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ABSTRACT. We give a short overview of some topics concerning the ways ran-
domness can be added to the three dimensional Navier—Stokes equations.
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1. INTRODUCTION

The present work is a short overview of some results concerning the interactions
between the analysis of the three dimensional Navier-Stokes equations and the
theory of probability. Our special choice of topics does not give, by any means,
a complete picture of the state of the art on the subject and several interesting
matters and papers have been just outlined or even completely omitted. In the
choice of topics there is definitely a bias over the work by the author of the present
paper.

The main theme here is to consider the different ways randomness can be added
to the Navier—Stokes equations. For some of these ways there is a reasonable phys-
ical justification, or a mathematical explanation. These reasons will be given when
appropriate. Randomness can be essentially added to the data of the equations

u+ (u-V)u+ Vp=vAu (+17),

(1.1) divu = 0,

that is the initial condition, the external forcing and the parameters (here the
viscosity). We will mainly consider the equations in dimension three and give
some details for the two dimensional case when the analysis in 3D is unpractical.

In Section 2 we discuss some results obtained when randomness is added at the
level of the initial condition, for instance results of almost sure global existence
in super—critical spaces, the evolution of the distributions when the equations
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are started with a random initial condition (statistical solutions) and invariant
measures of the flow.

In Section 3 we consider the equations forced by Gaussian white noise. The
literature on this subject is huge, we focus on the existence of solutions that
constitute a Markov process, we discuss some topics on uniqueness and blow—up,
we prove existence of densities for finite dimensional functionals of the solutions,
as a probabilistic type of regularity.

Section 4 deals with invariant measures for the stochastically forced equations.
In a way this should have been part of the previous section, but by importance
it has deserved a section by its own. Here we discuss existence, uniqueness and
convergence towards an invariant measure, as well as the existence of explicit
invariant measures.

Finally, in Section 5 we consider subjects where randomness is more hidden.
We consider probabilistic representation formulas for the solutions of (1.1). In the
last part of the section the interest is in the interaction between the equations and
statistics.

1.1. Notation and setting. In the rest of the paper we mainly focus on the
Navier—Stokes equations with periodic boundary conditions, either without any
external force or driven by Gaussian white noise. Most of the result may be or may
have been already extended to other boundary conditions, external non-random
forces, etc. We do not give further details and point to the references.

Consider problem (1.1) with periodic boundary conditions on the d dimensional
torus Ty = [0,27]¢ (most of the time d = 3, when necessary d = 2).

Let H be the standard space of square summable divergence free vector fields,
defined as the closure of divergence free periodic smooth vector fields, with inner

product (-,-) g and norm || - || . Define likewise V' as the closure of divergence free
periodic smooth vector fields with respect to the H' norm, with scalar product
(-,-)y and norm || - ||y

Let II;, be the Leray projector, A = —II; A the Stokes operator, and denote by
(Ak)k>1 and (eg)r>1 the eigenvalues and the corresponding orthonormal basis of
eigenvectors of A. Define the space V,, = D(A?) for o € R. In particular, Vj = H
and V, =V.

Define the bi-linear operator B : V x V. — V' as B(u,v) = Il (u- Vv), u,v €
V. We recall that (uy, B(us,u3)) = —(ug, B(uz,u1)). We refer, for instance, to
[Tem95| for a detailed account of the above definitions.

When appropriate, we will consider the random forcing 7 in (1.1) as 7 = S dW,
where W is a cylindrical Wiener process on H (and hence W is space—time white
noise), and S is a linear bounded operator on H. The role of S is to colour the
noise in space, to provide some space regularity. The covariance of the driving
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noise is then SS§*. The term & dW can be always represented as

SAW =) 0,dB, g,

where (gn)nen is an orthonormal basis of H of eigenvectors of SS*, (8,)nen are
independent standard Brownian motions, and (o,,),en are suitable coefficients.

2. RANDOMNESS IN THE INITIAL CONDITION

A natural way to include uncertainty in an evolution is to consider a probability
distribution that weights the possible initial conditions. Moreover, the analysis of
the evolution of distributions can give some knowledge of the dynamical properties
of the system. For instance, a change of regularity of the measure might be inter-
preted in terms of the existence of different basins of attractions. In [Taol4| there
is the belief that blow—up for the three dimensional Navier-Stokes might be more
likely than regularity, but that carefully chosen initial distributions might avoid
blow—up initial states and give only solution with global regularity. This should
be an index of instability of blow—up with respect to small perturbations of the
initial conditions (see also Section 3.5).

There has been recently a renewed interest in studying evolution equations with
random initial condition, see for instance |[BT08a, BT08b, BT14|. These ideas
date back already to Bourgain [Bou96, Bou94|, that considers the space—periodic
non-linear Schrodinger equations in the focusing/defocusing case.

A common theme of these works is that tipically, the random initial condition
may provide a short time effect of smoothing by averaging that may overcome
some obstructions due to the scaling invariance of the equations. This is the case
when one can prove an almost sure (with respect to the probabilistic structure
given by the initial distribution) existence of a local solution when starting from
a super—critical space.

2.1. The randomization. Let us define the statistical distribution that has been
used in the works we will be interested in. Let H be an Hilbert space and let
(én)n>1 be an orthonormal basis of H. Consider a sequence (A,),>1 of centred
independent random variables with the property that there is ¢; > 0 such that

E[AY] < ¢, for every n > 1.

Additional uniform moments (e.g. exponential) may provide additional properties
or strong estimates. In this direction, a reasonable assumption [NPS13] is

(2.1) Elen] < 27" for every v € R,n > 1.
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This for instance provides exponential concentration around the mean of the ran-
domization we are going to define. Fix f € H, the “seed”, and define the random-
wzation of f as

Af =" Anfuen,

where (f,,)n>1 are the Fourier coefficients of f with respect to the basis (e,,)n>1. It
is immediate to see that Af is a centred H—valued random valued with covariance
UGUs where Uy is the operator

T = anen ~ Upx = Z fnnen.
n n

If we choose, for instance, the initial random coefficients (A,),>1 as standard
Gaussian, then Af is also Gaussian with zero expectation and covariance U Uy,
and this characterise its distribution.

We first notice that the randomization does not give any gain in terms of smooth-
ness. Mimicking Sobolev spaces, let us consider some compact subspace H,y of H
defined by ||z|l3, = > A22? < oo, with A, 1 co.

Let f € H with || f||%, = co. Let us prove that the randomization Af cannot be
in Ho almost surely. The proof is immediate in the Gaussian case, namely when
the random variables (A,),>; are standard Gaussian. Indeed,

E[IAfI5,] =EY MALfE =) " A2f2 =0,

and Fernique’s theorem |[Bog98| readily implies that ||Af||z, = oo, almost surely.
In general, if the (A,),>1 are independent and uniformly not too often zero, then
the same conclusion holds [BT08a, Lemma B.1|. Since a way to use the random-
ization is to deduce improved summability of the solution of the linear problem
(see for instance Proposition 2.3), another way to look at the lack of regularization
is to recall that Besov spaces, and in turn Sobolev spaces, can be characterised in
terms of regularity of the caloric extension (see for instance [LR02]).

We want to study now the support of the law of Af. We recall that for a
topological space E, endowed with the Borel o—algebra, the (topological) support
of a measure p is the set of all points = such that p(A) > 0 for each neighbourhood
of x.

Lemma 2.1. Gwen f € H, the support of the law of Af is the whole H if and
only if the support of the law of each A, is R and f, # 0 for every n > 1, where
(fn)n>1 are the Fourier coefficients of f with respect to the basis (e,)n>1-

Proof. Given z € H and € > 0, we prove that P[Af € B?(z)] > 0. Let N > 1 and
denote by Il<x and II.y the projections, respectively, onto low and high modes.

Choose N so that . .
s ya||y < vk sn flln < 3’
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then
IASf = zlly < |Han(Af — 2)|[3 + [Hon Afll2 + [Hsnn

€
< Man(Af = &)+ Iy AS e+ 5
Therefore, by the above estimate and independence,
PIAf € BX(2)] =P[|Af — 2[ln < €
€ €
> P|IMan(Af = )l < 5, ITnAflle < 5

€ €
= PIen (A )l < S B[IMnAfll < €] >0
since, on the one hand by the Chebychev inequality,
€ €
PIMnAS I < 5] =1 = PIMnA Sl 2 5] 2
16

€2

| S

16 3
E[TLvAfI] = 1 - w1 > 3.
on the other hand, by independence and the assumption on the support of the
(An)nZIJ

> 1

€ efn
PT<n(Af = @)l < 5] > P[\Anfn | < grFn < N]
L E. S 1

n<N

To prove the converse, notice that if f,, = 0 for some n, then the choice x = ¢,
yields |Af —z||% > |\, f. — 1| = 1. Likewise, if the support of the law of A; is not
R, then there are o € R and ¢y > 0 such that P[A; € (29 — €y, x0 + €0)] = 0. The
choice © = xfie; yields [|[Af — x|l > | fi] - |A1 — xo| > €| f1] almost surely. [

Clearly the same proof of the lemma above holds true if f € Hg, for some
subspace H, of H, namely in the latter case the support of the law of Af is H,.

2.2. Strong local solution with random initial condition. We summarize
how to show the existence of a local smooth solution with random initial condition
in the energy space H, following [ZF11].

Let ug € H be the “seed”, and consider the random initial condition Awug, using
the Fourier basis of H. The main idea is that there is an immediate gain of
summability from L? to L3. As L? is a critical space for Navier-Stokes, we know
by |Kat84] that there is a unique local solution.

Assume E[A}] < ¢ for every k € Z3tar. Clearly, if stronger moments (e.g.
exponential) are finite, the probability estimates below are better.

As mentioned above, through randomization of ug € H and the fourth moment
condition for the randomizing variables, it follows that

E[[|Auollzs] < eslluollz2-
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Therefore the local existence and uniqueness of [Kat84] kicks in to give the follow-
ing result.

Theorem 2.2. Let uy € H then with probability one there are T, = T,(w) > 0
and a unique solution u with initial condition Auy such that for all p > 3,

= 13750 € C([0,T.); L7(Ts)),
n t'7 %V € C([0,T,); LP(T)).

The time T, = 0o on an event Qoo with P[Qo] > 1 — cylluol|3s (esponentially close
to 1 with exponential moments of Ay).

Under the finite sixth moment, a similar statement hold in Hz (as in [FK64]),
namely with probability one there is a unique solution u such that

u—e " Aug € O([0, L]; Vi) N L0, T3; Vs ),

as well as an estimate of the probability that T, > T (with 7" € (0,1]) in terms
of ||ug||zz (polynomial or exponential depending on the moments of the random
coefficients of the randomization). Similar conclusions are given in [DCl1al, they
also prove that the solution is global if ||ug||z2 is small enough.

2.3. Global weak solutions with random initial conditions. The problem
of finding an (interesting, see below in Section 2.5) initial distribution so that
almost surely with respect to this distribution there is a unique global solution
is still essentially open (but see Section 2.4 below). Clearly, there may be some
“trivial” example, such as some measure concentrated on small initial conditions
in, for instance, H'/2, but this adds nothing to what we know. A well supported
initial distribution that gives raise, almost surely, to global strong solutions, would
suggests that a blow—up in the equation is exceptional, or “unstable”, in the sense
that a small variation in the initial condition might not lead to a singularity (more
on this will be discussed in Section 3.5.3).

A way to obtain global weak solutions with no smallness assumption on the data,
when starting from super—critical initial conditions has been recently proposed in
[NPS13].

Here the “smoothing” effect of the randomization they use is again in terms of
summability of the solution of the linear problem. The exponential tail estimate
is a consequence of the assumption (2.1).

Proposition 2.3. Let a« >0, p>2,0>0,v€ R with (0 + o —2y)p < 2, and
T > 0, then for every ug € V_,,
g2
P[[|S5,0uol| La(o,rsr (1) = A] < c5€ erlvol=a

where S, yup(t) = VA% et Aug.

Let us define weak solutions in the following way.
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Definition 2.4 (Definition 2.4, [NPS13]). Given o > 0, ug € V_,, a weak solution
of the Navier—Stokes equations on [0, 7] is a vector field u such that,

u € Lig,((0,T); H) N L, ((0, T); V) N C((0, T); V2e),
u' € LY0,T; V"),

the equation is satisfied in V”,

u(t) — up weakly in V_,,, as t — 0.

The main theorem is as follows.

Theorem 2.5 (Theorem 2.6, [NPS13|). If T' > 0, v € (0, 1) and ug € V_,, then
with probability one there is a global weak solution with initial condition Aug, of
the form u = e~ Aug + w, where w € LX.(0,00; H) N L2 (0, 00; V).

loc loc

In short, the idea behind the theorem is that one can use the smoothing effect of
the randomization of the initial condition to produce a mild solution, defined for a
short time. The solution immediately enters into H and a standard weak solution
can be started after a small time interval. It remains then only to show that the
mild solution and the weak solution can be joined to obtain a weak solution as
defined above.

This the crucial point that forces the restriction a < }l in the main theorem.
Indeed to prove the equivalence between weak and mild solutions [NPS13, Lemma
4.2| (but similar assumptions are used in other crucial results of the paper) for the
equation for w = u — e7* Aug, where terms as B(e™** Aug, w) appear, one needs
that, for instance AT e tA Ay € Lg((O, T) x T3). This happens, according to the
lemma, when o < }l.

In the case a € [1,1) something can be still said, at least in terms of mild
solutions.

Theorem 2.6 ([DC11b]). Let o € [3,1) and ug € V_,, then with probability one
there are T = T (w) and a unique solution u of (1.1) on [0,T] with initial condition
Aug, such that

u— e A € Lﬁ(O, T Ll%s)

Again, estimates of the probability that T" > ¢ are available for small ¢, namely
if ¢ € (0, 1], there is a unique solution on [0,¢] on an event €, with

‘9 _
P > 1 e P,
and p = min(+, &).

2.4. Fursikov’s almost sure global well-posedness. The previous section de-
tailed results where a suitable choice of the distribution of the initial condition
would allow to prove existence of a strong (or weak) solution with supercritical
data. It has been well known that there exist initial distributions that ensure al-
most sure global well-posedness. This is a general result of Fursikov [VF88] (see
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also |[Fur81b, Fur83, Fur84|). Clearly, it is not difficult to provide initial distri-
butions thtat give almost sure global well-posedness, think of the Dirac in 0, or
some measure concentrated in a small ball of V%. Indeed, the main problem of
Fursikov’s initial measures is that they are only characterized by their moments.
It is well known that moments do not identify uniquely a measure (unless some
growth condition holds). Moreover, no information on the support of these mea-
sure is available (unlike in the previous result, see Lemma 2.1). This is the reason

for Fursikov to analyse the infinite dimensional system generated by the moments
[Fur87, VF88].

2.4.1. Statistical solutions. Statistical solutions were first introduced by Foiag in
[Foi72] as a family, indexed by time, of probability measures satisfying the equa-
tions, appropriately recast (see also [FMRTO01]). A different notion of statistical
solution, seen as a measure on the path space (from this point of view, closer to
the style of this paper, see Section 2.5 below), was formulated by [VF88|. Let us
consider the latter definition.

Define, for a fixed s > 0,

Sr={u:ueL*0,T;V)NL>0,T;H), i€ L>0,T;V_,)}

A space—time statistical solution with initial condition pu, is a probability measure
P on St such that

L P[ST] = 17
» the marginal of P at time ¢t = 0 is p,

= P is concentrated on solutions of (1.1),
= for every t € [0, 77,

El[ullZa0.ry + 1wl + Nl oz + 1l Zoe 0. ] < 101+ EX[|z 7).

A statistical solution represents the overall distribution of the stochastic process
generated by the solutions of (1.1) when the initial distribution is given by the
initial measure .

A variant of the definition above more suited for the next section is as follows.
Define

H? = {u:ue L*0,T:V,), 0 e L*0,T : H)}.
Notice that if u € Hyp?, then u € C([0,T];V). A space-time statistical solution

is a probability measure P on 3> such that for every z € L*(0,T; H) and ¢ €
Cb(H;’z)J

EF[(i + vAu + B(u), 2) 20,y 0(u)] = 0.

2.4.2. Statistical extremal problems and a.s. smoothness. Given a measure p on H
such that E*|[||z||%] < oo for every k > 1, define its k*"-moment M, as the element
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of @, H, the tensor product of k copies of H, such that
(M, )i = /<®ku7 S urn(du), o€ Q) H,
k

where (-, ) and || - || g, are the tensorizations of the scalar product and the norm
of H. The existence of M is granted by the Riesz representation theorem.

Consider a measure ; on H such that Efell#] < oo (so that all moments of
are finite) and denote by (my)g>1 its moments). Consider the following functional
defined over probability measures on 7-[%52,

2 |
j(P) — E[P’ |:e|| ||L2(0,T;V2)} —+ pz EHmk — Mk‘”H7k7
k=1 "

where p > 0 and (Mj)r>1 are the moments of the marginal at time ¢ = 0 of P.
For a measure P with 7 (P) < oo, its moments do not grow too much (by the first
term), and are not too different (at least at time 0) from the moments of p.

The idea is to look at inf 7 (P) over all statistical solutions P on Hy”. It turns
out that the direct methods of calculus of variations are effective. The functional
is convex, lower semi—continuous in an appropriate topology and finite in at least
one measure, so that the infimum is attained and there is a unique probability
measure that realizes the minimum.

If we look at the marginal v at time 0 of the unique minimizer, then for v—almost
every initial condition (1.1) has a unique global smooth solution.

Remark 2.7. Starting from (1.1), a system of equations
My, + vAMy + ByMyy = 0,

for the moments of a statistical solution can be derived, where A, and By are suit-
able tensorizations of the Stokes operator A and the Navier—Stokes non—linearity
B.

Fursikov (see [VF88, Fur87| and related references) proves that there is a dense
set of initial conditions for the moment system such that each of these initial
conditions yields a unique solution. The problem here is that one cannot produce
in general a statistical solution from moments.

Remark 2.8. In fact the first results of Fursikov [Fur80, Fur8lal in this direction
deal with the set of right-hand sides yielding a global smooth solution. More
precisely, set
N(u) =4+ vAu + B(u),

and solve N(u) = f with a given initial condition u(0) = uy € V. It turns out that
the map N : #s* — L*([0,T); H) is continuous, so that the set F,, = N({u €
Hi? - u(0) = ug}) is exactly the set of all right-hand side f € L?(0,7T; H) such
that the Navier-Stokes equations with forcing f admit a unique smooth solution.
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Moreover, F,, is open in the topology of L*(0,T; H) and dense in L*(0,T; H)
with in the topology L*(0,7T;V_,), for suitable p and ¢. The result can be made
independent from the viscosity and can hold for the Euler equations, as long as
the initial condition is smooth enough.

2.5. Invariant measures. The randomization of the initial condition to obtain
local existence (in a super—critical space) or global existence (of a regular solution)
becomes extremely useful when one knows that the system admits a (formal)
invariant measure. Some explicit information is also required (the support of the
measure, for instance).

So far, we do not know any explicit! invariant measure for the Navier-Stokes
equations, and in fact we will have better luck with the randomly forced equation
in Section 4.3.

We point out that a method to find invariant measures has been proposed using
generalized limits of time averages [FMRTO01|, where a generalized limit is any
linear operator that extends the ordinary notion of limit. Existence of extensions
is ensured by the Hahn—Banach theorem.

Euler is a different story, and indeed explicit invariant measures can be derived.
In dimension three the known conserved quantities are the kinetic energy, the
helicity, namely [ u-¢, where § = curlu is the vorticity, the circulation, [y () ul(t)-
dx, where 7 is a curve in physical space and X is the flow induced by u, as well
as the total momentum [ udx and angular momentum [ x - udz. The only good
candidate then is the energy, and one can consider the Gibbs-like measures

1
Hes =7 PP du,

where E(u) = [ |ul* dx is the energy. The above measure is interpreted as usual as
a Gaussian measure. The problem is that such measures are supported on fairly

large spaces, as
[l s ptdn) = o0

for a < % The problem of the existence of a flow of solutions of Euler which leaves
the above measures invariant is (yet another) open problem.

The situation is much better in dimension two, due to weaker regularity require-
ments, but above all due to the existence of a wealth of invariants, first of all the
enstrophy S(u) = 3 [&*dz, as well as [ g(§) da for every reasonable g. If J is
any of the above invariants, the measure Z 7€ —BIW) du would provide a formal
invariant measure. The only reasonable measure though, those we may hope to
give a sense, are given by J = E,|S. These measure are infinitesimally invariant

'And interesting! As otherwise any steady solution @, including @ = 0 would provide the
invariant measure 0.
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in the sense that for every smooth function F' depending only on a finite number
of Fourier modes, [ B(F)du;z =0.

The measures originating from enstrophy have a smaller support, so it is ex-
pected that it should be easier to work with them. Indeed [AC90|, there exists a
flow in V_,, a > % of Euler with invariant measure pgsz. Measures from energy
are tougher. It even happens that [ E(u)pusg(du) = oo, but the renormalized
energy : B := E — ESP[E] (carefully interpreted as a limit of spectral approxi-
mations) makes sense, e" 7% is integrable with respect to pgs and the measure
Z~te PS5 rE: g again invariant. We refer to [AF08] for more details. Here we
raise the (philosophical) open problem of understanding the role of these invariant
measures in connection with the physical phenomenon of turbulence.

We will see later that when adding a noise we will be able to find invariant
measures for Navier—Stokes (in Sections 4.1 and 4.3). Ideas of renormalization
will also play a significant role later, see Sections 4.3.1 and 4.3.2.

3. RANDOMNESS IN THE DRIVING FORCE

In the same way one can derive, at least formally, Euler equations from the
Lagrangian motion of fluid particles, a version of the Navier-Stokes equations
driven by a special multiplicative noise, depending on the gradient of the veloc-
ity, can be derived starting from the Lagrangian motion perturbed by noise, see
[BCFI91, MR04, MR05|]. The presence of random forcing can also take into ac-
count all those small fluctuations that affect the motion of a fluid and that are
difficult to incorporate in a robust theory. We refer for instance to [FGHROS|
for the connections between the equations with random forcing and the theory of
turbulence.

There is already a well-developed theory for stochastic PDEs, and in particular
for equations from fluid dynamics. We refer to [FG95, Fla08, Deb13|. Here we
detail a recent approach initiated by [DPD03a| that looks for solutions with addi-
tional structure, the Markov property. For well-posed problem the Markov prop-
erty would not be an issue, on the other hand for problems where well-posedness
is an open problem (as is in this work) extra—care is needed.

There are at least two approaches that grant existence of Markov processes solv-
ing (1.1) driven by Gaussian noise. The first [DPD03a, DO06] is essentially based
on strong solutions of (1.1). In short the idea is to solve the Kolmogorov equation
associated with spectral Galerkin approximations. In order to grant the existence
of a limiting object of the solutions of the Kolmogorov eqution, the authors look
at a Kolmogorov equation perturbed by a strong potential. The solutions of the
two equations are related by a Feynamn-Kac formula. The potential, a negative
exponential of the H? norm, does an “importance sampling” of strong solution,
xince non—smooth solution would contribute with an infinite potential and hence
with a null contribution in the Feynman—Kac formula.
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The second approach [FR06, FR08] is based on weak solutions. The construction
builds over an abstract selection principle originally due to Krylov [Kry73]| (see also
[SV79]). The idea is essentially to identify special classes of solutions, understood
as probability measures on the space of trajectories, that are closed by conditional
probability and for which weak-strong uniqueness holds. We refer also to [BFR09|
for another model where this theory can be applied (see also [BR09, BR12, BR13]).

In this section we will consider (1.1) driven by a Gaussian noise, namely the noise
7 = SW in (1.1) is coloured in space by a covariance operator S*S € .Z(H), where
W is a cylindrical Wiener process (see [DPZ92| for further details). We assume
that S*S is trace-class and we denote by o2 = Tr(S*S) its trace. Finally, consider
the sequence (0?)z>1 of eigenvalues of §*S, and let (gx)g>1 be the orthonormal
basis in H of eigenvectors of S*S. For simplicity we may assume that the Stokes
operator A and the covariance commute, so that

nty) =SdW = Z bt ex(y).

keZ3

3.1. Weak and strong solutions. Let us write (1.1), as usual, as an abstract
stochastic equation,

(3.1) du+ (vAu+ B(u)) dt = S dW,

with initial condition w(0) = x € H. A weak martingale solution is a filtered
probability space (Q, F, P, {Z:}1>0), a cylindrical Wiener process W on H and a
process u with trajectories in C([0,00); D(A)) N L{2.([0,00), H) N LE ([0, 00); V)
adapted to (%;);>0 such that the above equation is satisfied with W replacing W.

Equivalently, a weak martingale solution can be described as a measure on the
path space. Let Qys = C([0,00); D(A)') and let .#° be its Borel o—algebra.
Denote by #X° the o-algebra generated by the restrictions of elements of (g
to the interval [0,¢] (roughly speaking, this is the same as the Borel o—algebra
of C([0,t]; D(A))). Let & be the canonical process, defined by & (w) = w(t), for
w € Qs

Definition 3.1 ([FRO08|). A probability measure P on Qg is a solution of the
martingale problem associated to (3.1) with initial distribution g if

» P[L(RY, H)N L2 (R V)] =1,

loc loc

= for each ¢ € D(A), the process

t
600+ [ (6 A0) — (Bl& 0.6 ds
0
is a continuous square summable martingale with quadratic variation t||S¢||%
(hence a Brownian motion),

» the marginal of P at time 0 is pu.
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The second condition in the definition above has a twofold meaning. On the one
hand it states that the canonical process is a weak (in terms of PDEs) solution,
on the other hand it identifies the driving Wiener process, and hence is a weak (in
terms of stochastic analysis) solution.

3.1.1. Strong solutions. It is also well-known that (3.1) admits local smooth solu-
tions defined up to a random time (a stopping time, in fact) 7, that corresponds to
the (possible) time of blow—up in higher norms. To consider a quantitative version
of the local smooth solutions, notice that 7., can be approximated monotonically
by a sequence of stopping times

TR = inf{t > 0: ||Aug(t)||n > R},
where up is a solution of the following problem,
dug + (vAug + x(||Aug|3;/R?)B(ug, ug)) dt = S dW,

with initial condition in D(A), and where x : [0,00) — [0, 1] is a suitable cut-
off function, namely a non-increasing C'* function such that x = 1 on [0, 1] and
Xr = 0on [2,00). The process ug is a strong (in PDE sense) solution of the cut—off

(AN

1 2

equation. Moreover it is a strong solution also in terms of stochastic analysis, so
it can be realized uniquely on any probability space, given the noise perturbation.

As it is well-known in the theory of Navier-Stokes equations, the regular solu-
tion is unique in the class of weak solutions that satisfy some form of the energy
inequality. We will give two examples of such classes for the equations with noise.

Remark 3.2. The analysis of strong (PDE meaning) solutions can be done on larger
spaces, up to D(A1/4), which is a critical space with respect to the Navier—Stokes
scaling. The extension is a bit technical though, see [Rom11a].

3.1.2. Solutions satisfying the almost sure energy inequality. An almost sure ver-
sion of the energy inequality has been introduced in [Rom08, Rom10a]. Given a
weak solution P, choose ¢ = e;, as a test function in the second property of Defini-
tion 3.1, to get a one dimensional standard Brownian motion 3*. Since (er)r>1 is
an orthonormal basis, the (3%);>1 are a sequence of independent standard Brown-
ian motions. Then the process Wp = >, B*ey is a cylindrical Wiener process? on
H. Let zp be the solution to the linearization at 0 of (3.1), namely the solution of

(3.2) dz+ Az =S dW,

2Notice that W is measurable with respect to the solution process.
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with initial condition z(0) = 0, and where W = Wp. Finally, set vp = & — zp. It
turns out that vp is a solution of

0+ vAv+ B(v + zp,v+ 2p) =0, P —a.s.,

with initial condition v(0) = &. An energy balance functional can be associated
to vp,

&i(v, 2) Zéllv(t)\léﬂf/o II?J(T‘)||2v6i7”—/O (2(r), Bo(r) + 2(r), v(r)) u dr.

We say that a solution P of the martingale problem associated to (3.1) (as in
Definition 3.1) satisfies the almost sure energy inequality if there is a set Tp C
(0, 00) of null Lebesgue measure such that for all s € Tp and all ¢ > s,

Pl&(v,2) < & (v, 2)] = 1.

It is not difficult to check that £ is measurable and finite almost surely.

3.1.3. A martingale version of the energy inequality. An alternative formulation

of the energy inequality that, on the one hand is compatible with conditional

probabilities, and on the other hand does not involve additional quantities (such as

the processes zp and vp) can be given in terms of super—martingales. The additional

advantage is that this definition is keen to generalization to state—dependent noise.
Define, for every n > 1, the process

t
8 = el + 2 [ elfy ds - 2Te(S"S),
0

and, more generally, for every n > 1,

& = &+ 200 / I 22 €13 ds — n(2n — 1) Tr(S*S) / a2 ds,

when & € L2 ([0,00); H) N L2 .([0,00); V), and oo elsewhere.

We say that a solution P of the martingale problem associated to (3.1) (as in
Definition 3.1) satisfies the super—-martingale energy inequality if for each n > 1,
the process & defined above is P-integrable and for almost every s > 0 (including
s=0)and all t > s,

E[67.°] < &7,

or, in other words, if each & is an almost sure supermartingale.

3.2. The selection principle. In order to carry on the construction of a Markov
solution, we need to start with a class of solutions satisfying some minimal prop-
erties (sort of a set—valued Markov property). Given x € H, let € (x) C Pr(f)
be a set of weak martingale solutions (no other requirement so far) starting at z.
The three main property we shall require are:
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= (disintegration) the classes (€ (z)).cm are closed by conditional probabili-
ties: if P € €'(z), then the conditional probability distribution of P given
FNSis in € (w(t)) for P ae. w,

= (reconstruction) this is, in a way, the inverse operation of disintegration: if
one has a .%"® measurable map = — Q,, with Q, € €(z), and P € € (x),
then the probability measure given by P on [0, ¢], and, conditionally on w(t),
by the values of Q., is an element of € ().

= (weak—strong uniqueness) each solution coincides with the process ug on
[0,¢] on the event {75 > t}.

For the construction of a Markov solution, we require the first two properties, the
third one is necessary for further analysis (continuity with respect to the initial
condition, see Section 3.3 below, and convergence to a unique invariant state, see
Section 4.1).

The idea is to shrink each set € (x) to a single element by a series of reductions,
while keeping the above properties. Fix a family (\,, f.)n>1 which is dense in
[0,00) x Cy(D(A)’) and consider the functionals J, = J,, s, where J, s is given
by

Jns(P) =E" [/OO e f(&) dt|.

0
for arbitrary A > 0 and f : D(A) — R upper semi-continuous. Next, set

Co(r) = € (z), Go(x) ={P € Cra(z): Jo(P)= sup J,(Q)}.

Qebn_1(x

All these sets are compact and their intersection is a single element (the selection
associated to this maximised sequence), (), o €n(z) = {Ps}.

Example 3.3. Existence of Markov solutions holds even without noise, when the so-
lution is suitably understood as a probability on the space of trajectories. Consider
the classical non-uniqueness example X = sgn(X)+/]X], with initial condition in
R. The problem has a unique solution X, (-) for each initial condition x # 0, and
two families of solutions {XF = XF((t —a) vV 0) : @ > 0} for the initial condition
x =0, where X_, X are the minimal and the maximal solutions unique solution
starting at 0.

If €(x) denotes the set of all solutions starting at x, viewed as probability
measures on the path space C([0,00); R), then €' (x) = {0x, } for  # 0, where 0x,
is the Dirac measure concentrated on X,.

If x = 0, a solution starts at 0 and stays for an arbitrary time, then follows
one of the solutions X (suitably translated). So the departing time from 0 can
be interpreted as a random time 7" whose law can be arbitrary. Therefore any
selection of solutions is completely described by a random time 7' and on [0, 0o]
and a coin flip C' to decide to go up or down It is easy to be convinced that a
selection of solutions is Markov if and only if T is exponential (the lack of memory
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S

T

plays a major role), including the degenerate cases of infinite or zero rate (namely,
T=0orT=o00),and T, C are independent.

Denote by (P}).c(0,1) the Markov families with rate a. We shall call eztremal all
those Markov solutions that can be obtained by the selection procedure. It turns
out that the only extremal families are those corresponding to a = 0 and a = oc.

In view of next Section 3.3, we notice that no solution can be continuous with
respect to the initial condition.

3.3. Continuity with respect to the initial condition. As we shall see, Markov
solutions have a good structure, good enough to ensure that solutions are contin-
uous (in an appropriate sense) with respect to the initial condition. In a way, for
well-posedness we are only missing uniqueness.

Continuity with respect to the initial condition here is understood in terms of
continuity of the law, in the total variation distance, of the solution for fixed time
and seen as a function of the starting point. This is a purely probabilistic notion
and in fact it is ruled out for the equations without noise, as it can be easily seen
by the elementary consideration shown in Figures 1 and 2. Without noise the “law”

5u(t;y) 5a }

5u(t;z)

FI1GURE 1. Without noise. .. F1GURE 2. With noise. ..

of the solution evolves as a Dirac mass centred at the value of the solution and
no possible shrinking of the total variation distance is possible (unless statistical
solutions are considered, as in Section 2.4.1, but there is no smoothing effect by the
noise). With noise the two distributions have a common mass for two reasons. The
first reason is general: there is the diffusive effect of the Gaussian perturbation,
the second reason is due to weak—strong uniqueness: there is a tiny (but non-zero)
probability that 7., may be large enough, so that the two laws are close.
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We shall use the two facts above to show continuity. Indeed, for small times,
using weak—strong uniqueness,

E[p(u(e; y))] = Elp(ule; z))] =
= Elo(u(& 9))Vre>g] — Elp(ule 7)) Tir>a] +

J/

estimate with t}?erregular solution
+ EE[Qb(U(E, y))ﬂ{fooge}} - E[¢(U(€, x))]]'{Tooﬁﬁ}] *

~
short time tail of 700

For short times the non—linearity has a small effect, so that the dynamics is es-
sentially linear and the probability P[r,, < €] ~ e~'/¢. On the other hand, when

0 t—e t

we are below 7., we can work with the strong solutions (see Section 3.1.1 and
hence with the classical theory. For times of order one, the real picture is that the
“uniqueness of strong solutions” argument is applied at the very last moment only,
thanks to the Markov property,

Pio(y) — Pp(x) = P(Pi—c)(y) — Pe(Pi—c9) ()
= o(e) +o(llz —yl)

1
= Err(non-uniqueness) + —Err(z — y).
€
The conclusion follows by optimizing in e.

Theorem 3.4. For any Markov family x — P,, the map x — P(t,x,-) is contin-
uous in total variation when x € D(A).

The restriction x € D(A) in the above theorem is due to the fact that we need
to ensure the existence of smooth solutions. It can be lowered to x € D(AY4+),
that is up to the critical space [Rom11al.

3.4. Some remarks on uniqueness. For stochastic (partial) differential equa-
tions we may have different notions of uniqueness, regardless of the model we are
studying (namely, without introducing any criterion originating from the physics
of the problem, such as entropy solutions, etc.). On the one hand there is the
notion of path—wise uniqueness, which corresponds to the standard uniqueness
for ODE/PDE. On the other hand we may ask for a weaker statement, weak
uniqueness, that is uniqueness of distributions.
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Noise might be a promising crucial ingredient for uniqueness, see [FGP10]. A
wider and deeper discussion can be found in [Flall|. Here we only point out two
simple (and uneffective so far) criteria for uniqueness and regularity from [FROS|:

w If for some (smooth) initial condition there is a smooth solution on a (pos-
sibly small but deterministic) time interval, then the problem is well posed.

= [f for some initial condition uniqueness in law holds on a (possibly small
but deterministic) time interval, then uniqueness in law holds for all initial
conditions.

We shall see below in Section 4.2 a criterion of uniqueness in terms of invariant
measures.

3.4.1. Some examples in finite dimension. A standard example of non—uniqueness
of an elementary ODE is the equation & = \/m (that we have examined in
Example 3.3 and we will see again in Example 4.4). Tt is well-known that by
adding a Gaussian perturbation dz = /|z|dt + dB uniqueness (path-wise) is
restored. This is part of a general phenomenon, see for instance [SV79, KR05].
Notice that we would also restore uniqueness by adding something of order one,
say T = \/W + 1, the difference is that noise is zero plus random fluctuations.

Weak uniqueness can hold without path-wise uniqueness, as in the Tanaka equa-
tion dz = sgn(z) dB. Here all solutions are Brownian motions, hence they all have
the same distributions, but there is no pathwise uniqueness since, for instance, if
is a solution, then so is —z. To have examples of non—uniqueness of distributions
we need to allow degeneracy in the noise coefficient, for instance as in the Gir-
sanov equation dz = |z|*dB, with a < i. This problem has a infinite dimensional
counterpart, where several interesting phenomena happen [BMP10, MME12].

Anyway, in dimension d = 1 there is a rather complete understanding [ES85],
and the Girsanov example describes a quite universal picture.

3.4.2. About uniqueness of the martingale problem. A way to understand unique-
ness of distributions is to understand the generator of the process solution of (1.1).
Formally, we expect that the generator is

7= % Te[S*SD?| — (—I1,Au + I, ((u - V)u), D)

where § is the operator colouring the noise and Il is the Leray projector. It
turns out that each of the Markov solutions discussed in Section 3.2 is the unique
solution of the so—called martingale problem associated to a suitable generator, as
stated in the next theorem.

Theorem 3.5 ([Rom11bl). Given a Markov solution (P,).cn, there exists a unique
closed linear operator £ : D(Z) C Cy(D(A)) — Cy(D(A)) such that for all X >0
and ¢ € Cy(D(A)),

R(@)pla) = [ Pupta) .
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where (P;)i>o s the transition semigroup associated to the given Markov solution,

and R\(Z) is the resolvent of Z.

The previous theorem holds under the same assumptions on the covariance as
Section 3.3. Similar conclusions can be drawn under the assumptions discussed in
[RX11, Rom11a].

The problem here is that each operator .Z is equal to .Z on a class of test func-
tions (smooth functions depending on a finite number of Fourier components).
This class of functions unfortunately is not sufficient to characterize the opera-
tor®. Preliminary computations show that an improved knowledge of the tails of

the explosion time 7., (see also next Section) might be promising. We refer to
[Rom11b, DPDOS§]| for further details.

3.5. Some remarks on blow—up. The aim of this section is to give a brief over-
view on blow—up and which kind of noise might be more effective to delay or even
prevent emergence of singularities. To our knowledge, [FR02a| (see also the related
works [FRO1, FRO2b, Rom06|) is the only work concerned with singularities for
the Navier-Stokes with random perturbations.

Since so far we do not know if the Navier-Stokes equations develop a singu-
larity, it is meaningful to consider simpler models, such as the one we discuss in
Section 3.5.3, that keep some of the crucial characteristic of the problem (1.1) we
are interested in. A recent result of Tao [Taol4| shows that the analysis of these
models may rigorously shed light on the problem of blow—up of (1.1).

The results detailed below (from [Rom14e]), show that no additive noise can be
expected to prevent the formation of singularities. Recent results [FGP10, Flall|
show that a careful choice of the coefficients in the case of state dependent noise
might be more promising.

3.5.1. The drift matters. Here we focus on additive noise and we wish to under-
stand if it may have (and possibly how) a significant effect in preventing singular-
ities. As we shall see, the situation is deeply different with respect to the problem
of uniqueness. The effect of noise is more related to the stability of blow—up. It
may even happen that noise creates singularities when there is none without noise.
Consider the problem i = z?sinz. Clearly there is a global bounded solution for
every initial condition, and it is not difficult to see that when adding noise, solu-
tions blow-up?. In two dimensions both cases may happen [Sch93], namely there
are two suitable smooth fields b : R? — R? such that if one consider the ODE
& = b(z) and the SDE dx = b(x) dt + dB then

3To have an idea, think of the Poisson equation on a bounded domain with two different
boundary conditions. The smooth test functions compactly supported on the interior of the
domain cannot tell the two boundary conditions apart.

4The role of the noise here is to help overcome the barriers created by the zeroes of sin.
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m the ODE explodes for all initial conditions, the SDE has global solutions
for all initial conditions with probability one, and there is even an invariant
measure,

» the ODE is non—explosive for all initial conditions and the point (0,0) is
asymptotically stable, the SDE has explosion with positive probability.

Stability is also related to the probability of blow—up, namely if blow—up happens
with positive probability or with probability one. Let us consider dx = b(z) dt+dB,
where b is one of the two functions

z? x>0,
bi(z) = { B

+x x < 0.

When the drift is b, blow—up happens with positive probability. When the drift
is b_, blow—up happens almost surely. In view of next sections, we notice that in
both cases,
» there are T, py and a closed set B with open interior such that for all initial
conditions in B, Plr,, < To] > po,
» the blow—up happens only on the positive “side”. for all p > 1, namely
E[sup, |z_|P] < oo.

3.5.2. A criterion for the a.s. blow—up. Define the blow—up time 7., of a stochastic
equation (in finite or infinite dimension)

dx = b(zx)dt + dB
as Teo = SUp,, T, and
T, = inf{t : H(x;) > n}.
for some quantity of interest for the problem (for instance, H(x) = |z| in finite
dimension, H is some norm in a smaller space for stochastic PDEs). Define
b(t, 20) = Puy[To0 > t],
then clearly b(0,z0) = 1, b(-, o) is non-increasing, and ¢ — b(¢, o) is continuous
in ¢ (up to technical details). Set
b(z9) = tlim b(t, o) = irtlfb(t,xo) =P, [Te0 = 0.
— 00

In general we cannot claim that b(xy) € {0, 1}, as seen by the examples of previous
section. On the other hand a 0-1 law still holds for a the supremum of these
probabilities.

Theorem 3.6 (0-1 law for explosion). We have that sup, b(zo) € {0,1}.

The proof of the above theorem is sketched in Figure 3. The idea now is that if
we can prove an upper bound for b that keeps b away from 1, then by the 0-1 law,
h = 0.

The idea for the upper bound is based on stability of blow—up and conditional
recurrence. Assume there are a closed set By, po € (0,1) and Ty > 0 such that
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FI1GURE 3. Proof of 