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This paper analyses the approximate solution of very weakly well-posed hyperbolic Cauchy problems.
These problems have very sensitive dependence on initial data. We treat a single family of such problems
showing that, in spite of the sensitive dependence, approximate solutions with desired precision ε can be
computed in finite-precision arithmetic with cost growing polynomially in 1/ε. The sensitive dependence
requires high finite precision. The analysis required a new Gevrey stability estimate for the leapfrog
scheme. The latter depends on a new discrete Glaeser inequality. The cost of calculating solutions with
features on a scale � � 1 grows as eC�−1/2

.
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1. Introduction

For the Prandtl equations describing the profiles of incompressible boundary layers, the underlying
dynamic equations are very weakly well posed. Gerard-Varet’s examples show that there cannot be
continuous dependence for data that are only infinitely differentiable (Gérard-Varet & Dormy, 2010;
Guo & Nguyen, 2011; Gérard-Varet & Nguyen, 2012). In spite of this, the Cauchy problem has recently
been proved well set in the framework of Gevrey spaces (Gérard-Varet & Masmoudi, 2013). In an
analogous vein, the analysis of Landau damping by Mouhot & Villani (2011) applies to initial data that
are merely of Gevrey class. It is suspected that there is nonexistence for data that is merely C∞

0 . Both
of these important examples are strongly nonlinear.

These problems, though well posed for Gevrey-class data, are extremely sensitive to initial data.
A typical example of a mapping that is not continuous from S(Rd) to S ′(Rd) but is continuous on
Gevrey spaces is the Fourier multiplier with symbol e〈ξ〉α with 0 < α < 1.

From the point of view of numerical computation such an operator poses a daunting challenge.
At the very least, to achieve an approximation with k significant digits requires data with many more
significant digits. One might think that the problem is intractable in the sense that computational costs
would grow unreasonably fast with desired accuracy.

This paper shows that this pessimistic outlook is not correct. For a nontrivial linear hyperbolic
Cauchy problem with variable coefficients, we prove that numerical approximation is feasible with
polynomially growing costs.

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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990 F. COLOMBINI AND J. RAUCH

Consider space-time with variables (t, x) ∈ R1+d , dual variables (τ , ξ) and standard differential
operators

Dt := 1

i

∂

∂t
, Dj := Dxj := 1

i

∂

∂xj
, 1 � j � d.

Suppose that P(τ , ξ) is a polynomial of degree μ � 1. Denote by Pμ the principal part homogeneous
of degree μ. Suppose that {t = 0} is noncharacteristic, that is, Pμ(1, 0) |= 0. Consider first the constant
coefficient initial value problem

P(D)u = 0, ∂
j
t u(0, x) =

{
g(x) for j = 0,

0 for 1 � j � μ − 1.

Solving by Fourier transformation in x yields an explicit formula for the partial Fourier transform with
respect to x:

û(t, ξ) = M (t, ξ)ĝ(ξ). (1.1)

The Fourier multiplier M (t, ξ) is for each ξ the unique solution of the ordinary differential initial value
problem in t,

P(Dt, ξ)M = 0,
∂ jM (0, ξ)

∂tj
=
{

1 for j = 0,

0 for 1 � j � μ − 1.

In order for (1.1) to make sense, the multiplier M must not grow too rapidly as ξ → ∞. Without
any hypothesis on P,

|M | � ec〈ξ〉, 〈ξ 〉 := (1 + |ξ |2)1/2.

Then (1.1) makes sense only for ĝ decaying exponentially. These g are analytic. The values of g are
uniquely determined by their restriction to any open set in Rd . In this sense the Cauchy problem is not
solvable for a sufficiently large set of g to be useful for applications since initial values on disjoint open
sets should be essentially independent in order to consider the Cauchy problem well posed.

A case that can be analysed completely is that of homogeneous constant coefficient operators P.

Definition 1.1 A homogeneous polynomial P(τ , ξ) is hyperbolic with timelike variable t if and only
if P(1, 0) |= 0 and for each ξ ∈ Rd the roots τ of P(τ , ξ) = 0 are all real.

If a homogeneous P is not hyperbolic, then M will grow exponentially in some directions ξ and
admissible initial data will have undesirable analyticity properties. In the case of P, homogeneous or
not, that is hyperbolic in the sense of Gårding (1951), one has

sup
[0,T]×Rd

|M (t, ξ)| � C〈ξ 〉μ−1.

For g ∈ Hs(Rd) there is a unique solution with u ∈ C(R : Hs−(μ−1)(Rd)). There is a loss of no more
than μ − 1 derivatives.

Example 1.2 Consider P := ∂2
t for which u(t) = tut(0) + u(0) is no smoother than ut(0) showing a

loss of one derivative. Next consider the lower-order perturbation ∂2
t + a∂x. In that case the solution is
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given by

û(t, ξ) = M (t, ξ)û(0, ξ), with M (t, ξ) = sin(t(iaξ)1/2)

(iaξ)1/2
.

Since sin is an odd function, the expression is independent of the square root taken. In this case,

|M (t, ξ)| � ec|t|√|ξ |.

The solution makes sense only for Cauchy data whose transform decays faster than e−c|t|√|ξ |. These are
initial data in Gevrey classes.

More generally, if the principal part of a constant coefficient operator is hyperbolic, Rouché’s
theorem implies that the roots τ of P(τ , ξ) = 0 with ξ real satisfy |Imτ | � 〈ξ 〉(μ−1)/μ; so

|M (t, ξ)| � ec|t||ξ |(μ−1)/μ

, for 0 � t � T .

In one sense this estimate is very weak. It does not justify the solution of the Cauchy problem when
g ∈ C∞

0 (Rd). For that one would need the Gårding–Petrowski condition M � 〈ξ 〉N for some N . That
stronger condition is the standard definition of hyperbolicity for nonhomogeneous P. As the example
shows, it is not invariant under lower-order perturbations. Remarkably the weaker condition, requiring
only hyperbolicity of the principal symbol, is not only invariant under lower-order perturbations but also
is sufficient for variable coefficient problems. Standard hyperbolic problems lose only a finite number of
derivatives. However, the C∞ existence theorem does not pass to the case of variable coefficients. The
problems whose principal symbol is required to be hyperbolic lose an infinite number of derivatives.
Equivalently M grows faster than a polynomial and the fundamental solution is not a distribution in the
sense of Laurent Schwartz.

For a precise result, consider the case of equations and solutions defined for (t, x) ∈ R × Td that are
2π -periodic in x. This avoids uniformity hypotheses for |x| large.

Definition 1.3 For 1 < s < ∞, the space Gs of Gevrey s periodic functions consists of u(θ) =∑
û(n) einθ that satisfy

∃c, C, ∀n ∈ Z, |û(n)| � C e−c|n|1/s
.

The family Gs(c) for c > 0 is the subset of functions such that û(n) exp(c|n|1/s) ∈ �∞(Z). It is a Banach
space with the natural norm. Then Gs := ∪∞

c=1Gs(c).

The next result in the case of coefficients that are Gevrey in t, x was proved in a fundamental paper
of Bronshtein (1980). The generalizations to coefficients that are finitely smooth in time can be found
in Nishitani (1983a,b) and Ohya & Tarama (1986, 2006).

Theorem 1.4 Suppose that P(t, x, ∂t, ∂x) is an μth-order linear scalar partial differential opera-
tor whose coefficients are smooth functions valued in Gevrey class Gs with 1 < s < μ/(μ − 1),
Pμ(t, x, 1, 0, . . . , 0) = 1 with principal symbol Pμ(t, x, τ , ξ) that is hyperbolic for each t, x. Then, for
s < s < μ/(μ − 1) and Cauchy data in ∪cGs(c), the Cauchy problem has a global solution smooth in
time with values in Gs.

These Cauchy problems have a finite speed of propagation computed in the usual way from the local
propagation cones (see Joly et al., 2005 for coefficients that are Gevrey in t, x, and Colombini & Rauch,
2011 when the coefficients are merely smooth in time).

 at U
niversita degli Studi di Pisa on January 26, 2016

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


992 F. COLOMBINI AND J. RAUCH

As candidate models in science, it is desirable that approximate solutions for the Cauchy problems
of Bronshtein be computable without excessive computational cost.

The numerical solution of weakly well-posed hyperbolic partial differential equations has until
very recently received little attention. The introduction of Bérenger’s perfectly matched layers for the
Maxwell equations changed that situation (Bérenger, 1994, 1996). Though the Maxwell equations are
strongly well posed with no loss of derivatives, the split equations of Bérenger in the absorbing layers
define a hyperbolic system whose solutions are one derivative less regular than the initial data when
measured in the standard scale of Sobolev spaces (Abarbanel & Gottlieb, 1997). That standard meth-
ods, notably the Yee scheme, converge even though the underlying problem loses a derivative is proved
in the thesis Petit-Bergez (2006). In addition the thesis introduces the notion of gap, the difference
between the number of derivatives lost by a numerical method and the possibly smaller number lost by
the Cauchy problem itself.

This paper continues the theme of looking at problems that are much more sensitive to initial data.
As a test case for the question of computability, consider the variable coefficient equations studied

in Colombini et al. (1983):
utt − a(t)uθθ = 0, 0 � a ∈ C2(R). (1.2)

The analysis of these authors has two great advantages over the general result of Bronshtein. First,
the analysis is relatively elementary. Second, it gives an accurate assessment of the regularity required
of a for various levels of continuity and discontinuity of the evolution operator. The positive results
and counterexamples are sharply paired. The analysis though elementary is subtle. From the numerical
perspective it is not at all obvious that numerical methods would behave in similar ways.

Subtracting a constant from u, we may restrict attention to solutions with vanishing mean:∫ 2π

0
u(t, θ) dθ = 0. (1.3)

We prove that for these very weakly well-posed initial value problems it is feasible to compute
solutions achieving accuracy with a given tolerance ε with a computational cost that grows at most
polynomially in ε−1.

This problem is intermediate between the paradigm of the standard numerical analysis of problems
that are at worst well posed with the loss of a finite number of derivatives and problems that are ill
posed. For the latter, the fundamental analysis of John (1960) showed that in spite of ill-posedness, if
data are given for which a solution is known to exist with a given a priori bound, then often solutions
can be computed, with polynomially growing cost, even for strongly ill-posed problems. The existence
of a solution with a bound is such a strong restriction on the data that a stable computation is possible.
Our problems also benefit from this effect. John did not discuss discretization. We have the additional
difficulty of proving stability bounds for a time discretization that are comparable to the very weak
stability of the continuous-in-time problem.

The analysis falls into three parts. The hardest part is to show that a spectral leapfrog method has
the same qualitative behaviour as the exact solution. That is, for Gevrey data the approximations are
bounded in Gevrey norms. The Gevrey well-posedness of (1.2) is a consequence of the following highly
nontrivial ordinary differential equation estimate of Colombini et al. (1983) and Jannelli (1984). In
addition they show that for a ∈ Ck with k > 2, weaker Gevrey regularity suffices.

Theorem 1.5 Suppose that 0 � a ∈ C2([0, 1]) and m � 1. Then there is a constant C depending only on
‖a‖C2([0,1]) such that solutions of x′′ + a(t)m2x = 0 satisfy

∀0 � t � 1, |x(t)| + |x′(t)| � C eCtm1/2
(|x(0)| + |x′(0)|). (1.4)
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If the derivative a′(t) changes sign at most a finite number of times, then there is polynomial growth
in m.

Estimate (1.4) implies existence and continuous dependence of solutions for 0 � t � 1, provided that
initial data belong to G2(c) with c > C. Since the coefficient of m1/2 in eCtm1/2

grows with time, one only
gets finite time existence for data in G2(c) with c fixed. For data belonging to ∩c>0G2(c) there is global
existence with data remaining in ∩c>0G2(c).

We analyse a mixed spectral leapfrog method. Expand mean-zero solutions u of (1.2) in a Fourier
series:

u(t, θ) =
∑
m |= 0

û(t, m) eimθ .

Equation (1.2) is equivalent to the family of ordinary differential equations

d2û(t, m)

dt2
+ a(t)m2û(t, m) = 0. (1.5)

Our method truncates the Fourier expansion at |m| � M .
The difficult part of the method is the time discretization of the variable coefficient ordinary differ-

ential equations (1.5). The second time derivative is discretized by a centred second difference, yielding
the leapfrog scheme. The centred difference is a natural and simple discretization of d2/dt2 and most
importantly the leapfrog scheme has a discrete energy identity for constant a that is an analogue of the
energy identity for the continuous-in-time problem. We expect that the phenomenon exposed in this
paper is of much wider validity, but choose the simplest nontrivial test case.

Using a new discrete Glaeser inequality from Section 2.2, we prove a stability theorem for the
leapfrog scheme analogous to Theorem 1.5. It asserts that the solutions of the leapfrog scheme grow
at most as e(Ct|m|1/2). A crude estimate would yield exp(Ct|m|1/2). The crude estimate is sufficient for
analysing only analytic initial data.

The third difficulty is that the large amplification factors oblige one to approximate initial data
very accurately so that the solutions after a finite time maintain sufficient precision. This means that
one is obliged to work in very high-precision arithmetic. This is a potentially costly constraint. Fortu-
nately there is a compensating saving in computational effort that comes from the fact that the data are
Gevrey class. The Fourier coefficients decay very rapidly, so that one attains accuracy using very few
coefficients. The main theorem is a precise version of the following theorem. The precise statement in
Section 4.2 includes a computability hypothesis for a(t).

Theorem 1.6 For the model problem (1.2) with computable a(t), the spectral leapfrog method has
computational cost that grows polynomially in the desired precision when implemented in carefully
chosen multiprecision floating-point arithmetic.

The corresponding analysis in exact real arithmetic is easier and is presented in Section 4.1. A key
first step, in Section 3.3, is to estimate how large M needs to be.

Open problems:

1. Prove analogous results for general operators with Gevrey coefficients and hyperbolic principal
part. Any such result requires a stability result for the numerical method that in turn implies
well-posedness of the Cauchy problem in Gevrey classes. A proof cannot be easier than a proof
of well-posedness.

2. A second open problem is to find a proof of Bronshtein’s theorem that is easier than the current
ones. Such a proof would be likely to simplify the first problem.
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994 F. COLOMBINI AND J. RAUCH

2. Analysis of the leapfrog scheme for x′′ + m2a(t) x = 0, a � 0

When a(t) � δ > 0 the solutions of the leapfrog scheme are bounded on 0 � t � T uniformly in m and
k := Δt. For a � 0 crude estimates yield growth � exp(ct|m|). This section shows that the growth is no
worse than � exp(ct

√|m|), the same qualitative behaviour as the continuous-in-time problem.

2.1 Energy laws for the leapfrog scheme

The ordinary differential equations (1.5) are replaced by difference equations. The bound on the ampli-
fication is proved by an energy argument. We use a leapfrog scheme. For a time step Δt = k define
an := a(nk). The approximate values xn ≈ x(nk) are constructed as solutions of

xn+1 − 2xn + xn−1

k2
+ m2 an+1xn+1 + an−1xn−1

2
= 0. (2.1)

The coefficient of xn+1 is
1

k2
+ m2an+1

2
> 0,

so the difference equation determines xn+1.
Complex solutions are estimated by estimating their real and imaginary parts separately. It suffices to

consider real solutions for which the energy identities are a bit simpler. Define the discrete ε-dependent
energy of a real sequence xn by

En
ε := 1

2

(
xn − xn−1

k

)2

+ m2an
ε(x

n)2

2
, an

ε := a(nk) + ε. (2.2)

The main result of this paper is the following stability estimate for the leapfrog scheme. The impor-
tant fact is that the exponent is � |m|1/2t. The difference scheme has the same Gevrey stability possessed
by the continuous problem.

In the estimate below the g(n) will be nonzero because the exact solution is an approximate solution
of the leapfrog scheme with small residual. There are also contributions from round-off in the case of
finite-precision arithmetic.

Remark 2.1 The solutions of our ordinary differential equation vary on the length scale ∼ |m|−1 so that
k small compared with 1/|m| is a reasonable constraint on the time step. For |m| � 1 it is much stronger
than (2.24) imposed in the next theorem.

Theorem 2.2 There is a constant C1 > 0 such that, with ε := |m|−1/2 and k � 1/|m| satisfying (2.24),
the real solutions of the inhomogeneous leapfrog scheme

xn+1 − 2xn + xn−1

k2
+ m2 an+1xn+1 + an−1xn−1

2
= g(n) (2.3)

satisfy, for all |m| > 0 and n � 0,

En
ε � C1 eC1|m|1/2tn(E2

ε + E1
ε + g2), tn := nk, g := max

n
|g(n)|, (2.4)

where the quantities En
ε are defined in (2.2).
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A novelty is the use of a new discrete Glaeser inequality from Proposition 2.10.

Remark 2.3 With ε := |m|−1/2, one has m2an
ε � m2ε = |m|3/2, so

1

2

(
xn − xn−1

k

)2

+ |m|3/2(xn)2

2
� En

ε � 1

2

(
xn − xn−1

k

)2

+ (1 + max[0,1] |a|)m2(xn)2

2
. (2.5)

The proof occupies the rest of Section 2. It begins with the local energy law for an appropriately
modified spring energy. We then derive some standard comparison estimates and the new Glaeser
inequality. Theorem 2.2 is proved by combining these elements.

The ordinary differential equation with constant a has the energy conservation identity

x′[x′′ + am2x] = d

dt

[
(x′)2

2
+ am2 x2

2

]
.

Part (i) of the next lemma gives a discrete analogue where the time derivative on the right is replaced
by a difference. Adding yields a telescoping sum.

Lemma 2.4

(i) For constant a one has

xn+1 − xn−1

2k

(
xn+1 − 2xn + xn−1

k2
+ am2 xn+1 + xn−1

2

)

= 1

2k

[(
xn+1 − xn

k

)2

−
(

xn − xn−1

k

)2
]

+ am2

2

(xn+1)2 − (xn−1)2

2k
. (2.6)

(ii) For a(t) not necessarily constant,

xn+1 − xn−1

2k

(
xn+1 − 2xn + xn−1

k2
+ m2 an+1xn+1 + an−1xn−1

2

)

= 1

2k

[(
xn+1 − xn

k

)2

−
(

xn − xn−1

k

)2
]

+ m2

2

an+1(xn+1)2 − an−1(xn−1)2

2k

− m2

2

(an+1 − an−1)

2k
xn−1xn+1. (2.7)

Proof.

(i) For the first term we write

xn+1 − 2xn + xn−1 = (xn+1 − xn) − (xn − xn−1).

The second is easy.
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996 F. COLOMBINI AND J. RAUCH

(ii) Compute

(xn+1 − xn−1)(an+1xn+1 + an−1xn−1)

= (an+1(xn+1)2 − an−1(xn−1)2) − (an+1 − an−1)xn−1xn+1. �

Lemma 2.5 If the sequence xn satisfies the leapfrog equation (2.3), and an
ε := an + ε, then one has

[(
xn+1 − xn

k

)2

−
(

xn − xn−1

k

)2
]

+ m2

2
(an+1

ε (xn+1)2 − an−1
ε (xn−1)2) = 2kFn + xn+1 − xn−1

2k
g(n),

(2.8)

Fn := xn+1 − xn−1

2k
εm2 xn+1 + xn−1

2
+ m2

2

(an+1 − an−1)

2k
xn−1xn+1. (2.9)

Proof. Start with (2.7) and a(t) := a(t) + ε. Equation (2.3) implies that the contribution of the a(t)
terms on the left-hand side of (2.7) is equal to g(n)(xn+1 − xn−1)/2k yielding the second term on the
right of (2.8). The ε terms contribute the first term on the right of (2.9). �

2.2 Calculus of finite differences

Consider real-valued functions

kZ � nk �→ un ∈ R

defined on the discrete real line kZ.

Definition 2.6 For the map nk �→ un the first difference quotient is defined as

(δu)n := un − un−1

k
.

The second difference δ2 is the difference of the first difference. And so on.

The second difference at n is given by

(δ2u)n := 1

k

(
un − un−1

k
− un−1 − un−2

k

)
= un − 2un−1 + un−2

k2
.

Example 2.7

(i) The difference of a constant function is equal to 0.

(ii) The difference of the function un := nk is equal to 1. The second difference is equal to 0.

(iii) The difference of the function (nk)2 is

δ(nk)2 = (nk)2 − ((n − 1)k)2

k
= (nk)2 − (n2 − 2n + 1)k2

k
= 2nk − k. (2.10)
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(iv) Since δ(nk2) = k, the map

nk �→ (nk)2 + nk2

2
= nk(nk + k)

2

vanishes with its first difference at n = 0 and has second difference identically equal to 1.

(v) Given a map nk �→ un, the map
nk �→ u0 + (δu)0nk

is linear in n and has at the origin the same value and same first difference as un.

2.3 Comparison principles

Proposition 2.8 Suppose that nk �→ un is a map from kZ → R.

(i) If u0 � 0 and (δu)n � 0 for n � 1, then un � 0 for all 0 � n ∈ Z.

(ii) If u0 � 0, (δu)1 � 0 and (δ2u)n � 0 for n � 2, then un � 0 for all 0 � n ∈ Z.

(iii) If (δ2u)n � 0 for all n, u0 � 0 and (δu)0 = 0, then un � 0 for all n ∈ Z.

Proof.

(i) The hypothesis (δu)n � 0 is equivalent to the fact that un is nondecreasing.

(ii) Apply (i) to wn := (δu)n to find that wn � 0 for all n � 1. Then apply (i) to un.

(iii) Apply (ii) to conclude that un � 0 for all n � 0.
Define wn := u−n. Compute, for all n,

k2(δ2)wn+1 = wn+1 − 2wn + wn−1 = u−n−1 − 2u−n + u−n+1 = k2(δ2u)−n+1 � 0.

Since (δw)1 = (δu)0 = 0 and w0 = u0 � 0, (ii) implies that wn � 0 for all n � 0. �

2.4 Discrete Glaeser inequality

The statement and proof of the discrete Glaeser inequality are modelled on the well-known continuous
case, presented for convenience.

Proposition 2.9 (Glaeser inequality) If 0 � a ∈ C2(R) and ‖a′′(t)‖L∞(R) � K, then for all t,

|a′(t)|2 � 2Ka(t).

Proof. It suffices to treat t = 0. Taylor’s theorem with remainder implies

0 � a(t + s) � a(0) + a′(0)s + Ks2

2
.

The polynomial

q(s) := a(0) + a′(0)s + Ks2

2
= K

2

[(
s + a′(0)

K

)2

−
(

a′(0)2 − 2a(0)K

K2

)]
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998 F. COLOMBINI AND J. RAUCH

attains its minimum value at s∗ = −a′(0)/K . At the minimum,

0 � q(s∗) = a(0) − 1

2K
(a′(0))2,

proving the proposition. �

The discrete analogue that follows recovers the continuous case in the limit k → 0.

Proposition 2.10 (Discrete Glaeser inequality) Suppose 0 < k and that nk �→ an � 0 is a non-negative
sequence defined on kZ with ‖δ2an‖�∞ � K. Then for all n,

(δan + Kk/2)2 � 2Kan + K2k2/4. (2.11)

Proof. The function

nk �→ an −
(

K

2
nk(nk + k) + δa0nk + a0

)
:= wn

satisfies

w0 = δw0 = 0, δ2wn � 0.

The comparison principle yields wn � 0 for all n. Equivalently,

an � K

2

(
nk(nk + k) + 2δa0

K
nk + 2a0

K

)
= K

2

(
(nk)2 + 2δa0 + Kk

K
nk + 2a0

K

)
.

Completing the square inside the parentheses and using 0 � an yields

0 �
(

nk + 2δa0 + Kk

2K

)2

−
(

(2δa0 + Kk)2

4K2
− 8Ka0

4K2

)
.

The minimum over n of the right-hand side is achieved at the n that minimizes the first term. At that n
the first term is no larger than (k/2)2, so

(
(2δa0 + Kk)2

4K2
− 8Ka0

4K2

)
� k2

4
, so (2δa0 + Kk)2 − 8Ka0 � K2k2.

Thus, p(δa0) � 0, where p(s) := (2s + Kk)2 − 8Ka0 − K2k2. The polynomial p is � 0 only between
its two real roots

s± := −Kk ± √
8Ka0 + K2k2

2
= −Kk

2
±
√

2Ka0 + K2k2/4.

Therefore s− � δa0 � s+. Adding Kk/2 yields

−
√

2Ka0 + K2k2/4 � δa0 + Kk/2 �
√

2Ka0 + K2k2/4,

proving the proposition. �
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2.5 Gevrey stability of the leapfrog scheme for x′′ + m2a(t)x = 0

The stability is proved by summing the energy identity (2.8). The left-hand sum is telescopic. We need
to estimate the sum of the source terms on the right. These estimates are discrete analogues of the proof
in Colombini et al. (1983). The discrete Glaeser inequality is needed in (iii).

Lemma 2.11

(i) ∣∣∣∣xn+1 − xn−1

2k

∣∣∣∣� 1√
2

(√
En+1

ε +√En
ε

)
. (2.12)

(ii) ∣∣∣∣εm2 xn+1 + xn−1

2

∣∣∣∣� |m|√ε√
2

(√
En+1

ε +
√

En−1
ε

)
. (2.13)

(iii) For all k � √
ε one has, with K as in Proposition 2.10,

∣∣∣∣m2 an+1
ε − an−1

ε

2k
xn+1xn−1

∣∣∣∣� 4
√

2K + K2

√
ε

√
En+1

ε

√
En−1

ε . (2.14)

Proof.

(i) Use the triangle inequality:

∣∣∣∣xn+1 − xn−1

2k

∣∣∣∣= 1

2

∣∣∣∣xn+1 − xn

k
+ xn − xn−1

k

∣∣∣∣
� 1

2

∣∣∣∣xn+1 − xn

k

∣∣∣∣+ 1

2

∣∣∣∣xn − xn−1

k

∣∣∣∣
� 1√

2

(√
En+1

ε +√En
ε

)
. (2.15)

(ii) Estimate using the energy:

m2(xn+1)2 = m2an+1
ε (xn+1)2

an+1
ε

� 2En+1
ε

an+1
ε

� 2En+1
ε

ε
, |m| |xn+1| �

√
2En+1

ε√
ε

.

Therefore

m2 xn+1 + xn−1

2
� |m|

2

√
2En+1

ε +√2En−1
ε√

ε
, (2.16)

proving (ii).
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1000 F. COLOMBINI AND J. RAUCH

(iii) Use m2an
ε(x

n)2 � 2En
ε to find

|m2xn+1xn−1| = |m|√an+1
ε |xn+1| |m|√an−1

ε |xn−1|√
an+1

ε

√
an−1

ε

�
√

2En+1
ε

√
2En−1

ε√
an+1

ε

√
an−1

ε

. (2.17)

Next show that for k2 � ε,∣∣∣∣an+1
ε − an−1

ε

2k

∣∣∣∣� 2
√

(2K + K2)an+1
ε . (2.18)

The discrete Glaeser inequality implies that

∣∣∣∣an+1
ε − an−1

ε

2k
+ K(2k)

2

∣∣∣∣�
(

2Kan+1
ε + K2(2k)2

4

)1/2

,

so ∣∣∣∣an+1
ε − an−1

ε

2k

∣∣∣∣� (2Kan+1
ε + K2k2)1/2 + Kk � 2(2Kan+1

ε + K2k2)1/2.

Using k2 � ε � an+1
ε yields (2.18).

The last and easiest ingredient is

1√
an−1

ε

� 1√
ε

. (2.19)

Combining (2.17–2.19) proves (iii). �

Proof of Theorem 2.2. Sum equation (2.8) from n = 2 to n. The left-hand side is telescopic. For n > 2,
one finds

En+1
ε =

(
x2 − x1

k

)2

+ m2a1
ε(x

1)2

2
+

n∑
�=2

(
2kF� + x�+1 − x�−1

2k
g(�)

)

� E2
ε + E1

ε +
n∑

�=2

(
2k|F�| +

∣∣∣∣x�+1 − x�−1

2k
g(�)

∣∣∣∣
)

. (2.20)

Use Lemma 2.11(i) to estimate the last term on the right of (2.8):

∣∣∣∣x�+1 − x�−1

2k
g(�)

∣∣∣∣�
(√

E�+1
ε +

√
E�

ε

)
|g(�)| � 1

10
(E�+1 + E�) + C|g(�)|2. (2.21)

The terms in (2.9) are bounded directly using the estimates of Lemma 2.11. With constants C inde-
pendent of ε, k, m, � one has

|F�| �
(

|m|√ε + 1√
ε

)
(E�+1

ε + E�
ε + E�−1

ε ).
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Use the definition of g in (2.4) and optimize by taking ε := |m|−1/2 to find, for n > 2,

En+1
ε � E2

ε + E1
ε + Cg2 +

n∑
�=2

(
1

10
+ 2Ck|m|1/2

)
(E�+1

ε + E�
ε + E�−1

ε ). (2.22)

The term En+1
ε appears on the right of (2.22) with coefficient 2Ck|m|1/2 + 1

10 . Combine that term
with the one on the left. The terms E�

ε with 2 � � � n appear on the right either two or three times.
Taking all of them three times yields the upper bound for � > 2:

(
9

10
− 2Ck|m|1/2

)
En+1

ε � C

(
E2

ε + E1
ε + g2 +

n∑
�=2

k|m|1/2E�
ε

)
. (2.23)

Constrain k to satisfy

2Ck|m|1/2 <
9

20
. (2.24)

With k constrained as in the theorem statement, the coefficient of En+1
ε is strictly positive. With

A := 20C

9
(E2

ε + E1
ε + g2), B := 20C|m|1/2

9
,

for |m| � 2, one finds

En+1
ε � A + Bk

n∑
�=2

E�
ε .

By induction on n it follows that for all n � 2 one has En
ε � Y n

ε , where Y n
ε is the solution of the equation

Y n+1
ε = A + Bk

n∑
l=2

Y l
ε, Y 2

ε = E2
ε .

The solution Y n
ε is computed by taking the difference quotient to find

Y n+1
ε − Y n

ε

k
= BY n

ε .

Simplifying and an induction yields

Y n+1
ε = (1 + kB)Y n

ε , Y n = (1 + kB)n−2Y 2
ε = (1 + kB)n−2E2

ε .

Therefore, for n � 2,

En
ε � Y n

ε = (1 + kB)n−2E2
ε � ek(n−2)BE2

ε .

This implies (2.4), hence completing the proof. �
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1002 F. COLOMBINI AND J. RAUCH

3. Analysis of the spectral leapfrog method

3.1 Definition of the method

Approximate solutions at the times tn are defined by

uapp(tn, θ) :=
∑

|m|�M

ûapp(tn, m) eimθ .

The coefficient ûapp(tn, m) is an approximate solution of the ordinary differential equation

(
d2

dt2
+ a(t)m2

)
û(t, m) = 0 (3.1)

computed by the leapfrog scheme with time step k. This is a mixed spectral finite difference scheme.
The values u(0, θ) and ut(0, θ) are given. Define ûapp(0, m) for |m| � M to be the exact initial Fourier

coefficients.
To start the leapfrog scheme one needs values for uapp(t1, m). These are obtained by approximating

u(t1, θ) by a Taylor expansion at t = 0 and then taking Fourier coefficients. This yields

ûapp(t1, m) := û(0, m) + kût(0, m). (3.2)

3.2 Residual error for the spectral leapfrog

As is usual in the analysis of difference schemes, the solution of the differential equation is viewed as
an approximate solution of the difference scheme and the residual is estimated.

The mth Fourier component of the exact solution at time step n is û(tn, m). Next estimate the extent
to which û(tn, m) satisfies the leapfrog difference scheme. The error, denoted by g(n, m), is given as

û(tn+1, m) − 2û(tn, m) + û(tn−1, m)

k2
+ m2 an+1û(tn+1, m) + an−1û(tn−1, m)

2
:= g(n, m). (3.3)

Lemma 3.1 There is a constant C such that for all k, m, n satisfying n � 1 and tn = kn � 1, the residual
error (3.3) satisfies

|g(n, m)| � Ck2m4 max
0�t�1

|û(t, m)|. (3.4)

Proof. Use (1.5) to write

g(n, m) = g(n, m) − (ûtt(tn, m) + a(t)m2û(tn, m)).

The triangle inequality yields

|g(n, m)| �
∣∣∣∣ û(tn+1, m) − 2û(tn, m) + û(tn−1, m)

k2
− ûtt(tn, m)

∣∣∣∣
+ m2

∣∣∣∣an+1û(tn+1, m) + an−1û(tn−1, m)

2
− a(t)û(tn, m)

∣∣∣∣ . (3.5)
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NUMERICAL ANALYSIS OF VERY WEAKLY WELL-POSED HYPERBOLIC CAUCHY PROBLEMS 1003

The standard estimate for the second difference quotient is∣∣∣∣ û(tn+1, m) − 2û(tn, m) + û(tn−1, m)

k2
− ûtt(tn, m)

∣∣∣∣� Ck2 max |∂4
t û(t, m)|. (3.6)

Estimate the second term in (3.5) by the standard estimate for the centred average:∣∣∣∣an+1û(tn+1, m) + an−1û(tn−1, m)

2
− a(tn)û(tn, m)

∣∣∣∣� Ck2 max |∂2
t (a(t)û(t, m))|. (3.7)

Combining yields

|g(n, m)| � C(k2 max |∂4
t û(t, m)| + m2k2 max |∂2

t (a(t)û(t, m))|).
Use the differential equation to write ∂4

t û(t, m) = ∂2
t (m2a(t)û). Use this to find

|g(n, m)| � Cm2k2 max |∂2
t (a(t)û(t, m))|.

Use the fact that a and its derivatives up to order 2 are bounded in order to estimate

max(|∂2
t (a(t)û(t, m))| + |a(t)û(t, m)|) � C max(|û(t, m)| + |ût(t, m)| + |ûtt(t, m)|).

By interpolation the middle term on the right can be omitted. Then the utt term is replaced using the
differential equation to yield

max(|a(t)ûθθ (t, m)| + |û(t, m)|) � Cm2 max |û(t, m)|.
Therefore

|g(n, m)| � Ck2m4 max |û(t, m)|,
completing the proof. �

3.3 Approximation error in Fourier truncation

One computes approximate values for a finite number of Fourier coefficients. A first step in studying
these methods is to estimate the approximation error by Fourier truncation.

Suppose that u ∈ G2(c) so that |û(m)| � A e−c
√|m|, the best constant A given by the norm of u in

G2(c).
An approximation is given by truncation of the Fourier expansion:

uM (x) :=
∑

0<|m|�M

û(m) eimx.

The error in this approximation is equal to

εM (x) := u − uM =
∑

|m|>M

û(m) eimx.

The values ‖εM ‖G2(c) need not converge to zero as M → ∞. The error does converge to zero in all G2(c)
with c < c.
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1004 F. COLOMBINI AND J. RAUCH

Lemma 3.2 Given 0 < c < c, the norm of the map u �→ uM from G2(c) to G2(c) satisfies

‖u − uM ‖G2(c) � e(c−c)M 1/2‖u‖G2(c). (3.8)

Proof. The definition of the norm in G2(c) yields

‖u − uM ‖G2(c) = sup
|m|>M

ec|m|1/2 |û(m)|.

Write

ec|m|1/2
û(m) = ec|m|1/2

ec|m|1/2 ec|m|1/2
û(m) = e(c−c)|m|1/2

ec|m|1/2
û(m).

For |m| > M , estimate e(c−c)|m|1/2 � e(c−c)M 1/2
. Taking the supremum over |m| > M yields (3.8). �

Example 3.3 If u is a solution of (1.2), then

sup
0�t�1

∥∥∥∥∥∥u(t) −
∑

0<|m|�M

û(t, m) eimθ

∥∥∥∥∥∥
G2(c)

� e(c−c)
√

M sup
0�t�1

‖u(t)‖G2(c). (3.9)

3.4 Error estimate for the spectral leapfrog method

Lemma 3.4 Denote by C1 the constant in Theorem 2.2 and suppose that k satisfies the constraints of
that theorem. Then there is a constant C2 independent of m, n, k such that, so long as n � 1 satisfies
tn = kn � 1, the error in the approximate solution satisfies, for all M and all |m| � M ,

1

2

∣∣∣∣ (û − ûapp)(tn, m) − (û − ûapp)(tn−1, m)

k

∣∣∣∣
2

+ |m|3/2|(û − ûapp)(tn, m)|2
2

� C2 eC1|m|1/2
k4m8 max

[0,1]
|û(t, m)|2. (3.10)

Proof. Considering the real and imaginary parts separately, it is sufficient to consider the case of real-
valued û. Using Theorem 2.2 with ε = |m|−1/2 together with the residual estimate in Lemma 3.1 yields

En
ε (ûapp(tn) − û(tn)) � C1 eC1|m|1/2

(E2
ε (ûapp − û)

+ E1
ε (ûapp − û) + k4m8 max

[0,1]
|û(t, m)|2). (3.11)

Next estimate the initial errors E2
ε (ûapp − û) and E1

ε (ûapp − û).
Formula (3.2) together with Taylor’s theorem and t1 = k yields

u(t1, θ) − uapp(t1, θ) =
∫ k

0

(t1 − s)2

2
utt(s, θ) ds =

∫ k

0

(t1 − s)2

2
a(s)uθθ (s, θ) ds.

Therefore, with C2 denoting a constant independent of M , n, m, that can change from line to line,

|û(t1, m) − ûapp(t1, m)| � C2m2k2 max
[0,k]

|û(t, m)|. (3.12)
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At t = 0 the exact and approximate solutions have equal Fourier coefficients for |m| � M . Subtract
(3.3) with n = 1 from the difference equation defining ûapp(t2, m) to find

û(t2, m) − ûapp(t2, m) = 2(û(t1, m) − ûapp(t1, m)) + k2g(1, m). (3.13)

Estimate g(1, m) as in Lemma 3.1. Instead of (3.6) use∣∣∣∣ û(t2, m) − 2û(t1, m) + û(t0, m)

k2

∣∣∣∣� C2 max
[0,2k]

|∂2
t û(t, m)|

= C2 max
[0,2k]

|a(t)ûθθ (t, m)| � C2m2 max
[0,2k]

|û(t, m)|.

This yields

|g(1, m)| � C2m2 max
[0,2k]

|û(t, m)|. (3.14)

Combining (3.12–3.14), and using the upper bound on the right of (2.5) shows that

E2
ε (ûapp − û) + E1

ε (ûapp − û) � C2k4m8 max
[0,1]

|û(t, m)|2.

This yields the inequality

En
ε (ûapp(tn, m) − û(tn, m)) � C2 eC1|m|1/2

k4m8 max
[0,1]

|û(t, m)|2. (3.15)

The left-hand inequality of (2.5) completes the proof with the final step increasing the value of C2

by 1. �

4. Computational cost of the spectral leapfrog method

4.1 Approximate solution with prescribed error tolerance

Proposition 4.1 Suppose that C1, C2 are as in Lemma 3.4 and c, c′ satisfy c′ > c + C1/2. Suppose in
addition that mean-zero Cauchy data in Gs(c′) and an error tolerance 0 < η are given. The approximate
solution v(tn, x) :=∑|m|�M ûapp(tn, m) eimθ is constructed with 0 < M satisfying

e(c−c′)M 1/2 = η

2
, equivalently, M 1/2 = | ln η/2|

c′ − c
, (4.1)

and ûapp(tn, m) equal to the solutions of the leapfrog scheme with k chosen such that

k2 max
1�|m|<M

(2C2)
1/2 e(C1/2+c−c′)|m|1/2 |m|13/4 = η

2
. (4.2)

The value ûapp(0, m) is exact and ûapp(t1, m) is given by (3.2). Then the error satisfies

sup
0�tn:=kn�1

‖u(tn) − v(tn)‖G2(c) � η sup
[0,1]

‖u(t)‖G2(c′). (4.3)
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1006 F. COLOMBINI AND J. RAUCH

Proof. Step (i). Equation (4.1) together with estimate (3.9) implies that the error committed in Fourier
truncation satisfies

sup
[0,1]

∥∥∥∥∥∥u(t) −
∑

0<|m|�M

û(t, m) eimθ

∥∥∥∥∥∥
G2(c)

� η

2
sup
[0,1]

‖u(t)‖G2(c′). (4.4)

Step (ii). The computed values are complex solutions of the leapfrog approximation to solutions of
the spring equation. Their real and imaginary parts are real solutions, and so satisfy (3.15).

Using only the potential energy term and adding the estimates for real and imaginary parts yields,
so long as tn � 1,

|m|3/2 |ûapp(tn, m) − û(tn, m)|2
2

� C2 eC1|m|1/2
k4m8 max

[0,1]
|û(t, m)|2.

Taking the square root yields

|ûapp(tn, m) − û(tn, m)| � (2C2)
1/2 e(C1/2)|m|1/2

k2|m|13/4 max
[0,1]

|û(t, m)|.

Thus,

ec|m|1/2 |ûapp(tn, m) − û(tn, m)| � k2(2C2)
1/2 e(C1/2+c)|m|1/2 |m|13/4 max

[0,1]
|û(t, m)|

= k2(2C2)
1/2 e(C1/2+c−c′)|m|1/2 |m|13/4 max

[0,1]
|ec′|m|1/2

û(t, m)|.

The choice (4.2) guarantees that for |m| � M one has

k2(2C2)
1/2 e(C1/2+c−c′)|m|1/2 |m|13/4 � η

2
.

Therefore ∥∥∥∥∥∥
∑

0<|m|�M

û(tn, m) eimθ − ûapp(tn, m) eimθ

∥∥∥∥∥∥
G2(c)

� η

2
max
[0,1]

‖u(t)‖G2(c′). (4.5)

Combining (4.4) and (4.5) completes the proof. �

4.2 Computational cost with high-precision floating-point arithmetic

One needs a hypothesis asserting that the computation of a(t) in floating point is not too costly.

Hypothesis 4.2 For all c1, c2, there exist c3, q, so that for all N , if

{tn := nk : k := c1(2
−N ) and n � 1/k}

is the discrete interval [0, 1] with spacing Δt = k, then the values a(tn) can be calculated with error at
most 2−N(1+c2) in a number of arithmetic operations no larger than c3| ln k|q/k.
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Remark 4.3 (i) The quantity k = Δt is on the one hand the time increment and on the other hand
proportional to the number of significant digits. (ii) There are 1/k values computed, each one with a
cost bounded polynomially in the number of significant digits required.

Example 4.4 For 0 < t < 1 and 2 < γ ∈ R define

a(t) :=
{

0 for t � t,

(t − t)γ for t � t.

If t is rational, then this function satisfies the hypothesis. However, if t is an irrational number whose
binary expansion is difficult to compute, then a(t) does not satisfy the hypothesis. For example, suppose
that t has binary expansion 0.α1α2 . . . and the digit αj ∈ {0, 1} is computed by solving a problem that
requires j! arithmetic operations. If k = 2−L, then to compute a at the points tn requires a determination
of the first L binary digits and therefore at least L! operations. Hypothesis 4.2 authorizes at most CLq2L

operations.

Example 4.5 The following classes of functions satisfy the hypothesis: (1) polynomials with rational
coefficients; (2) polynomials with easily computed coefficients; (3) quotients of the above with poles
off the real axis; (4) a(t) = ep(t) with p one of the above; (5) functions defined by piecing together a
finite number of good functions with rational transition points or transition points with easily computed
binary expansion.

The next example shows that the standard examples of functions a(t) with Cauchy problems that
lose an infinite number of derivatives satisfy the hypothesis.

Example 4.6 Suppose that t ∈]0, 1[ has easily computed binary expansion and 4 < γ ∈ Q. Then

a(t) := (t − t)γ [sin(2π/(t − t))]2

satisfies the hypothesis. To see this, first compute the decimal expansion 0.α1α2 · · · αj up to j = L with
2−L < k. For each n one deduces the N(n) such that N � 1/(tn − t) < N + 1. Then

sin

(
1

tn − t

)
= sin

(
1

tn − t
− 2πN

)
, 0 <

1

tn − t
− 2πN < 1.

The sin on the right can then be computed to the desired precision from a truncated Taylor series.
Similarly, one treats the smooth example with (t − t)γ replaced by exp[−1/(t − t)].

Theorem 4.7 If a(t) satisfies Hypothesis 4.2 and C1 is the constant from Theorem 2.2, then there exist
constants q, C3 and C4 > C1 so that to obtain an approximation with error satisfying (4.4) with finite-
precision arithmetic it is sufficient to use multiprecision arithmetic with the number of binary digits
N � C3| ln η | and to choose k and M as in Proposition 4.1 with C1 replaced by C4. Then (4.4) holds and
the number of floating-point operations is bounded by

C3| ln η|qη−1/2. (4.6)

Proof. One effect of finite-precision arithmetic is to add an error due to round-off to each of the resid-
uals g(n, m). A second is to add error to the initial values of E2

ε and E1
ε .
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First estimate the round-off error in computing one step of the iteration

xn+1 =
[

1 + k2m2a(tn+1)

2

]−1 [
2xn −

(
1 + k2m2a(tn−1)

2

)
xn−1

]
. (4.7)

Since k|m| � 1, formula (4.7) involves the inverse of a number of size ∼ 1, and the subtraction of a
number close to xn−1 from 2xn. As xn ≈ xn−1, this formula is not subject to unusual round-off errors.

Consider the factors k2m2a. Since the time step k and m are related by k2m2 � 1 and the function
a is assumed bounded, the round-off error committed in computing these quantities in finite precision
is � Cρ, where ρ � 2−N(1+c1), if one computes in binary arithmetic with N(1 + c1) digits. Then the
finite-precision representation of a real number r has round-off error ∼ |r|ρ.

The two terms in the second pair of square brackets of (4.7) have size � max(|xn|, |xn−1|) and their
finite-precision computations have round-off � ρ max(|xn|, |xn−1|). Combining with the analysis of the
first term shows that the residual for the computation of û(tn+1, m) with round-off is bounded by

|g(n, m)| + Cρ max(|û(tn, m)|, |û(tn−1, m)|). (4.8)

The residual estimate (3.4) shows that without round-off, |g| � Ck2m4 max |û(t, m)|. If the second term
in (4.8), coming from round-off, is no larger than a constant times the first, then the qualitative behaviour
will not be affected. This is guaranteed by choosing the number of digits N such that ρ satisfies

ρ � k2. (4.9)

Then the residual is no larger than a constant times the estimate for g without round-off.
The additional round-off effect to estimate is from the steps leading to û(t1, 0) and û(t2, 0). In

exact arithmetic the error at these times is controlled by (3.12) and the estimate that follows it by �
m2k2 max[0,2k] |û(t, m)|. The round-off in making this computation modifies the answer by a quantity �
ρ max[0,2k] |û(t, m)|. This is no larger than the estimate for the first, provided ρ is chosen satisfying (4.9).

With these choices the proof of accuracy in Proposition 4.1 shows that error with round-off is
bounded by

Cρ + η sup
[0,1]

‖u(t)‖G2(c′).

Accuracy is guaranteed by choosing the number of significant digits N to satisfy

C2−N � η sup
[0,1]

‖u(t)‖G2(c′), N � ln(1/η). (4.10)

Next estimate the computational cost. The cost is the sum on m of the cost of approximately solving
the ordinary differential equation for the mth Fourier coefficient. For 0 < |m| � M and 0 � tn � 1,
we must compute xn = ûapp(tn, m) using (4.7). The formula for xn+1 requires an evaluation of a(tn+1)

with precision � 2−N(1+c1) and a small number of arithmetic operations. The cost grows no faster than
polynomially in N . To compute xn at the 1/k discrete times tn � 1 has cost � Np/k.

This price must be paid 2M times, once for each Fourier coefficient, for a total of CMNp/k. The
defining formulas yield

M = C| ln η|, k = Cη1/2.

The number of arithmetic operations is bounded by C | ln η |p+1 η−1/2. �
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Remark 4.8

(i) Since k � C
√

η, the constraint (4.9) requires ρ � Cη. The conclusion is that one must employ a
number of digits N that grows as C| ln η|. This is comparable to the ln η digits required to achieve
an accurate finite-arithmetic representation of the answer.

(ii) With k = ΔT ∼ √
η there are 1/

√
η time steps to reach time 1. The cost of the computation is

comparable to the cost of accurately solving one ordinary differential equation. This is consistent
with the fact that very few Fourier coefficients are needed. Multiprecision arithmetic is required
but the number of digits grows at most logarithmically with the precision.

Example 4.9 We estimate the number of computations necessary to compute the solutions with data
of the form eiνθ , ν ∈ N. The solution is concentrated on a single Fourier mode and only one ordinary
differential equation needs to be solved. The cost to achieve an approximate solution with two or three
significant decimal digits grows very rapidly with ν. The subtlety is that the norms on the two sides of
(4.3) are very different.

To compute to N decimal places of accuracy means

‖u − uapp‖L∞

‖u‖L∞
≈ 10−N .

One expects

‖u − uapp‖G2(c) ≈ C ec
√

ν‖u − uapp‖L∞ , ‖u‖G2(c′) ≈ C ec′√ν‖u‖L∞ .

Therefore estimate (4.3) yields

‖u − uapp‖L∞

‖u‖L∞
≈ C

‖u − uapp‖G2(c)

‖u‖G2(c′)
e(c′−c)

√
ν � η e(c′−c)

√
ν .

To achieve N digits requires η � 10−N e(c−c′)
√

ν . The number of operations from (4.6) is then �
10Nq eC

√
ν . This increases rapidly but subexponentially with ν. The growth reflects the very weak well-

posedness of the problem. It is only upon considering data with structures on small spatial scales that
the costs become apparent.
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