
OCAD University Open Research Repository
Faculty of Design, Faculty of Liberal Arts & Sciences,

Inclusive Design Research Centre (IDRC)

2014

Flocking: A framework for declarative

music-making on the Web
Clark, Colin B.D. and Tindale, Adam

Suggested citation:

Clark, Colin B.D. and Tindale, Adam (2014) Flocking: A framework for declarative music-

making on the Web. In: SMC Conference and Summer School, 14-20 Sept 2014, Athens, Greece.

Available at http://openresearch.ocadu.ca/id/eprint/1204/

Open Research is a publicly accessible, curated repository for the preservation and dissemination of

scholarly and creative output of the OCAD University community. Material in Open Research is open

access and made available via the consent of the author and/or rights holder on a non-exclusive basis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OCAD University Open Research Repository

https://core.ac.uk/display/54850171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Flocking: A Framework for Declarative Music-Making on the Web

Colin Clark

OCAD University

cclark@ocadu.ca

Adam Tindale

OCAD University

atindale@faculty.ocadu.ca

ABSTRACT

Flocking 1 is a framework for audio synthesis and mu-

sic composition written in JavaScript. It takes a unique

approach to solving several of the common architectural

problems faced by computer music environments, empha-

sizing a declarative style that is closely aligned with the

principles of the web.

Flocking’s goal is to enable the growth of an ecosys-

tem of tools that can easily parse and understand the logic

and semantics of digital instruments by representing the

basic building blocks of synthesis declaratively. This is

particularly useful for supporting generative composition

(where programs generate new instruments and scores al-

gorithmically), graphical tools (for programmers and non-

programmers alike to collaborate), and new modes of so-

cial programming that allow musicians to easily adapt, ex-

tend, and rework existing instruments without having to

“fork” their code.

Flocking provides a robust, optimized, and well-tested ar-

chitecture that explicitly supports extensibility and long-

term growth. Flocking runs in nearly any modern

JavaScript environment, including desktop and mobile

browsers (Chrome, Firefox, and Safari), as well as on em-

bedded devices with Node.js.

1. INTRODUCTION

A prominent stream in computer music research over the

past few decades has focused on the creation of special-

ized languages for expressing musical and time-based con-

structs programmatically [1, 2, 3, 4]. This emphasis on

new forms of syntax and language-level expression has

produced noteworthy computer music environments and

useful results for many use cases such as live coding.

Nonetheless, there is also a risk associated with the prolif-

eration of isolated, specialist programming languages for

music and art: an increased gap between creative coders

and the resources available to mainstream software de-

velopers. For example, in many self-contained computer

music environments, it continues to be difficult to cre-

ate polished user interfaces or to connect with web-based

services and sources of data—tasks that are routinely ad-

dressed in mainstream programming environments such as

1 http://flockingjs.org/

Copyright: c©2014 Colin Clark et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

JavaScript. As artists and musicians increasingly use net-

worked devices, sensors, and collaboration in their work,

these limitations take an increasing toll on the complexity

and scalability of creative coding.

Flocking is an open source JavaScript framework that

aims to address some of these concerns by connecting mu-

sicians and artists with the cross-platform, distributed de-

livery model of the web, and with the larger pool of li-

braries, user interface components, and tutorials that are

available to the web development community. Further,

it emphasizes an approach to interoperability in which

declarative instruments and compositions can be broadly

shared, manipulated, and extended across traditional tech-

nical subcultural boundaries.

1.1 Interoperability in Context

A primary motivating concern for Flocking is that the

tendency towards music-specific programming languages

shifts focus away from interoperability amongst tools and

systems. The term “interoperability” is used here to de-

scribe a specific concept: the ability to share a single in-

stance of a computer music artifact (i.e. an instrument or

score) bidirectionally amongst human coders, generative

or transformational algorithms, and authoring or graphi-

cal tools. Bidirectionality implies that a software artifact

needs to preserve sufficient semantics and landmarks that

it can be inspected, overridden, and extended by humans

and programs not only at creation time but throughout the

process of being used and maintained.

Today, a prospective computer musician often must

choose from the outset whether or not she wants to use a

code-based environment (such as SuperCollider or ChucK)

or a graphical one (Max/MSP, Pd, or AudioMulch, for ex-

ample). Since imperative programming code can’t eas-

ily be parsed, generated, and understood by tools outside

the chosen environment, the code and graphical paradigms

rarely interoperate. This compounds the difficulty of col-

laborating on a musical project across modalities.

Interoperability amongst computer music systems has

been addressed in a number of ways and to varying de-

grees. Open Sound Control [5], for example, helps sup-

port cross-system, message-based interoperability at run-

time. Some graphical environments such as Max and Pd

support the embedding of programmatic “externals” within

an otherwise graphical instrument. FAUST offers unidirec-

tional code generators for a variety of target languages, en-

abling programs to be written in the FAUST language but

deployed within other environments. The Music-N fam-

ily’s simple textual format has fostered a variety of third-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1550 -

mailto:cclark@ocadu.ca
mailto:atindale@faculty.ocadu.ca
http://creativecommons.org/licenses/by/3.0/

party compositional tools that can process and generate

score and orchestra files.

Some computer music environments also provide APIs

for manipulating the language’s parsing and compila-

tion artifacts. One of CSound 6’s new features includes

an abstract syntax tree API, enabling a user to write C

code that manipulates an orchestra prior to compilation

[6]. Max/MSP’s Patcher API supports the programmatic

traversal and generation of a Max patch using Java or

JavaScript code 2 . Lisp-based languages such as Extem-

pore go further towards potential interoperability, provid-

ing macro systems that allow for more robust generative al-

gorithms to be created within the facilities of the language

itself.

Within this context, Flocking aims to provide a frame-

work that supports extended interoperability via a declar-

ative programming model where the intentions of code

are expressed as JavaScript Object Notation (JSON) data

structures. JSON is a subset of the JavaScript language

that is used widely across the web for exchanging data 3 .

Flocking’s approach combines metaprogramming with an

emphasis on publically-visible state and structural land-

marks that help to support the alignment, sharing, and

extension of musical artifacts across communities of pro-

grammers and tools.

2. HOW FLOCKING WORKS

2.1 The Framework

The core of the Flocking framework consists of several

interconnected components that provide the essential be-

haviour of interpreting and instantiating unit generators,

producing streams of samples, and scheduling changes.

Flocking’s primary components include:

1. the Flocking interpreter, which parses and instanti-

ates synths, unit generators, and buffers

2. the Environment, which represents the overall audio

system and its configuration settings

3. Audio Strategies, which are pluggable audio output

adaptors (binding to backends such as the Web Au-

dio API or ALSA on Node.js)

4. Unit Generators (ugens), which are the sample-

generating primitives used to produce sound

5. Synths, which represent instruments and collections

of signal-generating logic

6. the Scheduler, which manages time-based change

events on a synth

Figure 1 shows the runtime relationships between these

components, showing an example of how multiple synths

and unit generators are composed into a single Web Audio

ScriptProcessorNode.

2 http://cycling74.com/docs/max5/vignettes/js/jspatcherobject.html
3 http://json.org

Synth

UGen

UGen

UGen

Synth

UGen

UGen

Enviro
Audio
strategy

Script
Processor
Node

Flocking

Web Audio API

Scheduler

connected to

User
Input

Figure 1. A diagram showing Flocking’s primary com-

ponents and how they relate to each other and to the Web

Audio API.

2.2 Declarative Programming

Above, we described Flocking as a declarative framework.

This characteristic is essential to understanding its design.

Declarative programming can be understood in the context

of Flocking as having two essential aspects:

1. it emphasizes a high-level, semantic view of a pro-

gram’s logic and structure

2. it represents programs as data structures that can be

understood by other programs

J.W. Lloyd informally describes declarative program-

ming as “stating what is to be computed but not neces-

sarily how it is to be computed” [7]. The emphasis here is

on the logical or semantic aspects of computation, rather

than on low-level sequencing and control flow. Traditional

imperative programming styles are typically intended for

an “audience of one”—the compiler. Though code is of-

ten shared amongst multiple developers, it can’t typically

be understood or manipulated by programs other than the

compiler.

In contrast, declarative programming involves the abil-

ity to write programs that are represented in a format that

can be processed by other programs as ordinary data. The

Lisp family of languages are a well-known example of this

approach. Paul Graham describes the declarative nature

of Lisp, saying it “has no syntax. You write programs in

the parse trees... [that] are fully accessible to your pro-

grams. You can write programs that manipulate them...

programs that write programs.” Though Flocking is writ-

ten in ordinary JavaScript, it shares with Lisp the approach

of expressing programs within data structures that are fully

available for manipulation by other programs.

2.3 JSON

The key to Flocking’s declarative approach is JSON, the

JavaScript Object Notation format. JSON is a lightweight

data interchange format based on a subset of JavaScript

that can be parsed and manipulated in nearly any program-

ming language. JSON provides several primary data types

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1551 -

and structures that are available across programming lan-

guages. The following table describes these data structures

and their syntax:

Type Syntax Description

Object {} Dictionary of key/value pairs

Array [] An ordered list

String "cat" A character sequence

Number 440.4 A floating point number

Since JSON’s syntax and semantics are identical to

JavaScript’s own type literals, JSON is a convenient lan-

guage for representing data in web applications without

imposing additional parsing complexity. All of Flocking’s

musical primitives are expressed as trees of JSON objects.

These objects can be easily serialized, traversed, manip-

ulated, and merged with other objects. In comparison to

other music programming environments, which often de-

scribe themselves as functional or object-oriented, Flock-

ing weaves the two approaches together in a manner that

could be called “document-oriented.”

2.4 Unit Generator Definitions

Musicians working with Flocking don’t typically instanti-

ate unit generators directly. Instead, they compose JSON

objects into trees. Each node in the tree, called a unit gen-

erator definition (ugenDef), describes a unit generator in-

stance and its connection to others in the signal-processing

graph. A ugenDef includes the following information:

1. the type of unit generator to be instantiated

2. a named set of inputs (key/value pairs), which can

consist of either literal values (floats) or other unit

generator specifications

3. the rate at which the unit generator will be evalu-

ated (audio, control, or constant); this defaults to

"audio" if omitted

4. a named set of static options, which describe how

the unit generator should be configured

Below is a simple example of a sine wave oscillator, illus-

trating how Flocking unit generators are defined in JSON:

{

ugen: "flock.ugen.sinOsc",

rate: "audio",

inputs: {

freq: 440,

mul: 0.25

},

options: {

interpolation: "linear"

}

}

Unit generator types are expressed as dot-separated

strings called key paths or EL expressions. These strings

are bound to creator functions at instantiation time by

Flocking. All type expressions refer to a global namespace

hierarchy so that developers can easily contribute their own

unit generator implementations (using their own names-

pace to avoid conflicts) and have the Flocking framework

manage them in the same manner as any of the built-in

types.

2.5 Synth Definitions

A collection of unit generator definitions form the basis of

a synth definition (synthDef). Synth definitions describe

a complete instrument to be instantiated by the Flock-

ing framework. Synths typically include a connection to

an output bus—either the speakers or one of the environ-

ment’s shared “interconnect” buses. In this respect, Flock-

ing’s architecture is inspired by the SuperCollider server

[8, pp.25]. Here is a simple example of a synthDef that

outputs two sine waves, one in each stereo channel:

{

ugen: "flock.ugen.out",

sources: [

{

ugen: "flock.ugen.sinOsc"

},

{

ugen: "flock.ugen.sinOsc",

freq: 444

}

]

}

This example also illustrates a key aspect of Flocking’s

interpreter and its document-merging approach. In the case

of the first unit generator, we have omitted all input val-

ues. When the synth is instantiated, it will automatically be

given a frequency of 440 Hz and an amplitude of 1.0. This

is due to the fact that every built-in unit generator declares

a set of default values. The Flocking interpreter, prior to

instantiating the unit generator, will merge the user’s ugen-

Def values on top of the defaults. If a property is omitted,

the default value will be retained; if a user specifies a prop-

erty, it will be used in place of the default. To save typ-

ing, the interpreter will also handle input names correctly

when they aren’t nested inside an “inputs” container. No-

tably, this defaulting and permissiveness is implemented in

a publicly visible way (as JSON defaults specifications),

helping to ensure that these programming conveniences

wont’t restrict interoperability with other tools.

To instantiate a Synth, its creator function must be called.

In Flocking, a component creator function typically takes

only one argument—the component’s options structure—

and returns an instance of the component. For all synths,

the options object must include a synthDef as well as any

other settings needed to appropriately configure the synth

instance. Figure 2 shows how a Flocking synth is created

programmatically.

By default, synths are automatically added to the tail of

the Environment’s list of nodes to evaluate, so they will

start sounding immediately if the Environment has been

started.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1552 -

var synth = flock.synth({

synthDef: {

id: "carrier",

ugen: "flock.ugen.sinOsc",

freq: 440,

phase: {

id: "mod",

ugen: "flock.ugen.sinOsc",

freq: 34.0,

mul: {

ugen: "flock.ugen.sinOsc",

freq: 1/20,

mul: Math.PI

},

add: Math.PI

},

mul: 0.25

}

});

Figure 2. Instantiating a custom phase modulation synth.

2.6 Updating Values

Once a synth has been instantiated, its inputs can be

changed on the fly. Flocking supports a highly dynamic

signal processing pipeline; unit generators can be added or

swapped out from a synth at any time, even while it’s play-

ing. Behind the scenes, everything in the signal graph is a

unit generator, even static values.

In order to direct changes at a particular unit generator,

it has to be given an identifying name. In the example

shown in figure 2, the carrier and modulator unit generators

are each given an id property that exposes them publicly.

These names represent “cutpoints” into the overall tree that

provide easier access to a particular unit generator. Synths

keep track of all their named unit generators and provide

get and set methods for making programmatic changes

to their inputs.

Changes can be targeted at any unit generator within the

tree using key path expressions. Here is an example of

how changes can be made to different points in the unit

generator tree with a single call to Synth.set():

synth.set({

"carrier.freq": 220,

"mod.mul.freq": 1/30

});

This example lowers the frequency of the carrier oscilla-

tor by an octave while simultaneously slowing down the

rate at which the modulator’s amplitude is oscillating.

This hierarchical path-based scheme for addressing

Flocking’s graph of signal generators is inspired by Open

Sound Control’s addresses, which provide a similar means

for specifying arbitrary message targets within a tree. In-

deed, OSC messages can be easily adapted to Flocking

change specifications; this is accomplished with only a few

lines of code in the Flocking OSC library. 4

3. SCHEDULING

3.1 Unit Generators Represent Change

Modelling the architectural distinction between different

types of changes that occur at varying time scales is a com-

mon challenge faced by computer music systems. Such

changes include:

1. highly optimized data flow-based changes that occur

at the signal level

2. value or instrument changes scheduled at fixed or in-

determinate rates (a “score”)

3. messages or events sent between objects in an

object-oriented system

4. user-triggered events from an OSC or MIDI con-

troller, or from graphical user interface components

such as buttons and knobs

Different systems take markedly different approaches to

modelling these distinctions. Flocking attempts to unify

the means for expressing both micro- and macro-level

changes in a composition. Where other systems create

a fundamental semantic and syntactic distinction between

different sources of change (e.g. unit generators vs. pat-

terns in SuperCollider), instruments and scheduled events

alike are specified in Flocking as a tree of unit generators.

The primary difference is the rate at which these unit gen-

erators are evaluated. This allows the same instruments

that are used to define the note-level timbre and texture of

a piece to be reused when shaping the larger-scale phrasing

and structure of the music. Figure 3 provides an example

of how changes are scheduled using Flocking’s declarative

scheduler to create a simple drum machine.

This example assumes that there is already a synth run-

ning (named “drumSynth”), which will produce a drum

sound whenever its trigger input changes. First, we instan-

tiate an asynchronous tempo scheduler—a type of sched-

uler that runs outside of the sample generation pipeline and

that accepts time values specified in beats per minute. Cur-

rently there are only asynchronous Schedulers in Flock-

ing; a sample-accurate implementation is in the planning

stages.

The details of the desired changes are specified in the

“score” section of the example. This particular score is

defined with the following parameters:

• it should be repeatedly applied, every beat

• each change should be targeted at a particular instru-

ment (specified by name)

• the value of each change should be determined by

evaluating the supplied synthDef

4 https://github.com/colinbdclark/flocking-osc/

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1553 -

flock.scheduler.async.tempo({

bpm: 180,

score: {

interval: "repeat",

time: 1,

change: {

synth: "drumSynth",

values: {

"trig.source": {

synthDef: {

ugen: "flock.ugen.sequence",

list: [

1, 1, 0, 1,

1, 0, 1, 0

],

loop: 1

}

}

}

}

}

});

Figure 3. Scheduling changes with the Flocking Sched-

uler.

In Flocking, synths can be evaluated at different rates, in-

cluding at audio, control, scheduled, and demand rate. The

scheduler automatically takes care of parsing the JSON-

based change specification, producing a value synth run-

ning at the specified scheduled rate, and targeting its

stream of changes to the desired instrument synth. In fig-

ure 3 above, the scheduled synth will be evaluated on every

beat. It produces values using a simple sequence unit

generator, which cycles through a list of numbers in order.

Value
Synth

Async
Scheduler

ugen

ugen ugen

Clock
Target
Synth

evaluates updatesinvokes

generates a value

Figure 4. Diagram showing the runtime structure of Flock-

ing’s declarative scheduler.

A full version of the example in figure 3, which also il-

lustrates how synths and schedulers can be woven together

in an entirely declarative way, is available on Github 5 .

5 https://github.com/colinbdclark/flocking-
examples/blob/master/drum-machine/drum-machine.js

3.2 Rationale

This approach was inspired by an insight in James Ten-

ney’s Computer Music Experiences [9], where he points

out the conceptual similarity between the macrostructure

of a composition—events that occur over the duration of

a piece of music—and the changes that occur at the mi-

crolevel of unit generators. In the early 1960s, Tenney at-

tempted to use Music IV’s unit generator system as the

basis for algorithmically specifying the large-scale time

structure of his compositions. He commented that the

instruments ”produced results that were quite interesting

to me, but it was not very efficient to use the compiler

itself for these operations. . . [requiring] a separation be-

tween the compositional procedures and the actual sample-

generation” [9, p.41–42]. This suggests that the archi-

tectural rift between composition-level and signal-level

changes, which has been inherited by several generations

of computer music systems since the 1960s, was born out

of early performance issues.

Few would doubt that the performance factors of today’s

computer music systems are the same as they were on early

mainframe systems, and the elegance and power of us-

ing unit generator for both signal- and composition-level

changes is worth revisiting. Aside from simplicity, one of

the main advantages of Flocking’s approach to declarative

scheduling is that it offers the potential to actually improve

performance in the long run. A typical problem with com-

puter music schedulers is ensuring that whatever work a

user schedules is deterministic and optimized for real-time

performance. Schedulers either have to trade off expres-

sivity, limiting the types of changes that can be scheduled

(such as with the Web Audio API’s AudioParams), or leave

it entirely up to the user to implement event producers that

are sufficiently optimized. Flocking attempts to help users

express changes in a way that can be optimized automati-

cally by the framework. Unit generators are explicitly de-

signed to be used in a real-time constrained context. As a

result, the Flocking interpreter is free to take a scheduled

synthDef and, if appropriate, inject its unit generator tree

directly into the signal path of the target synth, ensuring

that all changes occur with as little overhead as possible.

SynthDefs are similarly used in Flocking’s MIDI and

OSC libraries to define transformations between incoming

control values and the inputs of an audio synth.

4. CURRENT STATE

4.1 Relationship to the Web Audio API

Flocking currently makes limited use of the built-in native

audio processing nodes in the W3C’s Web Audio API 6 . It

is the opinion of the authors that the version of the Web Au-

dio API shipping in browsers today is insufficient to sup-

port the expressivity required by creative musicians with-

out the support of additional libraries. Many of the limita-

tions of the API are outlined in detail in [10]. Web Audio

currently provides limited options for web developers who

want to create their own custom synthesis algorithms in

6 http://www.w3.org/TR/webaudio/

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1554 -

JavaScript and expect them to perform well. In particular,

it is difficult to mix native and JavaScript-based nodes in

the same signal graph without imposing latency and syn-

chronization issues.

Flocking predates the first Web Audio API implementa-

tion, and was architected specifically to allow web devel-

opers to contribute their own first-class signal processing

implementations in an open way. As a result of this phi-

losophy, and due to the performance and developer experi-

ence issues of the current Web Audio specification, Flock-

ing uses only small parts of the API. Instead, it takes full

control of the sample-generation process and provides mu-

sicians with an open palette of signal-generating building

blocks that can be used to assemble sophisticated digital

instruments.

4.2 Comparison with Web Audio Libraries

Several other libraries also take a similar “all JavaScript”

approach. Gibberish [11] and CoffeeCollider [12] are

two prominent alternatives to Flocking. CoffeeCollider

attempts to replicate the SuperCollider environment as

closely as possible using the CoffeeScript programming

language [13], while Gibberish takes a more traditional

object-oriented approach. Although these environments

each offer their own unique features, neither has attempted

to stray far from the conventional models established by

existing music programming environments.

Flocking, too, has taken architectural inspiration from

several existing music programming systems, particularly

the design of the SuperCollider 3 synthesis server. Flock-

ing shares with it a simple “functions and state” architec-

ture for unit generators, as well as a strict (conceptual)

separation between the realtime constraints of the signal-

processing world and the more dynamic and event-driven

application space, manifested in the architectural distinc-

tion between unit generators and synths [14, pp. 64].

4.3 Performance

Much has been written about web audio performance is-

sues related to the current generation of JavaScript run-

times generally (lack of deterministic, incremental garbage

collection) and the Web Audio API specifically (the re-

quirement for ScriptProcessorNodes to run on the main

browser thread) [10, 11]. If history is any indication, it

seems likely that the performance characteristics of the

JavaScript language will keep improving as the browser

performance wars continue to rage between Mozilla,

Google, and Apple. In addition, Web Worker-based strate-

gies for sample generation are currently being discussed

for inclusion in the Web Audio API specification 7 , which

will significantly improve the stability of JavaScript-based

signal generators.

In the interim, many claims have been made about the

relative performance merits of various optimization strate-

gies used in toolkits such as Gibberish [11]. Most of these

claims, however, focus on micro-benchmarks that measure

the cost of small-scale operations in isolation, rather than

7 https://github.com/WebAudio/web-audio-api/issues/113

taking into account the performance of real-world signal

processing algorithms.

Avoiding the temptation to focus on micro-benchmarking

and premature optimization, the approach we have taken in

Flocking is to build an architecture and framework that can

serve as a flexible, long-term foundation on which to con-

tinually evolve new features and improved performance.

Significant effort has been invested in developing auto-

mated unit and performance tests for Flocking that mea-

sure the real-world costs of its approach.

4.07

18.47

6.83

24.16

7

15

4.29

21.06

7.6

27.32

7.63

17.04

10.02

45.68

13.38

56.09

15

29

0

10

20

30

40

50

60

Flocking

(Firefox)

Gibberish

(Firefox)

Flocking

(Chrome)

Gibberish

(Chrome)

Flocking

(Safari)

Gibberish

(Safari)

m
s

Minimum Average Maximum

Figure 5. A comparison of performance between Flocking

and Gibberish. Smaller bars are faster.

With just-in-time compilers such as Google’s V8 8 and

Mozilla’s IonMonkey 9 , we believe that real-world perfor-

mance is best achieved by using simple algorithms that

represent stable “hot loops” that can be quickly and per-

manently compiled into machine code by the runtime.

The risk of micro-optimization efforts such as the code-

generation techniques promoted by Gibberish is “lumpy”

(i.e. of an unpredictable duration) real-world performance

caused by the JavaScript runtime having to re-trace and

recompile code. This is particularly an issue when code

needs to be dynamically generated and evaluated when-

ever the signal graph changes, such as the introduction of

new synths or unit generators into the pipeline. Flock-

ing avoids this risk while maintaining competitive perfor-

mance by using a simple algorithm for traversing and eval-

uating unit generators. Synth nodes and unit generators are

stored in flat, ordered lists. Flocking is able to quickly it-

erate through these lists and evaluate each signal generator

in order. Synth nodes and unit generators can be added

or removed from the pipeline at any time without forcing

the JavaScript runtime to spill its caches when evaluating

a new piece of code. This helps to ensure that Flocking’s

performance profile remains stable and consistent at run-

time.

Despite very little optimization effort to date, prelimi-

nary benchmarks 10 suggest that Flocking’s approach is

promising both from the perspective of good performance

as well as greater simplicity and maintainability in com-

parison to systems that use more complex code generation

techniques. Figure 5 shows a simple test where one sec-

ond’s worth of samples were generated and timed for an

FM synth consisting of three sine oscillators. This test

8 https://code.google.com/p/v8/
9 https://wiki.mozilla.org/IonMonkey/Overview

10 https://github.com/colinbdclark/webaudio-performance-benchmarks

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1555 -

was performed 10000 times to illustrate realistic VM be-

haviour. The minimum, average, and maximum times are

graphed in milliseconds. The tests were carried out on an

Apple MacBook Pro laptop with a 2.3 GHz Intel Core i7

processor. Many factors can influence benchmark results,

but Flocking’s performance appears to be significantly bet-

ter than Gibberish on every browser.

4.4 The Flocking Playground

Flocking’s data-oriented approach can be useful for a vari-

ety of musical and social purposes. For example, a gener-

ative music application can algorithmically produce JSON

synthDefs on the fly that introduce new instruments or vari-

ations on existing instruments into the system. Similarly,

a visualization and editing environment can traverse the

source code of a synthDef and produce a rendering that

allows users to inspect or edit their instruments visually.

The Flocking Playground (see figure 6) is a simple web-

based development environment that serves as an evolving

platform for showing Flocking’s features and approach. It

provides the ability to:

• browse, audition, edit, and share links to a variety of

Flocking demos

• develop new instruments and compositions in the in-

tegrated code editor

• see a synchronized visual rendering of a synth’s

source code

The Playground’s graphical mode parses a user’s JSON

SynthDef specifications and renders them on the fly us-

ing a combination of HTML, CSS, and SVG into a flow-

based diagram that illustrates the synth’s structure and sig-

nal flow.

Figure 6. A screenshot of Flocking’s interactive program-

ming environment.

The Flocking Playground is built with Fluid Infusion 11 ,

a JavaScript framework that supports end-user personal-

ization and authoring [15]. Infusion’s infrastructure for

relaying, transforming, and firing changes across diverse

models within an application are critical for maintaining

11 http://fluidproject.org/products/infusion

Figure 7. A screenshot of the Playground’s visual view.

synchronization between the graphical and source views of

the Playground. Infusion continues to be a source of sig-

nificant architectural inspiration for Flocking, and the two

frameworks share a common philosophy and approach.

4.5 Greater Web Audio Integration

Due to the fact that Flocking takes control of the sample

generation process directly, it uses very few features of the

W3C Web Audio API. As the specification evolves, plans

are underway to adopt more of its features in Flocking. At

the moment, Flocking consists of a single ScriptProces-

sorNode that is connected to the Web Audio API’s des-

tination sink. Limited support for injecting native Nodes

before and after the Flocking script node is available, open-

ing up the possiblity of using nodes such the MediaS-

treamSource, Panner, and Analyser nodes in tandem with

Flocking. Nonetheless it remains difficult to build complex

graphs that mix native and Flocking-based processors.

We are in the midst of planning an updated version of the

Flocking architecture that allows Flocking unit generators

to be interleaved freely with native Web Audio nodes. This

approach will introduce a proxy unit generator type that

adapts inputs between a native node and a Flocking unit

generator.

Panner
Node

Web Audio API

connected to

Script
Processor

Node

Flocking

Media
Stream
Node

Web Audio API

Evaluator

UGen

UGen
Input
Proxy

Panner
Node

Figure 8. A diagram showing how Flocking will support

mixing unit generators with native Web Audio API nodes.

This architecture change will also help prepare Flocking

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1556 -

for Web Worker-based ScriptProcessorNodes, which are

planned for a future version of the Web Audio specifica-

tion 12 .

5. CONCLUSIONS

Flocking is a new framework for computer music com-

position that leverages existing technologies and ideas to

create a robust, flexible, and expressive system. Flocking

combines the unit generator pattern from many canonical

computer music languages with Web Audio technologies

to allow users to interact with existing and prospective web

technologies. Users interact with Flocking using a declar-

ative style of programming.

The benefit of Flocking’s approach, when considering

various examples of web development environments us-

ing both text and visual idioms, has been demonstrated.

Flocking provides users with a clear and semantic way to

represent the materials of digital music, a promising frame-

work for growing new features and tools, and a light per-

formance footprint.

6. REFERENCES

[1] R. B. Dannenberg, “A language for interactive au-

dio applications,” in Proceedings of the International

Computer Music Conference. International Computer

Music Society, 2002.

[2] G. Wang, P. R. Cook et al., “Chuck: A concurrent,

on-the-fly audio programming language,” in Proceed-

ings of the International Computer Music Conference.

Singapore: International Computer Music Association

(ICMA), 2003, pp. 219–226.

[3] J. McCartney, “Supercollider: a new real time syn-

thesis language,” in Proceedings of the International

Computer Music Conference, 1996.

[4] Y. Orlarey, D. Fober, and S. Letz, “FAUST: an effi-

cient functional approach to DSP programming,” in

New Computational Paradigms for Computer Music,

G. Assayag, A. Gerzso, and IRCAM, Eds. Delatour,

2009, pp. 65–96.

[5] M. Wright, “Open sound control-a new protocol for

communicationg with sound synthesizers,” in Proceed-

ings of the 1997 International Computer Music Confer-

ence, 1997, pp. 101–104.

[6] J. P. ffitch, V. Lazzarini, and S. Yi, “Csound6: old

code renewed,” in LAC: Linux Audio Conference

2013: Proceedings, I. m zmölnig and P. Plessas,

Eds. Graz, Austria: Institute of Electronic Music and

Acoustics (IEM), University of Music and Performing

Arts Graz, May 2013, pp. 69–75. [Online]. Available:

http://opus.bath.ac.uk/37389/

[7] J. W. Lloyd, “Practical advantages of declarative pro-

gramming,” in Joint Conference on Declarative Pro-

gramming, GULP-PRODE, vol. 1, 1994, pp. 18–30.

12 https://github.com/WebAudio/web-audio-api/issues/113

[8] S. Wilson, D. Cottle, and N. Collins, The SuperCol-

lider Book. The MIT Press, 2011.

[9] J. Tenney, “Computer music experiences, 1961–1964,”

Electronic Music Reports, vol. 1, pp. 23–60, 1969.

[10] L. Wyse and S. Subramanian, “The viability of the web

browser as a computer music platform,” Computer Mu-

sic Journal, vol. 37, no. 4, pp. 10–23, 2013.

[11] C. Roberts, G. Wakefield, and M. Wright, “The web

browser as synthesizer and interface,” in Proceedings

of New Interfaces for Musical Expression (NIME),

Daejeon, Seoul, 2013, pp. 313–318.

[12] N. Yonamine, “Coffeecollider,”

http://mohayonao.github.io/CoffeeCollider/ (Retrieved

April 1, 2014).

[13] J. Ashkenas et al., “Coffeescript,”

http://coffeescript.org/ (Retrieved April 1, 2014).

[14] J. McCartney, “Rethinking the computer music lan-

guage: Supercollider,” Computer Music Journal,

vol. 26, no. 4, pp. 61–68, 2002.

[15] C. Clark, A. Basman, S. Bates, and K. G. Markus, “En-

abling architecture: How the GPII supports inclusive

software development,” in Proceedings of the Inter-

national Conference on Human-Computer Interaction,

2014, in Press.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1557 -

http://opus.bath.ac.uk/37389/

