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Abstract. We give a short overview of some topics concerning the ways ran-
domness can be added to the three dimensional Navier�Stokes equations.
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1. Introduction

The present work is a short overview of some results concerning the interactions
between the analysis of the three dimensional Navier�Stokes equations and the
theory of probability. Our special choice of topics does not give, by any means,
a complete picture of the state of the art on the subject and several interesting
matters and papers have been just outlined or even completely omitted. In the
choice of topics there is de�nitely a bias over the work by the author of the present
paper.
The main theme here is to consider the di�erent ways randomness can be added

to the Navier�Stokes equations. For some of these ways there is a reasonable phys-
ical justi�cation, or a mathematical explanation. These reasons will be given when
appropriate. Randomness can be essentially added to the data of the equations

(1.1)
u̇+ (u · ∇)u+∇p = ν∆u ( + η̇),

div u = 0,

that is the initial condition, the external forcing and the parameters (here the
viscosity). We will mainly consider the equations in dimension three and give
some details for the two dimensional case when the analysis in 3D is unpractical.
In Section 2 we discuss some results obtained when randomness is added at the

level of the initial condition, for instance results of almost sure global existence
in super�critical spaces, the evolution of the distributions when the equations
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are started with a random initial condition (statistical solutions) and invariant
measures of the �ow.
In Section 3 we consider the equations forced by Gaussian white noise. The

literature on this subject is huge, we focus on the existence of solutions that
constitute a Markov process, we discuss some topics on uniqueness and blow�up,
we prove existence of densities for �nite dimensional functionals of the solutions,
as a probabilistic type of regularity.
Section 4 deals with invariant measures for the stochastically forced equations.

In a way this should have been part of the previous section, but by importance
it has deserved a section by its own. Here we discuss existence, uniqueness and
convergence towards an invariant measure, as well as the existence of explicit
invariant measures.
Finally, in Section 5 we consider subjects where randomness is more hidden.

We consider probabilistic representation formulas for the solutions of (1.1). In the
last part of the section the interest is in the interaction between the equations and
statistics.

1.1. Notation and setting. In the rest of the paper we mainly focus on the
Navier�Stokes equations with periodic boundary conditions, either without any
external force or driven by Gaussian white noise. Most of the result may be or may
have been already extended to other boundary conditions, external non�random
forces, etc. We do not give further details and point to the references.
Consider problem (1.1) with periodic boundary conditions on the d dimensional

torus Td = [0, 2π]d (most of the time d = 3, when necessary d = 2).
Let H be the standard space of square summable divergence free vector �elds,

de�ned as the closure of divergence free periodic smooth vector �elds, with inner
product 〈·, ·〉H and norm ‖ · ‖H . De�ne likewise V as the closure of divergence free
periodic smooth vector �elds with respect to the H1 norm, with scalar product
〈·, ·〉V and norm ‖ · ‖V
Let ΠL be the Leray projector, A = −ΠL∆ the Stokes operator, and denote by

(λk)k≥1 and (ek)k≥1 the eigenvalues and the corresponding orthonormal basis of
eigenvectors of A. De�ne the space Vα = D(A

α
2 ) for α ∈ R. In particular, V0 = H

and V1 = V .
De�ne the bi�linear operator B : V × V → V ′ as B(u, v) = ΠL (u · ∇v), u, v ∈

V . We recall that 〈u1, B(u2, u3)〉 = −〈u3, B(u2, u1)〉. We refer, for instance, to
[Tem95] for a detailed account of the above de�nitions.
When appropriate, we will consider the random forcing η̇ in (1.1) as η̇ = S dW ,

where W is a cylindrical Wiener process on H (and hence Ẇ is space�time white
noise), and S is a linear bounded operator on H. The role of S is to colour the
noise in space, to provide some space regularity. The covariance of the driving
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noise is then SS?. The term S dW can be always represented as

S dW =
∑
n

σndβngn,

where (gn)n∈N is an orthonormal basis of H of eigenvectors of SS?, (βn)n∈N are
independent standard Brownian motions, and (σn)n∈N are suitable coe�cients.

2. Randomness in the initial condition

A natural way to include uncertainty in an evolution is to consider a probability
distribution that weights the possible initial conditions. Moreover, the analysis of
the evolution of distributions can give some knowledge of the dynamical properties
of the system. For instance, a change of regularity of the measure might be inter-
preted in terms of the existence of di�erent basins of attractions. In [Tao14] there
is the belief that blow�up for the three dimensional Navier�Stokes might be more
likely than regularity, but that carefully chosen initial distributions might avoid
blow�up initial states and give only solution with global regularity. This should
be an index of instability of blow�up with respect to small perturbations of the
initial conditions (see also Section 3.5).
There has been recently a renewed interest in studying evolution equations with

random initial condition, see for instance [BT08a, BT08b, BT14]. These ideas
date back already to Bourgain [Bou96, Bou94], that considers the space�periodic
non�linear Schrödinger equations in the focusing/defocusing case.
A common theme of these works is that tipically, the random initial condition

may provide a short time e�ect of smoothing by averaging that may overcome
some obstructions due to the scaling invariance of the equations. This is the case
when one can prove an almost sure (with respect to the probabilistic structure
given by the initial distribution) existence of a local solution when starting from
a super�critical space.

2.1. The randomization. Let us de�ne the statistical distribution that has been
used in the works we will be interested in. Let H be an Hilbert space and let
(en)n≥1 be an orthonormal basis of H. Consider a sequence (Λn)n≥1 of centred
independent random variables with the property that there is c1 > 0 such that

E[Λ2
n] ≤ c1, for every n ≥ 1.

Additional uniform moments (e.g. exponential) may provide additional properties
or strong estimates. In this direction, a reasonable assumption [NPS13] is

(2.1) E[eγΛn ] ≤ ec2γ
2

, for every γ ∈ R, n ≥ 1.
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This for instance provides exponential concentration around the mean of the ran-
domization we are going to de�ne. Fix f ∈ H, the �seed�, and de�ne the random-
ization of f as

Λf =
∑
n

Λnfnen,

where (fn)n≥1 are the Fourier coe�cients of f with respect to the basis (en)n≥1. It
is immediate to see that Λf is a centred H�valued random valued with covariance
U?fUf where Uf is the operator

x =
∑
n

xnen  Ufx =
∑
n

fnxnen.

If we choose, for instance, the initial random coe�cients (Λn)n≥1 as standard
Gaussian, then Λf is also Gaussian with zero expectation and covariance U?fUf ,
and this characterise its distribution.
We �rst notice that the randomization does not give any gain in terms of smooth-

ness. Mimicking Sobolev spaces, let us consider some compact subspace H0 of H
de�ned by ‖x‖H0 =

∑
λ2
nx

2
n <∞, with λn ↑ ∞.

Let f ∈ H with ‖f‖H0 =∞. Let us prove that the randomization Λf cannot be
in H0 almost surely. The proof is immediate in the Gaussian case, namely when
the random variables (Λn)n≥1 are standard Gaussian. Indeed,

E[‖Λf‖2
H0

] = E
∑
n

λ2
nΛ2

nf
2
n =

∑
n

λ2
nf

2
n =∞,

and Fernique's theorem [Bog98] readily implies that ‖Λf‖H0 = ∞, almost surely.
In general, if the (Λn)n≥1 are independent and uniformly not too often zero, then
the same conclusion holds [BT08a, Lemma B.1]. Since a way to use the random-
ization is to deduce improved summability of the solution of the linear problem
(see for instance Proposition 2.3), another way to look at the lack of regularization
is to recall that Besov spaces, and in turn Sobolev spaces, can be characterised in
terms of regularity of the caloric extension (see for instance [LR02]).
We want to study now the support of the law of Λf . We recall that for a

topological space E, endowed with the Borel σ�algebra, the (topological) support
of a measure µ is the set of all points x such that µ(A) > 0 for each neighbourhood
of x.

Lemma 2.1. Given f ∈ H, the support of the law of Λf is the whole H if and
only if the support of the law of each Λn is R and fn 6= 0 for every n ≥ 1, where
(fn)n≥1 are the Fourier coe�cients of f with respect to the basis (en)n≥1.

Proof. Given x ∈ H and ε > 0, we prove that P[Λf ∈ BHε (x)] > 0. Let N ≥ 1 and
denote by Π≤N and Π>N the projections, respectively, onto low and high modes.
Choose N so that

‖Π>Nx‖H ≤
ε

4
, ‖Π>Nf‖H ≤

ε

8
,
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then
‖Λf − x‖H ≤ ‖Π≤N(Λf − x)‖H + ‖Π>NΛf‖H + ‖Π>Nx‖H

≤ ‖Π≤N(Λf − x)‖H + ‖Π>NΛf‖H +
ε

4
.

Therefore, by the above estimate and independence,

P[Λf ∈ BHε (x)] = P[‖Λf − x‖H ≤ ε]

≥ P
[
‖Π≤N(Λf − x)‖H ≤

ε

2
, ‖Π>NΛf‖H ≤

ε

4

]
= P

[
‖Π≤N(Λf − x)‖H ≤

ε

2

]
P
[
‖Π>NΛf‖H ≤

ε

4

]
> 0,

since, on the one hand by the Chebychev inequality,

P
[
‖Π>NΛf‖H ≤

ε

4

]
= 1− P

[
‖Π>NΛf‖H ≥

ε

4

]
≥

≥ 1− 16

ε2
E[‖Π>NΛf‖2

H] = 1− 16

ε2
‖Π>Nf‖2

H ≥
3

4
,

on the other hand, by independence and the assumption on the support of the
(Λn)n≥1,

P
[
‖Π≤N(Λf − x)‖H ≤

ε

2

]
≥ P

[
|Λnfn − xn| ≤

εfn
2‖f‖H

, n ≤ N
]

=
∏
n≤N

P
[
|Λnfn − xn| ≤

εfn
2‖f‖H

]
> 0.

To prove the converse, notice that if fn = 0 for some n, then the choice x = en
yields ‖Λf −x‖H ≥ |Λnfn− 1| = 1. Likewise, if the support of the law of Λ1 is not
R, then there are x0 ∈ R and ε0 > 0 such that P[Λ1 ∈ (x0 − ε0, x0 + ε0)] = 0. The
choice x = x0f1e1 yields ‖Λf − x‖H ≥ |f1| · |Λ1 − x0| ≥ ε0|f1| almost surely. �

Clearly the same proof of the lemma above holds true if f ∈ H0, for some
subspace H0 of H, namely in the latter case the support of the law of Λf is H0.

2.2. Strong local solution with random initial condition. We summarize
how to show the existence of a local smooth solution with random initial condition
in the energy space H, following [ZF11].
Let u0 ∈ H be the �seed�, and consider the random initial condition Λu0, using

the Fourier basis of H. The main idea is that there is an immediate gain of
summability from L2 to L3. As L3 is a critical space for Navier�Stokes, we know
by [Kat84] that there is a unique local solution.
Assume E[Λ4

k] ≤ c for every k ∈ Z3
star. Clearly, if stronger moments (e.g.

exponential) are �nite, the probability estimates below are better.
As mentioned above, through randomization of u0 ∈ H and the fourth moment

condition for the randomizing variables, it follows that

E[‖Λu0‖3
L3 ] ≤ c3‖u0‖3

L2 .
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Therefore the local existence and uniqueness of [Kat84] kicks in to give the follow-
ing result.

Theorem 2.2. Let u0 ∈ H then with probability one there are T? = T?(ω) > 0
and a unique solution u with initial condition Λu0 such that for all p ≥ 3,

t
1
2
− 3

2pu ∈ C([0, T?);L
p(T3)),

t1−
3
2p∇u ∈ C([0, T?);L

p(T3)).

The time T? =∞ on an event Ω∞ with P[Ω∞] ≥ 1− c4‖u0‖3
L2 (esponentially close

to 1 with exponential moments of Λk).

Under the �nite sixth moment, a similar statement hold in H
1
2 (as in [FK64]),

namely with probability one there is a unique solution u such that

u− e−tA Λu0 ∈ C([0, T?];V 1
2
) ∩ L2(0, T?;V 3

2
),

as well as an estimate of the probability that T? ≥ T (with T ∈ (0, 1]) in terms
of ‖u0‖L2 (polynomial or exponential depending on the moments of the random
coe�cients of the randomization). Similar conclusions are given in [DC11a], they
also prove that the solution is global if ‖u0‖L2 is small enough.

2.3. Global weak solutions with random initial conditions. The problem
of �nding an (interesting, see below in Section 2.5) initial distribution so that
almost surely with respect to this distribution there is a unique global solution
is still essentially open (but see Section 2.4 below). Clearly, there may be some
�trivial� example, such as some measure concentrated on small initial conditions
in, for instance, H1/2, but this adds nothing to what we know. A well supported
initial distribution that gives raise, almost surely, to global strong solutions, would
suggests that a blow�up in the equation is exceptional, or �unstable�, in the sense
that a small variation in the initial condition might not lead to a singularity (more
on this will be discussed in Section 3.5.3).
A way to obtain global weak solutions with no smallness assumption on the data,

when starting from super�critical initial conditions has been recently proposed in
[NPS13].
Here the �smoothing� e�ect of the randomization they use is again in terms of

summability of the solution of the linear problem. The exponential tail estimate
is a consequence of the assumption (2.1).

Proposition 2.3. Let α ≥ 0, p ≥ 2, σ ≥ 0, γ ∈ R with (σ + α − 2γ)p < 2, and
T > 0, then for every u0 ∈ V−α,

P[‖Sγ,σu0‖Lq(0,T ;Lp(T3) ≥ λ] ≤ c5 e
−c6 λ2

c7‖u0‖2−α

where Sγ,σu0(t) = tγA
σ
2 e−tA Λu0.

Let us de�ne weak solutions in the following way.
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De�nition 2.4 (De�nition 2.4, [NPS13]). Given α > 0, u0 ∈ V−α, a weak solution
of the Navier�Stokes equations on [0, T ] is a vector �eld u such that,

u ∈ L∞loc((0, T );H) ∩ L2
loc((0, T );V ) ∩ C((0, T );V weak

−α ),
u′ ∈ L1(0, T ;V ′),
the equation is satis�ed in V ′,
u(t)→ u0 weakly in V−α, as t→ 0.

The main theorem is as follows.

Theorem 2.5 (Theorem 2.6, [NPS13]). If T > 0, α ∈ (0, 1
4
) and u0 ∈ V−α, then

with probability one there is a global weak solution with initial condition Λu0, of
the form u = e−tA Λu0 + w, where w ∈ L∞loc(0,∞;H) ∩ L2

loc(0,∞;V ).

In short, the idea behind the theorem is that one can use the smoothing e�ect of
the randomization of the initial condition to produce a mild solution, de�ned for a
short time. The solution immediately enters into H and a standard weak solution
can be started after a small time interval. It remains then only to show that the
mild solution and the weak solution can be joined to obtain a weak solution as
de�ned above.
This the crucial point that forces the restriction α < 1

4
in the main theorem.

Indeed to prove the equivalence between weak and mild solutions [NPS13, Lemma
4.2] (but similar assumptions are used in other crucial results of the paper) for the
equation for w = u − e−tA Λu0, where terms as B(e−tA Λu0, w) appear, one needs

that, for instance A
1
4 e−tA Λu0 ∈ L

8
3 ((0, T )× T3). This happens, according to the

lemma, when α < 1
4
.

In the case α ∈ [1
4
, 1) something can be still said, at least in terms of mild

solutions.

Theorem 2.6 ([DC11b]). Let α ∈ [1
4
, 1) and u0 ∈ V−α, then with probability one

there are T = T (ω) and a unique solution u of (1.1) on [0, T ] with initial condition
Λu0, such that

u− e−tA Λu0 ∈ L
4

1−s (0, T ;L
6

1+s ).

Again, estimates of the probability that T > t are available for small t, namely
if t ∈ (0, 1], there is a unique solution on [0, t] on an event Ωt with

P[Ωt] ≥ 1− c8 e
− c9
t2ρ‖u0‖2−s ,

and ρ = min( 1
m
, 21

8
).

2.4. Fursikov's almost sure global well�posedness. The previous section de-
tailed results where a suitable choice of the distribution of the initial condition
would allow to prove existence of a strong (or weak) solution with supercritical
data. It has been well known that there exist initial distributions that ensure al-
most sure global well�posedness. This is a general result of Fursikov [VF88] (see



PROBABILISTIC TOPICS IN NAVIER�STOKES 9

also [Fur81b, Fur83, Fur84]). Clearly, it is not di�cult to provide initial distri-
butions thtat give almost sure global well�posedness, think of the Dirac in 0, or
some measure concentrated in a small ball of V 1

2
. Indeed, the main problem of

Fursikov's initial measures is that they are only characterized by their moments.
It is well known that moments do not identify uniquely a measure (unless some
growth condition holds). Moreover, no information on the support of these mea-
sure is available (unlike in the previous result, see Lemma 2.1). This is the reason
for Fursikov to analyse the in�nite dimensional system generated by the moments
[Fur87, VF88].

2.4.1. Statistical solutions. Statistical solutions were �rst introduced by Foia³ in
[Foi72] as a family, indexed by time, of probability measures satisfying the equa-
tions, appropriately recast (see also [FMRT01]). A di�erent notion of statistical
solution, seen as a measure on the path space (from this point of view, closer to
the style of this paper, see Section 2.5 below), was formulated by [VF88]. Let us
consider the latter de�nition.
De�ne, for a �xed s� 0,

ST = {u : u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), u̇ ∈ L∞(0, T ;V−s)}

A space�time statistical solution with initial condition µ, is a probability measure
P on ST such that

P[ST ] = 1,
the marginal of P at time t = 0 is µ,
P is concentrated on solutions of (1.1),
for every t ∈ [0, T ],

EP[‖u‖2
L2(0,T ;V ) + ‖u(t)‖2

H + ‖u‖2
L∞(0,T ;H) + ‖u̇‖2

L∞(0,T ;V−s)] ≤ c10(1 + Eµ[‖x‖2
H ]).

A statistical solution represents the overall distribution of the stochastic process
generated by the solutions of (1.1) when the initial distribution is given by the
initial measure µ.
A variant of the de�nition above more suited for the next section is as follows.

De�ne

H1,2
T = {u : u ∈ L2(0, T : V2), u̇ ∈ L2(0, T : H)}.

Notice that if u ∈ H1,2
T , then u ∈ C([0, T ];V ). A space-time statistical solution

is a probability measure P on H1,2
T such that for every z ∈ L2(0, T ;H) and φ ∈

Cb(H1,2
T ),

EP[〈u̇+ νAu+B(u), z〉L2(0,T ;H)φ(u)] = 0.

2.4.2. Statistical extremal problems and a.s. smoothness. Given a measure µ on H
such that Eµ[‖x‖kH ] <∞ for every k ≥ 1, de�ne its kth�momentMk as the element
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of
⊗

kH, the tensor product of k copies of H, such that

〈Mk, φ〉H,k =

∫
〈⊗ku, φ〉H,kµ(du), φ ∈

⊗
k

H,

where 〈·, ·〉H,k and ‖·‖H,k are the tensorizations of the scalar product and the norm
of H. The existence of M is granted by the Riesz representation theorem.
Consider a measure µ on H such that E[e‖x‖

2
H ] < ∞ (so that all moments of µ

are �nite) and denote by (mk)k≥1 its moments). Consider the following functional
de�ned over probability measures on H1,2

T ,

J (P) = EP[e‖u‖2L2(0,T ;V2)
]

+ ρ
∞∑
k=1

1

k!
‖mk −Mk‖H,k,

where ρ > 0 and (Mk)k≥1 are the moments of the marginal at time t = 0 of P.
For a measure P with J (P) <∞, its moments do not grow too much (by the �rst
term), and are not too di�erent (at least at time 0) from the moments of µ.
The idea is to look at inf J (P) over all statistical solutions P on H1,2

T . It turns
out that the direct methods of calculus of variations are e�ective. The functional
is convex, lower semi�continuous in an appropriate topology and �nite in at least
one measure, so that the in�mum is attained and there is a unique probability
measure that realizes the minimum.
If we look at the marginal ν at time 0 of the unique minimizer, then for ν�almost

every initial condition (1.1) has a unique global smooth solution.

Remark 2.7. Starting from (1.1), a system of equations

Ṁk + νAkMk +BkMk+1 = 0,

for the moments of a statistical solution can be derived, where Ak and Bk are suit-
able tensorizations of the Stokes operator A and the Navier�Stokes non�linearity
B.
Fursikov (see [VF88, Fur87] and related references) proves that there is a dense

set of initial conditions for the moment system such that each of these initial
conditions yields a unique solution. The problem here is that one cannot produce
in general a statistical solution from moments.

Remark 2.8. In fact the �rst results of Fursikov [Fur80, Fur81a] in this direction
deal with the set of right�hand sides yielding a global smooth solution. More
precisely, set

N(u) = u̇+ νAu+B(u),

and solve N(u) = f with a given initial condition u(0) = u0 ∈ V . It turns out that
the map N : H1,2

T → L2([0, T ];H) is continuous, so that the set Fu0 = N({u ∈
H1,2
T : u(0) = u0}) is exactly the set of all right�hand side f ∈ L2(0, T ;H) such

that the Navier�Stokes equations with forcing f admit a unique smooth solution.
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Moreover, Fu0 is open in the topology of L2(0, T ;H) and dense in L2(0, T ;H)
with in the topology Lp(0, T ;V−`), for suitable p and `. The result can be made
independent from the viscosity and can hold for the Euler equations, as long as
the initial condition is smooth enough.

2.5. Invariant measures. The randomization of the initial condition to obtain
local existence (in a super�critical space) or global existence (of a regular solution)
becomes extremely useful when one knows that the system admits a (formal)
invariant measure. Some explicit information is also required (the support of the
measure, for instance).
So far, we do not know any explicit1 invariant measure for the Navier�Stokes

equations, and in fact we will have better luck with the randomly forced equation
in Section 4.3.
We point out that a method to �nd invariant measures has been proposed using

generalized limits of time averages [FMRT01], where a generalized limit is any
linear operator that extends the ordinary notion of limit. Existence of extensions
is ensured by the Hahn�Banach theorem.
Euler is a di�erent story, and indeed explicit invariant measures can be derived.

In dimension three the known conserved quantities are the kinetic energy, the
helicity, namely

∫
u ·ξ, where ξ = curlu is the vorticity, the circulation,

∫
Xt(γ)

u(t) ·
dx, where γ is a curve in physical space and X is the �ow induced by u, as well
as the total momentum

∫
u dx and angular momentum

∫
x · u dx. The only good

candidate then is the energy, and one can consider the Gibbs�like measures

µE,β =
1

Zβ
e−βE(u) du,

where E(u) =
∫
|u|2 dx is the energy. The above measure is interpreted as usual as

a Gaussian measure. The problem is that such measures are supported on fairly
large spaces, as ∫

‖x‖2
−α µβ(dx) =∞

for α ≤ 3
2
. The problem of the existence of a �ow of solutions of Euler which leaves

the above measures invariant is (yet another) open problem.
The situation is much better in dimension two, due to weaker regularity require-

ments, but above all due to the existence of a wealth of invariants, �rst of all the
enstrophy S(u) = 1

2

∫
ξ2 dx, as well as

∫
g(ξ) dx for every reasonable g. If J is

any of the above invariants, the measure Z−1
J,β e−βJ(u) du would provide a formal

invariant measure. The only reasonable measure though, those we may hope to
give a sense, are given by J = E, S. These measure are in�nitesimally invariant

1And interesting! As otherwise any steady solution ū, including ū = 0 would provide the
invariant measure δū.
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in the sense that for every smooth function F depending only on a �nite number
of Fourier modes,

∫
B(F ) dµJ,β = 0.

The measures originating from enstrophy have a smaller support, so it is ex-
pected that it should be easier to work with them. Indeed [AC90], there exists a
�ow in V−α, α > 1

2
of Euler with invariant measure µS,β. Measures from energy

are tougher. It even happens that
∫
E(u)µS,β(du) = ∞, but the renormalized

energy : E := E − ES,β[E] (carefully interpreted as a limit of spectral approxi-
mations) makes sense, e−γ:E: is integrable with respect to µS,β and the measure
Z−1 e−βS−γ:E: is again invariant. We refer to [AF08] for more details. Here we
raise the (philosophical) open problem of understanding the role of these invariant
measures in connection with the physical phenomenon of turbulence.
We will see later that when adding a noise we will be able to �nd invariant

measures for Navier�Stokes (in Sections 4.1 and 4.3). Ideas of renormalization
will also play a signi�cant role later, see Sections 4.3.1 and 4.3.2.

3. Randomness in the driving force

In the same way one can derive, at least formally, Euler equations from the
Lagrangian motion of �uid particles, a version of the Navier�Stokes equations
driven by a special multiplicative noise, depending on the gradient of the veloc-
ity, can be derived starting from the Lagrangian motion perturbed by noise, see
[BCF91, MR04, MR05]. The presence of random forcing can also take into ac-
count all those small �uctuations that a�ect the motion of a �uid and that are
di�cult to incorporate in a robust theory. We refer for instance to [FGHR08]
for the connections between the equations with random forcing and the theory of
turbulence.
There is already a well�developed theory for stochastic PDEs, and in particular

for equations from �uid dynamics. We refer to [FG95, Fla08, Deb13]. Here we
detail a recent approach initiated by [DPD03a] that looks for solutions with addi-
tional structure, the Markov property. For well�posed problem the Markov prop-
erty would not be an issue, on the other hand for problems where well�posedness
is an open problem (as is in this work) extra�care is needed.
There are at least two approaches that grant existence of Markov processes solv-

ing (1.1) driven by Gaussian noise. The �rst [DPD03a, DO06] is essentially based
on strong solutions of (1.1). In short the idea is to solve the Kolmogorov equation
associated with spectral Galerkin approximations. In order to grant the existence
of a limiting object of the solutions of the Kolmogorov eqution, the authors look
at a Kolmogorov equation perturbed by a strong potential. The solutions of the
two equations are related by a Feynamn�Kac formula. The potential, a negative
exponential of the H2 norm, does an �importance sampling� of strong solution,
xince non�smooth solution would contribute with an in�nite potential and hence
with a null contribution in the Feynman�Kac formula.
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The second approach [FR06, FR08] is based on weak solutions. The construction
builds over an abstract selection principle originally due to Krylov [Kry73] (see also
[SV79]). The idea is essentially to identify special classes of solutions, understood
as probability measures on the space of trajectories, that are closed by conditional
probability and for which weak�strong uniqueness holds. We refer also to [BFR09]
for another model where this theory can be applied (see also [BR09, BR12, BR13]).
In this section we will consider (1.1) driven by a Gaussian noise, namely the noise

η̇ = SẆ in (1.1) is coloured in space by a covariance operator S?S ∈ L (H), where
W is a cylindrical Wiener process (see [DPZ92] for further details). We assume
that S?S is trace�class and we denote by σ2 = Tr(S?S) its trace. Finally, consider
the sequence (σ2

k)k≥1 of eigenvalues of S?S, and let (qk)k≥1 be the orthonormal
basis in H of eigenvectors of S?S. For simplicity we may assume that the Stokes
operator A and the covariance commute, so that

η̇(t, y) = S dW =
∑
k∈Z3

?

σkβ̇k(t)ek(y).

3.1. Weak and strong solutions. Let us write (1.1), as usual, as an abstract
stochastic equation,

(3.1) du+ (νAu+B(u)) dt = S dW,

with initial condition u(0) = x ∈ H. A weak martingale solution is a �ltered

probability space (Ω̃, F̃ , P̃, {F̃t}t≥0), a cylindrical Wiener process W̃ on H and a
process u with trajectories in C([0,∞);D(A)′) ∩ L∞loc([0,∞), H) ∩ L2

loc([0,∞);V )

adapted to (F̃t)t≥0 such that the above equation is satis�ed with W̃ replacing W .
Equivalently, a weak martingale solution can be described as a measure on the

path space. Let ΩNS = C([0,∞);D(A)′) and let FNS be its Borel σ�algebra.
Denote by FNS

t the σ�algebra generated by the restrictions of elements of ΩNS

to the interval [0, t] (roughly speaking, this is the same as the Borel σ�algebra
of C([0, t];D(A)′)). Let ξ be the canonical process, de�ned by ξt(ω) = ω(t), for
ω ∈ ΩNS

De�nition 3.1 ([FR08]). A probability measure P on ΩNS is a solution of the
martingale problem associated to (3.1) with initial distribution µ if

P[L∞loc(R
+, H) ∩ L2

loc(R
+;V )] = 1,

for each φ ∈ D(A), the process

〈ξt − ξ0, φ〉+

∫ t

0

〈ξs, Aφ〉 − 〈B(ξs, φ), ξs〉 ds

is a continuous square summable martingale with quadratic variation t‖Sφ‖2
H

(hence a Brownian motion),
the marginal of P at time 0 is µ.
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The second condition in the de�nition above has a twofold meaning. On the one
hand it states that the canonical process is a weak (in terms of PDEs) solution,
on the other hand it identi�es the driving Wiener process, and hence is a weak (in
terms of stochastic analysis) solution.

3.1.1. Strong solutions. It is also well�known that (3.1) admits local smooth solu-
tions de�ned up to a random time (a stopping time, in fact) τ∞ that corresponds to
the (possible) time of blow�up in higher norms. To consider a quantitative version
of the local smooth solutions, notice that τ∞ can be approximated monotonically
by a sequence of stopping times

τR = inf{t > 0 : ‖AuR(t)‖H ≥ R},
where uR is a solution of the following problem,

duR +
(
νAuR + χ(‖AuR‖2

H/R
2)B(uR, uR)

)
dt = S dW,

with initial condition in D(A), and where χ : [0,∞) → [0, 1] is a suitable cut�
o� function, namely a non�increasing C∞ function such that χ ≡ 1 on [0, 1] and
χR ≡ 0 on [2,∞). The process uR is a strong (in PDE sense) solution of the cut�o�

1

1 2

equation. Moreover it is a strong solution also in terms of stochastic analysis, so
it can be realized uniquely on any probability space, given the noise perturbation.
As it is well�known in the theory of Navier�Stokes equations, the regular solu-

tion is unique in the class of weak solutions that satisfy some form of the energy
inequality. We will give two examples of such classes for the equations with noise.

Remark 3.2. The analysis of strong (PDE meaning) solutions can be done on larger
spaces, up to D(A1/4), which is a critical space with respect to the Navier�Stokes
scaling. The extension is a bit technical though, see [Rom11a].

3.1.2. Solutions satisfying the almost sure energy inequality. An almost sure ver-
sion of the energy inequality has been introduced in [Rom08, Rom10a]. Given a
weak solution P, choose φ = ek as a test function in the second property of De�ni-
tion 3.1, to get a one dimensional standard Brownian motion βk. Since (ek)k≥1 is
an orthonormal basis, the (βk)k≥1 are a sequence of independent standard Brown-
ian motions. Then the process WP =

∑
k β

kek is a cylindrical Wiener process2 on
H. Let zP be the solution to the linearization at 0 of (3.1), namely the solution of

(3.2) dz + Az = S dW,
2Notice that W is measurable with respect to the solution process.
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with initial condition z(0) = 0, and where W = WP. Finally, set vP = ξ − zP. It
turns out that vP is a solution of

v̇ + νAv +B(v + zP, v + zP) = 0, P− a.s.,

with initial condition v(0) = ξ0. An energy balance functional can be associated
to vP,

Et(v, z) =
1

2
‖v(t)‖2

H + ν

∫ t

0

‖v(r)‖2
V dr −

∫ t

0

〈z(r), B(v(r) + z(r), v(r))〉H dr.

We say that a solution P of the martingale problem associated to (3.1) (as in
De�nition 3.1) satis�es the almost sure energy inequality if there is a set TP ⊂
(0,∞) of null Lebesgue measure such that for all s 6∈ TP and all t ≥ s,

P [Et(v, z) ≤ Es(v, z)] = 1.

It is not di�cult to check that E is measurable and �nite almost surely.

3.1.3. A martingale version of the energy inequality. An alternative formulation
of the energy inequality that, on the one hand is compatible with conditional
probabilities, and on the other hand does not involve additional quantities (such as
the processes zP and vP) can be given in terms of super�martingales. The additional
advantage is that this de�nition is keen to generalization to state�dependent noise.
De�ne, for every n ≥ 1, the process

E 1
t = ‖ξt‖2

H + 2ν

∫ t

0

‖ξs‖2
V ds− 2 Tr(S?S),

and, more generally, for every n ≥ 1,

E n
t = ‖ξt‖2n

H + 2nν

∫ t

0

‖ξs‖2n−2
H ‖ξs‖2

V ds− n(2n− 1) Tr(S?S)

∫ t

0

‖ξs‖2n−2
H ds,

when ξ ∈ L∞loc([0,∞);H) ∩ L2
loc([0,∞);V ), and ∞ elsewhere.

We say that a solution P of the martingale problem associated to (3.1) (as in
De�nition 3.1) satis�es the super�martingale energy inequality if for each n ≥ 1,
the process E n

t de�ned above is P�integrable and for almost every s ≥ 0 (including
s = 0) and all t ≥ s,

E[E n
t |FNS

s ] ≤ E n
s ,

or, in other words, if each E n is an almost sure supermartingale.

3.2. The selection principle. In order to carry on the construction of a Markov
solution, we need to start with a class of solutions satisfying some minimal prop-
erties (sort of a set�valued Markov property). Given x ∈ H, let C (x) ⊂ Pr(Ω)
be a set of weak martingale solutions (no other requirement so far) starting at x.
The three main property we shall require are:
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(disintegration) the classes (C (x))x∈H are closed by conditional probabili-
ties: if P ∈ C (x), then the conditional probability distribution of P given
FNS

t is in C (ω(t)) for P a.e. ω,
(reconstruction) this is, in a way, the inverse operation of disintegration: if
one has a FNS

t measurable map x 7→ Qx, with Qx ∈ C (x), and P ∈ C (x0),
then the probability measure given by P on [0, t], and, conditionally on ω(t),
by the values of Q·, is an element of C (x0).
(weak�strong uniqueness) each solution coincides with the process uR on
[0, t] on the event {τR ≥ t}.

For the construction of a Markov solution, we require the �rst two properties, the
third one is necessary for further analysis (continuity with respect to the initial
condition, see Section 3.3 below, and convergence to a unique invariant state, see
Section 4.1).
The idea is to shrink each set C (x) to a single element by a series of reductions,

while keeping the above properties. Fix a family (λn, fn)n≥1 which is dense in
[0,∞) × Cb(D(A)′) and consider the functionals Jn = Jλn,fn , where Jλ,f is given
by

Jλ,f (P ) = EP
[∫ ∞

0

e−λt f(ξt) dt
]
.

for arbitrary λ > 0 and f : D(A)′ → R upper semi-continuous. Next, set

C0(x) = C (x), Cn(x) =
{
P ∈ Cn−1(x) : Jn(P) = sup

Q∈Cn−1(x)

Jn(Q)
}
.

All these sets are compact and their intersection is a single element (the selection
associated to this maximised sequence),

⋂
n∈N Cn(x) = {Px}.

Example 3.3. Existence of Markov solutions holds even without noise, when the so-
lution is suitably understood as a probability on the space of trajectories. Consider
the classical non�uniqueness example Ẋ = sgn(X)

√
|X|, with initial condition in

R. The problem has a unique solution Xx(·) for each initial condition x 6= 0, and
two families of solutions {X±a = X±? ((t− a) ∨ 0) : a ≥ 0} for the initial condition
x = 0, where X−? , X

+
? are the minimal and the maximal solutions unique solution

starting at 0.
If C (x) denotes the set of all solutions starting at x, viewed as probability

measures on the path space C([0,∞);R), then C (x) = {δXx} for x 6= 0, where δXx
is the Dirac measure concentrated on Xx.
If x = 0, a solution starts at 0 and stays for an arbitrary time, then follows

one of the solutions X±? (suitably translated). So the departing time from 0 can
be interpreted as a random time T whose law can be arbitrary. Therefore any
selection of solutions is completely described by a random time T and on [0,∞]
and a coin �ip C to decide to go up or down It is easy to be convinced that a
selection of solutions is Markov if and only if T is exponential (the lack of memory
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T

plays a major role), including the degenerate cases of in�nite or zero rate (namely,
T = 0 or T =∞), and T , C are independent.
Denote by (Pax)x∈[0,1] the Markov families with rate a. We shall call extremal all

those Markov solutions that can be obtained by the selection procedure. It turns
out that the only extremal families are those corresponding to a = 0 and a =∞.
In view of next Section 3.3, we notice that no solution can be continuous with

respect to the initial condition.

3.3. Continuity with respect to the initial condition. As we shall see, Markov
solutions have a good structure, good enough to ensure that solutions are contin-
uous (in an appropriate sense) with respect to the initial condition. In a way, for
well�posedness we are only missing uniqueness.
Continuity with respect to the initial condition here is understood in terms of

continuity of the law, in the total variation distance, of the solution for �xed time
and seen as a function of the starting point. This is a purely probabilistic notion
and in fact it is ruled out for the equations without noise, as it can be easily seen
by the elementary consideration shown in Figures 1 and 2. Without noise the �law�

δy

δx
δu(t;y)

δu(t;x)

Figure 1. Without noise. . .

δy

δx

Figure 2. With noise. . .

of the solution evolves as a Dirac mass centred at the value of the solution and
no possible shrinking of the total variation distance is possible (unless statistical
solutions are considered, as in Section 2.4.1, but there is no smoothing e�ect by the
noise). With noise the two distributions have a common mass for two reasons. The
�rst reason is general: there is the di�usive e�ect of the Gaussian perturbation,
the second reason is due to weak�strong uniqueness: there is a tiny (but non�zero)
probability that τ∞ may be large enough, so that the two laws are close.
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We shall use the two facts above to show continuity. Indeed, for small times,
using weak�strong uniqueness,

E[φ(u(ε; y))]− E[φ(u(ε;x))] =

= E[φ(u(ε; y))1{τ∞>ε}]− E[φ(u(ε;x))1{τ∞>ε}]︸ ︷︷ ︸
estimate with the regular solution

+

+ E[φ(u(ε; y))1{τ∞≤ε}]− E[φ(u(ε;x))1{τ∞≤ε}]︸ ︷︷ ︸
short time tail of τ∞

.

For short times the non�linearity has a small e�ect, so that the dynamics is es-
sentially linear and the probability P[τ∞ ≤ ε] ≈ e−1/ε. On the other hand, when

0 t− ε t

we are below τ∞ we can work with the strong solutions (see Section 3.1.1 and
hence with the classical theory. For times of order one, the real picture is that the
�uniqueness of strong solutions� argument is applied at the very last moment only,
thanks to the Markov property,

Ptφ(y)− Ptφ(x) = Pε(Pt−εφ)(y)− Pε(Pt−εφ)(x)

= o(ε) + o(‖x− y‖)

= Err(non�uniqueness) +
1

ε
Err(x− y).

The conclusion follows by optimizing in ε.

Theorem 3.4. For any Markov family x 7→ Px, the map x 7→ P (t, x, ·) is contin-
uous in total variation when x ∈ D(A).

The restriction x ∈ D(A) in the above theorem is due to the fact that we need
to ensure the existence of smooth solutions. It can be lowered to x ∈ D(A1/4+),
that is up to the critical space [Rom11a].

3.4. Some remarks on uniqueness. For stochastic (partial) di�erential equa-
tions we may have di�erent notions of uniqueness, regardless of the model we are
studying (namely, without introducing any criterion originating from the physics
of the problem, such as entropy solutions, etc.). On the one hand there is the
notion of path�wise uniqueness, which corresponds to the standard uniqueness
for ODE/PDE. On the other hand we may ask for a weaker statement, weak
uniqueness, that is uniqueness of distributions.
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Noise might be a promising crucial ingredient for uniqueness, see [FGP10]. A
wider and deeper discussion can be found in [Fla11]. Here we only point out two
simple (and une�ective so far) criteria for uniqueness and regularity from [FR08]:

If for some (smooth) initial condition there is a smooth solution on a (pos-
sibly small but deterministic) time interval, then the problem is well posed.
If for some initial condition uniqueness in law holds on a (possibly small
but deterministic) time interval, then uniqueness in law holds for all initial
conditions.

We shall see below in Section 4.2 a criterion of uniqueness in terms of invariant
measures.

3.4.1. Some examples in �nite dimension. A standard example of non�uniqueness
of an elementary ODE is the equation ẋ =

√
|x| (that we have examined in

Example 3.3 and we will see again in Example 4.4). It is well�known that by

adding a Gaussian perturbation dx =
√
|x| dt + dB uniqueness (path�wise) is

restored. This is part of a general phenomenon, see for instance [SV79, KR05].
Notice that we would also restore uniqueness by adding something of order one,
say ẋ =

√
|x|+ 1, the di�erence is that noise is zero plus random �uctuations.

Weak uniqueness can hold without path�wise uniqueness, as in the Tanaka equa-
tion dx = sgn(x) dB. Here all solutions are Brownian motions, hence they all have
the same distributions, but there is no pathwise uniqueness since, for instance, if x
is a solution, then so is −x. To have examples of non�uniqueness of distributions
we need to allow degeneracy in the noise coe�cient, for instance as in the Gir-
sanov equation dx = |x|α dB, with α < 1

2
. This problem has a in�nite dimensional

counterpart, where several interesting phenomena happen [BMP10, MME12].
Anyway, in dimension d = 1 there is a rather complete understanding [ES85],

and the Girsanov example describes a quite universal picture.

3.4.2. About uniqueness of the martingale problem. A way to understand unique-
ness of distributions is to understand the generator of the process solution of (1.1).
Formally, we expect that the generator is

L̄ =
1

2
Tr[S?SD2]− 〈−νΠL∆u+ ΠL

(
(u · ∇)u

)
, D〉

where S is the operator colouring the noise and ΠL is the Leray projector. It
turns out that each of the Markov solutions discussed in Section 3.2 is the unique
solution of the so�called martingale problem associated to a suitable generator, as
stated in the next theorem.

Theorem 3.5 ([Rom11b]). Given a Markov solution (Px)x∈H , there exists a unique
closed linear operator L : D(L ) ⊂ Cb(D(A))→ Cb(D(A)) such that for all λ > 0
and ϕ ∈ Cb(D(A)),

Rλ(L )ϕ(x) =

∫ ∞
0

e−λt Ptϕ(x) dt,
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where (Pt)t≥0 is the transition semigroup associated to the given Markov solution,
and Rλ(L ) is the resolvent of L .

The previous theorem holds under the same assumptions on the covariance as
Section 3.3. Similar conclusions can be drawn under the assumptions discussed in
[RX11, Rom11a].
The problem here is that each operator L is equal to L̄ on a class of test func-

tions (smooth functions depending on a �nite number of Fourier components).
This class of functions unfortunately is not su�cient to characterize the opera-
tor3. Preliminary computations show that an improved knowledge of the tails of
the explosion time τ∞ (see also next Section) might be promising. We refer to
[Rom11b, DPD08] for further details.

3.5. Some remarks on blow�up. The aim of this section is to give a brief over-
view on blow�up and which kind of noise might be more e�ective to delay or even
prevent emergence of singularities. To our knowledge, [FR02a] (see also the related
works [FR01, FR02b, Rom06]) is the only work concerned with singularities for
the Navier�Stokes with random perturbations.
Since so far we do not know if the Navier�Stokes equations develop a singu-

larity, it is meaningful to consider simpler models, such as the one we discuss in
Section 3.5.3, that keep some of the crucial characteristic of the problem (1.1) we
are interested in. A recent result of Tao [Tao14] shows that the analysis of these
models may rigorously shed light on the problem of blow�up of (1.1).
The results detailed below (from [Rom14e]), show that no additive noise can be

expected to prevent the formation of singularities. Recent results [FGP10, Fla11]
show that a careful choice of the coe�cients in the case of state dependent noise
might be more promising.

3.5.1. The drift matters. Here we focus on additive noise and we wish to under-
stand if it may have (and possibly how) a signi�cant e�ect in preventing singular-
ities. As we shall see, the situation is deeply di�erent with respect to the problem
of uniqueness. The e�ect of noise is more related to the stability of blow�up. It
may even happen that noise creates singularities when there is none without noise.
Consider the problem ẋ = x2 sinx. Clearly there is a global bounded solution for
every initial condition, and it is not di�cult to see that when adding noise, solu-
tions blow�up4. In two dimensions both cases may happen [Sch93], namely there
are two suitable smooth �elds b : R2 → R2 such that if one consider the ODE
ẋ = b(x) and the SDE dx = b(x) dt+ dB then

3To have an idea, think of the Poisson equation on a bounded domain with two di�erent
boundary conditions. The smooth test functions compactly supported on the interior of the
domain cannot tell the two boundary conditions apart.

4The role of the noise here is to help overcome the barriers created by the zeroes of sin.
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the ODE explodes for all initial conditions, the SDE has global solutions
for all initial conditions with probability one, and there is even an invariant
measure,
the ODE is non�explosive for all initial conditions and the point (0, 0) is
asymptotically stable, the SDE has explosion with positive probability.

Stability is also related to the probability of blow�up, namely if blow�up happens
with positive probability or with probability one. Let us consider dx = b(x) dt+dB,
where b is one of the two functions

b±(x) =

{
x2 x ≥ 0,

±x x < 0.

When the drift is b+, blow�up happens with positive probability. When the drift
is b−, blow�up happens almost surely. In view of next sections, we notice that in
both cases,

there are T0, p0 and a closed set B with open interior such that for all initial
conditions in B, P[τ∞ ≤ T0] ≥ p0,
the blow�up happens only on the positive �side�: for all p ≥ 1, namely
E[supt |x−|p] <∞.

3.5.2. A criterion for the a.s. blow�up. De�ne the blow�up time τ∞ of a stochastic
equation (in �nite or in�nite dimension)

dx = b(x) dt+ dB

as τ∞ = supn τn and
τn = inf{t : H(xt) ≥ n}.

for some quantity of interest for the problem (for instance, H(x) = |x| in �nite
dimension, H is some norm in a smaller space for stochastic PDEs). De�ne

[(t, x0) = Px0 [τ∞ > t],

then clearly [(0, x0) = 1, [(·, x0) is non�increasing, and t 7→ [(t, x0) is continuous
in t (up to technical details). Set

[(x0) = lim
t→∞

[(t, x0) = inf
t
[(t, x0) = Px0 [τ∞ =∞].

In general we cannot claim that [(x0) ∈ {0, 1}, as seen by the examples of previous
section. On the other hand a 0�1 law still holds for a the supremum of these
probabilities.

Theorem 3.6 (0�1 law for explosion). We have that supx0 [(x0) ∈ {0, 1}.

The proof of the above theorem is sketched in Figure 3. The idea now is that if
we can prove an upper bound for [ that keeps [ away from 1, then by the 0�1 law,
[ ≡ 0.
The idea for the upper bound is based on stability of blow�up and conditional

recurrence. Assume there are a closed set B∞, p0 ∈ (0, 1) and T0 > 0 such that



22 M. ROMITO

x0

xt[(t, x0)
[(xt)

︸ ︷︷ ︸
[(x0)

Figure 3. Proof of Theorem 3.6.

Py[τ∞ ≤ T0] ≥ p0 for every y ∈ B∞,
Px[τB∞ =∞|τ∞ =∞] = 0 for every x,

where τB is the hitting time of B, then [(x) = Px[τ∞ = ∞] ≤ 1
1+p0

, hence [ ≡ 0.
The heuristic idea here is that the process keeps coming back in the set where

Figure 4. Conditional recurrence.

blow�up is likely, and once there it tries to blow up. One can look at these trials
as coin tossing. Sooner or later both sides will show up. The assumptions above
are needed to have a uniform control of the bias of the coin.

3.5.3. The dyadic model of turbulence. In this section, following [Rom14e], we
apply the general criterion explained before to the viscous dyadic model driven by
additive noise.
The dyadic model has been introduced in [KP05] as a simpli�cation of the motion

of energy among modes in Euler equations studied in [FP04]. The model has been
the subject of further analysis in its inviscid version without noise [CFP07, CFP10,
BFM10a, BFM11b, BM13a], forced by a special multiplicative noise [BFM10b,
BFM11a, BM13b], and in its viscous version without noise [Che08, CF09, BMR11,
BMR14] and with noise [Rom14e]. A generalized version on trees, closer to the
formulation of [FP04], has been studied in [BBFM13, Bia13].
A simple derivation of the model is as follows [KP05]. The idea is to look at

a solution u on R3 of the Euler equations and write a simpli�ed version of the
interaction of the energy packets. Consider the dyadic cubes: cubes of size 2` with
vertices on 2`Z3. For a dyadic cube Q, let Q̃ be the parent cube and Q̂ the children
cubes (see Figure 5. Write the wavelet expansion of u, for an orthonormal basis
(ωQ)Q of L2, based on the dyadic cubes. If u =

∑
Q uQωQ, the Euler non�linearity



PROBABILISTIC TOPICS IN NAVIER�STOKES 23

Figure 5. The hierarchy of dyadic cubes.

reads (u ·∇)u =
∑

Q 2j(Q
′)uQuQ′ωQωQ′ . If only nearest neighbours interactions are

kept,

[(u · ∇)u]Q ≈ Bup(u, u)−Bdown(u, u) = 2β(j(Q)+1)uQ
∑

uQ̂ − 2βj(Q)u2
Q̃
,

where �up� and �down� refer to the direction of the �ow of energy. The value β = 5
2

corresponds, by scaling, to Euler/Navier�Stokes.
A further simpli�cation is achieved by changing the set of indices from dyadic

cubes to integers. By adding a viscous dissipation, we �nally obtain the viscous
dyadic model,

ẋn = −νλ2
nxn + λβn−1x

2
n−1 − λβnxnxn+1 + σnẇn, n ≥ 1.

where β measures the relative strength of the dissipative vs convective part. The
crucial characteristics preserved by this simpli�cation is formal balance of energy,
namely

d

dt
x2
n + 2νλ2

nx
2
n = λβn−1x

2
n−1xn − λβnx2

nxn+1︸ ︷︷ ︸
telescopic!

 
d

dt

∞∑
n=1

x2
n + 2ν

∞∑
n=1

λ2
nx

2
n = 0.

We summarise some known results, �rst in the case without noise (σn ≡ 0 for all
n) [Che08, BMR11],

positive initial conditions give positive solutions.
if β ≤ 2, there is well�posedness (2DNS�regime),
if β ≤ 3, uniqueness for positive initial states,
if β ≤ βc ≤ 3 smoothness for positive initial state,
if β > 3, blow�up for large enough positive initial state.

Here βc >
5
2
, and the Navier�Stokes�like case is included. With noise, we know

[Rom14e] that,

positivity not preserved,
if β ≤ 2 trivial well-posedness (2DNSe regime),
if β ≤ 3, path�wise uniqueness,
if β ≤ βc, smoothness,
if β > 3 and {n : σn 6= 0} 6= ∅, then there is a.s. blow�up from any initial
state.
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The natural state space of the problem is `2(R), we can consider spaces of regularity
(understood as decay, as in Sobolev spaces with respect to Fourier transform),

hα =
{
x ∈ `2 : ‖x‖2

α :=
∑
n

(λαnxn)2 <∞
}
,

and a smooth solution is a solution in hα (for those values of α compatible with
the regularity of the driving noise).
Let us �rst understand the mechanism that creates blow�up in the case without

noise [Che08]. Assume β > 3. There is explosion if the initial condition is positive
and large enough in hα for some suitable α > 0. Indeed,

(3.3)
d

dt
‖x‖2

α + 2ν‖x‖2
α+1 ≈

∑
n

λβ+2α
n x3

n ≈ c‖x‖3
α+1,

where the positivity of the solution makes the �≈� rigorous. Hence

(3.4)
d

dt
‖x‖2

α & c‖x‖3
α+1 − 2ν‖x‖2

α+1 & c‖x‖3
α,

if ‖x(0)‖α is large enough.
The critical exponent for the dyadic model is β−2, and local �regular� solutions

exist with initial condition in hα, with α > β−2. Indeed, this number is the decay
rate of solutions which gives the equilibrium between the linear and the non�linear
part:

λ2
nxn ≈ λβn−1x

2
n−1 − λβnxnxn+1 ≈ λβnx

2
n,

that is xn ≈ λ2−β
n .

When we have at least one component forced by noise, blow�up is almost sure.

Theorem 3.7. Assume σn 6= 0 for at least one index n ≥ 1. For every x ∈ hα,
α > β − 2, and every martingale solution starting at x, Px[τ∞ <∞] = 1.

The proof of this theorem is based on the criterion explained in Section 3.5.2.
The strategy is to consider a perturbation of the deterministic estimates (3.3),
(3.4) in order to �nd a good set B∞ where the probability of blow�up is bounded
from below. The main di�culty in identifying B∞ is that positive states are a
�thin� set in `2. On the other hand, when seen at an appropriate scale, the noise
perturbation is small so that, if not positive, solutions are still not too negative.
This identi�es B∞ as a subset of states that are �quasi�positive� and large is some
suitable norm.
To prove the conditional recurrence, we prove that it is implied by recurrence

of balls in `2 (which is true by the standard energy estimate). Indeed, �x a ball

{‖x‖`2 ≤M} contraction expansion B∞
p2 p1

of radius M in `2, then with a probability p2 there is contraction of negative
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components (so that the solution is �quasi�positive�), while keeping the size in `2

not too larger than M . With probability p1 it is possible to keep the negative
components small, while making the positive part of the �rst noisy component
large. The two steps together have lead the system in B∞. The events that force
the system the way we want depend on the outcomes of the noise, so are mutually
independent. Hence recurrence of B∞ is reduced to recurrence of balls in `2.

3.6. Existence of densities for �nite dimensional functionals. There are
several reasons to be interested in densities for the solutions of (1.1).
First of all, when dealing with a stochastic evolution PDE, the solution depends

not only on the time and space independent variables, but also on the �chance�
variable, and the existence of a density for the law of (some functionals of) the
solution is thus a form of regularity with respect to this new variable.
We will be particularly interested in densities for �nite dimensional (spectral)

projections of the solution. By the results in Section 3.2, it is su�cient to show
that the laws of two solutions agree if they agree at each time. To show that
the laws at each time coincide it is su�cient to show that the �nite dimensional
projections are the same. Thus, the analysis of densities can be a �rst step towards
a proof of uniqueness of the distributions5.
An alternative proof of uniqueness, involving the invariant measures, is presented

in Theorem 4.2. It is interesting, although not unexpected, that the densities of
stationary processes (see Section 4 are smoother than the densities of any other
solution [DR14], so that the strategy outlined above might proceed further when
we consider the additional smoothing of stationary solutions together with the
aforementioned theorem 4.2.
When looking for densities, we face two non�trivial problems. The �rst concerns

the problem of a reference measure for densities. One reason to consider �nite
dimensional functionals is that there is no canonical reference measure in in�nite
dimension. Any choice should be necessary tailored to the problem at hand, and in
our case we do not know enough of the problem (1.1) for this purpose (see [Rom13]
for more details in this direction, see Section 4.3 for some candidates).
The second problem is related to the di�culty in proving regularity and unique-

ness (either case, with or without noise). Indeed, to show existence of densities for
solutions of stochastic equations a fundamental and classical tool is the Malliavin
calculus, a di�erential calculus where the di�erentiating variable is the underlying
noise driving the system. The Malliavin derivative DHu(t), the derivative with
respect to the variations of the noise perturbation, is given as

DHu = lim
ε↓0

u(W + ε
∫
H ds)− u(W )

ε
,

5Unfortunately, we are not able to proceed beyond this �rst step so far.
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where we have written the solution u as u(W ) to show the explicit dependence
of u from the noise forcing. We point, for instance, to [Nua06] for further details
and de�nitions. In dimension two the general program proceeds [MP06] providing
smooth densities for the �nite dimensional projections of the solution. When
we turn to three dimensions, we notice that the Malliavin derivative DHu of the
solution u of (1.1), as a variation, satis�es the linearization around the solution,
namely,

d

dt
DHu− ν∆DHu+ (u · ∇)DHu+ ((DHu) · ∇)u = SH,

and good estimates on DHu(t) originate only from good estimates on the lin-
earization of (1.1), which are not available so far. This settles the need of meth-
ods to prove existence and regularity of the density that do not rely on this
calculus, as done in [DR14]. For other works in this direction, see for instance
[DM11, BC12, KHT12, HKHY13b, HKHY13a].

3.7. Besov bounds for the densities. There are several possible strategies to
prove the existence of the density of a random variable. We have been already con-
vinced that Malliavin calculus does not work. In [DR14] three di�erent strategies
are presented. The �rst strategy is based on the idea introduced in [FR07] that,
under suitable assumptions on the driving noise, Markov solutions have laws that
are absolutely continuous with respect to the laws of the local strong solutions.
As observed in [Rom14a] (see also [Rom14d]), the validity of this observation,
when properly reformulated, goes beyond Markov solutions. A second strategy
is based on the Girsanov transformation and, as the previous strategy, provides
only a qualitative result, namely the existence of densities, without any further
regularity property.
The third strategy, that we are going to brie�y detail below, yields regularity of

the density in terms of Besov spaces. Let us recall the de�nition of Besov spaces.
The general de�nition is based on the Littlewood�Paley decomposition, but it
is not the best suited for our purposes. We shall use an alternative equivalent
de�nition (see [Tri83, Tri92]) in terms of di�erences. De�ne

(∆1
hf)(x) = f(x+ h)− f(x), (∆n

hf)(x) = ∆1
h(∆

n−1
h f)(x)

then the following norms, for s > 0, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,

‖f‖Bsp,q = ‖f‖Lp +
(∫
{|h|≤1}

‖∆n
hf‖

q
Lp

|h|sq
dh

|h|d
) 1
q
,

(with obvious modi�cations when q =∞), where n is any integer such that s < n,
are equivalent norms of Bs

p,q(R
d) for the given range of parameters.

The technique introduced in [DR14] is based on the following analytic lemma,
which provides a quantitative integration by parts. The lemma is implicitly given
in [DR14] and explicitly stated in [Rom14c].
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Lemma 3.8 (smoothing lemma). If µ is a �nite measure on Rd and there are an
integer m ≥ 1, two real numbers s > 0, α ∈ (0, 1), with α < s < m, and a constant
c11 > 0 such that for every φ ∈ Cα

b (Rd) and h ∈ Rd,∣∣∣∫
Rd

∆m
h φ(x)µ(dx)

∣∣∣ ≤ c11|h|s‖φ‖Cαb ,

then µ has a density fµ with respect to the Lebesgue measure on Rd and fµ ∈ Br
1,∞

for every r < s− α. Moreover, there is c12 = c12(r) such that

‖fµ‖Br1,∞ ≤ c11c12.

The idea is the same used with Malliavin calculus: there is a smoothing e�ect
(that is captured by the above lemma) and this must originate from the random
perturbation. We use the random perturbation to perform the �fractional� integra-
tion by parts along the noise to be used in the above lemma. The bulk of this idea
can be found in [FP10]. Our method is based on the one hand on the idea that
the Navier�Stokes dynamics is �good� for short times, and on the other hand that
Gaussian processes have smooth densities. When trying to estimate the Besov
norm of the density, we approximate the solution by splitting the time interval in
two parts.

time
tt− ε

On the �rst part the approximate solution uε is the same as the original solution,
on the second part the non�linearity is killed. By Gaussianity this is enough to
estimate the increments of the density of uε. Since uε is the one-step explicit Euler
approximation of u, the error in replacing u by uε can be estimated in terms of
ε. By optimizing the increment versus ε we have an estimate on the derivatives of
the density.
The regularity of the density can be slightly improved from B1−

1,∞ to B2−
1,∞ if u is

the stationary solution, namely the solution whose statistics are independent from
time (see Section 4)

Proposition 3.9. Given x ∈ H and a �nite dimensional subspace F of D(A) gen-
erated by the eigenvectors of A, namely F = span[en1 , . . . , enF ] for some arbitrary
indices n1, . . . , nF , assume that πFS is invertible on F . Then for every t > 0 the
projection πFu(t) has an almost everywhere positive density fF,t with respect to the
Lebesgue measure on F , where u is any solution of (3.1) which is limit point of
the spectral Galerkin approximations.
Moreover, for every α ∈ (0, 1), fF,t ∈ Bα

1,∞(Rd) and for every small ε > 0, there
exists c13 = c13(ε) > 0 such that

‖fF,t‖Bα1,∞ ≤
c13

(1 ∧ t)α+ε
(1 + ‖x‖2

H).
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The time regularity of the density can be also investigated using similar ideas.
Since we are studying a stochastic evolution, it is reasonably expected that there is
regularity in time and that this is �half� the regularity in space (Brownian scaling).
This is con�rmed by the following result.

Proposition 3.10 ([Rom14c]). Under the same assumptions of the previous Propo-
sition 3.9, for every α ∈ (0, 1) there is c14 > 0 such that for every s, t > 0,

‖fF,t − fF,s‖Bα1,∞ ≤ c14

(
sup
r∈[s,t]

‖fF,r‖Bα1,∞)
)
|t− s|

α
2 .

The above result is based again on the splitting idea we have explained. Un-
fortunately the splitting works only when one can exploit a sort of integration by
parts. This is not possible when doing an estimate of the densities in L1. To this
purpose, in [Rom14c], the L1 estimate of the time increments follows from (an
appropriate version of) the Girsanov change of measure.
Besov bounds work well with �nite dimensional projections because allow to

avoid the di�culty of low regularity of solutions of Navier�Stokes in three dimen-
sion. On the other hand the method based on Markov solutions works well, at
least qualitatively, for any �nite dimensional functional. It may be interesting to
provide some �ad�hoc� strategy to get regularity of densities of some quantities of
interest for the equations. In [Rom14b] there is a proof of regularity of densities
for the energies Eα(t, u) = ‖u(t)‖2

α, for α negative. More precisely, the following
result holds.

Proposition 3.11 ([Rom14b]). Given a weak martingale solution u of (1.1), and
a number α > 3

4
, the real valued random variable E−α(t, u) has a density ft,α with

respect to the Lebesgue measure on R, for every t > 0. Moreover,

ft,α ∈ Br
1,∞(R) for every r < 2α− 3

2
if α < 5

4
,

ft,α ∈ Br
1,∞(R) for every r < 1 if α ≥ 5

4
.

A similar statement can be also obtained for the α�dissipation Dα(t, u) =∫ t
0
‖u(s)‖2

1+α ds (again with α negative), as well as for the fundamental energy
balance E0(t, u) + 2νD0(t, u), namely,

‖u(t)‖2
H + 2ν

∫ t

0

‖u(s)‖2
V ds.

In the latter case, the key point is that we can exploit the cancellation property
of the Navier�Stokes non�linearity. For α negative but larger than the threshold
of Proposition 3.11, the contribution of the non�linearity has no good control.

3.8. Additional remarks. An interesting question, that has been completely an-
swered for the two�dimensional case in [MP06], concerns the existence of densities
when the covariance of the driving noise is essentially non�invertible. The typical
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perturbation in (1.1) we consider here is

η̇(t, y) =
∑
k∈K

σkβ̇k(t)ek(y),

where Z 6= Z3
? and is usually much smaller (�nite, for instance). The idea is that

the noise in�uence is spread, by the non�linearity, to all Fourier components. The
condition that should ensure this has been already well understood [Rom04], and
corresponds to the fundamental algebraic property that K should generate the
whole group Z3.
It is clear that the method we have used to obtain Besov bounds cannot work

in this case, because the non�linearity plays a major role. On the other hand in
[Rom14a] we prove, using ideas similar to those used in the strategy with Markov
solutions, the existence of a density. No regularity properties are possible, though.
See also [Rom05, RX11] for other relevant results on the Navier�Stokes equations
in dimension three with �hypoelliptic noise�.
Another issue that is, morally, generically applicable to any statement related

to the Navier�Stokes equations in 3D, is the universality of the result obtained.
Since we do not know if there is a unique distribution, it may be possible that the
densities of solutions obtained by di�erent methods may have di�erent properties.
In a way this is reminiscent of the problem of suitable weak solutions introduced by
[Sch77]. Only much later it has been proved that solutions obtained by the spectral
Galerkin methods are suitable [Gue06] (under some non�trivial conditions though),
and hence results of partial regularity are true for those solutions. In [Rom14d] we
establish a �transfer principle� that, roughly speaking, states that as long as we
can prove existence of a density for a �nite dimensional functional of the solution
and for a weak solution that satis�es weak�strong uniqueness, then existence of
a density holds for any other solution satisfying weak�strong uniqueness and a
closure property with respect to conditional probabilities.
In other words, by the transfer principle, we can prove existence of a density

for solutions obtained from Galerkin approximation, and this result will extend
straight away to any other solutions, for instance those produced by the Leray
regularization (see for instance [Lio96]). Or we can use the special properties of
Markov solutions given in [FR08, Rom10a] to prove existence of densities of a
large class of �nite dimensional functionals, as done in the �rst part of [DR14],
and again this extends immediately to any solution.
An important limitation of the transfer principle is that it applies only on quan-

tities depending only on one time. This for instance rules out the results of Propo-
sition 3.10. Moreover, the transfer principle is qualitative in nature, as it may
transfer only the existence, and in general no quantitative information can be in-
herited. Nevertheless, in the case of stationary solutions, the transfer principle
(with some loss) can be also made quantitative.
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4. Invariant measures

Existence of invariant measures for stochastic equations is a classical topic, we
refer to [DPZ96] for details. In fact, it dates back to original ideas of Kolmogorov,
to add noise to an equations to �nd a unique invariant measure (something that
is way more di�cult when randomness is in the initial condition, see Section 2.5),
and then to study the zero�noise limit to �select� the most interesting invariant
measure of the noise�less equation.
Thus the most interesting part of the analysis in this subject concerns uniqueness

of invariant measures, and possibly related ergodic theorems. The theory in the
two�dimensional case, starting from the �rst results of [FM95], is well developed,
both on the side of rough noise, see for instance [DPD02], and on the side of
smooth �nite dimensional noise (in some way, the most physical one when turning
to turbulence), see [HM06].
In dimension three the theory is less developed, and so far we only know that

some special solutions (the Markov solutions of [DPD03a] or [FR08] discussed
in Section 3.2) admit an invariant measure which is �unique�. This uniqueness
statement has to be properly and carefully understood. The main limitation in
these results is in noise. Indeed, these results require that the noise acts on all
modes and that the decay of noise coe�cients is controlled from above and below
(with a minimum of �exibility in the control, see [Rom11a]).

4.1. Existence and uniqueness of invariant measures in 3D. The main
issue when dealing with invariant states in the three�dimensional case, hence in
the case where the dynamics is not well de�ned, is to identify a good de�nition of
an invariant state. A fairly general de�nition is a stationary solution. Consider as
a state space the set of all trajectories, for instance Ω = C([0,∞;V ′) (and further
requirements, if necessary in order to get compactness), where H ⊂ V ′ is large
enough so that solutions are continuous. A stationary solution is a probability
measure on the state space such that trajectories are solutions of (1.1) (with or
without noise) and such that the measure is invariant with respect to the time�
shift, namely with respect to the maps τt : Ω→ ω de�ned as

τt(ω)(s) = ω(t+ s), s ≥ 0

Roughly speaking, the action of τt is to cut out the �rst part of the trajectory,
thus a stationary solution depends only on the �tails� of the trajectories. The time
marginal of a stationary solution is the candidate invariant measure, although
there is not a well�de�ned �ow with respect to which the measure is invariant.
The techniques of [DPD03a, FR08] are specially tailored to de�ne a �ow of

solutions of (1.1). In this setting invariant measures are a meaningful notion. As
already mentioned, existence of an invariant measure is straightforward, after all
the dynamics without forcing has the zero as the unique globally stable point, at
least in H. A bit of compactness concludes the argument.
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Uniqueness is obtained in [DPD03a] as a by-product (through Doob's theorem,
see [DPZ96]) of two fundamental properties: continuity of transition probabilities,
discussed in Section 3.3, and the full support. Both properties rely on the strong
assumptions on the noise we have mentioned.
As it regards convergence to the unique invariant measure, we know that it

is exponentially fast [Oda07, Rom08]. It is worth mentioning that in [Oda07]
convergence of a solution towards a stationary solution is obtained for every limit
probability of Galerkin approximation. Convergence in [Rom08] holds only for
Markov solutions.
A completely di�erent approach is presented in [Bak06], based on ideas we will

see later in Section 5.1.3, but is restricted to bounded (and small enough) noise,
although it ensures uniqueness of a stationary solution.
In conclusion, state of the art results in this setting are still very far from the

strong results obtained in the two dimensional case in [HM06]. A mild relaxation
on the non�degeneracy of the noise has been given in [RX11].

4.2. Uniqueness criterion through invariant measures. We have already
seen that, under suitable assumptions on the driving noise, every Markov solution
has a unique invariant measure. As in principle there can be several di�erent
Markov solutions, so are invariant measures.
Here we wish to discuss the di�erent notions of invariant measures we can con-

sider and a uniqueness criterion for the law of (1.1) based on invariant measures.
De�ne a stationary solution P? as a probability measure on ΩNS that is invariant

for the time shift on the path space. There are several ways to ensure existence
of stationary solutions, either without noise [FR01], or with noise [Rom10b]. One
way is also provided by Markov solutions since if (Px)x∈H any such solution and
µ? is its invariant measure, then P? =

∫
Px µ?(dx) is a stationary solution.

De�ne the following sets

J = {µ ∈ Pr(H) : µ is the marginal of a stationary solution},
Jm = {µ ∈ Pr(H) : µ is the invariant measure of a Markov solution},

Je = {µ ∈Jm : µ maximizes the selection procedure},

where the selection procedure is the one outlined in Section 3.2. It is easy to check
[Rom08] that Je ⊂Jm ⊂J , and that J is compact.
The set of invariant measures associated to Markov solutions has a robust struc-

ture, so that several uniqueness results and characterizations are possible. For
instance, we have the following result [Rom08].

Proposition 4.1. If µ? ∈Je, then the stationary solution P? associated to µ? is
the unique stationary measure in C (µ?).

If we also assume that the covariance of the driving noise is as in [FR08] (or as
in [Rom11a]), so that the dynamics is strong Feller and irreducible in a smaller
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spaceW (tipicallyW = Vα for a suitable α >
1
2
), then we have the following result

(see also [Kry04] for a �nite dimensional analogue of this result).

Theorem 4.2. Assume that every Markov selection is strong Feller and fully sup-
ported on W. Let (Px)x∈H and (P′x)x∈H be two Markov solutions, with (Px)x∈H
maximizer in one of the possible maximisation procedures of the selection. If the
two families have the same invariant measure, then they coincide on W.

In di�erent words, if the set Je contains only one invariant measure, then the
martingale problem associated to the Navier�Stokes equations (1.1) is well posed.
The converse is obvious.
We have been not able to �nd a way to apply the criterion. On the other hand,

under the same assumptions of the above theorem, we know that the measures in
Jm are all equivalent measures [Rom08, Corollary 3.5]

Theorem 4.3. Any µ1, µ2 ∈ Im are equivalent:

µ2 =
dµ2

dµ1

µ1.

In di�erent words: any almost sure event is universal and the property holds
independently of the (Markov) solution. To improve the reliability of the model
and give a quantitative measure of uncertainty regarding events related to the �uid
motion a better understanding of the density dµ2

dµ1
is needed. In principle, by having

for instance stronger summability of the density than L1, it may be possible to
ensure that

µ1[A] ≈ 1 =⇒ µ2[A] ≈ 1,

so that events of high probability for one solution are strongly likely for any other,
independently of uniqueness of distributions. This in a way justi�es the line of
research initiated in Sections 3.6�3.8.

Example 4.4 ([Rom11b]). To understand the questions of uniqueness and non�
uniqueness in relation with invariant measures, let us consider a variation of the
elementary example 3.3, Ẋ = −X +

√
X, with initial condition X(0) = x ∈ [0, 1].

The problem has a unique solution Xx(·) for x 6= 0 and the family of solutions
{X?

a = X?((t− a)∨ 0) : a ≥ 0} for x = 0, where X? is the unique solution starting
at 0 such that X?(t) > 0 for all t > 0.
If C (x) denotes the set of all solutions starting at x, viewed as probability

measures on the path space C([0,∞); [0, 1]), then C (x) = {δXx} for x ∈ (0, 1],
where δXx is the Dirac measure concentrated on Xx.
If x = 0, a solution starts at 0 and stays for an arbitrary time, then follows the

solution X? (suitably translated). So the departing time from 0 can be interpreted
as a random time T whose law can be arbitrary. Therefore any selection of solutions
is completely described by a single random variable on [0,∞]. It is easy to be
convinced that a selection of solutions is Markov if and only if T is exponential
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T

(the lack of memory plays a major role), including the degenerate cases of in�nite
or zero rate (namely, T = 0 or T =∞).
Denote by (Pax)x∈[0,1] the Markov family with rate a. We shall call extremal all

those Markov solutions that can be obtained by the selection procedure. It turns
out that the only extremal families are those corresponding to a = 0 and a =∞.
As it regards invariant measures, we notice that (Pax)x∈[0,1] has a unique invariant

measure (which is δ1) if and only if a <∞. Notice that all selections having δ1 as
their unique invariant measure coincide δ1�almost surely.
If a = ∞, there are in�nitely many invariant measures (the convex hull of δ0

and δ1). As there is no noise in this example, in general we cannot expect the
invariant measures to be equivalent

4.3. Explicit invariant measures. With Section 2.5 in mind, let us look if we
can �nd a suitable noise that provides an explicit expression for the invariant
measure. Let us look for an invariant measure of Gibbs type, namely µ = eU(x) dx,
so that it has a density with respect to the (non�existent) in�nite dimensional �at
measure.
Formally, the Fokker-Planck equation satis�ed by the in�nite dimensional den-

sity U = U(t, x), t > 0, x ∈ H, is

1

2
Tr(S?SD2U) +

∑
n

∂

∂xn

(
U(νλnxn +Bn(x))

)
= 0,

where (λn)n≥1 are the eigenvalues of the Laplace operator, and S?S is the covari-
ance of the driving noise, and we assume for simplicity that there are numbers
σn ≥ 0 such that Sen = σn, that is the covariance is diagonal in the usual real
Fourier basis (en)n≥1. We postulate that

U = e−β
∑
n µnx

2
n ,

that is we assume that the invariant measure is a Gaussian measure. We choose
the coe�cients (µn)n to be either µn = 1 for every n (in dimension 2 or 3), or
µn = λn for every n (in dimension 2). With both choices we know that (formally)∑

n

µnxnBn(x) = 0.
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With our choice of U , we have that

∂U

∂xn
= −2βµnxnU,

∂2U

∂x2
n

= −2βµnU + 4β2µ2
nx

2
nU,

hence, by plugging these formulas in the Fokker�Planck equation and using the
formula above for B,

U
∑
n

(−βσ2
nµn + 2β2µ2

nσ
2
nx

2
n − 2νβλnµnx

2
n + νλn) = 0

which yields νλn − βµnσ2
n = 0, or

σ2
n =

νλn
βµn

.

4.3.1. Invariant measures from the enstrophy. Let us consider �rst dimension 2
and U = e−βS(x), where S is the enstrophy. The above computations suggest to
choose the identity (on H) as covariance (that is, the driving noise is white in both
space and time). Let us look �rst at the solution z of the linear problem (3.2).
A simple computation shows that E[‖z(t)‖2

H ] = ∞, hence P[z(t) 6∈ H] = 1 by
Fernique's theorem [Bog98]. Since we cannot expect that the solution to the full
Navier�Stokes equations could be any smoother than z (in fact it is not), standard
methods do not apply. In [DPD02] the equation is understood in terms of a
renormalized non�linearity, where the square of the distribution u is understood
as a Wick product, very much the same as it was done in the case of the Φ4

3 model
in the stochastic quantisation of Euclidean quantum �eld theory (see for instance
[DPD03b, Hai14c]).
Here we give the rough idea following [BR13] (where it has been applied to

a fourth order problem). Let zN be the spectral truncation of z (namely, take
only modes |k| ≤ N , then B(zN , zN) is well de�ned and is a Cauchy sequence
in V−α, α > 0. To see the reason for this, let us check a simpler computation
that shows that B(zN , zN) is bounded in V−α for α > 0. The Cauchy sequence
statement follows by similar considerations. Each component of z can be written
as zk = k⊥

|k| ζk, where

dζk + ν|k|2ζk = dβk,

where (βk)k∈Z2
?
are independent complex�valued standard Brownian motion (but

for βk = β−k). We �rst notice that E[ζmζnj] = 0 if m 6= ±n by independence.
Moreover, E[ζ2

m] = 0 and E[|ζm|2] = (ν|m|2)−1 by a direct computation, hence in
the sum below, most of the terms cancel out and

E[‖B(zN , zN)‖2
−α] = E

∑
k

|k|−2α
∣∣∣ ∑
m+n=k

(zn · k)πkzm

∣∣∣2 =

=
∑
k

|k|−2α
∑

m1+n1=k
m2+n2=k

E[(zn1 · k)(zn2 · k)(πkzm1 · πkzm2)].
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Consider the expectation E[(zn1 · k)(zn2 · k)(πkzm1 · πkzm2)], this is zero unless
m1 = m2 and n1 = n2, or m1 = n2 and m2 = n1 (the case m1 = n1, m2 = n2 can
be neglected). In both cases the expectation is bounded by ν−2|k|2|m|−2|n|−2 and
it is easy to check (see for instance [BRT07, Lemma 2.3]) that the sum∑

k

|k|−2α+2
∑

m+n=k

1

|m|2|n|2
≤ c15

∑
k

log |k|
|k|2α+2

converges when α > 0. It might be possible that a di�erent approximation of z
may lead to a di�erent limit object B(z, z) (see the discussion in [BR13]).
Once we know that B(z, z) is well de�ned, we can look for a solution u = z+ v,

where v solves

∂tv + νAv +B(v, v) +B(z, v) +B(v, z) = −B(z, z).

It turns out that v is slightly better than u (the worst part of u is all in z), so that
the products B(v, v), B(v, z) and B(z, v) make sense without any further consid-
eration. The above equation can be solved by a �xed point argument. The passage
from local to global works using the fact that the system under consideration has
an explicit invariant measure (see [DPD02] for further details).
The whole idea can be pushed even further, because one can allow for rougher co-

variance operators, as long as the equation for v makes sense, possibly by extending
the decomposition of u to new factors, for instance at second order u = z+w+ v,
with ∂tw + νAw + B(z, z) = 0, and v so that formally the equation for u is the
correct one.
Unfortunately, the whole method �nds a substantial limit, as discussed in the

next section.

4.3.2. Invariant measures from the energy? The naive approach discussed in the
previous section �nds robust general versions in the works [GIP13] and [Hai14c]
(see also [Hai14a, Hai14b]. A general rule to multiply random distributions is
introduced in [GIP13] based on Littlewood�Paley decomposition. The approach
of [Hai14c] is more abstract and general and aims to introduce a new kind of
Taylor expansion, where the basic elements of the expansion can be tailored to
the problem. Both methods have been introduced to deal with problem, such
as the Kardar�Parisi�Zhang equation [Hai13], where the noise perturbation is so
rough that in principle should have no meaning. Our previous section suggests
the general approach of writing the solution as the contribution of several terms
of growing regularity, up to the point that the �last� term is smooth enough that
the non�linearity makes sense. There is in general no unique way to do this and
in the most challenging problems (such as KPZ), some renormalization of these
quantities may be required.
The structural limitation of the method is that there might be no gain of smooth-

ing (or worse). For such critical (super�critical) problems the problem is com-
pletely open. A �rule of thumb� is suggested in [Hai14c] to grab the idea. To
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simplify, let us consider our case of interest, namely the Navier�Stokes equations
driven by the gradient of space�time white noise. From our formal computations
in Section 4.3, this is the correct noise to ensure that the Gibbs measure associated
to the energy is (formally) invariant.
Space�time white noise is worth −d

2
− 1 derivatives (time is worth one, each

space dimension is worth a half), and we loose another derivative for the gradient.
The linear dissipation allows to gain two derivatives. Then we plug the result in
the non�linearity. We may look at the Navier�Stokes non�linearity as div(u⊗ u),
which is better here because we need to take the square of a distribution rather
than multiply it by its gradient. The external div is taken care by integration by
parts and is less messy.
By this computation of derivatives, it turns out that in dimension two we are

dealing with a critical problem (and the whole stu� is much worse in dimesnion
three). Chances are that is already worse in dimension two due to some logarithmic
divergence typical of the two dimensional Navier�Stokes non�linearity.
In conclusion, with the knowledge so far the existence of a Navier�Stokes �ow

leaving the Gibbs measure from the energy invariant is an open problem.

5. Other topics

In this last section we collect some additional topics related to the Navier�
Stokes equations and probabilistic tools. We will give some detailed ideas only
on the problem of probabilistic representation formulas for the solutions of the
deterministic Navier�Stokes equations (although all formulas provided may be
adapted to deal with random forcing). We conclude by recalling a few works
related with the statistics on the Navier�Stokes equations with noise.

5.1. Representation formulas. In this last part we focus on the equations (1.1)
with no random data and we are interested in �nding the �hidden� stochasticity
that can allow to represent the solution by a formula containing random term.
The representation of the velocity �eld of a �uid through characteristics is very

natural in �uid dynamics, due to the possibility of describing the motion of a �uid
with a Lagrangian point of view. On the other hand the idea of using random pro-
cesses to give a representation of solutions is as old as Brownian motion. The two
facts capture two of the main phenomena of the motion of viscous �uids, transport
and di�usion. Indeed, in dimension two this is su�cient to obtain probabilistic
representation formulas for the solutions [Bus99].
It turns out that in dimension three another phenomenon, vortex stretching, has

to be taken into account, and this makes representation formulas more challenging.
Two versions, [BFR05, CI08] detailed below, give a description in these terms.
An alternative de�nition, that roughly speaking focuses on the interaction of

energy among modes can be given by means of branching processes [LJS97]. Here
we will give a simpli�ed idea following [BRT07]. The same approach allows to
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de�ne stationary solutions for the equations driven by bounded (non�Gaussian)
stationary noise [Bak06].
Other probabilistic representation formulas, not presented here have been de-

veloped in [EMPS88, EP89, AB03, CS09].

5.1.1. Representation through noisy Lagrangian trajectories. We consider here re-
sults from [BFR05]. Let us start from the equation for the vorticity ξ = curlu,

∂tξ + (u · ∇)ξ = ν∆ξ +Du ξ

where Du = 1
2
(∇u + (∇u)T ) is the deformation tensor, that is the symmetric

part of ∇u. The �stretching� term Du ξ is the responsible for three�dimensional
phenomena and is not present in the equation for the two dimensional vorticity.
Let us �rst consider the two dimensional vorticity in an inviscid �uid. Vorticity

is transported along the �ow induced by velocity, so that the quantity ξ(t,Xt) is
conserved when X is the trajectory of a ��uid particle�, namely Ẋ = u(t,X).
When dissipation (ν 6= 0) and stretching (the term Du ξ) are taken into account,

the whole problem is more di�cult. Fluid particles keep moving following the
velocity �eld, but in order to take into account dissipation, it is more convenient
to single out the e�ect of di�usion, using the dynamics

(5.1) dX = u(t,X) dt+
√

2ν dBt,

with B three dimensional standard Brownian motion. To take vortex stretching
into account, we can imagine that when we compare vorticity at the two ends
of a �uid particle trajectory, the cumulative e�ect of the deformation changes
the vorticity size and direction. For instance, the vorticity is stretched when
su�ciently aligned with the expanding directions of Du. Since these directions
change with time, ξ(t,X(t)) may undergo a complicate evolution with stretching,
rotations, contractions. Heuristic reasoning and numerical experiments show a
predominance of the stretching mechanism,.
In [BFR05] the three phenomena, transport, di�usion and stretching, are sum-

marised by the following representation formula

ξ(t, x) = E[V (t, 0)ξ(0, X0)],

where X(s) is the solution of (5.1) with �nal condition X(t) = x, and V (r, s) is
the solution of the 3× 3 matrix equation{

d
dr
V (r, s) = Du(r,X(r))V (r, s), r ∈ (s, t)

V (s, s) = I.

So far, the representation is incomplete, since V depends from the deformation ten-
sor, hence from the velocity, that in turns can be reconstructed from the vorticity
(with suitable decay). In [BFR05] the reconstruction, through the Biot�Savart
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law, is also formulated as a probabilistic representation

u(x) =

∫ ∞
0

1

2t
E[ξ(x+Wt)×Wt] dt,

where W is an additional three dimensional standard Brownian motion. The
representation we have described is implicit, since the formula for vorticity is given
in terms of the velocity, and the formula for the velocity depends on the vorticity.
Nevertheless, this allows to formulate an alternative proof of a Beale�Kato�Majda
like criterion given in [Pon85], and the local existence results for the vorticity given
below.

Theorem 5.1. Given p ∈ [1, 3
2
), α ∈ (0, 1), let ξ0 ∈ Cα

b (R3,R3) ∩ Lp(R3,R3).
Then there are τ > 0, depending only on ‖ξ0‖Cαb ∩Lp, and a unique solution u
of (1.1) given by the representation formulas above.

Obviously, the smallness of τ can be replaced by the smallness of ‖ξ0‖Cαb ∩Lp
to have global solutions. Also suitable external forces can be considered in the
probabilistic formulation.

5.1.2. Eulerian�Lagrangian approach. An alternative representation formula that
is based on the Eulerian�Lagrangian approach developed in [Con01a, Con01b] has
been presented in [Iye06, CI08]. The formula yields directly the velocity without
passing through vorticity. On the one hand the e�ect of stretching are less appar-
ent, on the other there is a complete decoupling between di�usion and transport
e�ects, namely the �nal formula for the viscous �uid is simply the expectation of
the corresponding formula for inviscid �ows.
The starting point is the Weber formula for an inviscid �uid [Con01a],

u = ΠL(∇A)T (u0(A)),

where ΠL is the Leray projector, At = X−1
t and for every x ∈ R3, X(·;x) is the

Lagrangian trajectory started at x, namely the solution of Ẋt = u(t,Xt) with
initial condition x.
In order to take the e�ect of viscosity into account, one can consider the di�used

Lagrangian trajectories (5.1), that is dX = u(t,X) dt +
√

2νdB, with B three�
dimensional standard Brownian motion. De�ne again the back�to�label map At =
X−1
t (this time X is a stochastic �ow), then the representation formula is

u = E[ΠL(∇A)T (u0(A))].

One can immediately deduce an expectation for the vorticity,

ξ = E[(∇X)ξ0(A)],

and the formula can easily take an external force f(t, x) into account,

u(t) = E[ΠL(∇At)T (u0(At))] + E
[
ΠL

∫ t

0

(∇X)Tf(s,Xs) ds
]
.
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Further development can be found in [CI06, IM08, Iye09].

5.1.3. Stochastic cascades via branching processes. [LJS97, BRT07, Bak06] Un-
like the previous representation formulas, the representation that will be exam-
ined in this section is completely explicit and the hidden randomness is pro-
vided by branching processes. The idea of using branching processes as the
underlying engine of probabilistic representations is not new, see for instance
[Sko64, INW68, McK75] where branching is coupled with di�usion, and the sto-
chastic representation is derived directly in the physical space, so that the linear
operator is limited to generators of di�usions and the non�linearity is polynomial.
In [LJS97] the authors are able to consider the Navier�Stokes non�linearity

by looking for a representation in Fourier space. Their method suggests a �ow
of the kinetic energy among scales governed by transition probabilities computed
according to the (Fourier�transformed) non�linearity, and hence called evocatively
stochastic cascades. It turns out that their method is quite general and can handle
a large class of semi�linear parabolic PDEs, or systems of PDEs. Here we follow
the presentation in [BRT07] and consider PDEs with periodic boundary conditions
of the type

∂tu = Au+ F (u) + f,

where A is an operator with a complete set of eigenfunctions, F is a polynomial
non�linearity in u and its derivatives, and f is a given driving function. The case
of full space, as in [LJS97], can be considered with similar ideas.
In short, the solution u is expanded into Fourier series with respect to the

eigen�functions of A. The PDE is transformed into a system of countably many
ODEs for the Fourier coe�cients. The solution of the system is represented by
the expectation of a recursive functional over a tree of branching particles. The
rules for branching, regeneration and death probabilities of particles arise from the
particular PDE studied.
One major drawback of this stochastic representation is that it often fails to

exist for large times t, although the solution to the PDE may still exist. The
problem is that the recursive functional may fail to be integrable at some time.
The paper [BRT07] provides both a comparison equation whose �niteness implies
integrability of the recursive functional, and a way to avoid non�integrability by
suitably pruning the tree. A di�erent approach, unfortunately working only for
ODE, and based on resummation has been proposed in [Mor05].
Due to this problem it is not easy to tackle, by this approach, problems like the

long time behaviour. This can be done only in special cases of of small initial con-
ditions and uniformly small forcing, as in [Bak06] for the Navier�Stokes equations
with small bounded forcing.
We formulate the probabilistic representation for the two dimensional Navier-

Stokes in its vorticity formulation, in order to avoid the additional but harmless
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di�culty of vector valued coe�cients. One can proceed likewise for the three�
dimensional case on the torus. In terms of Fourier series the equation reads

ξ̇k = −|k|2ξk +
∑

m+n=k

k ·m⊥

|m|2
ξmξn + fk,

where (ξk)k∈Z2
?
are the Fourier coe�cients of the vorticity with respect to the

complex exponentials, (fk)k∈Z2
?
the coe�cients of the forcing. We assume that

χ0 = f0 = 0. We then set χk = |k|αξk for some suitable α > 1
2
, and, for c16 > 0 we

then de�ne λk = |k|2, and

Bkmn(χ, χ′) =
k ·m⊥

|k ·m⊥|
χχ′, qkmn =

|k|α−2|k ·m⊥|
c16|m|α+2|n|α

, γk =
|k|α−2

dk
fk,

for all k, m, n ∈ Z2
? satisfying k ·m⊥ 6= 0 and m+ n = k (and zero otherwise). It

is elementary to show that qk =
∑

mn qkmn <∞ and that qk → 0 as |k| → ∞. By
choosing c16 large enough we have qk < 1 and we set dk = 1 − qk. The equations
are recast in the following form,

χ̇k = λk
(
−χk + c16

∑
m,n∈Z2

?

qkmnBkmn(χm, χn) + dkγk
)
,

or, better, in its mild form

χk(t) = e−λkt χk(0) + dkλk

∫ t

0

e−λk(t−s) γk(s) ds+

+ c16λk

∫ t

0

e−λk(t−s)
∑

m,n∈Z2
?

qkmnBkmn(χm(s), χn(s)) ds,

with k ∈ Z2
?. The constants λk > 0 are the the rate of particle evolution), qkmn

and dk are the probabilities of branching and dying.
We describe �rst the branching tree. De�ne the labels set I =

⋃∞
n=0{1, 2}n,

the history of a particle α = (α1, . . . , αn) can be read o� by interpreting αj = 1
(or 2) as being child 1 (or 2) in a binary branching event at generation j. Fix

∅
1 2

11 12

121 122

21 22

221 222

Figure 6. A tree with branches and deaths (•).
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k ∈ Z2
?, a tree rooted at k is a system, indexed over I , of particle positions Kα,

birth τBα and death τDα times, de�ned inductively over the length of the labels. At
the root K∅ = k, τB∅ = 0, and τD∅ is exponential with rate λk. Given the tree with
particles with n ancestors, each of these particles, with position say k′, either die
with probability dk′ , or disappear giving raise to two new independent particles,
with positions m and n with probability qk′mn. The new particles will have a
lifespan distributed as independent exponential random variables with rates λm
and λn.
Notice that by construction, given a branching particle giving raise to two par-

ticles at positions m and n, and conditional to its genealogy, the two sub�trees
generated are independent and with the same distribution of trees rooted at m
and n.
To ensure that the tree has only �nitely many branches before a given time t, a

su�cient condition is that qk ≤ dk. We de�ne then the evaluation operator along
the tree. Fix a forcing functions γ, an initial condition χ(0) and a time t > 0. We
de�ne an evaluation map Rt recursively backwards along the tree. For a �nite tree
T produced with the above rules, start at time s = t and work back to time s = 0:
evaluate the initial condition χ(0) at any particles that is alive at time t, evaluate
the forcing function γ(s) at any particle that dies at time s < t, and apply the
bi�linear operators at the times of branching events.
To understand how the evaluation works, let us consider the simple example of

one possible position and the ODE χ̇ = −χ+ 1
2
χ2 + 1

2
f , with f constant in time.

We have d = q = 1
2
, c16 = 1 and the bi�linear operator is the usual product. Hence

on a tree T the evaluation yields R(T ) = χ(0)AtfDt , where At are the particles
alive at time t and Dt are the particles dead by time t.
Consider again the general system we have discussed so far. For an initial

condition χ(0) ∈ `∞(Cr), and a forcing γ ∈ L∞([0, T ], `∞(Cr)), the representation
formula, when the expectation exists, is given by

χk(t) = Ek[Rt],

where Ek is the expectation with respect to the law of a tree rooted at k.
Unfortunately the expectation may fail to be �nite, even in the seemingly simple

example discussed above. The number of particles alive is Poisson, and if |χ(0)| is
larger than 1, E[Rt] is not de�ned for t large enough (but possibly smaller than the
existence time of the solution). A method based on pruning of trees is proposed
in [BRT07] to avoid this divergence problem.

5.2. Statistical topics. In this last section we brie�y summarise some recent
works associated by the common idea of applying statistical theories to estimate
the values of parameters, or the distribution of the driving forces. These results are
mainly justi�ed, at least in their spirit, by applications to weather forecasting. This
also justi�es (together with better analytic estimates) the fact that the analysis is
centred to the two dimensional case.
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In [CGH11] the main aim is to give an estimate of the viscosity in the two�
dimensional Navier�Stokes equations driven by noise, with periodic or Dirichlet
boundary conditions, given the full observation of a path in a time interval [0, T ].
The in�nite dimensional problem is not regular, namely the probability distribu-
tions, for di�erent values of ν, are not mutually equivalent. The authors compute
the maximum likelihood ratio estimator of spectral approximations of the prob-
lem. Galerkin approximations are needed to recover regularity. The estimators
are weakly consistent and asymptotically normal, although tricky to be computed.
The authors formulate two simpli�ed estimators that are still weak consistent (al-
though the rate of convergence is not clear) and depending only on a �nite number
of modes.
In [HLS13] the authors discuss how to recover the driving force and the initial

conditions, given noisy observations of the �uid. They based their analysis on the
Bayesian approach, looking for the maximum a posteriori estimator (minimizing
a least square problem), given that the prior distributions of initial condition and
forcing are Gaussian, and the forcing is white in time.
The work [BLSZ13], see also [BLL+13], deal with �ltering to improve the accu-

racy of the estimate of the state of the system, in view of updating the posterior
distribution.
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