫
E
|∇u|2 dx+

1

2

∫
E
|u|2 dx− 〈f, u〉

]
> Ef (U0),

for every E ⊂ Ω with |E| = 1. Observe that for the second problem the set Ω simply acts as a
design region where the admissible domains E have to be contained.

The problem of finding sharp bounds on energetical quantities linked to a Schrödinger oper-
ator is quite classical, with many studies devoted to the ground state energy or first eigenvalue

λ1(V ) = min
u∈W 1,2

0 (Ω)

{∫
Ω
|∇u|2 dx+

∫
Ω
V u2 dx : ‖u‖L2(Ω) = 1

}
.

For example, the pioneering paper [22] by Keller considers the problem of finding sharp lower
bounds on λ1(V ) in the class V1, in the case of space dimension N = 1 and Ω = R. Related
problems have been considered by Ashbaugh and Harrell in [2] in higher dimensions. There is
a vast literature on the subject, considering optimal bounds for other spectral quantities, like
the first excited state or second eigenvalue λ2(V ) and the fundamental gap λ2(V )− λ1(V ). We
also mention the recent paper [8], where the case of successive eigenvalues λk(V ) for k ≥ 2 is
considered, for the non-compact case of Ω = RN . Actually this kind of problems is even older:
indeed, we observe that for potentials of the second form in (1.3), we have

λ1(V ) = min
u∈W 1,2

0 (E)

{∫
E
|∇u|2 dx+

∫
E
|u|2 dx : ‖u‖L2(E) = 1

}
= λ1(E) + 1,

where λ1(E) now stands for the first eigenvalue of −∆ with Dirichlet boundary conditions on
∂E. Thus the celebrated Faber-Krahn inequality (see [21, Chapter 3])

λ1(E) ≥ λ1(B), with B any ball such that |B| = |E| = 1,

can be seen as a particular instance of these problems. A more general overview on optimization
problems of spectral type can be found in [9] and [21], to which we refer the interested reader.
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We wish to point out that on the contrary the case of the energy Ef (V ) appears to be less
investigated.

1.2. Main results. In this paper, we improve the previous sharp bounds (1.1) and (1.2) on the
energy of a Schrödinger operator, by means of a quantitative stability result. In other words,
we will prove that the energy gap Ef (V0)−Ef (V ) or Ef (V )−Ef (U0) controls the deviation from
optimality of a potential V . Thus it is possible to add a reminder term in the right-hand side
of (1.1) and (1.2), which measures the distance of a generic potential V from V0 or U0. The
relevant results are summarized in the following couple of theorems, which represent the main
results of the paper. We refer the reader to Sections 4 and 6 for the precise statements.

Theorem A (Stability of the maximizer). Let 1 < p < ∞. There exists a constant σ1 > 0
such that for every V ∈ V1 we have

Ef (V ) ≤ Ef (V0)− σ1 ‖V − V0‖2Lp(Ω), if p ≥ 2,

Ef (V ) ≤ Ef (V0)− σ1

∥∥∥|V |p−2 V − |V0|p−2 V0

∥∥∥2

Lp′ (Ω)
, if 1 < p < 2.

In the case of inequality (1.2) we need to distinguish between the case |Ω| < +∞ and
|Ω| = +∞.

Theorem B (Stability of the minimizer). Let Ω ⊂ RN be an open set such that |Ω| = +∞.
Let 1 < p <∞, r > N/2, and let f ∈ Lr(Ω) be a function decaying to 0 at infinity as O(|x|−α)
with α > 1 +N/2. Then there exist a constant σ2 > 0 and an exponent β = β(p) > 2 such that
for every V ∈ V2 we have

Ef (V ) ≥ Ef (U0) + σ2

∥∥∥∥ 1

V
− 1

U0

∥∥∥∥β
Lp(Ω)

.

If |Ω| < +∞, the same result holds for every f ∈W−1,2(Ω) without any additional hypothesis.

Stability results of this type have attracted an increasing interest in recent years. As a non-
exhaustive list of works on the subject, we point out for example [13] and [17] dealing with
the classical isoperimetric inequality, the papers [5, 6, 7, 20] and [23] concerning sharp bounds
for eigenvalues of the Laplacian and [4, 11, 15] about quantitative versions of the Sobolev and
Gagliardo-Nirenberg inequalities with sharp constant.

Among these papers, the recent one [12] is very much related with the subject here consid-
ered. In [12] a quantitative stability estimate for λ1(V ) is proved, for potentials belonging to
the class (here r > N/2)

V ′ =
{
V :

∫
RN
|V−|r ≤ 1

}
,

where V− is the negative part of V . In this case λ1(V ) admits a sharp lower bound, corre-
sponding to the negative potential

W0 = −
(∫

RN
|w0|2 r/(r−1)

)−1/r

|w0|2 r/(r−1),

where w0 is an extremal of the Gagliardo-Nirenberg inequality(∫
RN
|u|2 r/(r−1) dx

)(r−1)/r

≤ C
(∫

RN
|∇u|2 dx

)1−ϑ (∫
RN
|u|2 dx

)ϑ
.

The parameter 0 < ϑ = ϑ(N, r) < 1 above is uniquely determined by scaling invariance.
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1.3. Plan of the paper. Along all the paper, for the sake of simplicity, we assume N ≥ 3. In
this way the Sobolev exponent 2∗ is finite; all the results also apply, with minor modifications,
to the cases N = 1 and N = 2 by using the corresponding Sobolev embeddings.

We start with Section 2 where we fix the main notations and prove some basic results which
will be used throughout the whole paper. Then Section 3 is concerned with maximization
problems for Ef , under a constraint on the Lp norm of the admissible potentials. The relevant
quantitative stability result (Theorem 4.3) is then considered in Section 4. Minimization prob-
lems are adressed in Section 5, while the last section of the paper contains the corresponding
stability result (Theorem 6.6). Finally, a self-contained Appendix on sharp decay estimates for
finite energy solutions of

−∆u+ c uq−1 = f, for c > 0, 1 < q < 2,

concludes the paper (Theorem A.1).

2. Preliminaries

In the paper we mainly focus on the following three model cases:

• Ω = RN ;

• Ω = ω × R, with ω ⊂ RN−1 open set with finite Lebesgue measure (waveguide);

• Ω ⊂ RN with finite Lebesgue measure (compact case).

For N ≥ 3, we define

2∗ =
2N

N − 2
.

The following embedding properties of W 1,2
0 (Ω) are well known.

Proposition 2.1. Let N ≥ 3; then

i) if Ω = RN , we have the continuous embedding W 1,2
0 (Ω) ↪→ L2∗(Ω), but W 1,2

0 (Ω) 6⊂
Ls(Ω) for s 6= 2∗;

ii) if Ω = ω × R is a waveguide, we have the continuous embedding W 1,2
0 (Ω) ↪→ Ls(Ω) for

every 2 ≤ s ≤ 2∗;

iii) if |Ω| < +∞, we have the continuous embedding W 1,2
0 (Ω) ↪→ Ls(Ω) for every 0 < s ≤ 2∗.

Moreover, this is compact for 0 < s < 2∗.

In what follows, for N ≥ 3 we set

(2.1) TN := inf
u∈W 1,2

0 (RN )

{∫
RN
|∇v|2 dx : ‖v‖L2∗ (RN ) = 1

}
< +∞.

This infimum is finite by Proposition 2.1 and attained on W 1,2
0 (RN ), see for example [26].

Let f ∈W−1,2(Ω); for every potential V belonging to the admissible class

V =
{
V : Ω→ (−∞,+∞] : V Borel measurable, ‖V−‖LN/2(Ω) < TN

}
,

we define its energy by

(2.2) Ef (V ) = min
u∈W 1,2

0 (Ω)

1

2

∫
Ω
|∇u|2 dx+

1

2

∫
Ω
V u2 dx− 〈f, u〉.

Proposition 2.2. For every V ∈ V the minimization problem (2.2) admits a solution uV ∈
W 1,2

0 (Ω). Moreover the energy inequality

(2.3) ‖uV ‖W 1,2
0 (Ω)

≤ TN
TN − ‖V−‖LN/2(Ω)

‖f‖W−1,2(Ω).

holds.
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Proof. At first we observe that, taking u = 0 gives Ef (V ) ≤ 0. Moreover, since V ∈ V, the
energy functional is bounded from below, because

(2.4)

∫
Ω
V u2 dx ≥ −

∫
Ω
V− u

2 dx ≥ −‖V−‖LN/2(Ω) ‖u‖
2
L2∗ (Ω)

≥ −
‖V−‖LN/2(Ω)

TN

∫
Ω
|∇u|2 dx,

and thus

1

2

∫
Ω
|∇u|2 dx+

1

2

∫
Ω
V u2 dx− 〈f, u〉

≥ 1

2

(
1−
‖V−‖LN/2(Ω)

TN
− δ

)∫
Ω
|∇u|2 dx− 1

2 δ
‖f‖2W−1,2(Ω),

(2.5)

for every 0 < δ ≤ 1. Thus Ef (V ) is finite. Let now {un}n∈N ⊂ W 1,2
0 (Ω) be a minimizing

sequence; we can assume that

1

2

∫
Ω
|∇un|2 dx+

1

2

∫
Ω
V u2

n dx− 〈f, un〉 ≤ Ef (V ) + 1.

By (2.5), if we take δ � 1 the sequence {un}n∈N is bounded in W 1,2
0 (Ω), so un weakly converges

(up to a subsequence) in W 1,2
0 (Ω) to a function u ∈W 1,2

0 (Ω). Moreover, by the compact Sobolev
embedding of Proposition 2.1 iii), we have strong convergence in Ls(Ω′), for every (smooth)
Ω′ b Ω and every 1 ≤ s < 2∗. In particular, un converges almost everywhere (up to a
subsequence) in Ω to u. Also observe that still by Proposition 2.1 we have weak convergence

of u2
n to u2 in L2∗/2(Ω). By using this and the Fatou Lemma, we get

lim inf
n→∞

∫
Ω
V u2

n dx = lim inf
n→∞

[∫
Ω
V+ u

2
n dx−

∫
Ω
V− u

2
n dx

]
≥
∫

Ω
V u2 dx.

Finally, the weak lower semicontinuity of the norm implies

1

2

∫
Ω
|∇u|2 dx+

1

2

∫
Ω
V u2 dx− 〈f, u〉

≤ lim inf
n→∞

[
1

2

∫
Ω
|∇un|2 dx+

1

2

∫
Ω
V u2

n dx− 〈f, un〉
]

= Ef (V ),

which gives the existence of a minimizer uV .

This function uV satisfies the Euler-Lagrange equation∫
Ω
〈∇u,∇ϕ〉 dx+

∫
Ω
V uϕdx = 〈f, ϕ〉,

for every ϕ ∈ C∞0 (Ω) ∩ L2(Ω;V ), where for V ∈ V we set

L2(Ω;V ) =

{
ϕ :

∫
Ω
|V |ϕ2 dx < +∞

}
.

By density, the previous equation holds for every ϕ ∈ W 1,2
0 (Ω) ∩ L2(Ω;V ). By taking uV as a

test function and then appealing to

|〈f, u〉| ≤ 1

2 δ
‖f‖2W−1,2(Ω) +

δ

2
‖u‖2

W 1,2
0 (Ω)

,

we have the estimate(
1− δ

2

) ∫
Ω
|∇uV |2 dx+

∫
Ω
V u2

V dx ≤
1

2 δ
‖f‖2W−1,2(Ω).

By using (2.4) and choosing

δ = 1−
‖V−‖LN/2(Ω)

TN
,

we get (2.3). �
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Remark 2.3. If ‖V−‖LN/2 ≥ TN , in general problem (2.2) is not well-posed. Indeed, take

Ω = RN and indicate by U ∈W 1,2
0 (RN ) a positive function such that∫

RN
|∇U |2 dx = TN and

∫
RN
|U |2∗ dx = 1.

We then take

V = −TN U4/(N−2),

and f ∈ L(2∗)′(RN ) such that ∫
RN

f U dx > 0.

By evaluating the functional in (2.2) on the sequence un = nU , we get

1

2

∫
Ω
|∇un|2 dx+

1

2

∫
Ω
V u2

n dx− 〈f, un〉 = −n 〈f, U〉,

thus the functional is unbounded from below.

Lemma 2.4. Let V1, V2 ∈ V be two admissible potentials and let u1, u2 ∈W 1,2
0 (Ω) be solutions

of (2.2). Then

(2.6)

∣∣∣∣∫
Ω
V1 u

2
1 dx−

∫
Ω
V2 u

2
2 dx

∣∣∣∣ ≤ C ‖f‖W−1,2(Ω) ‖u1 − u2‖W 1,2
0 (Ω)

,

where

C = 1 +
TN

TN − ‖(V1)−‖LN/2(Ω)

+
TN

TN − ‖(V2)−‖LN/2(Ω)

.

In particular C = 3 if V1, V2 are nonnegative.

Proof. From the respective PDEs, we obtain∫
Ω
|∇ui|2 dx+

∫
Ω
Vi u

2
i dx = 〈f, ui〉, i = 1, 2,

so that∣∣∣∣∫
Ω
V1 u

2
1 dx−

∫
Ω
V2 u

2
2 dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
|∇u1|2 dx−

∫
Ω
|∇u2|2 dx

∣∣∣∣+ ‖f‖W−1,2(Ω)‖u1 − u2‖W 1,2
0 (Ω)

.

Finally, we observe that∣∣∣‖∇u1‖2L2(Ω) − ‖∇u2‖2L2(Ω)

∣∣∣ =
(
‖∇u1‖L2(Ω) + ‖∇u2‖L2(Ω)

) ∣∣‖∇u1‖L2(Ω) − ‖∇u2‖L2(Ω)

∣∣
≤
(
‖∇u1‖L2(Ω) + ‖∇u2‖L2(Ω)

)
‖u1 − u2‖W 1,2

0 (Ω)
,

then we can conclude by using (2.3). �

Lemma 2.5. Let V1, V2 ∈ V be two admissible potentials. Let u1, u2 ∈W 1,2
0 (Ω) be solutions of

(2.2) such that

ui ∈ L2(Ω;V1) ∩ L2(Ω;V2), i = 1, 2.

Then we have

(2.7) Ef (V1)− Ef (V2) =
1

2

∫
Ω

(V1 − V2)u1 u2 dx.

In particular there holds

(2.8) |Ef (V1)− Ef (V2)| ≤ 1

2

(∫
Ω
|V1 − V2|u2

1 dx

)1/2(∫
Ω
|V1 − V2|u2

2 dx

)1/2

.
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Proof. We first observe that, from the hypothesis on the potentials, we can use u1 − u2 as a
test function for the equations solved by u1 and u2, i.e.

(2.9)

∫
Ω
〈∇ui,∇ϕ〉 dx+

∫
Ω
Vi ui ϕdx = 〈f, ϕ〉, for every ϕ ∈W 1,2

0 (Ω)∩L2(Ω;Vi), i = 1, 2.

We have

Ef (V1)− Ef (V2) =
1

2

∫
Ω
|∇u1|2 dx+

1

2

∫
Ω
V1 u

2
1 dx− 〈f, u1〉

− 1

2

∫
Ω
|∇u2|2 dx−

1

2

∫
Ω
V2 u

2
2 dx+ 〈f, u2〉.

On the other hand

1

2

∫
Ω
|∇u1|2 dx−

1

2

∫
Ω
|∇u2|2 dx =

1

2

∫
Ω
〈∇u1,∇(u1 − u2)〉 dx

− 1

2

∫
Ω
〈∇u2,∇(u2 − u1)〉 dx,

thus by appealing to (2.9), we get

1

2

∫
Ω
|∇u1|2 dx−

1

2

∫
Ω
|∇u2|2 dx = −1

2

∫
Ω
V1 u1 (u1 − u2) dx+

1

2
〈f, u1 − u2〉

+
1

2

∫
Ω
V2 u2 (u2 − u1) dx− 1

2
〈f, u2 − u1〉

= −1

2

∫
Ω
V1 u

2
1 dx+

1

2

∫
Ω
V2 u

2
2 dx+ 〈f, u1 − u2〉

+
1

2

∫
Ω

(V1 − V2)u1 u2 dx.

This concludes the proof of (2.7). The estimate (2.8) just follows by applying Hölder inequality.
�

Remark 2.6. Observe that if V1, V2 ∈ Lp(Ω) with p > 1 and u1, u2 ∈ L2p/(p−1)(Ω), then the
hypotheses of the previous Lemma are verified and (2.8) gives the Lipschitz estimate

|Ef (V1)− Ef (V2)| ≤ 1

2
‖V1 − V2‖Lp(Ω)

√
‖u1‖L2p/(p−1)(Ω)

√
‖u2‖L2p/(p−1)(Ω).

By Proposition 2.1, the condition u1, u2 ∈ L2p/(p−1)(Ω) is verified for example if

• |Ω| = +∞ and p = N/2;

• Ω = ω × R is a waveguide and p ≥ N/2;

• |Ω| < +∞ and p ≥ N/2.

3. Maximization problems

In this section we fix p > 1 and we consider the optimization problem for potentials

(3.1) max
V ∈V

{
Ef (V ) :

∫
Ω
|V |p dx ≤ 1

}
.

We also introduce the strictly convex functional

(3.2) Gp,f (u) =
1

2

∫
Ω
|∇u|2 dx+

1

2

(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

− 〈f, u〉, u ∈W 1,2
0 (Ω),

where it is intended that Gp,f (u) = +∞ if u 6∈ L2p/(p−1)(Ω). We recall the following existence
result from [10]. We give the proof for the reader’s convenience.
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Proposition 3.1. The problem (3.1) admits a solution and is equivalent to

(3.3) max
V ∈V

{
Ef (V ) : V ≥ 0,

∫
Ω
V p dx = 1

}
.

The solution V0 is unique and is of the form

(3.4) V0 =

(∫
Ω
|v0|2 p/(p−1) dx

)−1/p

v
2/(p−1)
0 ,

where v0 ∈W 1,2
0 (Ω) ∩ L2p/(p−1)(Ω) is the unique minimizer of Gp,f . Moreover, we have

(3.5) Ef (V0) = Gp,f (v0).

Proof. We start by proving that we can restrict the optimization to positive potentials that
saturate the constraint on the Lp norm. We have

sup
V ∈V

{
Ef (V ) : V ≥ 0,

∫
Ω
|V |p dx = 1

}
≤ sup

V ∈V

{
Ef (V ) :

∫
Ω
|V |p dx ≤ 1

}
.

On the other hand it is immediate to see that

Ef (V ) ≤ Ef
(

|V |
‖V ‖Lp(Ω)

)
, for every V ∈ Lp(Ω) \ {0} with

∫
Ω
|V |p dx ≤ 1,

thus the two suprema coincide.

In order to characterize the optimal potential V0, we observe that for every u ∈ L2 p/(p−1)(Ω)
and every admissible potential, we get

(3.6)

∫
Ω
V u2 dx ≤

(∫
Ω
|u|2 p/(p−1) dx

)(p−1)/p

,

thanks to Hölder inequality. By appealing to the definition of the energy Ef (V ), we then get

Ef (V ) ≤ 1

2

∫
Ω
|∇u|2 dx+

1

2

(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

− 〈f, u〉, ∀u ∈W 1,2
0 (Ω).

By taking the infimum on u, we obtain

Ef (V ) ≤ min
u∈W 1,2

0 (Ω)
Gp,f (u), for every V admissible.

On the other hand, we see that if v0 is a minimizer of Gp,f and (V0, v0) achieves equality in
(3.6), we have equality in the last inequality. By appealing to the equality cases in Hölder
inequality, we get the characterization (3.4). �

Remark 3.2. For the sake of completeness we observe that by a standard homogeneity argu-
ment

Ef (V ) = −1

2
sup

u∈W 1,2
0 (Ω)\{0}

〈f, u〉2∫
Ω
|∇u|2 dx+

∫
Ω
V u2 dx

.

By using (3.6) we can infer

Ef (V ) ≤ −1

2
sup

u∈W 1,2
0 (Ω)\{0}

〈f, u〉2∫
Ω
|∇u|2 dx+

(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p
,

for every V ∈ Lp(Ω) with unit norm. This implies that

sup

{
Ef (V ) :

∫
Ω
|V |p dx = 1

}
= −1

2
sup

u∈W 1,2
0 (Ω)\{0}

〈f, u〉2∫
Ω
|∇u|2 dx+

(∫
Ω
|u|2p/(p−1)

)(p−1)/p
,
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so that Ef (V0) is related to the best constant in a Poincaré-Sobolev type inequality, i.e.∫
Ω
|∇u|2 dx+

(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

≥ 1

2 |Ef (V0)|
〈u, f〉2, ∀u ∈W 1,2

0 (Ω),

with equality holding if and only if u is proportional to v0.

4. Stability for maximization problems

In what follows c1 will denote the constant

c1 :=

(∫
Ω
|v0|2p/(p−1) dx

)(p−1)/2p

,

where v0 is the unique minimizer of Gp,f . In this section we prove a quantitative improvement
of the inequality

Ef (V0) ≥ Ef (V ), for every V ∈ V such that

∫
Ω
|V |p dx ≤ 1.

At this aim, we need the following result, see [12, Theorem 3.1] for a proof. An earlier related
result could be found in [14, Proposition 2.6].

Lemma 4.1 (Quantitative Hölder inequality). Let 2 ≤ q < ∞ and q′ = q/(q − 1). For every

f ∈ Lq(Ω) and g ∈ Lq′(Ω) such that ‖f‖Lq(Ω) = ‖g‖Lq′ (Ω) = 1, we have

(4.1)

∣∣∣∣∫
Ω
f g dx

∣∣∣∣ ≤ 1− q′ − 1

4

∥∥∥|f |q−2f − g
∥∥∥2

Lq′ (Ω)
,

and

(4.2)

∣∣∣∣∫
Ω
f g dx

∣∣∣∣ ≤ 1− 1

q 2q−1

∥∥∥f − |g|q′−2g
∥∥∥q
Lq(Ω)

.

Remark 4.2. In the case q =∞ no quantitative inequality of the previous kind may hold. In
fact, by taking Ω = (0, 1) and the functions

fn = 1[0,1−1/n] and g =
1

2
√
x
,

we obtain

lim
n→∞

(∣∣∣∣∫
Ω
fn g dx

∣∣∣∣− 1

)
= 0 while

∥∥∥∥fn − g

|g|

∥∥∥∥
L∞(Ω)

= ‖fn − 1‖L∞(Ω) = 1

4.1. Stability of the potentials. This is the main result of this section.

Theorem 4.3 (Stability of maximal potentials). Let V0 be the optimal potential achieving the
maximum in (3.1). Then for every V ∈ V such that ‖V ‖Lp(Ω) ≤ 1 we have

(4.3) Ef (V0)− Ef (V ) ≥ σ′M
∥∥∥|V |p−2 V − V p−1

0

∥∥∥2

Lp′ (Ω)
, for p ≥ 2,

and

(4.4) Ef (V0)− Ef (V ) ≥ σ′′M ‖V − V0‖2Lp(Ω) , for 1 < p < 2,

where σ′M > 0 and σ′′M > 0 are two constants depending only on p and c1 (see Remark 4.4
below).

Proof. We start observing that by hypothesis

‖V − V0‖Lp(Ω) ≤ 2, and
∥∥|V |p−2 V − |V0|p−2 V0

∥∥
Lp′ (Ω)

≤ 2,

thus we can always suppose

(4.5) Ef (V0)− Ef (V ) ≤ min

{
c2

1

4
, 1

}
,
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because otherwise (4.3) and (4.4) are trivially true, with constants

σ′M = σ′′M =
1

4
min

{
c2

1

4
, 1

}
.

By using v0 as a test function in the variational problem defining Ef (V ) and recalling the
definition (3.2) of Gp,f , we get

Ef (V ) ≤ Gp,f (v0) +
1

2

[∫
Ω
V v2

0 dx−
(∫

Ω
|v0|2p/(p−1) dx

)(p−1)/p
]

= Ef (V0) +
1

2

[∫
Ω
V v2

0 dx−
(∫

Ω
|v0|2p/(p−1) dx

)(p−1)/p
]
.

The optimal potential V0 and v0 are linked through (3.4), thus by substituting above we get

Ef (V )− Ef (V0) ≤ c2
1

2

∫
Ω

(V − V0)V p−1
0 dx =

c2
1

2

[∫
Ω
V V p−1

0 dx− 1

]
.

From the previous inequality we obtain

(4.6) Ef (V0)− Ef (V ) ≥ c2
1

2

[
1−

(∫
Ω
|V |p dx

)1/p
]

+
c2

1

2

[(∫
Ω
|V |p dx

)1/p

−
∫

Ω
V V p−1

0 dx

]
.

The two terms inside the square brackets are both positive, since ‖V ‖Lp(Ω) ≤ ‖V
p−1

0 ‖Lp′ (Ω) = 1.

The previous estimate in particular implies that

(4.7)

(∫
Ω
|V |p dx

)1/p

≥ 1

2
,

since otherwise we would contradict (4.5). We now distinguish two cases.

Case p ≥ 2. By applying (4.1) with the choices

f =
V

‖V ‖Lp(Ω)
, g = V p−1

0 , q = p and q′ = p′,

we get (∫
Ω
|V |p dx

)1/p

−
∫

Ω
V V p−1

0 dx ≥ p′ − 1

8

∥∥∥∥∥ |V |p−2 V

‖V ‖p−1
Lp(Ω)

− V p−1
0

∥∥∥∥∥
2

Lp′ (Ω)

,(4.8)

where we used (4.7) to estimate the Lp norm of V from below. We now observe that by the
triangle inequality and convexity of t 7→ t2, we get∥∥∥∥∥ |V |p−2 V

‖V ‖p−1
Lp(Ω)

− V p−1
0

∥∥∥∥∥
2

Lp′ (Ω)

≥ 1

2

∥∥∥|V |p−2 V − V p−1
0

∥∥∥2

Lp′ (Ω)
−

∥∥∥∥∥ |V |p−2 V

‖V ‖p−1
Lp(Ω)

− |V |p−2 V

∥∥∥∥∥
2

Lp′ (Ω)

=
1

2

∥∥∥|V |p−2 V − V p−1
0

∥∥∥2

Lp′ (Ω)
−
∣∣∣1− ‖V ‖p−1

Lp(Ω)

∣∣∣2
≥ 1

2

∥∥∥|V |p−2 V − V p−1
0

∥∥∥2

Lp′ (Ω)
− (p− 1)2

(
2

c2
1

)2 (
Ef (V0)− Ef (V0)

)2
,

where we used that for p ≥ 2

1− tp−1 ≤ (p− 1) (1− t), for every 0 ≤ t ≤ 1,

and (4.6) in the last inequality. By inserting this information in (4.8), combining with (4.6)
and using that Ef (V0)− Ef (V ) ≤ 1, we end up with (4.3).

Case 1 < p < 2. By applying (4.1) this time with the choices

f = V p−1
0 , g =

V

‖V ‖Lp(Ω)
, q = p′ and q′ = p,
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we get (∫
Ω
|V |p dx

)1/p

−
∫

Ω
V V p−1

0 dx ≥ p− 1

8

∥∥∥∥ V

‖V ‖Lp(Ω)
− V0

∥∥∥∥2

Lp(Ω)

,(4.9)

where we used again (4.7). We can estimate the remainder term as before∥∥∥∥ V

‖V ‖Lp(Ω)
− V0

∥∥∥∥2

Lp(Ω)

≥ 1

2
‖V − V0‖2Lp(Ω) −

∥∥∥∥ V

‖V ‖Lp(Ω)
− V

∥∥∥∥2

Lp(Ω)

=
1

2
‖V − V0‖2Lp(Ω) −

∣∣1− ‖V ‖Lp(Ω)

∣∣2
≥ 1

2
‖V − V0‖2Lp(Ω) −

(
2

c2
1

)2 (
Ef (V0)− Ef (V )

)2
,

where we used again (4.6) in the last inequality. We can obtain the desired result by combining
(4.6), (4.9) and the previous estimate. �

Remark 4.4. From the proof, we can see that a possible value for σ′M is

σ′M =
1

4
min

{
(p′ − 1)

c4
1

8 c2
1 + 2 (p− 1)

, 1,
c2

1

4

}
, p ≥ 2,

while for σ′′M we could take

σ′′M =
1

4
min

{
(p− 1)

c4
1

8 c2
1 + 2 (p− 1)

, 1,
c2

1

4

}
, 1 < p < 2.

Remark 4.5. We point out that we could have used (4.2) in place of (4.1). In this way, one
could obtain stability estimates of the type

(4.10) Ef (V0)− Ef (V ) ≥ σ̃′M ‖V − V0‖pLp(Ω) , for p ≥ 2,

and

Ef (V0)− Ef (V ) ≥ σ̃′′M
∥∥∥|V |p−2 V − V p−1

0

∥∥∥p′
Lp′ (Ω)

, for 1 < p < 2.

We also notice that these estimates are asymptotically worse than (4.3) and (4.4). Indeed,
when V is of the form Vε = V0 + εψ, for ε� 1 and ψ ∈ Lp(Ω), it is not difficult to see that

‖Vε − V0‖Lp(Ω) ' ε and
∥∥∥|Vε|p−2 Vε − V p−1

0

∥∥∥
Lp′ (Ω)

' ε,

so that we have∥∥|Vε|p−2 Vε − V p−1
0

∥∥2

Lp′ (Ω)
� ‖Vε − V0‖pLp(Ω) if p ≥ 2,

‖Vε − V0‖2Lp(Ω) �
∥∥|Vε|p−2 Vε − V p−1

0

∥∥p′
Lp′ (Ω)

if 1 < p < 2.

4.2. Stability of the state functions. We have the following stability result for the mini-
mization of Gp,f .

Proposition 4.6. Let 1 < p <∞ and let v0 be the unique minimizer of Gp,f defined by (3.2),

then for every u ∈W 1,2
0 (Ω) we have

(4.11) Gp,f (u)−Gp,f (v0) ≥ 1

2
‖u− v0‖2W 1,2

0 (Ω)
.

Proof. We first observe that if u 6∈ L2p/(p−1)(Ω), then Gp,f (u) = +∞ and (4.11) trivially holds.

Thus, let us take u ∈W 1,2
0 (Ω) ∩ L2p/(p−1)(Ω) with u 6= v0 and set

d = ‖u− v0‖W 1,2
0 (Ω)

and ϕ =
u− v0

d
.
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Then u can be written as u = v0 + dϕ and ϕ has unitary norm in W 1,2
0 (Ω). We then get

Gp,f (u)−Gp,f (v0) ≥ d

[∫
Ω
〈∇v0,∇ϕ〉 dx+

(∫
Ω
|v0|2p/(p−1) dx

)−1/p ∫
Ω
|v0|2/(p−1) v0 ϕdx− 〈f, ϕ〉

]

+
d2

2

∫
Ω
|∇ϕ|2 dx,

where we used the convexity of the C1 map

Φ(s) = ‖v0 + sϕ‖2
L2p/(p−1)(Ω)

=

(∫
Ω
|v0 + sϕ|2p/(p−1) dx

)(p−1)/p

, s ∈ R,

so that

Φ(d) ≥ Φ(0) + Φ′(0)d.

It is now sufficient to observe that∫
Ω
〈∇v0,∇ϕ〉 dx+

(∫
Ω
|v0|2p/(p−1) dx

)−1/p ∫
Ω
|v0|2/(p−1) v0 ϕdx− 〈f, ϕ〉 = 0,

by minimality of v0, thus we directly get (6.2). �

As a consequence of the previous result, we get that if (u, V ) is almost realizing the equality

in (3.6), then u is near to the optimizer v0 in the W 1,2
0 norm.

Corollary 4.7. Let V be an admissible potential for (3.1) and u a corresponding energy func-
tion. Then

(4.12) ‖u− v0‖2W 1,2
0 (Ω)

≤

[(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

−
∫

Ω
V u2 dx

]
.

Proof. We already observed that

Ef (V ) ≤ Gp,f (v), for every v ∈W 1,2
0 (Ω).

By taking the energy function v0 corresponding to V0, we get

Ef (V ) ≤ Gp,f (v0) ≤ Gp,f (u)− 1

2
‖u− v0‖2W 1,2

0 (Ω)
,

where we used (4.11). Thus we have

1

2
‖u− v0‖2W 1,2

0 (Ω)
≤ Gp,f (u)− Ef (V ) =

1

2

[(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

−
∫

Ω
V u2 dx

]
,

which concludes the proof. �

In general, for an admissible potential V the corresponding energy function is not in L2p/(p−1)(Ω).
When this is the case, we can infer stability of the energy functions as well.

Proposition 4.8. Let V be admissible in (3.1). If a corresponding energy function u belongs

to L2p/(p−1)(Ω), then

(4.13)
(
Ef (V0)− Ef (V )

) 1
ϑ(p) ‖u− v0‖L2p/(p−1)(Ω) ≥ c ‖u− v0‖2W 1,2

0 (Ω)
,

where ϑ(p) = max{2, p} and c > 0 is a constant depending only on c1, p and ‖V−‖LN/2(Ω).

Proof. We first observe that since u ∈ L2p/(p−1)(Ω) and u0 ∈ L2 p/(p−1)(Ω) as well, we have

ψ := u− v0 ∈W 1,2
0 (Ω) ∩ L2(Ω;V ).

The function ψ verifies∫
Ω
〈∇ψ,∇ϕ〉 dx+

∫
Ω

(V − V0) v0 ϕdx+

∫
Ω
V ψ ϕdx = 0,
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for every ϕ ∈W 1,2
0 (Ω). By using ψ itself as a test function, we get∫

Ω
|∇ψ|2 dx+

∫
Ω
V ψ2 dx ≤

∫
Ω
|V − V0| |v0| |ψ| dx

≤
(∫

Ω
|V − V0|p dx

)1/p(∫
Ω

(
|v0| |ψ|

)p/(p−1)
dx

)(p−1)/p

≤ ‖V − V0‖Lp(Ω) ‖v0‖L2p/(p−1)(Ω) ‖ψ‖L2p/(p−1)(Ω).

By noticing that from (2.4)∫
Ω
|∇ψ|2 dx+

∫
Ω
V ψ2 dx ≥

(
1−
‖V−‖LN/2(Ω)

TN

) ∫
Ω
|∇ψ|2 dx,

and recalling that ψ = u− v0, we get(
1−
‖V−‖LN/2(Ω)

TN

)
‖u− v0‖2W 1,2

0 (Ω)
≤ c1 ‖V − V0‖Lp(Ω) ‖u− v0‖L2p/(p−1)(Ω).

Appealing to (4.4) (for 1 < p < 2) or to (4.10) (for p ≥ 2), we then get the conclusion. �

Remark 4.9. Observe that for p = N/2, we have 2p/(p− 1) = 2∗ and (4.13) simply becomes(
Ef (V0)− Ef (V )

) 1
ϑ(p) ≥ c ‖u− v0‖W 1,2

0 (Ω)
,

by Sobolev inequality, possibly with a different constant c > 0. When Ω has a finite measure or
is a waveguide and p ≥ N/2, by Proposition 2.1 we can always assure that the energy function

u belongs to L2p/(p−1)(Ω) and thus we have a similar stability estimate in these cases as well.

5. Minimization problems

In this section we consider, for a fixed p > 0, the minimization problem

(5.1) inf

{
Ef (V ) : V ≥ 0,

∫
Ω

1

V p
dx ≤ 1

}
.

Remark 5.1. Observe that this time, it is not clear whether the minimization problem on V
without sign hypothesis, i.e.

inf
V ∈V

{
Ef (V ) :

∫
Ω

1

|V |p
dx ≤ 1

}
.

is well-posed or not, since it may happen that no admissible V ≤ 0 exist (for example if Ω is
unbounded). If an optimal potential W exists for the previous problem, this should be such
that W+ 6≡ 0 and W− 6≡ 0. This seems to be an interesting issue, which we leave for future
research.

We collect a couple of technical results which are needed in the sequel.

Lemma 5.2. Let V ≥ 0 be such that V −1 ∈ Lp(Ω). Then we have

(5.2)

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

≤
(∫

Ω
V u2 dx

)(∫
Ω

1

V p
dx

)1/p

, for every u ∈ C∞0 (Ω).

In particular we have the continuous embedding L2(Ω;V ) ⊂ L2p/(p+1)(Ω).

Proof. If u 6∈ L2(Ω;V ), there is nothing to prove. So let us assume that the first integral in
the right-hand side of (5.2) is finite. By Hölder inequality with exponents q = (p+ 1)/p and
q′ = p+ 1 we have∫

Ω
|u|2p/(p+1) dx =

∫
Ω
|u|2p/(p+1)V

p/(p+1)

V p/(p+1)
dx ≤

(∫
Ω
V u2 dx

)p/(p+1)(∫
Ω

1

V p
dx

)1/(p+1)

,

which concludes the proof. �
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Remark 5.3. By standard interpolation in Lebesgue spaces, under the hypothesis of the
previous result we have the continuous embedding

L2(Ω;V ) ⊂ Ls(Ω),

for every 2p/(p+ 1) ≤ s ≤ 2∗. In particular L2(Ω;V ) is embedded into L2(Ω), since 2p/(p+ 1)
is always strictly less than 2. It is then not difficult to show that the operator −∆ + V has a
discrete spectrum on L2(Ω).

The following energy estimate will be needed in the sequel.

Lemma 5.4. Let f ∈ W−1,2(Ω), V be an admissible potential for (5.1) and u its energy
function. Then we have

(5.3)

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

≤ 1

2
‖f‖2W−1,2(Ω).

Proof. By using the equation and Young ienquality, we have∫
Ω
|∇u|2 dx+

∫
Ω
V u2 dx = 〈f, u〉 ≤ 1

2
‖f‖2W−1,2(Ω) +

1

2

∫
Ω
|∇u|2 dx.

From the previous we obtain ∫
Ω
V u2 dx ≤ 1

2
‖f‖2W−1,2(Ω),

then it is sufficient to apply (5.2). �

Let 1 < p <∞, in what follows we set for simplicity

Jp,f (u) =
1

2

∫
Ω
|∇u|2 dx+

1

2

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

− 〈f, u〉 ∀u ∈W 1,2
0 (Ω),

where it is intended that Jp,f (u) = +∞ if u 6∈ L2p/(p+1)(Ω). Again, it is not difficult to see
that Jp,f admits a unique minimizer. We recall the following result from [10].

Proposition 5.5. The problem (5.1) admits a unique solution U0 of the form

(5.4) U0 =

(∫
Ω
|u0|2p/(p+1) dx

)1/p

|u0|−2/(p+1),

where u0 ∈W 1,2
0 (Ω) ∩ L2p/(p+1)(Ω) is the unique minimizer of Jp,f .

Proof. Let u be the energy function corresponding to V , then we have

Ef (V ) = Jp,f (u) +
1

2

[∫
Ω
V u2 −

(∫
Ω
|u|2p/(p+1)

)(p+1)/p
]
.

By using (5.2) and the minimimality of u0, we get

Ef (V ) ≥ Jp,f (u0) = min
u∈W 1,2

0 (Ω)
Jp,f (u).

By appealing again to the equality cases in Hölder inequality, we get the characterization of
the optimal potential V0. �

Remark 5.6. As in Remark 3.2, by applying (5.2) we can infer

Ef (V ) ≥ −1

2
sup

u∈W 1,2
0 (Ω)\{0}

〈f, u〉2∫
Ω
|∇u|2 dx+

(∫
Ω
|u|2p/(p+1)

)(p+1)/p
,

for every V admissible, so that

inf

{
Ef (V ) : V ≥ 0,

∫
Ω
V −p dx ≤ 1

}
= −1

2
sup

u∈W 1,2
0 (Ω)\{0}

〈f, u〉2∫
Ω
|∇u|2 dx+

(∫
Ω
|u|2p/(p+1)

)(p+1)/p
.
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Thus we have∫
Ω
|∇u|2 dx+

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

≥ 1

2 |Ef (U0)|
〈u, f〉2, u ∈W 1,2

0 (Ω) ∩ L2p/(p+1)(Ω),

with equality if and only if u is proportional to u0.

6. Stability for minimization problems

In this section we take p > 1 and we still denote by u0 the unique minimizer of Jp,f . We
also set

(6.1) c2 :=

(∫
Ω
|u0|2p/(p+1) dx

)(p+1)/2p

.

6.1. Preliminary results. We start with a stability result for the minimization of Jp,f . The
proof is the same as that of Lemma 4.6, thus we omit it.

Proposition 6.1. Let 1 < p <∞ and let u0 be the unique minimizer of Jp,f . Then for every

u ∈W 1,2
0 (Ω) we have

(6.2) Jp,f (u)− Jp,f (u0) ≥ 1

2
‖u− u0‖2W 1,2

0 (Ω)
.

We also need the following result, asserting that the energy gap controls the difference of
the L2 p/(p+1)(Ω) norms.

Lemma 6.2. Let f ∈ W−1,2(Ω) and let V be an admissible potential for (5.1). If we suppose
that Ef (V )− Ef (U0) ≤ 1, then

(6.3)
√
Ef (V )− Ef (U0) ≥ c3

∣∣∣∣∣
(∫

Ω
|u0|2p/(p+1) dx

)(p+1)/p

−
(∫

Ω
|u|2p/(p+1) dx

)(p+1)/p
∣∣∣∣∣ ,

for a constant c3 > 0 depending only on ‖f‖W−1,2(Ω).

Proof. We first observe that

(6.4) Ef (V )− Ef (U0) =
[
Jp,f (u)− Jp,f (u0)

]
+

1

2

[∫
Ω
V u2 dx−

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p
]
,

and both terms inside the square brackets are positive. In particular we get

Ef (V )− Ef (U0) ≥ 1

2

[∫
Ω
V u2 dx−

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p
]
.

By using the estimate on the weighted L2 norms (2.6), we then get
(6.5)

Ef (V )−Ef (U0) ≥ 1

2

[∫
Ω
U0 u

2
0 dx−

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p
]
− 3

2
‖f‖W−1,2(Ω)‖u−u0‖W 1,2(Ω).

We now use that by (5.4) U0 and u0 are linked through

U0 =

(∫
Ω
|u0|2p/(p+1) dx

)1/p

|u0|−2/(p+1),

so that

(6.6)

∫
Ω
U0 u

2
0 dx =

(∫
Ω
|u0|2p/(p+1) dx

)(p+1)/p

.
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If we use this in (6.5), we end up with

Ef (V )− Ef (U0) +
3

2
‖f‖W−1,2(Ω) ‖u− u0‖W 1,2(Ω)

≥ 1

2

[(∫
Ω
|u0|2p/(p+1) dx

)(p+1)/p

−
(∫

Ω
|u|2p/(p+1) dx

)(p+1)/p
]
.

By recalling (6.2), (6.4) and using the hypothesis Ef (V )− Ef (U0) ≤ 1, we then get√
Ef (V )− Ef (U0) ≥ 1

C

[(∫
Ω
|u0|2p/(p+1) dx

)(p+1)/p

−
(∫

Ω
|u|2p/(p+1) dx

)(p+1)/p
]
.

On the other hand, we have(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

−
(∫

Ω
|u0|2p/(p+1) dx

)(p+1)/p

≤
∫

Ω
V u2 dx−

∫
Ω
U0 u

2
0 dx,

where we used (5.2) and (6.6). If we now apply (2.6), we get[(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

−
(∫

Ω
|u0|2p/(p+1) dx

)(p+1)/p
]
≤ 3 ‖f‖W−1,2(Ω) ‖u− u0‖W 1,2

0 (Ω)
,

and again we can conclude thanks to (6.4) and (6.2). �

Remark 6.3. A closer inspection of the previous proof ensures that we can take

c3 := min

{ √
2√

2 + 3 ‖f‖W−1,2(Ω)

,
1

3
√

2 ‖f‖W−1,2(Ω)

}
.

The following result guarantees that it is sufficient to prove stability for potentials saturating
the constraint

∫
Ω V

−p ≤ 1.

Lemma 6.4 (Reduction Lemma). Let V be admissible in (5.1) and such that
∫

Ω V
−p dx < 1.

Let us suppose that its energy function u satisfies

(6.7)

∫
Ω
V u2 dx ≥ β > 0.

Then there exists a potential U ≥ 0 with
∫

Ω U
−p dx = 1 such that

(6.8) Ef (V )− Ef (U0) ≥ Ef (U)− Ef (U0),

and

(6.9)

∥∥∥∥ 1

V
− 1

U0

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥ 1

U
− 1

U0

∥∥∥∥
Lp(Ω)

+
2

β

(
Ef (V )− Ef (U0)

)
.

Proof. Let λ = ‖V −1‖Lp(Ω) < 1, then we set U = λV . It is clear that U < V , so that
Ef (U) ≤ Ef (V ) by the definition of the energy and the first property (6.8) follows. In order to
prove the second, we observe that by (6.4), we have

Ef (V )− Ef (U0) ≥ 1

2

[∫
Ω
V u2 dx−

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p
]

≥ 1

2

∫
Ω
V u2 dx

[
1−

(∫
Ω
V −p dx

)1/p
]

=
1

2

(∫
Ω
V u2 dx

)
|1− λ|,

where we also used (5.2) in the second inequality. By using the hypothesis on u and the
definition of U , we get

|1− λ| ≤ 2

β

(
Ef (V )− Ef (U0)

)
,
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and since by the triangle inequality∥∥∥∥ 1

V
− 1

U0

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥ 1

U
− 1

U0

∥∥∥∥
Lp(Ω)

+ |1− λ|,

we get the desired conclusion. �

Finally, the following very simple estimate will be quite useful.

Lemma 6.5. Let 1 < r, s <∞ and g, g0 ∈ Lr(Ω) ∩ Ls(Ω). Then we have

(6.10) ‖g0‖Lr(Ω) ≤ ‖g‖Lr(Ω) + ‖g − g0‖Ls(Ω)

∥∥|g0|r−1
∥∥
Ls′ (Ω)

‖g0‖r−1
Lr(Ω)

.

Proof. We can suppose that |g0|r−1 ∈ Ls′(Ω), otherwise there is nothing to prove. For every

ϕ ∈ Lr′(Ω) ∩ Ls′(Ω) we have∣∣∣∣∫
Ω
g0 ϕdx

∣∣∣∣ ≤ ∫
Ω
|g − g0| |ϕ| dx+

∣∣∣∣∫
Ω
g ϕ dx

∣∣∣∣
≤ ‖g − g0‖Ls(Ω)‖ϕ‖Ls′ (Ω) + ‖g‖Lr(Ω) ‖ϕ‖Lr′ (Ω).

If we now choose

ϕ = |g0|r−2 g0,

and then simplify by ‖g0‖r−1
Lr(Ω) on both sides, we obtain (6.10). �

6.2. Stability of the potentials. The following is the main result of this section, which is
proved under the integrability assumption (6.11) on u0. For a discussion on this hypothesis,
we refer the reader to Remark 6.7 below.

Theorem 6.6 (Stability of minimal potentials). Let U0 be the optimal potential achieving the
minimum in (5.1). Let us suppose that the optimal function u0 is such that

(6.11) c4 :=
∥∥∥|u0|(p−1)/(p+1)

∥∥∥
L(2∗)′ (Ω)

< +∞.

Then for every positive potential V such that ‖1/V ‖Lp(Ω) ≤ 1 we have

(6.12) Ef (V )− Ef (U0) ≥ σm
∥∥∥∥ 1

V
− 1

U0

∥∥∥∥2 p (p+1)/(p−1)

Lp(Ω)

,

for a constant σm > 0 depending only on N, p, c2, c4 and ‖f‖W−1,2(Ω) (see Remark 6.8 below).

Proof. We divide the proof into various steps.

Reduction step. Let V be a potential admissible in (5.1). We set

(6.13) c5 = min

{
1,

(
c2

2 c3

2

)2
}
,

where we recall that c2 is the L2 p/(p+1)(Ω) norm of u0 and c3 is the constant in (6.3). Since by
hypothesis ∥∥∥∥ 1

V
− 1

U0

∥∥∥∥
Lp(Ω)

≤ 2,

we can always assume

Ef (V )− Ef (U0) ≤ c5,

otherwise (6.12) is trivially true with the constant σm = c5 4−p(p+1)/(p−1). Under this assump-
tion, by definition of c5 and Lemma 6.2 we have that the energy function v of V verifies(∫

Ω
|v|2p/(p+1) dx

)(p+1)/p

≥ 1

2

(∫
Ω
|u0|2p/(p+1) dx

)(p+1)/p

=
c2

2

2
.
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This in turn implies that v verifies (6.7) with β = c2
2/2 thanks to (5.2). From the Reduction

Lemma 6.4 we thus obtain that there exists a positive potential U with ‖1/U‖Lp(Ω) = 1 such
that ∥∥∥∥ 1

V
− 1

U0

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥ 1

U
− 1

U0

∥∥∥∥
Lp(Ω)

+
4

c2
2

(
Ef (V )− Ef (U0)

)
and

Ef (U)− Ef (U0) ≤ Ef (V )− Ef (U0).

We are going to prove the stability estimate (6.12) for the potential U . Observe that since the
energy gap has decreased, we still have

(6.14) Ef (U)− Ef (U0) ≤ c5,

and thus again

(6.15)

(∫
Ω
|u|2p/(p+1) dx

)(p+1)/p

≥ c2
2

2
.

where u is now the energy function of U . From (6.4) and Proposition 6.1, we have

(6.16) Ef (U)− Ef (U0) ≥ 1

2
(I1 + I2) ,

where we introduced the notation

I1 =

∫
Ω
U u2 dx−

(∫
Ω
|u|2p/(p+1)

)(p+1)/p

and I2 = ‖u− u0‖2W 1,2
0 (Ω)

.

We proceed to estimate I1 and I2 separately.

Estimate on I1. For this we use the quantitative Hölder inequality (4.2) with

q = p+ 1, q′ =
p+ 1

p
, f = U−p/(p+1), g =

|u|2p/(p+1) Up/(p+1)(∫
Ω
U u2 dx

)p/(p+1)
.

Thus we get(∫
Ω
U u2 dx

)p/(p+1)

−
∫

Ω
|u|2p/(p+1) dx

≥ 1

2p(p+ 1)

(∫
Ω
U u2 dx

)p/(p+1)

∥∥∥∥∥∥∥∥∥
|u|2/(p+1) U1/(p+1)(∫

Ω
U u2 dx

)1/(p+1)
− U−p/(p+1)

∥∥∥∥∥∥∥∥∥
p+1

Lp+1(Ω)

.

By using (5.2) and (6.15) we have(∫
Ω
U u2 dx

) p
p+1

≥
(
c2

2

2

) p
p+1

,

and by convexity of the function t 7→ t(p+1)/p, we have∫
Ω
U u2 dx−

(∫
Ω
|u|

2 p
p+1 dx

) p+1
p

≥ p+ 1

p

(∫
Ω
|u|

2 p
p+1 dx

) 1
p

[(∫
Ω
U u2 dx

) p
p+1

−
∫

Ω
|u|

2 p
p+1 , dx

]
.

Thus, for the moment we obtained

I1 ≥
c2

2

p 2p+1

∥∥∥∥∥∥∥∥∥
|u|

2
p+1 U

1
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U
p
p+1

∥∥∥∥∥∥∥∥∥
p+1

Lp+1(Ω)

,(6.17)
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where we used again (6.15) to estimate the norm of u from below. Observe that we have∥∥∥∥∥∥∥∥∥
|u|

2
p+1 U

1
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U
p
p+1

∥∥∥∥∥∥∥∥∥
p+1

Lp+1(Ω)

=

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U

∥∥∥∥∥∥∥∥∥
p+1

Lp+1(Ω;U)

=

∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣∣
|u|

2
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U

∣∣∣∣∣∣∣∣∣

p+1
2

∥∥∥∥∥∥∥∥∥∥

2

L2(Ω;U)

then by applying (5.2) we get∥∥∥∥∥∥∥∥∥
|u|

2
p+1 U

1
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U
p
p+1

∥∥∥∥∥∥∥∥∥
p+1

Lp+1(Ω)

≥

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

.

We now use the triangle inequality and the convexity of t 7→ tp+1, so that∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
u2 U dx

) 1
p+1

− 1

U

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

≥ 1

2p

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− 1

U

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

−

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
u2 U dx

) 1
p+1

− |u|
2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

.

The last term simply gives

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
u2 U dx

) 1
p+1

− |u|
2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

=

∣∣∣∣∣
(∫

Ω
|u|

2 p
p+1 dx

) 1
p

−
(∫

Ω
u2 U dx

) 1
p+1

∣∣∣∣∣
p+1

∫
Ω
u2 U dx

.

By keeping everything together, we have obtained

I1 ≥
c2

2

p 22 p+1

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− 1

U

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

− 1

p 2p

∣∣∣∣∣
(∫

Ω
|u|

2 p
p+1 dx

) 1
p

−
(∫

Ω
u2 U dx

) 1
p+1

∣∣∣∣∣
p+1

,

(6.18)
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where as always we used (5.2) and (6.15) to estimate the L2(Ω;U) norm of u. By using (6.16)
and the convexity of t 7→ tp+1, we get

2 (Ef (U)− Ef (U0)) ≥ I1 ≥ (p+ 1)

∫
Ω
|u|

2 p
p+1 dx

[(∫
Ω
u2 U dx

) 1
p+1

−
(∫

Ω
|u|

2 p
p+1 dx

) 1
p

]

≥ (p+ 1)

(
c2

2

2

) p
p+1

[(∫
Ω
u2 U dx

) 1
p+1

−
(∫

Ω
|u|

2 p
p+1 dx

) 1
p

]

By using the latter, from (6.18) we can infer

I1 ≥
c2

2

p 22 p+1

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− 1

U

∥∥∥∥∥∥∥∥∥
p+1

Lp(Ω)

− 2

p (p+ 1)

(
2

(p+ 1) c2
2

)p
(Ef (U)− Ef (U0))p+1.

We now insert the previous estimate in (6.16), use that Ef (U)−Ef (U0) ≤ 1 and take the power
1/(p+ 1) on both sides. The resulting estimate is

(6.19)
(
Ef (U)− Ef (U0)

) 1
p+1 ≥ c6

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− 1

U

∥∥∥∥∥∥∥∥∥
Lp(Ω)

,

where c6 > 0 is the following constant depending only on p and c2

(6.20) c6 :=

(
1 +

2

p (p+ 1)

(
2

(p+ 1) c2
2

)p)− 1
p+1

(
c2

2

p 4p+1

) 1
p+1

.

Estimate on I2. Again by combining the triangle inequality and the convexity of t 7→ t2, we
have

I2 = ‖u− u0‖2W 1,2
0 (Ω)

= c2
2

∥∥∥∥∥∥ u

‖u0‖
L

2 p
p+1 (Ω)

− u0

‖u0‖
L

2 p
p+1 (Ω)

∥∥∥∥∥∥
2

W 1,2
0 (Ω)

≥ 1

2
c2

2

∥∥∥∥∥∥ u

‖u‖
L

2 p
p+1 (Ω)

− u0

‖u0‖
L

2 p
p+1 (Ω)

∥∥∥∥∥∥
2

W 1,2
0 (Ω)

−

 ‖u‖W 1,2
0 (Ω)

‖u‖
L

2 p
p+1 (Ω)

2 (
‖u‖

L
2 p
p+1 (Ω)

− ‖u0‖
L

2 p
p+1 (Ω)

)2

.

(6.21)

We also observe that, by recalling the energy estimate (2.3) and (6.15), we get

(6.22)

 ‖u‖W 1,2
0 (Ω)

‖u‖
L

2 p
p+1 (Ω)

2

≤ 2

c2
2

‖f‖2W−1,2(Ω).
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In order to estimate the negative term on the right-hand side in (6.21), we can simply use
Lemma 6.2. Indeed, we have∣∣∣∣‖u‖

L
2 p
p+1 (Ω)

− ‖u0‖
L

2 p
p+1 (Ω)

∣∣∣∣ ≤ ∣∣∣∣‖u‖
L

2 p
p+1 (Ω)

− ‖u0‖
L

2 p
p+1 (Ω)

∣∣∣∣ ‖u‖L 2 p
p+1 (Ω)

+ ‖u0‖
L

2 p
p+1 (Ω)

‖u0‖
L

2 p
p+1 (Ω)

=
1

‖u0‖
L

2 p
p+1 (Ω)

∣∣∣∣‖u‖2
L

2 p
p+1 (Ω)

− ‖u0‖2
L

2 p
p+1 (Ω)

∣∣∣∣
≤ 1

c3 c2

√
Ef (U)− Ef (U0)

(6.23)

where we used (6.3) (recall that we are assuming (6.14)). By using (6.22) and (6.23) in (6.21),
a further application of Sobolev inequality leads us to

(6.24)
√
Ef (U)− Ef (U0) ≥ c7

∥∥∥∥∥∥ u

‖u‖
L

2 p
p+1 (Ω)

− u0

‖u0‖
L

2 p
p+1 (Ω)

∥∥∥∥∥∥
L2∗ (Ω)

,

where the constant c7 > 0 depends only on N, f and c2

(6.25) c7 :=

√
TN

c2
3 c

4
2 + ‖f‖2

W−1,2(Ω)

c3 c
3
2

2
.

Stability estimate for U . We now use Lemma 6.5 with the choices

r =
2 p

p+ 1
, s = 2∗,

and

(6.26) g0 =
u0

‖u0‖
L

2 p
p+1 (Ω)

, g =
1

2

 u

‖u‖
L

2 p
p+1 (Ω)

+
u0

‖u0‖
L

2 p
p+1 (Ω)

 .
Thus we get

‖g‖
L

2 p
p+1 (Ω)

≥ 1− c4 c
1−p
p+1

2 ‖g − g0‖L2∗ (Ω) ,

since ∥∥|g0|r−1
∥∥
Ls′ (Ω)

‖g0‖r−1
Lr(Ω)

=
∥∥∥|g0|

p−1
p+1

∥∥∥
L(2∗)′ (Ω)

= c4 c
1−p
p+1

2 ,

which is finite by hypothesis. By combining the previous with (6.24), we obtain1

(6.27) ‖g‖
L

2 p
p+1 (Ω)

≥ 1− c4 c
1−p
p+1

2

2 c7

√
Ef (U)− Ef (U0).

1Up to further suppose that

Ef (U)− Ef (U0) ≤ min

c5,

2 c7 c
p−1
p+1

2

c4

2 ,

we can assume that the right-hand side of (6.27) is positive.
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The previous estimate is crucial in order to estimate g − g0 in L2 p/(p+1). Indeed, by Clarkson
inequality2 and (6.27) we can infer

‖g − g0‖
2 p
p−1

L
2 p
p+1 (Ω)

≤ 1− ‖g‖
2 p
p−1

L
2 p
p+1 (Ω)

≤ 1−

1− c4 c
1−p
p+1

2

2 c7

√
Ef (U)− Ef (U0)


2 p
p−1

,

and thus

‖g − g0‖
2 p
p−1

L
2 p
p+1 (Ω)

≤ p

p− 1

c4 c
1−p
p+1

2

c7

√
Ef (U)− Ef (U0),

thanks to the convexity of t 7→ t2 p/(p−1). We now go back to the definition (6.26) of g and g0,
so that the previous finally gives

(6.28)

(
1

2

) 2 p
p−1

∥∥∥∥∥∥ u

‖u‖
L

2 p
p+1 (Ω)

− u0

‖u0‖
L

2 p
p+1 (Ω)

∥∥∥∥∥∥
2 p
p−1

L
2 p
p+1 (Ω)

≤ p

p− 1

c4 c
1−p
p+1

2

c7

√
Ef (U)− Ef (U0),

Recall that 2/(p+ 1) < 1, thus the function t 7→ |t|2/(p+1) is 2/(p+ 1)−Hölder continuous and
we have ∣∣∣∣∣∣∣∣∣

|u|
2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− |u0|
2
p+1(∫

Ω
|u0|

2 p
p+1 dx

) 1
p

∣∣∣∣∣∣∣∣∣
p

≤

∣∣∣∣∣∣ u

‖u‖
L

2 p
p+1 (Ω)

− u0

‖u‖
L

2 p
p+1 (Ω)

∣∣∣∣∣∣
2 p
p+1

.

Thus from (6.28) we obtain

(6.29)
[
Ef (U)− Ef (U0)

] p−1
2 p (p+1) ≥ c8

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− |u0|
2
p+1(∫

Ω
|u0|

2 p
p+1 dx

) 1
p

∥∥∥∥∥∥∥∥∥
Lp(Ω)

,

where the constant c8 is given by

(6.30) c8 :=

1

4

p− 1

p

c7 c
p−1
p+1

2

c4


p−1
p


1
p+1

.

If we now use the relation (5.4) between U0 and u0, the triangle inequality, (6.19) and (6.29)
we get

∥∥∥∥ 1

U
− 1

U0

∥∥∥∥
Lp(Ω)

≤

∥∥∥∥∥∥∥∥∥
1

U
− |u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

∥∥∥∥∥∥∥∥∥
Lp(Ω)

+

∥∥∥∥∥∥∥∥∥
|u|

2
p+1(∫

Ω
|u|

2 p
p+1 dx

) 1
p

− |u0|
2
p+1(∫

Ω
|u0|

2 p
p+1 dx

) 1
p

∥∥∥∥∥∥∥∥∥
Lp(Ω)

≤


(
Ef (U)− Ef (U0)

) 1
p+1

c6
+

(
Ef (U)− Ef (U0)

) p−1
2 p (p+1)

c8

 .
2Let 1 < q ≤ 2 and h1, h2 ∈ Lq(Ω) be two functions with unit norm. Then we have∥∥∥∥h1 + h2

2

∥∥∥∥q′
Lq(Ω)

+

∥∥∥∥h1 − h2

2

∥∥∥∥q′
Lq(Ω)

≤ 1,

see [16, Theorem 2].
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Observe that since p > 1, we have

p− 1

2 p (p+ 1)
<

1

p+ 1
,

thus it is now sufficient to use hypothesis (6.14) to get (6.12) for U .

Conclusion: stability estimate for V . We now go back to our potential V . By using (6.9), the
previous step and (6.8), we get∥∥∥∥ 1

V
− 1

U0

∥∥∥∥
Lp(Ω)

≤
∥∥∥∥ 1

U
− 1

U0

∥∥∥∥
Lp(Ω)

+
4

c2
2

(
Ef (V )− Ef (U0)

)
≤ c6 + c8

c6 c8

(
Ef (U)− Ef (U0)

) p−1
2 p (p+1)

+
4

c2
2

(
Ef (V )− Ef (U0)

)
≤
[
c6 + c8

c6 c8
+

4

c2
2

] (
Ef (V )− Ef (U0)

) p−1
2 p (p+1)

,

where we also used that Ef (V )− Ef (U0) ≤ 1. This concludes the proof. �

Some comments on the previous result are in order.

Remark 6.7 (Integrability assumption on u0). We point out that

0 < (2∗)′
p− 1

p+ 1
< 2, for every p > 1,

thus the condition (6.11) of Theorem 6.6 is always satisfied if |Ω| < +∞. When |Ω| = +∞, this
is still verified if f decreases sufficiently fast at infinity. For example, by appealing to Theorem
A.1 in the Appendix this holds true for f ∈ Lr(Ω) with r > N/2 and

|f(x)| = O

(
1

|x|α

)
, for |x| → ∞, α >

N + 2

2
.

Observe that the condition on α is the minimal assumption for |x|−α to be (2∗)′−integrable at
infinity.

Remark 6.8. A closer inspection of the previous proof informs us that a possible value for
the constant σm in (6.12) is

σm = min


(
c6 + c8

c6 c8
+

4

c2
2

)− 2 p (p+1)
p−1

, c5 4
− p (p+1)

p−1 ,

2 c7 c
p−1
p+1

2

c4

2

4
− p (p+1)

p−1

 .

where the constants c5, c6, c7 and c8 are defined in (6.13), (6.20), (6.25) and (6.30).

6.3. Stability of the state functions. By suitably combining some of the estimates we used
so far, we also get a stability result for the energy functions in the natural space W 1,2

0 (Ω) ∩
L2 p/(p+1)(Ω).

Proposition 6.9. Under the hypotheses of Theorem 6.6, we have

(6.31)
(
Ef (V )− Ef (V0)

) p−1
2 p ≥ c

[
‖u− u0‖2W 1,2

0 (Ω)
+ ‖u− u0‖2

L
2 p
p+1 (Ω)

]
,

for some constant c > 0 depending on N, p, c2, c4 and ‖f‖W−1,2(Ω).

Proof. We first observe that by (2.3) we have

‖u− u0‖W 1,2
0 (Ω)

≤ ‖u‖
W 1,2

0 (Ω)
+ ‖u0‖W 1,2

0 (Ω)
≤ 2 ‖f‖W−1,2(Ω),

and by (5.3)

‖u− u0‖
L

2 p
p+1 (Ω)

≤ ‖u‖
L

2 p
p+1 (Ω)

+ ‖u0‖
L

2 p
p+1 (Ω)

≤
√

2 ‖f‖W−1,2(Ω).
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Thus we can assume without loss of generality that

Ef (V )− Ef (V0) ≤ 1,

otherwise the result is trivially true. From (6.4) and (6.2) we already know

Ef (V )− Ef (V0) ≥ 1

2
‖u− u0‖2W 1,2

0 (Ω)

and by (6.28)

c9

∥∥∥∥∥∥ u

‖u‖
L

2 p
p+1 (Ω)

− u0

‖u0‖
L

2 p
p+1 (Ω)

∥∥∥∥∥∥
4 p
p−1

L
2 p
p+1 (Ω)

≤ Ef (V )− Ef (V0),

with

c9 =

p− 1

p

c7 c
p−1
p+1

2

c4

2 (
1

2

) 4 p
p−1

.

Moreover, by the triangle inequality it is not difficult to see that

‖u− u0‖
L

2 p
p+1 (Ω)

≤
∣∣∣∣‖u‖

L
2 p
p+1 (Ω)

− ‖u0‖
L

2 p
p+1 (Ω)

∣∣∣∣
+ c2

∥∥∥∥∥∥ u

‖u‖
L

2 p
p+1 (Ω)

− u0

‖u0‖
L

2 p
p+1 (Ω)

∥∥∥∥∥∥
L

2 p
p+1 (Ω)

.

By combining these estimates and using (6.23), we get the desired conclusion. �

Remark 6.10. By interpolation, it is easy to obtain a stability estimate like (6.31) in Lr(Ω)

for every 2 p/(p+ 1) < r < 2∗ and in W s,2
0 (Ω) for every 0 < s < 1.

Appendix A. Sharp decay estimates for non autonomous Schrödinger equations

Given 1 < p <∞, we set for simplicity q = 2 p/(p+ 1) which is always between 1 and 2. In
what follows we still denote by u0 the unique minimizer of

Jp,f (u) =
1

2

∫
Ω
|∇u|2 dx+

1

2

(∫
Ω
|u|q dx

) 2
q

− 〈f, u〉.

The aim of this Appendix is to prove some decay properties for the optimal function u0, in the
case |Ω| = +∞. We can confine ourselves to consider the case Ω = RN .

Theorem A.1 (Properties of u0). Let r > N/2 and f ∈ Lr(RN ) be such that there exist
C,R > 0 and α > (N + 2)/2 with

|f(x)| ≤ C |x|−α, for |x| ≥ R.
Then there exists M = M(‖f‖Lr(RN ), c2, C,R, α) > 0 such that

(A.1) |u0(x)| ≤M, x ∈ RN .

Moreover, if we denote by w ∈W 1,2
0 (RN ) the unique minimizer of

J (u) =
1

2

∫
RN
|∇u|2 dx+

c2−q
2

q

∫
RN
|u|q dx−

∫
RN

u

(1 + |x|2)α/2
dx,

then there exists T = T (M,C,R, α) > 0 such that

(A.2) |u0(x)| ≤ T 2/(2−q)w
( x
T

)
, x ∈ RN .

In particular, we get

(A.3) |u0(x)| ≤ C ′ |x|−α/(q−1), for |x| � 1,

for some constant C ′ > 0.
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Proof. We first observe that if f ≥ 0, then the unique minimizer u0 is positive since Jp,f (|u|) ≤
Jp,f (u). We also notice that it is not restrictive to prove the result for f ≥ 0. Indeed, if f is
not positive, by using the minimality of u0 and the fact that f ≤ |f |, it is not difficult to see
that

|u0| ≤ ũ0,

where ũ0 is the unique minimizer of Jp,|f |. We thus assume f ≥ 0 in what follows and divide
the proof in three parts.

Boundedness of u0. The integrability of f already implies that u0 ∈ L∞loc(RN ), see [18, Chapter
7]. Also, since u0 solves

−∆u0 + c2−q
2 uq−1

0 = f,

it is the unique minimizer of the functional

J̃p,f (u) =
1

2

∫
RN
|∇u|2 dx+

c2−q
2

q

∫
RN
|u|q dx−

∫
RN

f u dx,

as well. Let M > 0, by testing the minimality of u0 against ϕM = min{u0,M}, we get

J̃p,f (ϕM )− J̃p,f (u0) ≤ c2−q
2

q

∫
{u0>M}

M q dx− c2−q
2

q

∫
{u0>M}

uq0 dx+

∫
{u0>M}

f (u0 −M) dx

= −c
2−q
2

q

∫
{u0>M}

(uq0 −M
q) dx+

∫
RN

f (u0 −M)+ dx.

We then observe that

uq0 −M
q ≥ qM q−1 (u0 −M).

If we take

M = max

{
‖u0‖L∞(BR),

(
cq−2

2 C R−α
)1/(q−1)

}
,

then we have

{u0 > M} ⊂ {x : |x| ≥ R},
so that

f(x) ≤ C |x|−α ≤ C R−α ≤ c2−q
2 M q−1, on {u0 > M}.

In conclusion, by using the choice of M and the decay of f , we get

J̃p,f (ϕM )− J̃p,f (u0) ≤
∫
RN

(
f − c2−q

2 M q−1
)

(u0 −M)+ dx ≤ 0.

By uniqueness of the minimizer of u0 we get that ϕM = u0 and thus u0 ≤M in RN .

Comparison. In order to prove the second assertion, we start observing that α > (N + 2)/2
guarantees

h(x) =
(
1 + |x|2

)−α/2 ∈ L(2∗)′(RN ) ⊂W−1,2(RN ),

thus a function w minimizing J exists, is unique and radially decreasing. Moreover, it solves

−∆w + c2−q
2 wq−1 = h, in RN .

The rescaled function

wt(x) = t2/(2−q)w
(x
t

)
, t > 0,

then solves

−∆wt + c2−q
2 wq−1

t = ht, where ht(x) = t2 (q−1)/(2−q) h
(x
t

)
.

Since by the first part of the proof u0 is bounded and wt1 ≥ wt0 for t1 ≥ t0, we can find a T0

sufficiently large such that

(A.4) wt(x) ≥ u0(x), for |x| ≤ R and t ≥ T0.
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In addition, if we define

T1 = max
{
R, (2α/2C R−α)(2−q)/(2 q−2)

}
,

by hypothesis on f we get3

(A.5) ht(x) =
t

2 q−2
2−q +α

(t2 + |x|2)α/2
≥ t

2 q−2
2−q Rα

2α/2 |x|α
≥ C

|x|α
≥ f(x), for |x| > R and t ≥ T1.

We now define T = max{T0, T1} and test the minimality of u0 against the function ψT =
min{u0, wT }. Thus we get

0 ≥ J̃p,f (u0)− J̃p,f (ψT ) ≥ 1

2

∫
{wT<u0}

(
|∇u0|2 − |∇wT |2

)
dx

+
c2−q

2

q

∫
{wT<u0}

(
uq0 − w

q
T

)
dx

−
∫
{wT<u0}

f (u0 − wT ) dx.

By using the convexity of the functions involved and the equation solved by wT , we thus get

0 ≥
∫
RN
〈∇wT ,∇(u0 − wT )+〉 dx+ c2−q

2

∫
RN

wq−1
T (u0 − wT )+ dx

−
∫
RN

f (u0 − wT )+ dx =

∫
RN

(hT − f) (u0 − wT )+ dx.

By combining (A.4) and (A.5), we have

hT (x) ≥ f(x), on {u0 > wT },

thus we would obtain that ψT is a minimizer of J̃p,f . By uniqueness, ψT = u0 and thus (A.2)
holds true.

Decay estimate for u0. Finally, the estimate (A.3) simply follows from (A.2) and Lemma A.3
below, applied to the rescaled function wT . �

Remark A.2. A different way to compare u0 with a radial function and obtain (A.3) could be
that of using symmetrization techniques. More precisely, one could look at the radial solution
of the symmetrized problem

−∆v + c2−q
2 vq−1 = f∗,

where f∗ denotes the Schwarz rearrangement of f (see [21, Chapter 2] for the relevant defini-
tion). There is a huge literature on results which permit to compare u∗0 and v (see for example

[1, 26]), but the presence of the nonlinear term c2−q
2 vq−1 complicates the task. An interest-

ing result covering this case is contained in the recent paper [19] by Hamel and Russ, which
however deals with the case of a bounded domain Ω. Since it is not clear whether this strategy
could work or not, we decided to take a different path, which just uses the minimality of u0.
We also refer to the related discussion in [27, Sections 5.2 and 5.3].

Lemma A.3 (Sharp decay estimate). Let N ≥ 3, 1 < q ≤ 2 and α > (N+2)/2. Let us suppose

that u ∈W 1,2
0 (RN ) ∩ Lq(RN ) is a smooth positive radial function verifying

−∆u+ a uq−1 ≤ b |x|−α, for |x| ≥ R,

3For the first inequality, we just use that for x, t ≥ R we have(
1 +
|x|2

t2

)α
2

≤
(

1 +
|x|2

R2

)α
2

≤ 2α/2
|x|α

Rα
.
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for some a,R > 0 and b ≥ 0. Then there exists a constant C > 0 depending on α, q,R, a, ‖u‖
W 1,2

0 (RN )

and ‖u‖Lq(RN ) such that

(A.6) 0 ≤ u(x) ≤ C |x|−α/(q−1), for |x| � 1.

Proof. We divide the proof in two parts: in the first we prove that if

−∆u+ a uq−1 ≤ b |x|−γ , |x| ≥ R,
for γ > (N + 2)/2, then the following weaker decay estimate holds

(A.7) 0 ≤ u(x) ≤ Cε |x|−γ+ε, for |x| � 1,

for every ε > 0. Then we will get (A.6) by using a contradiction argument and a suitable
maximum principle.

Part 1: weak decay. We first observe that Lemma A.5 below already implies that

u(%) . %−β0 , where β0 = (N − 1)
2

2 + q
.

If γ ≤ β0, then (A.7) holds and there is nothing to prove. We can thus assume that γ > β0.
We are going to prove (A.7) by using a recursive argument, namely we will prove the following
implication:

(A.8) |u(%)| ≤ c %−β, for % > r0 and β ≥ β0 =⇒ |u(%)| ≤ c′ %−
γ+β

2 , for % > r′0.

By starting from β = β0 and iterating a finite number of times (A.8), we will get the desired
result. Indeed, observe that since γ > β0, the sequence

βi+1 =
γ + βi

2

is monotone increasing and converges to γ.
To prove (A.8) we adapt a classical argument that can be found for example in [3, Lemma 2],

but some care is needed in order to deal with the non-autonomous term. Also, for notational
simplicity we give the proof just for a = b = 1. Then by hypothesis we have that u verifies

u′′(%) +
N − 1

%
u′(%)− u(%)q−1 ≥ −%−γ , % ≥ R.

The function v(%) = %(N−1)/2 u(%) verifies

v′′ ≥
[
CN
%2

+ (u+ 1)q−2

]
v − %

N−1
2
−γ , % ≥ R.

We then make the further substitution w = v2

w′′

2
≥ (v′)2 + w

[
CN
%2

+ (1 + u)q−2

]
− %

N−1
2
−γ √w, % ≥ R.

As we already know that u→ 0 as %→ 0, we have

CN
%2

+ (1 + u)q−2 ≥ m

2
, % ≥ R,

where m > 0 is a suitable constant. Thus we obtain that w verifies

(A.9) w′′ −mw ≥ −2 %
N−1

2
−γ √w, % ≥ R.

We then set
z(%) = e−

√
m%

(
w′(%) +

√
mw(%)

)
, % > R,

thus we get

z′(%) = e−
√
m%

(
w′′(%)−mw(%)

)
≥ −2 e−

√
m% %

N−1
2
−γ √w, % > R.

where we used (A.9). In order to prove (A.8), we assume that

|u(%)| ≤ c %−β, % > r0 ≥ R,
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for β ≥ β0, then by recalling that w = %N−1 u2 we get√
w(%) ≤ c %

N−1
2
−β, % > r0.

Thus for z′ we can infer

(A.10) z′(%) ≥ −c e−
√
m% %N−1−γ−β, % > r0,

Let us now take the (negative) function η defined by

η(%) = −c
∫ +∞

%

[
e−
√
ms sN−1−γ−β

]
ds, % > r0.

Observe that η is strictly increasing and η goes to 0 as % goes to ∞. Then from (A.10) we get

z′(%) ≥ −c e−
√
m% %N−1−γ−β = −η′(%), % > r0,

that is z+ η is non decreasing on (r0,+∞). Let us suppose that there exists r1 > r0 such that

z(r1) + η(r1) > 0,

then by monotoncitiy of z + η we obtain

e
√
m%
(
z(%) + η(%)

)
≥ e
√
m%
(
z(r1) + η(r1)

)
> 0, % > r1.

The previous gives a contradiction, since the right-hand side is not integrable on (r1,+∞),
while the left-hand side is. Indeed, observe that4

e
√
m% z(%) = w′(%) +

√
mw(%) ∈ L1((r1,+∞)),

and e
√
m% η is integrable at infinity by construction, since

(A.11) e
√
m% η(%) '

∫ +∞

%

[
e−
√
ms sN−1−γ−β

]
ds

e−
√
m%

' %N−1−γ−β,

and the latter is integrable on (r1,+∞) thanks to the fact that γ > (N + 2)/2 and β ≥ β0.
From the previous argument, we get

z(%) ≤ −η(%), % > r0,

that is(
e
√
m%w(%)

)′
= e
√
m%
(
w′(%) +

√
mw(%)

)
= e2

√
m% z(%) ≤ −e2

√
m% η(%), % > r0.

This in turn implies

0 ≤ w(%) ≤ e−
√
m%

[
C −

∫ %

R
e2
√
ms η(s) ds

]
, % > r0.

By recalling the definition of η, we get

e−
√
m%

∫ %

R
e2
√
ms η(s) ds ' e2

√
m% η(%)

e
√
m%

' e
√
m% η(%) ' %N−1−γ−β, %� 1,

thanks to (A.11). This finally implies the following decay of w at infinity

w(%) ≤ C %N−1−γ−β, %� 1,

and by going back to u, we can finally infer

u(%) =
√
w %

1−N
2 ≤

√
C %

1−N
2 %

N−1
2
− γ

2
−β

2 =
√
C %−

γ+β
2 , %� 1.

This concludes the proof of (A.8) and thus of (A.7), as already explained.

4We have that w = %N−1 u2 which is integrable near ∞ since u ∈ W 1,2
0 (RN ) ∩ Lq(RN ) ⊂ L2(RN ). On the

other hand, w′(%) = 2 v(%) v′(%), with

v(%) =
√

w(%) ∈ L2((r1,+∞)),

and

|v′(%)| . %
N−3

2 |u(%)|+ %
N−1

2 |u′(%)| ∈ L2((r1,+∞)).
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Part 2: sharp decay. We now prove (A.6). Let us assume by contradiction that u verifies

(A.12) lim
|x|→∞

u(x) |x|α/(q−1) = +∞.

This implies that for every ε > 0 there exists a radius Rε such that

|x|−α < εu(x)q−1, |x| ≥ Rε.

By taking ε = a/2, we thus get that u verifies

−∆u+
a

2
uq−1 ≤ 0, |x| ≥ Rε.

Thus by (A.7) we get that u = o(|x|−γ) for every γ > 0, as |x| goes to ∞. This clearly
contradicts (A.12), thus

0 ≤ lim inf
|x|→∞

u(x) |x|α/(q−1) < +∞.

This implies that there exists a sequence {rk}k∈N of radii converging to ∞ and a constant
A > 0 such that

u(x) ≤ A |x|−α/(q−1), for k ∈ N and |x| = rk.

We now take ũ(x) = Ã |x|−α/(q−1), where Ã ≥ A is a constant large enough such that there

exists a radius R̃� 1 for which

−∆ũ+ a ũq−1 ≥ b |x|−α, for |x| ≥ R̃.

We take k0 = min{k : rk ≥ R̃}, then we claim that

(A.13) u(x) ≤ ũ(x), for rk ≤ |x| ≤ rk+1 and k ≥ k0.

If (A.13) were not true, there would exist a radius rk such that

ũ(y)− u(y) := min
rk≤|x|≤rk+1

(
ũ(x)− u(x)

)
< 0.

Since by construction we have

0 ≤ ũ(x)− u(x) for |x| = rk and 0 ≤ ũ(x)− u(x) for |x| = rk+1,

then y would be an interior minimum point of ũ − u. By using this and the differential
inequalities verified by u and ũ, we would get

0 ≤ ∆ũ(y)−∆u(y) ≤ a
(
ũ(y)q−1 − u(y)q−1

)
< 0,

thanks to the strict monotonicity of t 7→ tq−1. This gives the desired contradiction, thus (A.13)
holds true and the decay estimate on u is proved. �

Remark A.4. Observe that the last part of the previous proof also shows that estimate (A.6)
is the best possible.

In the previous proof we used the following result, which is essentially due to Strauss, see
[24, Radial Lemma 1]. The statement is slightly more general (the original case corresponds to
q = 2), the proof just relies upon Hölder inequality.

Lemma A.5 (Strauss lemma). Let N ≥ 2 and u ∈ W 1,2
0 (RN ) ∩ Lq(RN ) be a radial function,

where 0 < q <∞. Then we have

(A.14) |u(x)|2+q ≤ Sq,N |x|−2 (N−1)

(∫
RN
|∇u|2 dx

) (∫
RN
|u|q dx

)
, x ∈ RN ,

where

Sq,N =

(
1

N ωN

2 + q

2

)2

and ωN is the measure of the N -dimensional ball of radius 1.
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Proof. Let u ∈ C∞0 (RN ) be a radial function, for every p > 1 we have (with a small abuse of
notation)

|u(%)|p = −
∫ +∞

%

d

dt
|u(t)|p dt = −p

∫ +∞

%
u′(t) |u(t)|p−2 u(t) dt, % > 0.

By taking p = (2 + q)/2, we thus get

|u(%)|(2+q)/2 ≤ 2 + q

2

∫ +∞

%
|u′(t)| |u(t)|q/2 dt

≤ 2 + q

2
%1−N

∫ +∞

%

(
|u′(t)| t(N−1)/2

) (
|u(t)|q/2 t(N−1)/2

)
dt, % > 0.

We now use Hölder inequality, then for every % > 0

(A.15) |u(%)|(2+q)/2 ≤ 2 + q

2
%1−N

(∫ +∞

%
|u′(t)|2 tN−1 dt

)1/2 (∫ +∞

%
|u(t)|q tN−1 dt

)1/2

.

By noticing that for a radial function(∫
RN
|∇u|2 dx

)1/2

=
√
N ωN

(∫ +∞

0
|u′(t)|2 tN−1 dt

)1/2

,

and (∫
RN
|u|q dx

)1/q

= (N ωN )1/q

(∫ +∞

0
|u(t)|q tN−1 dt

)1/q

from (A.15) we finally get (A.14) for smooth functions. The inequality for u ∈ W 1,2
0 (RN ) ∩

Lq(RN ) is obtained by a standard density argument. �
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