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This review paper covers an overview of air pollution-related disease burden

in China and a literature review on the previous studies which have recently

adopted a mathematical modeling approach to demonstrate the relative risk

(RR) of air pollution-related disease burden. The associations between air

pollution and disease burden have been explored in the previous studies.

Therefore, it is necessary to quantify the impact of long-term exposure to

ambient air pollution by using a suitable mathematical model. The most

commonway of estimating the health risk attributable to air pollution exposure

in a population is by employing a concentration-response function, which

is often based on the estimation of a RR model. As most of the regions in

China are experiencing rapid urbanization and industrialization, the resulting

high ambient air pollution is influencing more residents, which also increases

the disease burden in the population. The existing RR models, including the

integrated exposure-response (IER) model and the global exposure mortality

model (GEMM), are critically reviewed to provide an understanding of the

current status of mathematical modeling in the air pollution-related health

risk assessment. The performances of di�erent RR models in the mortality

estimation of disease are also studied and compared in this paper. Furthermore,

the limitations of the existing RR models are pointed out and discussed.

Consequently, there is a need to develop a more suitable RR model to

accurately estimate the disease burden attributable to air pollution in China,

which contributes to one of the key steps in the health risk assessment. By using

an updated RR model in the health risk assessment, the estimated mortality

risk due to the impacts of environment such as air pollution and seasonal

temperature variation could provide a more realistic and reliable information

regarding the mortality data of the region, which would help the regional and

national policymakers for intensifying their e�orts on the improvement of air

quality and the management of air pollution-related disease burden.
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Air pollution-related disease burden
in China

Air pollution

Air pollution is a global health hazard, which is recognized

as a major global concern. Exposure to ambient air pollution has

been linked with an increased risk of morbidity and mortality,

as well as is a predominant factor toward global disease burden

(1). According to the Global Burden of Disease (GBD) study

2015, China was ranked among the world’s 10 most populous

countries for its mortality rate due to ambient air pollution (2).

The GBD study 2015 also estimated that 1.1 million people who

die prematurely in China and 21.8 million disability-adjusted

life years (DALYs) attributable to ambient air pollution (2). As

China has experienced rapid economic growth over the past

few decades, the levels of energy consumption, industrial waste,

motor vehicle usage, and urban development have all increased,

which contribute toward a dramatically increase in ambient air

pollution levels. The increase of population in the country also

requires a higher level of energy consumption where coal is

the primary energy utilized, thus exacerbating local ambient air

quality (3).

The impact of air pollution on the disease burden in China

due to industrialization, urbanization, and rapid economic

growth in the country have been mentioned and studied over

the past two decades. Furthermore, it is necessary to mention

the economic burden that is linked to the disease burden caused

by air pollution in China. In 2016, the economic loss caused by

air pollution-related disease burden was estimated to be 101.39

billion US dollar, contributing to 0.91% of the total GDP in

China (4).

The six major ambient air pollutants identified by the China

National Ambient Air Quality Standards (GB3095-2012) and

most of other countries in the world, which include particulate

matter with aerodynamic diameter smaller than 2.5µm (PM2.5),

particulate matter with aerodynamic diameter smaller than

10µm(PM10), carbonmonoxide (CO), nitrogen dioxide (NO2),

sulfur dioxide (SO2), and ground-level ozone (O3), can a

potential hazard to human health. In China, PM2.5 is commonly

considered as themain contributor to the local Air Quality Index

value (5) and the major pollutant in most regions (6). However,

Abbreviations: AIC, Akaike information criteria; ALRI, acute lower

respiratory infection; BIC, Bayesian information criteria; COPD, chronic

obstructive pulmonary disease; DALY, disability-adjusted life year; GBD,

global burden of disease; GEMM, global exposure mortality model;

IER, Integrated exposure-response; IHD, ischemic heart disease; LC,

lung cancer; LL, log-linear; LRI, lower respiratory infections; NCD, non-

communicable diseases; NLP, non-linear power law; PM, particulate

matter; TBL, tracheal, bronchus and lung; VOC, volatile organic

compound.

other ambient air pollutants could potentially affect the human

health when a higher exposure level is reached.

Particulate matter (PM2.5 and PM10)

Particulate matter (PM) is a complex heterogeneous mixture

of solid and liquid particles suspended in the air, varying from a

few nm to tens of µm in sizes (7). The components in ambient

PM can be vary across different regions or emission sources,

but most of them may include carbon, sulfates, nitrates, trace

elements, and mist. The source of PMmixtures can be identified

as primary emission or secondary formation processes, for

example, power plant, oil refineries, residential fuel combustion

and construction (7). Airborne PMhas received a lot of attention

in the last few decades as they can pose the greatest risk to

health. They are commonly divided into PM2.5 (fine particle

that can penetrate gas-exchange area of the lung) and PM10

(coarse particle that can penetrate the lower respiratory system)

according to their particle size for the research analysis and their

independent effects on health outcomes (8).

According to the GBD study 2010, it was reported that

exposure to ambient PM2.5 could increase the risk of disease

outcomes such as lower respiratory infections (LRI), trachea,

bronchus, and lung (TBL) cancers, cerebrovascular disease,

and COPD (9). The exposure to ambient PM2.5 in different

regions was measured and collected using different methods,

including surface monitor measurements, aerosol optical depth

from satellites, and TM5 global atmospheric chemistry transport

model (9). Furthermore, the GBD study 2010 has reported

that ambient PM pollution contributed to 46,732 thousand and

29,431 thousand global DALYs in male and female populations,

respectively (9), whereas it contributed to 16,068 thousand

and 9,160 thousand DALYs in male and female populations,

respectively, in China (10). The GBD study 2015 has showed

that all mortalities related to global ambient PM pollution have

increased from 3,934 thousand cases in 2005 to 4,241 thousand

cases in 2015, with a total of 7.8% increase over the past 10

years (11). The GBD study 2019 revealed that one of the largest

increases in risk exposure from 2010 to 2019 was ambient PM

pollution (12).

Gaseous pollutants (CO, NO2, SO2, and O3)

The most common gaseous pollutants in ambient air are

carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide

(SO2), and ozone (O3). Although NO2 has a reddish-brown

color, most of the gaseous pollutants are colorless and invisible,

especially when they appear in ambient air. The anthropogenic

emission of the gaseous pollutants is often linked to the human

activities involved in industrialization and urbanization. Each of

the gaseous pollutants has its unique chemical characteristics, as

well as different harmful impacts on human health.
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Carbon monoxide (CO), which is formed during the

incomplete combustion of carbonaceous matter, has been

recognized as a chemical by-product of industrialization, for

example automobile exhaust and industrial processes that burn

fossil fuels (13). CO is a colorless, odorless, and tasteless gas

that can be harmful to human health at high concentration

levels in ambient air. When a person inhales CO, it can

easily bind with hemoglobin to form carboxyhemoglobin, thus

resulting in a reduction of oxygen carrying capacity in the

bloodstream (14). Eventually, the person could experience

neurological symptoms of CO poisoning due to the high level

of carboxyhemoglobin such as headache, dizziness, nausea, and

confusion (14). In addition, the new studies also revealed that

exposure to ambient CO is associated with increased risks of

adverse health outcomes such as cardiovascular and respiratory

disease mortality, neurocognitive impairment, and behavioral

disorders in children (15–18).

Nitrogen dioxide (NO2) is commonly emitted from the

anthropogenic combustion processes such as power plants

and traffic sources in urban area (19). NO2 emissions may

interfere with the formation of other air pollutants such

as particulate matter and ozone (20). Previous study also

showed that a short-term exposure to NO2 is linked to the

increased risk of respiratory mortality or morbidity including

respiratory inflammation and lung function impairment (21).

Furthermore, it also suggested that NO2 exposure might be

associated with total mortality and cause-specific mortality due

to cardiorespiratory diseases (22).

Sulfur dioxide (SO2) is an irritant gas pollutant and

bronchoconstrictor, which can adversely affect the respiratory

system and lead to an increased risk of mortality (23). With the

characteristics of acidifying effect and high reactivity of SO2, it

can easily react with atmospheric rain to generate weak sulfuric

acid, which is a key component of acid rain, thus aggravating

the effect of the pollution. In addition, SO2 can accumulate in

the atmosphere for longer period and can be spread to different

locations (24). The largest contribution of SO2 emission is

mainly due to human activity, especially from energetic sector

such as power stations and combustion plants.

Ground-level ozone (O3), also known as tropospheric

ozone, is one of the six criteria air pollutants prescribed by China

National Ambient Air Quality Standards. O3 is a secondary

pollutant which is generated from a series of complex reactions

between carbon monoxide (CO), methane (CH4), nitrogen

oxides (NOX) or other volatile organic compounds (VOCs) in

the atmosphere in the presence of ultraviolent radiation (8, 25).

Most of the CH4, NOX, and VOCs pollutants are emitted from

the industrial activities and urbanization process, especially in

the densely populated cities in China due to the high energy

consumption required (25). The emission of O3 pollutant is

considered as photochemical process, thus typically occurring

during the warm seasons and peaks in the daytime (26). O3

pollutant is a potential public health threat as recent studies have

revealed that the exposure to O3 is associated with the risk of

asthma, reduced lung function, and respiratory diseases (27–29).

According to the GBD study 2010, ambient O3 pollution

has caused ∼1,440 thousand and 1,016 thousand global DALYs

in male and female populations, respectively (9), whereas it

caused ∼400 thousand and 250 thousand DALYs in male and

female populations, respectively, in China (10). The GBD study

2015 showed that COPD mortality related to global ambient O3

pollution has increased from 207 thousand cases in 2005 to 254

thousand cases in 2015, with a total of 22.7% increase over the

past 10 years (11). Currently, the GBD studies do not include

CO, NO2, and SO2 as the exposure to ambient air pollution,

which might be due to the lack of suitable mathematical models

and exposure data in quantifying the associations between these

pollutants and disease outcome.

Meteorological variables

Most of the ambient air pollutions are contributed by the

local emission sources such as vehicle emissions and open

combustion. However, other than emission factors, dispersion

factors which mainly include meteorological variables such

as wind speed and humidity could also significantly affect

the spreading of air pollutants in ambient air (30). Adverse

meteorological conditions could exacerbate the effect of regional

pollution through both spatial and temporal variations, which

may also increase the exposure period of harmful pollutants and

contribute to an increased disease burden due to air pollution.

Temperature

In general, air pollutants are negatively associated with

temperature, except for O3 concentration level which is

positively correlated to temperature (31, 32). O3 is a secondary

pollutant generated by a series of photochemical reactions

between precursors such as NO2 and VOCs in the atmosphere.

Its concentration level is predominantly affected by both

precursor sources and meteorological variables such as

sunlight intensity, temperature, and humidity. High ambient

temperatures are often linked with noon period in a day and

summer season in a year, whereas low ambient temperatures are

linked with midnight period and winter season. Previous studies

have shown that both high temperatures during the daytime,

especially during the period of 14:00–17:00, and during the

warm season, particularly from May to October, could lead to

the peak O3 concentration level, which most likely exacerbates

the ozone pollution (33).

Researchers have recently gained interests in assessing the

influence of temperature on disease burden. The evidence

has shown that both low and high temperatures could lead

to decrements in pulmonary function, particularly in peak

expiratory flow (PEF) test among COPD patients (34). Another
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study conducted in Tianjin pointed out a U-shaped association

between temperature and mortality, which suggested that

both extreme low and high temperatures increase the risk of

mortality (35). Furthermore, temperature and humidity are

often considered as the confounding factors in the stage of

model development, which need to be carefully adjusted in the

previous studies (36, 37). The prediction accuracy of the model

can be significantly improved by considering the influence

of meteorological variables such as temperature and relative

humidity (38, 39). Furthermore, a meta-analysis reported

that the respiratory mortalities increased by 0.6 and 2.1%,

respectively, for each 10 µg/m3 increase in PM10 when PM10

was modified by low and high temperatures (40). Similarly, a

study using the data of eight Chinese cities showed that 1.79%

increase in respiratory mortality was observed for a 10 µg/m3

increase in PM10 in the period of high temperature (41).

The risk factors of both high and low non-optimal

temperatures were first added into the GBD study 2019,

contributing to 54 new pairs of risk-outcome associations.

According to the GBD study 2019, there were ∼1,010 thousand

and 946 thousand mortalities in males and females, respectively,

which were caused by the non-optimal temperatures in ambient

air (12). Furthermore, the low non-optimal temperature became

one of the leading risks in the older people aged above 75 years in

2019 (12). Previous studies also reported the association between

extreme ambient temperatures andmortality burdens, including

cardiovascular and respiratory diseases (42–44). Regions with

higher PM2.5 concentration are more susceptible to high non-

optimal temperature (45). As the exposures to ambient air

pollution and non-optimal temperatures introduce a higher

risk to disease burden, especially cardiovascular and respiratory

diseases, it is necessary to investigate how ambient temperature

modifies the effect of air pollution on the disease burden.

Relative humidity

Relative humidity is related to the level of moisture

in the atmosphere, which is closely associated with other

meteorological variables such as wind speed and precipitation.

Relative humidity is also affected by geographical factor, as most

of the high relative humidity levels are often observed at coastal

regions. Different relative humidity levels could predominantly

affect the transport, dispersion, and deposition of air pollutants,

especially for particulate matter in ambient air, which eventually

influence the exposure to air pollutants in a population.

Recent studies also incorporated relative humidity factor in

the air pollution modeling. However, the association between

air pollutants and relative humidity were not consistent, as

previous studies argued that pollutant concentration levels

were negatively correlated to relative humidity, whereas other

studies implied that they were in positive correlation to each

other. These studies showed a negative correlation between air

pollutants and relative humidity (46, 47). This was justified as

the high relative humidity levels were linked to the greater cloud

abundance and atmospheric instability, which slowed down the

photochemical processes and increase O3 depletion (46). In

addition, previous studies conducted in Chinese cities concluded

that air pollutant was positively associated with relative humidity

(48, 49). Previous study identified relative humidity as the

key factor in the PM2.5 pollution and suggested that high

humidity was likely favorable for causing air pollution with high

PM2.5 pollutant level during winters in Beijing (50). They were

mainly caused by the accumulation of water-soluble/secondary

components rather than primary species. Furthermore, it was

suggested that high PM2.5 pollutant levels during summer were

often correlated to high relative humidity levels (50).

The influences of air pollutants such as PM10, NO2, and

SO2 on the emergency COPD admissions were observed to be

stronger during the days with low humidity, which implied that

dry air may exacerbate the symptoms in a COPD patient (51).

Their study also provided the evidence in which the influences

of NO2, O3, and SO2 tend to be greater on the cool and dry

days, which further highlighted that the effect of meteorological

variables such as relative humidity could modify the impact of

air pollutants on emergency COPD admissions (51). A study

conducted in Yangtze River Delta reported that the LC mortality

increased by 6.3, 4.1, and 4.6% for each 10 µg/m3 increase

in PM2.5, PM10, and NO2 on a weekly basis, respectively, in

the period of relative humidity less than 73.7% (32). Previous

study has reported that greater effect of air pollution on allergic

rhinitis, which is one of the allergic respiratory diseases, were

observed at low temperature and high relative humidity (52).

Furthermore, decrease in lung function, as measured in forced

vital capacity (FVC) and forced expiratory volume in one

second (FEV1), was associated with increases in temperature

and relative humidity (53). Limited evidence was given to prove

the direct effect of ambient humidity on disease outcomes,

instead this might motivate researchers to investigate further on

the effect of relative humidity on the relationship between air

pollution and disease burden.

Disease burdens attributable to air
pollution and meteorological factors

The most common disease burdens associated with air

pollution are cardiovascular and respiratory diseases. According

to the latest GBD study in 2019, COPD and LC were the leading

causes of global mortality with respect to non-communicable

diseases (NCD), followed by ischemic heart disease and stroke,

making them as the major health challenges in the recent

years. Both short-term (acute) and long-term (chronic) effect

of ambient air pollution on disease burdens have been reported

using different epidemiological study designs, including time
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series, cross-sectional, case-control, cohort study, and case study

(54, 55).

Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is a

common chronic respiratory disease characterized by chronic

airway inflammation and persistent airflow limitation that

is irreversible (56). COPD is not limited to a disease, but

also a group of respiratory diseases that includes chronic

bronchitis, emphysema, bronchiolitis, and small airways

disease (56). However, other specific causes of airflow

obstructions, for example, cystic fibrosis, bronchiectasis, and

bronchiolitis obliterans, are not considered in patients with

COPD (56). COPD can be diagnosed by identifying the ratio of

postbronchodilator forced expiratory volume in the first second

(FEV1) to forced vital capacity (FVC) that is <70% (56).

The major risk factor for COPD is associated with tobacco

smoke, however, the increased risk of COPD is also related to the

environmental factors, for example air pollution, temperature,

and relative humidity (34, 57). Although the direct relationship

between air pollution exposure and COPD is less understood,

the pathogenesis of COPD is thought to be associated with

oxidative stress and airway inflammation caused by the toxic

pollutants (56, 58). Air pollutant, accompanied by other

chemical substances, could potentially induce the production

of reactive oxygen species, worsening the immune system of

COPD patient in response to the airway injury caused by

oxidative stress. Furthermore, the airway inflammation caused

by pollutants could significantly impact on the pulmonary

function in COPD patients (59). Previous study suggested

that long-term exposure to PM2.5 could lead to adverse

health effects such as decreased lung function, emphysematous

lesions, and pulmonary inflammation (60). The other possible

mechanisms caused by PM2.5 exposure, including increase

of pro-inflammatory cytokines and chemokines, systemic

inflammation, and increased risk of bacterial infections, were

discussed in the previous paper (61).

The associations between COPD and ambient air pollutants

such as PM and O3 were introduced in the GBD study 2010

(9), which also reported that both PM and O3 increase the risk

of COPD mortality. According to the GBD study 2017, there

were ∼227.8 thousand and 178.2 thousand COPD mortalities

due to the effect of ambient PM pollution and ambient

O3 pollution in China, respectively (62). Exposure to low

O3 concentration potentially causes airway inflammation and

bronchoconstriction (58). When the O3 exposure is increased,

it may cause exacerbation of COPD, impaired pulmonary

function, increased respiratory symptoms, and an increased

risk of COPD mortality (58). Previous study reviewed the

COPD attributable to air pollution and reported the significant

associations between short-term exposure to all six major

pollutants and the risk of COPD exacerbations (59). Among all

the major pollutants, the impact of O3 and NO2 have found to

be stronger on the COPD patients.

The effect of non-optimal ambient temperature could also

worsen the health condition of COPD patients, which may

therefore contribute to an additional risk factor of COPD

mortality. Cold temperature was shown to be associated

with the increased risk of COPD mortality. Facial cooling

is likely to induce bronchoconstriction for COPD patients

under cold temperature (63). Previously published papers have

also discussed the potential pathogenic mechanism of mucous

hypersecretion in the cold air-induced COPD exacerbation

(64). Conversely, the mechanism by which exposure to hot

temperature leads to the development or exacerbation of COPD

is less understood (65). However, extreme high temperature

seems to adversely impact the thermoregulation system of

the body, which may therefore increase the risk of COPD

mortality and morbidity. The risk factors of high and low non-

optimal temperatures were first included in the GBD study

2019, which has reported that the high and low non-optimal

temperatures contributed to 2.3 thousand and 175.0 thousand

COPD mortalities, respectively, in China (12).

Lung cancer

Lung cancer (LC) is characterized by the uncontrolled

growth of abnormal cells or the presence of malignant

derivatives in the lungs (66). Lung carcinogenesis is a

complex and multistep process, including tumor initiation and

progression, which also involves DNA damage and mutations

(67). When carcinogens reach to bronchial epithelial cells, it has

tendency to cause mutations in proto-oncogenes and tumor-

suppressor genes, thus resulting in a malignant transformation

(58). Carcinogens, which are generated from processes such as

industrial combustion and vehicle exhaust, are often transported

along with fine PM in the environment. They are likely to

be responsible for the increased risk of lung cancer in most

of the urban areas with high population density (68, 69).

Previous studies have shown the important connection between

air pollutants and LC. Air pollution exposure has been linked to

the generation of reactive oxygen species and oxidative damage

to DNA that might be associated with the increased risk of lung

cancer (70).

Previous study conducted a study using weight-of-evidence

approach to determine the evidence of a biologically plausible

mode of action for PM and LC (66). The evidence supported the

association between PM andDNA damage and repair, indicating

the biological plausibility of mode of action. In general, the

studies conducted so far have concluded that the exposure to PM

might induce direct DNA damage that plausibly results in the

development of lung cancer (66). Previous study analyzed the

lung cancer attributable to PM2.5 and environmental tobacco

smoke and summarized the possible mechanisms that could

explain the associations (61). Exposure to PM2.5 seems to induce
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the hypermethylation of oncogene, for example, mutation of

oncogene p53 is linked to the development of the LC (71).

Moreover, the tumor microenvironment due to PM2.5 exposure

may also lead to the development of LC by inducing various

pro-inflammatory cytokines in the lung (61).

Although the primary risk factor for the development of

LC has been shown to be associated with tobacco smoking

(68, 72, 73), only 10% of smokers develop lung cancer (67).

Additionally, LC in never-smokers was one of the common

causes of cancer mortality (61). An increased risk of LC has

been associated with other factors, for example exposure to

ambient air pollution, diet, and second-hand smoke (68, 73).

The studies conducted in China have shown that the prevalence

of smoking was decreased in both sexes from 60.6 to 51.6%

and from 4.0 to 2.9% in both males and females, respectively,

in the period of 1991–2011 (74). However, the LC mortality

rate of both sexes in China was found to have increased in

the period of 2006–2015 (73). This might imply that the other

potential factors could possibly contribute to an increased rate

of LC mortality, including the increased exposure to ambient

air pollution due to rapid industrialization and urbanization

over the past decade. Furthermore, another study analyzed

the long-term effect ambient air pollution on lung cancer and

COPD mortalities in China (75). Both long-term and short-

term exposures to air pollutants, including PM2.5, NO2, and

O3, were investigated to evaluate the significant effect of air

pollution on LC in the open literature. Most of these findings

have clearly demonstrated that an exposure to higher level of air

pollution, especially fine particulate matter, was associated with

an increased risk of LC mortality.

Relative risk model in health risk
assessment

In a health risk assessment, a relative risk (RR) model

provides the risk estimate that determines the risk of an adverse

health impact in a population exposed to higher level of ambient

air pollution as compared to that exposed to lower pollution

level. The RR model could only describe certain types of adverse

health outcome such as COPD and LCmortalities attributable to

the effect of air pollution that happened in a defined population.

The RR value of air pollution-related burden of disease was often

employed to estimate the attributable mortality, and the health

cost in the previous studies. These existing RRmodels were often

recommended to estimate the RR value of air pollution exposure

in the global burden assessment, as summarized in Table 1. The

current study focuses on the RRmodels of mortality attributable

to long-term ambient PM2.5 exposure in which its effects can

often last for a longer time such as weeks, months, or years.

The exposure-response relationships between long-term

exposure to ambient PM2.5 and cardiopulmonary and lung

cancer mortality can be estimated using the log-linear (LL)

TABLE 1 Existing RR models used for assessing burden of disease.

Exposure-response

metric

RR function and its parameters

used

Long-term

PM2.5-Cardiopulmonary

mortality and lung cancer (76)

R =
[(

x+ 1)/(xo + 1
)]β

x = pollutant concentration

xo = target or threshold concentration

of pollutant β = coefficient

Long-term PM2.5-Mortality of

stroke, IHD, COPD, and LC

and incidence of ALRI (77)

R = 1 , x < x0

R = 1+α
(

1− exp
[

−γ (x− x0)
δ
])

, x ≥ x0

x = pollutant concentration

x0 = counterfactual concentration

of pollutant α, γ , δ = coefficient

Long-term PM2.5-Mortality of

stroke, IHD, COPD, and LC

(78)

R = 1+ α × (x− xo)
β

x = pollutant concentration

xo = target or threshold concentration

of pollutant α,β = coefficient

Long-term PM2.5-Mortality of

NCD (including stroke, IHD,

COPD, and LC) and LRI (79)

R = exp

{

θ log( z
α
+1)

1+exp
{

−(z−µ)
v

}

}

z = max (0, x− x0)

x = pollutant concentration

x0 = counterfactual concentration

of pollutant θ ,α,µ, v= coefficient

scaling as indicated by Equation 1. The log-linear model was

proposed in estimating the RR to obtain a more realistic

relationship for the air pollution exposure as its slope flattens

at higher pollutant concentration. The parameter xo, expressed

as the threshold concentration of PM2.5, is assumed to be

its background concentration which is ∼5 µg/m3 and β

is a coefficient which is specific with respect to disease

outcome. There are few assumptions that need to be considered

when employing these models, for example, the shape of

the concentration-response function, the assumed threshold

concentration, and the exposure data used in the original

estimates (76).

RLL =
[(

x+ 1)/(xo + 1
)]β

(1)

Integrated exposure-response model

The use of the integrated exposure-response (IER) model

for estimating RR of PM2.5 pollutant have been proposed for

global burden of diseases, including stroke, IHD, COPD, LC in

adults, and acute lower respiratory infection (ALRI) in children

<5 years of age (77). The risk estimate was extended to higher

concentration levels which enabled the global RR estimation

over the almost entire exposure range. The IER model has been

proved to be able to describe the association between RR and

long-term exposure to PM2.5 from the four different sources:

ambient air pollution, active smoking, second-hand tobacco
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smoke, and household air pollution (77). The IER model can be

expressed by Equation 2.

RIER = 1 , x < x0

RIER = 1+ α
(

1− exp
[

−γ (x− x0)
δ
])

, x ≥ x0 (2)

where x is the exposure to ambient PM2.5. α, γ and δ are

the parameters that are estimated based on the data collected. As

one of the important parameters of RRmodel, the counterfactual

concentration of PM2.5 (x0) was often ranging from a lower

limit of 5.8 µg/m3 to an upper limit of 8.8 µg/m3 in most of

the studies. It is assumed that there is no health implication and

RIER = 1 when it is below the counterfactual concentration.

RIER is assumed to be 1 + α when pollutant level is very high.

Moreover, RIER is assumed to be 1 + αγ when concentration

equals to x0 + 1.

There were five major assumptions made when developing

the IER model in their study (77). Firstly, exposure to PM2.5 was

correlated with increased mortality from stroke, IHD, COPD,

and LC and with increased incidence of ALRI. Secondly, at

any constant exposure level, all types of combustion sources

were assumed to contribute equivalent harmful impacts which

are expressed as RR. The toxicity was only dependent on the

exposure but not on PM2.5 composition. Thirdly, the exposure-

response curve between RR and PM2.5 was not constrained

to a linear function. Fourthly, the study did not consider

the temporal pattern of exposure when developing the RR of

mortality from chronic disease. Finally, RR was developed for

each type of exposure under the condition that there was no

association between different types of exposure.

The authors have demonstrated the IER model by

comparing its predictive performance with seven other models

including the logarithm model and power model (77). The

performance of these models was assessed by analyses and

comparisons using Akaike and Bayesian information criteria

(AIC and BIC), in which a model with lower values of AIC and

BIC provided a better fit than other. Generally, the results have

indicated that the proposed IERmodel canmatch well the RR for

all the PM2.5 sources and causes of mortality, however, it does

underestimate the RRs for the association between COPD and

household air pollution. In fact, the power model can fit better

for the COPD mortality with the lowest AIC and BIC values

obtained. The authors also compared the RR estimates obtained

from the IER model with that obtained based on the Chinese

cohort for the three health outcomes (mortalities of IHD, stroke

and LC). The result, which was done by a similar calculation,

has clearly indicated that the IER model can provide reasonable

estimations of RR values in the regions with higher pollutant

level such as China (77). Nevertheless, the comparison analysis

of RR estimates using the IER model for COPD mortality

estimation in the more polluted regions was not presented and

the conclusion was unclear.

Previous studies that applied the IER model in the analysis

of ambient air pollution-related disease burden only focused on

four specific diseases, which are IHD, stroke, COPD, and LC,

because the development of the IERmodel relies to a great extent

on the available RR information of these diseases. The IERmodel

was increasingly used to estimate the attributablemortality using

the result of calculated RR. Previous study has evaluated the

global PM2.5 concentration-mortality relationships by using the

IER model outputs (80). By applying the estimated relative

risk (R), the premature mortality (M) for a specific disease

outcome in a population is measured using Equation 3, with

P and I indicating population and regional average annual

disease mortality rate (also known as baseline mortality rate),

respectively (80).

M = P × I ×

[

1−
1

R

]

(3)

Since the IER model was constructed based on mostly the

available RR information of the regions with lower pollution

level such as North America and Europe, the performance of IER

model remains uncertain in the regions with higher pollution

level such as China. Previous study conducted a comparison

analysis between the IER model and a new concentration-

response model called shape constrained health impact function

(SCHIF), which was developed by a cohort study in China (81).

The result indicated that IER model was likely to underestimate

the health impact at higher level of PM2.5 level, especially for

stroke and COPD (81). This might also imply that the IERmodel

is less suitable for the estimation of PM2.5-related disease burden

in the more polluted regions such as China.

The curve of IER model with respect to different health

outcomewas not a linear function due to the non-linear property

of the model. The shape of IER model depends on the values

of the unknown parameters, which may eventually result in

sublinear, near-linear, supra-linear, and sigmodal curves for the

association between air pollutant and mortality (77). The non-

linear property of the IER model plays an important role in

estimating the health risk caused by air pollution exposure as

the inappropriate assumption of a linear concentration-response

function up to highest observed concentration of exposure level

would generate an inappropriate estimation (76). As the IER

model might perform a less accurate estimation of RR in the

more polluted regions such as China, especially for COPD, it is

suggested to apply the long-term cohort studies for obtaining

a more accurate shape of exposure-response curve in the more

polluted regions (80).

Despite the researchers having attempted to include the

studies of high PM2.5 from other exposures such as tobacco

smoking in the IER model, the lack of cohort studies with

high ambient PM2.5 has made the IER model unfavorable in

estimating a more accurate value of RR in the more polluted

regions. Therefore, the shape of current IER model remains

unclear in the high ambient PM2.5 level, especially for COPD
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in which the IER model did not present the COPD result in

the comparative analysis with China cohort studies. In order to

produce a reasonable estimation of RR in China, it is necessary

to construct a new RRmodel which includesmore cohort studies

with higher ambient PM2.5 level.

Non-linear power law model

The non-linear power law (NLP) model, as shown in

Equation 4, was established to estimate the RR for four cause-

specific mortalities attributable to long-term ambient PM2.5

exposure such as IHD, stroke, COPD and LC (78). The two

estimated constants, α and β are expected to be unique for

different types of premature death. In their study, the parameter

xo was taken as 5.8 µg/m3 as it was the lower limit of

counterfactual concentration previously used in many studies.

There were three main assumptions made when generating the

result in their study. Firstly, RR did not change with PM2.5

composition. Secondly, there was no overlap of the premature

mortality attributable to PM2.5 exposure when calculating the

total amount of annual premature mortality due to COPD,

IHD, stroke, and LC. Thirdly, the effect of co-morbidity was

negligible on the disease-specific risk functions. Their study

also compared the estimated annual premature mortality from

ambient PM2.5 exposure in India by employing the NLP model

and the IERmodel. However, the performances of both NLP and

IER models were not clearly compared and justified in the study

(78), which may require further investigations in this research

area. In other words, the study is still inconclusive when selecting

the best exposure-response model to estimate both the RR and

its attributable mortality.

RNLP = 1+ α × (x− xo )β (4)

Another study studied the PM2.5-related burden of diseases

and its economic impact in 338 Chinese cities (4). The

premature mortality attributable to PM2.5 exposure was

estimated and compared using the IER model, the NLP model,

and the LL model in their study. Their study used the PM2.5

threshold concentration of 5.9 µg/m3 for the RR estimates.

The total premature mortality attributable to PM2.5 in China

estimated using the LL model was found to be the highest

(1.258 million), followed by those using the IER model (0.964

million) and the NLP model (0.770 million). The total mortality

attributable to PM2.5 exposure estimated by the NLP model is

lowest as compared to the other two RR models, which is 25.3%

lower than IER estimate. However, the NLP model is likely to

have a greater estimated value than the IER model for both

COPD and LC. The distribution of cause-specific mortality with

respect to total estimated mortality in the NLP model is not

consistent with the IER and LL models. High uncertainty for

premature mortality estimated by applying the NLP model was

noticed in their study. Furthermore, the application of using

different relative risk models was found to yield the uncertainty

in mortality estimation attributable to PM2.5 exposure. It should

be mentioned that these authors did not reach the conclusion in

their study what the most suitable type of RR models for China

should be (4), as it required more robust health data and cohort

study for the analysis of RR models. Nevertheless, by using the

result of mean estimate values, the NLP result was observed

within most of the uncertainty range of the IER result, but not

within that of the LL result which tends to be overestimated

especially when PM2.5 exposure is at higher level. The current

literature regarding the application of the NLP model in the

air pollution-related health burden analysis is very limited and

requires further investigation.

Global exposure mortality model

The global exposure mortality model (GEMM) was

constructed as an updated version of the log-linear (LL) model

that also captures the non-linear property and relaxes some of

the assumptionsmade when developing the IERmodel. Previous

study has studied the hazard ratio predictions and compared

it with the GBD study 2015 by using the hazard ratio model

and method of statistical inference (79). More importantly,

the authors addressed some of the limitations of previous IER

model, as well as the improvement work that was done in their

study. Firstly, there was a lack of direct evidence supporting

the performance of the IER model at higher PM2.5 exposure

level. Most of the cohort studies that studied ambient PM2.5

pollution in the previous study (77) were limited to regions

with low exposure level, which was <35 µg/m3 (2). Secondly,

the IER model applied the PM2.5 information that were

based on the exposure levels on non-ambient PM2.5 sources

such as second-hand smoking, household air pollution, and

active smoking. The assumption in which toxicity of different

sources of PM2.5 is only function of mass concentration could

contribute to an instable prediction of RR value. Thirdly, the

application of the IERmodel requires the value of counterfactual

concentration of PM2.5, which was defined as a uniform

distribution bounded by the minimum (2.4 µg/m3) and fifth

(5.9 µg/m3) percentiles of exposure levels based on the cohort

studies of relatively low concentration (2, 79). However, this

counterfactual distribution may not accurately describe the

curve of the IER model at low concentrations with the lack of

direct evidence.

To enhance the prediction of disease burden attributable

to long-term exposure to ambient PM2.5, the GEMM has been

constructed based on the estimates from 15 within-cohort

studies and 26 additional cohort studies that the association of

ambient PM2.5 and mortality was both analyzed and studied.

The 15 within-cohort studies, including the cohort studies in

China, were proven to be able to improve the generalizability of
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the relative risk model. It was also found that the assumption

which was based on the linear association between PM2.5

exposure and mortality may be relaxed for the analyses using

the 15 within cohorts. However, the study on the 26 additional

cohorts has assumed a linear relationship between PM2.5

exposure and the logarithm of the baseline hazard ratio due to

limited access to the subject level information (79). It should

be pointed out, moreover, that the within-cohort studies only

focused on non-accidental mortality, which was mostly caused

by non-communicable diseases (NCD) and lower respiratory

infections (LRI). Both non-accidental mortality (GEMM NCD

+ LRI) and sum of five cause-specific mortalities (GEMM 5-

COD) were used as the outcomes to quantify the mortality

burden attributable to ambient PM2.5 in 2015 and compared

with the estimation with the original IER model (79). A

simplified version of the GEMM can be also found in their paper,

as shown by Equation 5. Additionally, the values of unknown

parameters such as θ , α, µ, and v have been suggested in

their paper.

R = exp







θ log
( z
α + 1

)

1+ exp
{

−(z−µ)
v

}







z = max (0, x− x0) (5)

As the GEMM was recently developed, there is a growing

number of studies that have attempted to apply it for the

estimation of ambient air pollution-related disease burden.

Previous study has compared the performance of the GEMM

with the IER model and the LL model using the PM2.5

concentration in China, and estimated the attributable mortality

(82). It can be clearly seen that the estimated mortality of

GEMMNCD+ LRI is notably higher than other models, which

may imply that the GEMM is able to estimate the attributable

mortality of the diseases other than these five major diseases.

The authors demonstrated that the use of the IER model and

the GEMM produces the results of estimated 0.96 million

and 1.60 million of ambient PM2.5-attributable mortality in

China in 2015, respectively (83). By using the GEMM, it was

found that there is an average 63% higher PM2.5-attributable

mortality in China as compared to the IER model. Another

similar study (84), which has conducted the estimation of

mortality attributable to ambient PM2.5 in urban China under

the lockdown scenario due to the pandemic 2020, has reported

that a higher mortality can be obtained based on the estimation

of the GEMM as compared to the IER model. In general, a

higher estimated PM2.5-related mortality is observed in the

GEMM. This may contribute to the other NCD in which the

IER model did not capture. Another possible explanation is

the underestimation of PM2.5-related mortality in the previous

health risk assessment using the IER model, especially in the

more polluted region such as China.

However, another study commented that the highest

observed PM2.5 exposure among the cohort studies in GEMM

was only 84 µg/m3 and therefore the IER model would be more

suitable for the estimation of PM2.5-attributable mortality in

China as compared to the GEMM (85). Based on their study, the

maximum exposure limits of the 41 cohort studies considered in

the development of GEMM were ranging from 8 to 33 µg/m3,

except 41.9 µg/m3 in Asia, 49.7 µg/m3 in US, and 83.7 µg/m3

in Asia. Despite the GEMM employing all cohort studies that

have provided the RR information attributable to the ambient

PM2.5, the insufficient information of high ambient PM2.5 level

would also make the GEMMunfavorable in estimating the RR in

the regions with higher PM2.5 level such as China. Furthermore,

out of 41 cohort studies, there was only one Chinese cohort

study (86) that had included the analysis of ambient air pollution

in China mainland, which might also limit the generalizability

of the GEMM in the estimation of health impact attributable

to ambient PM2.5 in China. Therefore, it would be difficult to

conclude which the best RR model is for estimating ambient

PM2.5-attributable mortality in China based on the previous

studies. It is therefore necessary to conduct more advanced

research to further improve the performance of the RR model,

especially in the regions with higher ambient air pollution level.

Limitations of the existing relative
risk models

Most of the recent relative risk models have been related to

long-term exposure to ambient PM2.5. However, there are many

limitations involved in the existing relative risk (RR) models

when assessing the burden of disease attributable to long-term

ambient PM2.5 exposure. For example, the RR estimation using

the IER model is only applicable to PM2.5 exposure, which is

considered as the major pollutant in the assessment of health

burden. However, from the previous studies, exposure to other

pollutants such as CO, NO2, and O3 can also be linked to

adverse health outcomes (17, 19, 87). Other major pollutants

and meteorological factors such as temperature and relative

humidity should be considered during the development of air

pollution-related RR model. Both high and low non-optimal

temperatures were previously shown to be associated with the

disease burdens such as COPD (65), and their associations were

also reported in the GBD study 2019 (12, 45). Furthermore,

the associations between the meteorological factors such as

temperature and air pollution are not uncommon and reported

in the previous studies (31, 88). Therefore, it is recommended to

consider the effect of ambient temperature in the development

of RR model in the future studies.

So far, most of the RR used in the health risk estimation are

based on epidemiological studies available for a specific health

outcome. However, due to the lack of direct epidemiological

evidence, especially in the more polluted regions, it is important

to conduct the studies in other part of the world. Furthermore,

the derivation of the IER model was based on mostly the
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TABLE 2 Performance of the existing RR models in the estimation of

air pollution-related mortality in China.

Performance IER NLP GEMM

PM2.5 source Ambient air

pollution, active

smoking,

second-hand

tobacco smoke,

and household

air pollution

Ambient air

pollution

Ambient air

pollution

Disease burden Mortality of

COPD, IHD,

stroke, and LC;

Incidence of

ALRI

Mortality of

COPD, IHD,

stroke, and LC

Mortality due to

NCD+ LRI and

5-COD

(including

COPD, IHD,

stroke, LC, and

LRI)

Inclusion of

Chinese cohort

study

No No Yes

Inclusion of

meteorological

factors

No No No

estimates of active smoking and second-hand tobacco smoke

from the North American and European cohort studies (77).

This may produce potential uncertainty error for the studies

related to ambient air pollution-related health burden, as well as

the studies in other countries of the world. A recent cohort study

conducted in China has clearly indicated that the calculated risk

estimate is consistently higher than the result estimated using

the IER model (86), which has suggested that the IER model

may underestimate the RR values in the more polluted regions

in China (89).

Both IER model and GEMM were developed based on

mostly the evidence of the studies in the regions with lower

PM2.5 exposure such as North America and Europe. Although

the recently proposed GEMM has considered and included a

cohort study conducted in China mainland (86), which the

only study out of 41 cohort studies that measured the outdoor

air pollution-related health burden in the regions with low

pollutant level has beenmade, it is still insufficient to provide the

information of exposure-response curve at the high PM2.5 level.

The performance of the existing RR models in the estimation

of mortality attributable to ambient air pollution in China are

compared and summarized in Table 2. In order to provide

more reasonable RR estimation in China and other more

polluted regions in the world such as India and Pakistan, it is

necessary to develop a more advanced exposure-response model

that addresses the limitations of the existing RR models. The

improvement on the RR model would be beneficial to the future

studies if employing the concentration-response model derived

based on Chinese cohort studies (90–92).

Concluding remarks and
recapitulation

The effective estimation of ambient air pollution-related

mortality is increasingly becoming important and crucial from

perspective of improving our human life quality in the world, as

more countries are currently experiencing the industrialization

and urbanization that contribute to a more severe global air

pollution. In China, higher pollutant levels are often observed

in the more urbanized and industrialized regions such as

Yangtze River Delta. The relative risk (RR) models have been

employed in the ambient air pollution-related health risk

assessment to accurately estimate the attributable mortality

in the world, which leads to the importance of constantly

developing a more advanced RR model in quantifying the

relationship between air pollution exposure and disease burden.

Previous RR models in the ambient air pollution-related health

risk assessment such as the integrated exposure-response (IER)

model, the non-linear power law (NLP) model, and the global

exposure mortality model (GEMM) were critically reviewed

to provide a comprehensive understanding on the current

status of mathematical modeling in the ambient air pollution-

related health risk assessment. Based on the previous studies

employing the IER model and the GEMM, the most common

counterfactual level of PM2.5 exposure was found to be ranging

from 2.4 to 8.8 µg/m3. Nevertheless, further work should

be carried out to support the evidence as to whether it

is appropriate to employ the current counterfactual level in

the RR models, especially in the more polluted regions such

as China.

Furthermore, the limitations of previous RR models were

studied and summarized as follows: (1) Ambient PM2.5 is

the only ambient air pollutant of interest in the most of the

previous RR models. The previous RR models also did not

include the effect of meteorological factors such as temperature,

relative humidity, and wind speed, which were shown to have

significant impact to the transport and dispersion of air pollution

in ambient air. Both high and low non-optimal temperatures

were proven to be associated with a higher risk of mortality

such as COPD in the GBD study 2019. There is a need to

update the existing RR model by incorporating the effect of

meteorological factor such as temperature. (2) The existing

RR models, including the IER model and the GEMM, were

developed based on most of the studies that were conducted

in the regions with low ambient air pollution level such as

North American and European countries. Although the GEMM

has included a recent Chinese cohort study (86), there are

significant uncertainties attached to the shape of RR model at

higher ambient PM2.5 level and particularly to the mortality
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estimation in the health risk assessment in China. It is suggested

to employ evidence from the Chinese cohort studies when

developing a more promising RR model for the estimation of

disease burden attributable to ambient air pollution in China.

(3) Other than ambient air pollution, the development of the IER

model also relies on the information from other exposures such

as active smoking, second-hand tobacco smoke, and household

air pollution. In general, the exposure to active smoking is

exceedingly higher than the exposure to ambient air pollution,

which therefore considerably controls the shape of the exposure-

response curve at higher PM2.5 exposure. These might lead to

significant uncertainties related to the estimation of mortality

attributable to ambient air pollution and the shape of the

IER model at higher ambient PM2.5 level. It is necessary to

apply the evidence based on solely the studies of ambient

air pollution when developing a more suitable RR model. In

the future research of this aspect, one of the focuses is the

development of an advanced RR model, which incorporates the

effects of ambient PM2.5 and the meteorological factor such

as temperature, for the estimation of disease burden such as

COPD and LC mortalities in the more polluted regions such

as China.

The modeling of PM2.5-related mortality remains a

substantial challenge owning to the uncertainties and limitations

of the previous RR models. As shown in Equation 3, other

than a suitable RR model, the mortality estimation also involves

other important factors such as PM2.5 exposure, population

distribution, and baseline mortality. The difference in RR

models could contribute to a major part of uncertainties in the

estimation of mortality attributable to ambient air pollution,

which may potentially affect the policy making decision of the

health authorities. Furthermore, the estimation of health cost

related to ambient air pollution-related mortality, including

the economic loss due to disease burden, also significantly

depends on the RR model. Being one of the most important

steps in the health impact assessment, the RR model should

be aimed to provide a more realistic estimation of health

burden, which is highly relevant to air pollution-related policy

measures, especially when planning the most suitable control

strategies to achieve air pollution reduction. As China is the

largest country by population and one of the most industrialized

countries in the world, it is essential to develop a more suitable

and reliable RR model that can provide a more accurate

estimation of ambient air pollution-related disease burden in

the country.
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