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• A novel relative risk (RR) of pollutant-
temperature exposure (PTE) model is pro-
posed.

• RR is attributable to the combined effect
of ambient PM2.5 and cold temperature.

• The predictive ability of the PTE model is
validated using actual data of Ningbo city.

• The PTE model is found to be able to pro-
vide more accurate RR estimates.
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Exposures to ambient fine particulatematter (PM2.5) and cold ambient temperatures have been identified as important
risk factors in contributing towards the global mortality from chronic obstructive pulmonary disease (COPD). Despite
China currently being the country with the largest population in the world, previous relative risk (RR) models have
considered little or no information from the ambient air pollution related cohort studies in the country. This likely pro-
vides a less accurate picture of the trend in air pollution attributablemortality in the country over time. A novel relative
risk model called pollutant-temperature exposure (PTE) model is proposed to estimate the RR attributable to the com-
bined effect of air pollution and ambient temperature in a population. In this paper, the pollutant concentration-
response curve was extrapolated from the cohort studies in China, whereas the temperature response curve was ex-
tracted from a study in Yangtze River Delta (YRD) region. The performance of the PTE model was compared with
the integrated exposure-response (IER)model using the data of YRD region, which revealed that the estimated relative
risks of the PTE model were noticeably higher than the IER model during the winter season. Furthermore, the predic-
tive ability of the PTEmodel was validated using actual data of Ningbo city, which showed that the estimated RRusing
the PTE model with 1-month moving average data showed a good result with the trend of actual COPD mortality, in-
dicated by a lower root mean square error (RMSE= 0.956). By considering the combined effect of ambient air pollut-
ant and ambient temperature, the PTE model is expected to provide more accurate relative risk estimates for the
regions with high levels of ambient PM2.5 and seasonal variation of ambient temperature.
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1. Introduction

Exposure to ambient fine particulate matter (PM2.5) has been exten-
sively studied and identified as an important risk factor for mortality in
the Global Burden of Disease (GBD) studies (Lim et al., 2012; Forouzanfar
et al., 2016; Murray et al., 2020; Yin et al., 2020). Furthermore, the associ-
ation between ambient PM2.5 and ambient temperature has been analysed
in the previous study (Chung et al., 2021), which suggests that higher PM2.5

pollutant levels in the atmosphere are often linked to episodes of lower am-
bient temperature. A potential mechanism behind the association may in-
volve the temperature inversion which most likely traps the atmospheric
particulate matter (Li et al., 2015). Xu et al. (2019) reported that 93 % of
severe polluted days on which their daily PM2.5 exceeded 150 μg/m3

were related to a temperature inversion, and they often occurred during
wintertime. In the GBD study 2019, the risk factor of non-optimal temper-
ature was included for the estimation of attributable mortality for the pop-
ulation around the world (Murray et al., 2020). According to the GBD study
2019, the ambient particulate matter pollution and low non-optimal tem-
perature were ranked as the second and fifth largest contributors of chronic
pulmonary obstructive disease (COPD) mortality around the world, respec-
tively. In the previous health assessments, the risk factors of ambient air
pollution and ambient temperature were separately estimated and linked
with the COPD mortality, despite there is a potential connection between
these risk factors. However, this could lead to a less accurate risk estimation
for regions with distinct seasons and high pollutant levels.

The quantitative assessment of global health risk attributable to ambi-
ent air pollution has become more significant due to the increased level
of ambient air pollution since the era of industrialisation. Relative risk
(RR) models have been developed and updated over the past few decades
to provide a more accurate estimation of disease burden attributable to
air pollution around the world. Previous RR models employed linear or
log-linear functions for estimating the effect of air pollution (PM2.5 and
PM10 exposure) on different cause groupings for mortality such as all
cause, respiratory, and cardiopulmonary (Pope et al., 2002; Ostro et al.,
2004). However, these models could lead to a greater degree of uncertainty
in relative risk at higher pollutant levels due to the extrapolation of the
function beyond PM levels observed in study locations. The linear or log-
linear form models were found to be more appropriate to the region
with lower PM2.5 levels, for example below 50 μg/m3. The integrated
exposure-response (IER) model was established to estimate the RR of
cause-specific mortalities such as ischaemic heart disease (IHD), cerebro-
vascular disease (stroke), chronic obstructive pulmonary disease (COPD),
and lung cancer (LC), which allowed non-linear functions over the entire
global exposure range of PM2.5 (Burnett et al., 2014). The IER model also
utilised the information from various PM2.5 sources other than ambient
air pollution such as second-hand tobacco smoke (SHS), household air pol-
lution (HAP), and active smoking (AS). The development of IER model re-
lied on the RR information based on the studies in North America and
European countries, which often resulted in a less accurate estimation in
Asian countries such as India and China (Pope et al., 2018). A recent RR
model called global exposuremortalitymodel (GEMM) employed the infor-
mation of outdoor air pollution based on the 41 cohort studies which were
mostly conducted in North America and European countries (Burnett et al.,
2018). The GEMM relaxed many assumptions of the IER model and in-
cluded a Chinese cohort study conducted by Yin et al. (2017) to expand
the range of PM2.5 exposure in their study. Furthermore, the association
of PM2.5-mortality in each cohort study has been described by a hazard
ratio function which can capture a variety of shapes such as linear, log-
linear, and threshold (Nasari et al., 2016; Burnett et al., 2018). These
made the GEMM less uncertain in estimating the relative risk of
noncommunicable disease (NCD) and lower respiratory infection (LRI) at-
tributable to ambient PM2.5. However, the GEMM did not consider other
possible risk factors contributing to the additional risk of the disease
burden.

Several identified factors may lead to a greater uncertainty in the
estimation of relative risk attributable to air pollution in China. Firstly,
2

previous models have considered little or no RR information from Chinese
cohort studies. The extrapolation of RR function using the previous models
may result in greater uncertainty in estimatingmortality risk for China. Sec-
ondly, most of the previous models tend to be more applicable to regions of
low pollutant levels, for example North America and European countries.
Thirdly, the effect of ambient temperature may significantly modify the
attributable risk of mortality due to ambient PM2.5 (Sun et al., 2015; Ji
et al., 2020) and therefore needs to be considered during the estimation
of relative risk. To address the limitations of the previous RR models, a
novel RR model called pollutant-temperature exposure (PTE) was em-
ployed in the current study to improve the estimation of mortality risk at-
tributable to the combined effect of ambient PM2.5 and cold ambient
temperature. The objectives of this study are (1) to establish a novel relative
risk model called PTE model which takes into considerations the combined
effect of ambient PM2.5 and cold ambient temperature; (2) to evaluate the
performance of the PTE model using data of Chinese cities; (3) to improve
the estimation of relative risk of COPD mortality using the PTE model.

2. Methodology

2.1. Key assumptions in the model

In this study, the relative risk (RR) model of COPD mortality attribut-
able to the combined effect of ambient PM2.5 and cold ambient temperature
is proposed and developed based on the following assumptions:

(1) The combined effect of risk factors is multiplicative. Exposures to
higher PM2.5 concentration and lower ambient temperature are associ-
ated with a higher mortality risk of COPD. Ambient particulate matter
and low non-optimal ambient temperature have been identified as risk
factors of COPDmortality in the GBD study 2019 (Murray et al., 2020).

(2) The source of PM2.5 is only restricted to ambient air pollution (AAP).
Although other PM2.5-related risk factors such as HAP, SHS, and AS
have been associated with increased attributable mortality, it is advis-
able to only consider a specific source in the model because the toxicity
and exposure pattern of those sources may differ from each other.

(3) The individual associations between PM2.5 exposure and RRof attribut-
ablemortality, and between exposure to low ambient temperatures and
RR of attributable mortality are not limited to linear form of function
(Burnett et al., 2014).

(4) The effects of hot ambient temperature on attributable mortality are
relatively insignificant as compared to cold ambient temperature
(Gasparrini et al., 2015; Chen et al., 2018; Liu et al., 2020; Murray
et al., 2020; Gasparrini et al., 2022). Gasparrini et al. (2015) reported
that the attributable mortality caused by cold ambient temperature
(7.29 %) was greater than by hot ambient temperature (0.42 %) in
all study regions, including China. Therefore, the estimation of relative
risk using the PTE model only considers the effects of cold ambient
temperatures that are lower than the selected reference temperature.

2.2. Relative risk model – PTE model

The pollutant-temperature exposure (PTE) model is regarded as a mod-
ified version of the integrated exposure-response (IER) model, which con-
siders the effects of both ambient PM2.5 and cold ambient temperature on
disease burden, for instance COPD mortality. The PTE model describes
the relative risk of disease burden across awide range of ambient PM2.5 pol-
lutant concentration and cold ambient temperature in any given popula-
tion. The mathematical form of the PTE model is shown by Eqs. (1) to (3):

RPTE ¼ 1, for C ≤ C0 (1)

RPTE ¼ 1þ α 1−e
−γ C

C0
−1

� �δ0
@

1
A; for C > C0 and T≥Tr ð2Þ
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where C represents the ambient PM2.5 exposure in the unit of μg/m3 and T
represents the ambient temperature in the unit of °C. C0 is the counterfac-
tual concentration of PM2.5 and Tr is the reference temperature of any
given location in which there are no harmful impacts only when T ≥ Tr
and C ≤ C0. Under the condition of T ≥ Tr, RR of attributable mortality
only depends on the effect of ambient PM2.5 exposure, as described by
Eq. (2). The expression of the PTE model under the condition T ≥ Tr
looks similar with the previous IER model, as shown in Eq. (4). Neverthe-
less, the PTE model consists of 5 coefficients, which determines the shape
of each risk-outcome association. γ and δ coefficients affect the model be-
haviour based on the effect of ambient PM2.5 exposure, β and θ coefficients
control the curvature with respect to the effect of temperature exposure,
and α coefficient adjusts the combined effect of ambient PM2.5 and temper-
ature on the PTE model.

RIER ¼ 1þ α 1−e−γ C−C0ð Þδ
� �

ð4Þ

The counterfactual concentration of PM2.5 was assumed to be 5 μg/m3

in this study, which is within the range of uniform uncertainty distribution
(2.4–8.8 μg/m3) employed by most of the previous studies. The reference
temperature in the PTE model is specific to geographical location and
type of disease burden. The reference temperature of COPD mortality in
Yangtze River Delta was selected as 25 °C. All the unknown coefficients
(α, β, γ, δ, θ) in the PTE model were estimated based on the actual data of
pollutant concentration, temperature, and mortality in the study region.

In establishing the PTE model, all the necessary information of RR esti-
mate on the cause-specific mortality across the PM2.5 exposure range were
extracted from a pooled risk estimate (Chung et al., 2022), which included
the relevant Chinese cohort studies that studied the association between
PM2.5 and COPD mortality (Wong et al., 2015; Yin et al., 2017; Yang
et al., 2018). These Chinese cohort studies employed a Cox proportional
hazards regression model and a relatively wider range of ambient PM2.5 ex-
posure over the population as compared to those studies conducted in
North America or European countries. The RR information of ambient
temperature exposure for the PTE model was also derived from a study in
Yangtze River Delta (YRD) of China, which is known as one of the most
densely populated regions in the world.

2.3. Verification and validation of relative risk model

The verification of the PTE model was performed by comparing the RR
result with the estimation of the IERmodel. The pollutant and temperature
data of Ningbo and Hangzhou from 2013 to 2017 were collected and used
in this study. The IERmodel, as represented by Eq. (4), only takes the single
effect of PM2.5 concentration when estimating the relative risk of disease
burden such as COPD mortality. The unknown coefficients (α, γ, δ) in the
IER model were estimated by using a similar method to ensure a reliable
comparison on the RR estimates in both PTE and IER models. To better il-
lustrate the seasonal variation of RR values predicted from the temperature
effect of the PTEmodel, themonthly average data of ambient PM2.5 concen-
tration and ambient temperature were stratified into four seasons: winter
(from December to February), spring (from March to May), summer
(from June to August), and autumn (from September to November).

The validation of the PTE model was performed by employing the ac-
tual data in YRD region of China. The data of COPD mortality in Ningbo
from 2013 to 2017 were collected and used in this study. To investigate
the variation of the combined effect of PM2.5 and temperature, the monthly
average data of ambient PM2.5 and ambient temperature in Ningbo were
used to estimate the RR using the PTE model. Furthermore, different mov-
ing average data of PM2.5 and temperature, including 0-month (m0),
1-month (m1), and 2-month (m2), were also calculated and used for the
comparison between RR estimates and actual COPD mortality data. The
3

relationships between RR estimates using different moving average data
and actual COPD mortality were plotted and analysed. Furthermore, a lin-
ear relationship between mortality and the inverse of relative risk is ob-
served, as indicated in Eq. (5):

M ¼ P� I � 1 � 1
R

� �
(5)

whereM represents the estimatedmortality. P is the study population and I
is the baselinemortality rate.R is the relative risk estimated using either the
PTE or IER models. By employing a linear regression model, the value of
root mean square error (RMSE)was used to indicate the difference between
actualmortality andfittedmortality using the PTE and IERmodels with dif-
ferent moving average data. A lower RMSE value indicates a better relative
risk model, which could predict more accurately the mortality.

2.4. Uncertainty analysis

In the PTE model, the estimates of counterfactual concentration (C0)
and reference temperature (Tr) may affect the ultimate prediction of RR
result, especially under the extreme conditions, such as low pollutant con-
centration and low ambient temperatures. Different values of the counter-
factual concentration from 3 to 7 μg/m3 were explored in the PTE model
to investigate the ability of the model to describe uncertainty in the shape
at low pollutant concentration.

The reference temperature of the PTE model is intended to be specific
for each type of disease burden and geographic location as they may re-
spond differently to the population with respect to regional ambient tem-
perature. The current study selected a reference temperature of 25 °C
based on the average value of daily ambient temperature for which the
5th percentile of COPD mortality distribution in Ningbo was observed.
This also implies that a minimum impact of ambient temperature on the
mortality risk was typically observed at the selected reference temperature.
Ma et al. (2015) employed the 75th percentile of temperature distribution
as the reference temperature in their study. Different reference tempera-
tures from 21 to 27 °C were applied to the PTE model to study the effect
of reference temperature in the resulting relative risk.

3. Results

3.1. Characteristics of the PTE model

The estimates of relative risk (RPTE) based on the combined effect of am-
bient PM2.5 concentration and ambient temperature on COPDmortality are
shown in Fig. 1. The disease-specific and location-specific PTE model al-
lows the prediction of RR that considers the modifying effect of ambient
temperature on the disease burden in the population. Furthermore, with re-
spect to pollutant effect, the RR estimates of the PTE model increase in a
supra-linear pattern with pollutant concentration, as the curves tend to flat-
ten out at high pollutant concentration when ambient temperature is not
extremely low. On the other hand, temperature effect modifies the
exposure-response curve for the RR estimation. An inverse J-shaped curve
is well observed for each constant pollutant concentration when ambient
temperature slowly decreases. This also demonstrates that the exponential
growth of the exposure-response curve at extreme low temperatures could
amplify the effect of air pollution on each type of disease burden.

Fig. 2 shows the contour plot of predicted RR values of COPD mortality
attributable to the effects of ambient PM2.5 and ambient temperature. The
counterfactual concentration of PM2.5 was chosen as 5 μg/m3 in the current
study. This also suggests that the relative risk equals 1 when the observed
pollutant concentration is less than 5 μg/m3 in the PTE model. The refer-
ence temperature of minimum COPD mortality in YRD was selected as
25 °C in the current study. This implies that the attributable relative risk
for eachmortality only relies on pollutant concentration effect when the ob-
served temperature is above the reference temperature in the PTE model.



Fig. 1. 3-Dimensional plot of predicted relative risk (RR) values for attributable
mortality of COPD due to the combined effect of ambient PM2.5 concentration
and ambient temperature.

Fig. 3. Pollutant effect of the PTEmodel byfitting it with the information of Chinese
cohort studies at annual mean temperature of 17 °C.

C.Y. Chung et al. Science of the Total Environment 858 (2023) 159634
The behaviours of the fitted PTE model with respect to pollutant effect
and temperature effect are shown in Figs. 3 and 4, respectively. Three dif-
ferent points of pollutant concentration were selected for the model fitting,
including the mean value (44.8 μg/m3), 5th percentile (17.1 μg/m3), and
95th percentile (97.3 μg/m3) of PM2.5 distribution in Ningbo across the
study period. The corresponding RR information was extracted and extrap-
olated from Chinese cohort studies (Wong et al., 2015; Yin et al., 2017;
Yang et al., 2018), which studied long-term exposure to particulate matter
on the population over 10 years. When selecting the suitable model coeffi-
cients (α, β, γ, δ, θ) of the PTE model for each type of disease burden, the
Fig. 2. Contour plots of predicted relative risk (RR) values for COPD mortality with
respect to the combined effect of ambient PM2.5 concentration and ambient
temperature.

4

pollutant concentration-response curve must fulfil the requirements of
being fitted with the actual RR values at the corresponding concentrations.
In the current study, only errors within 5% of themeasured RR valueswere
allowed in the fitting process of the PTE model, which are plotted as blue
error bars in Fig. 3. Furthermore, the selection of model coefficients also re-
lies on the temperature curve which shows the values of RR at different
temperature with respect to RR at reference temperature. In Fig. 4, RR at
reference temperature was set to 1, and relative RRs were plotted and
compared with the actual relative RR at Yangtze River Delta. The model
coefficient β controls the magnitude of amplified relative risk at lower
Fig. 4. Temperature effect of the PTE model by fitting it with the information of
YRD data at annual mean PM2.5 concentration of 44.8 μg/m3.



Fig. 5. Seasonal specific estimates of relative risk (RR) of COPDmortality by the PTEmodel and IERmodel using the data of Ningbo (left) andHangzhou (right), respectively.
(Straight line represents 1:1 association.)
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temperatures, whereas θ adjusts the degree of curvatures in the tempera-
ture curve.

3.2. Verification and validation of the PTE model

The monthly average data of pollutant and temperature in Ningbo and
Hangzhou were used for the verification of the PTE model by comparing
the RR estimates with the IERmodel. The comparison between the RR esti-
mates from the PTE and IERmodels based on the data of Ningbo andHang-
zhou were shown in Fig. 5. Each individual point represents predicted RR
value using the PTE and IER models in a monthly basis. For COPD mortal-
ity, the comparison of RR values predicted by the PTE and IER models in
each season behaved differently in both cities of Ningbo and Hangzhou.
Fig. 6. Association between RR estimates of the PTE model with different moving

5

In summer, the RR estimates were generally lower in the PTE model
when compared to the IER model. The difference in RR estimates by two
models was noticeable in winter as the PTE model tended to estimate
higher RR values. However, there were no distinct patterns for the compar-
ison of RR estimates during spring and autumn in which the change of tem-
perature profiles was more unpredictable in these seasons over the years.

The predictive performance of the PTEmodelwas comparedwith actual
COPD mortality using three different exposure measurements, including 0-
month (m0), 1-month (m1), and 2-month (m2) moving average data of
PM2.5 and ambient temperature. Figs. 6 and 7 illustrate the comparison
between RR estimates using different moving average data and actual mor-
tality of COPD in Ningbo based on the PTE and IER models, respectively.
For COPD mortality, similar trends were observed over time on both RR
average data and actual COPD mortality (red line, secondary axis) in Ningbo.



Fig. 7. Association between RR estimates of the IER model with different moving average data and actual COPD mortality (red line, secondary axis) in Ningbo.
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estimates using the PTEmodel and actualmortality, especially for the peaks
where ambient PM2.5 level was highest and ambient temperature was
lowest throughout the year. Furthermore, by observing Figs. 6 and 7, the
RR estimates of both models with 0-month (m0) moving average data
showed the least promising result when they were compared with the
actual COPD mortality data in Ningbo. This suggests that both pollutant
and temperature data in the current month are not adequate to provide
an accurate RR estimate in the current month.

The comparison of RMSE between actual mortality and fitted mortality
using the PTE and IER models is summarised in Table 1. Overall, the PTE
model using 1-month (m1) moving average data generated a better predic-
tion result, as it employed the pollutant and temperature data in both pre-
vious month and current month for the prediction of relative risk in the
current month. The result might suggest a possible exposure period for
the effect of pollutant-temperature interaction on COPD mortality to take
place. Out of all exposure data, the PTE model generally produced a better
fit with actual COPDmortality data, suggesting a better predictive ability of
relative risk as compared to the IER model. Furthermore, the result also in-
dicated that 1-month (m1) moving average data of ambient PM2.5 concen-
tration and ambient temperature also improved the PTE prediction result
with the lowest RMSE of 0.956.

3.3. Uncertainty analysis

Different counterfactual concentrations of PM2.5 were chosen to study
their potential effect on the PTE model for the uncertainty analysis.
Table 2 describes the percentage of errors between the measured and pre-
dicted RRs based on the selection of different counterfactual concentrations
in the PTEmodel. The value of counterfactual concentration affected the es-
timation of the unknown coefficients in the PTE model, which eventually
Table 1
RMSE between the actual COPDmortality data in Ningbo and the predicted mortal-
ity using the estimated RRs of the PTE and IER models.

Exposure data PTE model IER model

moving_0 (m0) 1.151 1.596
moving_1 (m1) 0.956 1.307
moving_2 (m2) 1.193 1.243
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altered the RR prediction result. For COPD mortality, the counterfactual
concentration of 5 μg/m3 was found to be a better option as it resulted in
less percentage of error on the RR information between the cohort studies
and the estimated RR values.

Additionally, using the PTE model, different reference temperatures
were employed to analyse their effect towards the estimated relative risk.
Fig. 8 displays the relative risk profiles at constant pollutant concentration
(C=44.8 μg/m3) with respect to different reference temperatures selected
in the PTE model. When the temperatures were above the selected refer-
ence temperature in the PTEmodel, the relative riskswere only attributable
to the effect of pollutant concentration, which contributed to the same
value of relative risk (R = 1.42). Fig. 9 shows the relative risk profiles
with respect to different reference temperatures selected in the PTE
model. The relative risk did not change significantly by selecting a different
reference temperature, however, it tended to decrease by selecting a lower
reference temperature.

4. Discussion

A novel relative risk (RR) model called pollutant-temperature exposure
(PTE) was developed in the current study by employing the Chinese cohort
studies that provided the evidence of ambient air pollution-related disease
burden over a wide range of ambient fine particulate matter (PM2.5) expo-
sure and ambient temperature exposure. Exposures to high level of ambient
PM2.5 and low non-optimal ambient temperature have been associated to
increased risk of attributable mortalities such as chronic obstructive pulmo-
nary disease (COPD). At a constant ambient temperature, the sublinear pol-
lutant concentration-response curve estimates the relative risk with respect
to the increased pollutant level, as shown in Fig. 3. Furthermore, at a con-
stant pollutant concentration, the inverse J-shaped temperature response
Table 2
Uncertainty analysis on the selection of different counterfactual concentra-
tions in the PTE model.

Counterfactual concentration (μg/m3) Error (%) in RR estimates

3 1.5
5 1.3
7 1.7



Fig. 8.The effect of reference temperature on the relative risk profile at the constant
pollutant concentration (C = 44.8 μg/m3).
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curve provides the relative riskwith respect to the effect of ambient temper-
ature, as shown in Fig. 4.When ambient temperature is below the reference
temperature of a particular disease, the RR attributable to pollutant expo-
sure is modified by the temperature effect in the PTE model. Conversely,
when ambient temperature is above the reference temperature, the RR
values solely depend on the pollutant exposure.

The relationship between long-term exposure to ambient PM2.5 and
COPD mortality in China was studied and analysed in the previous studies
(Wong et al., 2015; Yin et al., 2017; Yang et al., 2018), which reported a
pooled risk value of 1.12 (95 % CI: 1.11–1.13) per 10 μg/m3 increase in
PM2.5 concentration (Chung et al., 2022). The cohort study by Yin et al.
(2017) played a major role in providing the evidence of the effect of ambi-
ent PM2.5 on COPD mortality in Chinese population, as it involved a large
study population of 189,793 people over the study period more than
10 years and considered different types of exposure assessment including
satellite-based, chemical transport model, and air monitoring station. Fur-
thermore, the information of temperature response curve in Ningbo was
consistent with the previous studies (Ding et al., 2015; Yang et al., 2015),
which reported an inverse J-shaped curve for the association between
exposure to ambient temperature and relative risk at a constant PM2.5

concentration.
The PTE model serves as an advanced version of the RR model, which

addresses some of the limitations of the IER model. When integrating the
IER model, the RR information of sources other than ambient air pollution
was included, for example, active smoking, household air pollution, and
second-hand tobacco smoke (Burnett et al., 2014). These led to the assump-
tion made in the IER model, which did not consider the difference in toxic-
ity of PM2.5 based on the emission sources. In addition, the RR information
of ambient air pollution was only a small portion of the total information
constructing the IERmodel, for example, only 3 out of 15 total RR estimates
were used to represent the information of COPD mortality attributable to
the effect of ambient air pollution. In contrast, the PTE model only em-
ployed the cohort studies of ambient air pollution to generate the pollutant
exposure curve, which relaxed the assumption of toxicity of PM2.5 in differ-
ent emission sources. The PTE model also addresses the limitation of previ-
ous RRmodels, which assumes no interaction among the different exposure
sources for disease burden. The potential interaction between ambient
PM2.5 and ambient temperature could affect the estimation of actual RR,
7

whichmight therefore contribute to uncertainty in quantifying the attribut-
able mortality in the health risk assessment. By separating each risk factor
in the estimation, it is likely to inaccurately predict the total disease burden,
as the estimation ignores the combined effect of these two risk factors. In
the current study, the performance of PTE and IER models were compared
by using the monthly average data in YRD region of China, as shown in
Fig. 5. The differences in RR estimates between two models were found
to be largest during wintertime, thus implying that the PTE model is able
to estimate the RR attributable to the temperature effect. The seasonal var-
iation of pollutant concentration and temperature might play important
roles in estimating the pattern of attributable mortality over time.

One of the important implications of the PTEmodelwas that the estima-
tion of RR using 1-month moving average data for COPDmortality showed
a better result with the actual mortality data in Ningbo, as illustrated in
Fig. 6. The PTE model performed better than the IER model for predicting
the trend of actual COPD mortality over the study years in Ningbo, with
the lower RMSE observed between actual mortality and fitted mortality
using the RR estimates. Furthermore, the PTE model relied on the informa-
tion of Chinese cohort studies that only considered the effect of ambient
PM2.5 on disease burden such as COPD. The average exposure levels of am-
bient PM2.5 in the cohort studies were ranged between 33 and 46 μg/m3,
which were relatively higher than those in the IER model. The PTE model
did not require the property of the IER model that flattens out at high
PM2.5 concentration, since IER model needed to consider the additional
information of the association between IHD mortality and smoking inten-
sity in the previous study (Pope et al., 2009). Therefore, the PTE model is
expected to be estimating a more accurate RR information of mortality
attributable to ambient PM2.5, especially at high exposure level.

Other than the comparison between different relative risk models, dif-
ferent exposure measurement of ambient PM2.5 concentration and ambient
temperature were also explored in the current study, by using the data of
current month (m0), 1-month moving average data (m1), and 2-month
moving average data (m2). The result showed that the data of current
month were not the best measurement for an accurate RR estimation
using either the PTE or IER models. Instead, the PTE model with 1-month
moving average data was likely to provide more accurate RR estimates,
which helped to improve the mortality estimation (RMSE = 0.956). This
also indicated that the model estimates might yield a better result by
improving the other factors such as the measurement of ambient PM2.5

concentration and ambient temperature in the region. The uncertainty
analysis explored the selection of different PM2.5 counterfactual concentra-
tion in the PTE model from 3 to 7 μg/m3 and reported that the counterfac-
tual concentration of 5 μg/m3 resulted in a least error in the RR estimates.
In addition, the uncertainty analysis also studied the effect of different
reference temperatures from 21 to 27 °C in the PTE model and reported
that the resulting relative risk profiles were similar. However, by lowering
the value of reference temperature, it is likely to reduce the relative risks,
given the same exposures of ambient PM2.5 concentration and ambient
temperature. As the selection of reference temperature in the PTE model
is specific to location and type of disease burden, it is always recommended
to consider both temperature distribution and mortality distribution in the
study region when selecting a more suitable reference temperature for the
estimation of relative risk using the PTE model.

The current study has several clinical and public health implications.
Firstly, the novel PTE model considers the risk factors of ambient PM2.5 ex-
posure and cold ambient temperature in the study region. Besides the effect
of ambient PM2.5 exposure, it is important to include the effect of ambient
temperature in a novel risk model as it provides another significant infor-
mation regarding the effect of climate change on the disease burden. To
provide an up-to-date association between climate change and disease bur-
den, the PTEmodel potentially serves as one of the key steps in themanage-
ment of the adverse health effects of climate change (Costello et al., 2009).
Secondly, the development of the PTE model also provides a new insight
into the environmental health risk model that considers the combined ef-
fect of multiple environmental risk factors. The PTE model also addresses
the significance of a better mathematical model for evaluating the air



Fig. 9. Contour plots of predicted relative risk (RR) values for COPD mortality for difference reference temperatures at 21 °C (top left), 23 °C (top right), 25 °C (bottom left),
and 27 °C (bottom right).
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pollution-health association, as well as the climate-health association in
the current and future environmental health risk assessment. Thirdly,
the PTE model potentially works as a forecast model to estimate the
mortality risk attributable to the combined effect of ambient PM2.5 and
cold ambient temperature in a specific region, especially in the healthcare
facilities where most of the vulnerable population are located. The
elderly population tends to be more susceptible to exposures such as
high levels of ambient PM2.5 (Shumake et al., 2013) and cold ambient
temperature (Son et al., 2011). By monitoring the estimated mortality
risk from a RR model such as PTE model, it is recommended to include
both ambient PM2.5 exposure and outdoor cold exposure in the routine clin-
ical practice, which might help to reduce the disease burden, including
mortality and morbidity attributable to the combined effect of ambient
PM2.5 and cold ambient temperature, especially in the management of
COPD patients.

Most of the previous ambient air pollution-related RRmodels have been
developed for estimating five cause-specific mortalities, including, COPD,
8

LC, IHD, stroke, and LRI (Burnett et al., 2014; Chowdhury and Dey, 2016;
Burnett et al., 2018). In the current study, only COPDmortality were exten-
sively studied and employed for the development of the PTE model. Al-
though this resulted in a better prediction for COPD mortality, it might
potentially limit the application of the PTE model in estimating other
types of disease burdens. Future works are recommended to explore the
application of the PTE model in estimating other disease burdens such as
LC, IHD, stroke, and LRI. Furthermore, the hot temperature effect was
neglected during the development of the PTEmodel, as the hot temperature
effect is relatively smaller than cold temperature effect. However, it is rec-
ommended to include the hot temperature effect in the future development
of a climate-sensitive health risk model, especially for the risk estimation
during heat waves where a significant effect of hot ambient temperature
on mortality is typically observed (Gasparrini et al., 2012; Son et al.,
2012). This risk model would benefit the management of health effects of
climate change, including global warning, heat waves, cold waves, and
extreme weather events.
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5. Conclusion

In summary, the pollutant-temperature exposure (PTE)modelwas dem-
onstrated as an advanced relative risk (RR)model to consider the combined
effect of ambient fine particulate matter (PM2.5) and cold ambient temper-
ature. In this paper, the PTE model addressed and relaxed some of the lim-
itations in the previous RR models, including the IER model. The
comparison of RR estimates between the PTE and IER models suggested
that the PTEmodel performed better than the IER model, especially during
winter period when low ambient temperatures were observed. The predic-
tion of RR values for chronic obstructive pulmonary disease (COPD)mortal-
ity using the PTEmodel with 1-monthmoving average data showed a good
fitting result with actual mortality data. The development of the PTEmodel
is particularly beneficial for the regions with high levels of ambient PM2.5

and seasonal variation of ambient temperature as it aims to provide a
more accurate RR attributable to the combined effect of ambient PM2.5

and cold ambient temperature.
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