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Abstract
Homogenised climatological series and gridded data are the basis for climate monitoring and climate change detection. Con-
sidering this, monthly mean temperatures from 122 Croatian stations were homogenised, and high-resolution monthly gridded 
data were developed for the 1981–2018 period. Homogenisation needs to be performed on stations from the same climate 
region; therefore, hierarchical clustering is introduced to define those climate regions in Croatia. The breaks of homogeneity 
were detected by the standard normal homogeneity test on 54 stations. Regression kriging was applied to produce monthly 
grids for each month in the analysed period. The quality of the interpolation assessed by leave-one-out cross-validation 
resulted in a root mean square error of 0.7 °C. The quality of spatial interpolation is supplemented with normalised error 
maps. The derived homogenised station data and monthly grids are necessary for national climate monitoring, the production 
of climate normals and the estimation of trends. After 1999, average annual anomalies from the 30-year climate standard 
normal 1981–2010 were positive and up to 1.4 °C warmer than the average and only occasionally negative. The measured 
amount, sign and significance of the trend were accurately captured on the trend maps calculated from the monthly maps. 
Significant strong warming was observed and mapped over the entire Croatian territory in April, June, July, August and 
November. It was stronger inland than on the coast. Annual trends were significant and ranged from 0.3 °C/decade to 0.7 °C/
decade. There was no observational evidence of enhanced elevation-dependent warming over elevations from 750 to 1594 m.

1  Introduction

Human influence has warmed the atmosphere, oceans and 
land, causing rapid and widespread changes in those systems 
(IPCC 2021). This influence on climate, driven by emissions 
of greenhouse gases, has been unprecedented in at least the 
last 2000 years (IPCC 2021). The global surface tempera-
ture was 1.09 [0.95 to 1.20] °C higher in 2011–2020 than 
in 1850–1900, with larger increases over land (1.59 [1.34 
to 1.83] °C) than over the ocean (0.88 [0.68 to 1.01] °C) 
(IPCC 2021).

The focus of this study was to create a homogenised 
mean monthly air temperature series to produce monthly 

temperature grids and to derive climate monitoring prod-
ucts to assess the state of air temperature and the observed 
temperature change in Croatia. The country is part of the 
Mediterranean, where the mean temperature is expected to 
increase at a rate larger than the global mean temperature, 
particularly in summer (Lionello and Scarascia 2020). Data 
measured at meteorological stations are representative for 
describing the climate of the surrounding area of the meteor-
ological station, but only remote sensing methods or spatial 
interpolation methods (SIMs) can provide estimates where 
there are no ground observations (Vicente-Serrano et al. 
2003; Hofstra et al. 2008). As stated in Haylock et al. (2008), 
the main reasons for producing gridded data are (1) estima-
tion of the values away from the observation stations, (2) the 
need for the optimal assessment of the areal averages and (3) 
validation of the regional climate models (RCMs). Although 
high-quality gridded climate data are available for monitor-
ing climate and climate change in Europe, either derived 
from observations such as E-OBS (Haylock et al. 2008) at 
6 km resolution or reanalysis such as ERA5 (Hersbach et al. 
2020) at 31 km resolution and ERA5-Land (Muñoz-Sabater 
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et al. 2021) at 9 km spatial resolution, fine-scale analysis 
using national observed data is often preferred.

In Li and Heap (2014), 38 SIMs applied in environmental 
sciences are classified as nongeostatistical, geostatistical and 
combined. Estimation by nearly all SIMs can be regarded as 
the weighted average of observations (Webster and Oliver 
2007). Hijmans et al. (2005) created monthly temperature 
and precipitation grids using a thin-plate smoothing spline 
(TPS) algorithm with latitude, longitude and elevation as 
independent variables. The dataset is expanded with solar 
radiation, vapour pressure and wind speed in Fick and Hij-
mans (2017). Multiple linear regression (MLR) was used to 
produce the temperature climatology of the greater Alpine 
region, including Croatia, in Hiebl et al. (2009). Longitude, 
latitude, elevation and distance from the coast were used as 
the predictors in MLR. The UK monthly gridded dataset 
of several climatological variables is derived with multiple 
regression with geographic factors followed by inverse dis-
tance weighting of the residual (Perry and Hollis 2005). The 
Alpine precipitation dataset combined a regression approach 
for the interpolation of the long-term mean with the inter-
polation of the daily anomalies by angular distance weight-
ing (ADW) (Frei and Schär 1998). The gridded monthly 
CRU dataset of several variables also combines long-term 
grids with monthly anomalies calculated by ADW (New 
et al. 2000). All these datasets are derived using combined 
SIMs, which mostly differ in methods for the interpolation of 
anomalies (IDW, TPS, ADW). Similar is regression kriging 
(RK) which combines regression on environmental predic-
tors with kriging of the residuals (Hudson and Wackernagel 
1994; Knotters et al. 1995; Odeh et al. 1995; Hengl et al. 
2003, 2004, 2007; Meusburger et al. 2012; Brinckmann et al. 
2016). The RK interpolation method is used for producing 
the maps of 30-year climate standard normals in the Climate 
Atlas of Croatia 1961–1990 and 1971–2000 (Zaninović et al. 
2008; Perčec Tadić 2010).

In this study, we focus on the mapping of the mean 
monthly values for a particular month of each year in the 
period 1981–2018 (38 years). The RK prediction and nor-
malised error maps are calculated for each month. From 
monthly grids, we calculated climate monitoring products 
such as climate standard normals for the 1981–2010 period, 
anomalies from the normal, spatial temperature trends and 
spatially aggregated anomalies on a country level.

Prior to deriving gridded data that can be used for cli-
mate monitoring and trend estimation, station data need to 
be checked for inhomogeneities and homogenised if needed. 
Homogenisation based on long meteorological time series 
is often regarded as the first stage in climate monitoring and 
climate variability and change detection (Alexandersson and 
Moberg 1997). Inhomogeneities in the data series can be 
regarded as anomalous perturbations not related to climate 
variability. One type of inhomogeneity is a sudden shift in 

the mean compared with surrounding sites. Such shifts are 
often related to relocations of the station, changes in the 
local environment, observation practices or data processing 
but can also be the result of digitization and database errors 
(WMO 2020). Reviews on the different methodologies for 
dealing with inhomogeneities consider the standard normal 
homogeneity test (SNHT) widely used and among the bet-
ter performing inhomogeneity detecting methods (Peterson 
et al. 1998; WMO 2003; Beaulieu et al. 2008).

SNHT was used in Likso (2003), who examined 
homogeneity of the annual temperature series from the 
1949–1998 period on ten Croatian stations revealing the 
breaks in all but one station (Zagreb-Maksimir). Pandžić 
and Likso (2010) analysed the abrupt and gradual linear 
change in annual mean temperatures from the 1961–2000 
period at 22 Croatian stations using the modified SNHT, 
where breaks were detected at all but five stations. Our pre-
liminary research (Nimac and Perčec Tadić 2017) revealed 
breaks in homogeneity on half of the 39 air temperature 
time series from the 1981–2010 period. The change in 
long-term seasonal and annual temperature means among 
homogenised and nonhomogenised series was statistically 
significant at only one station (Nimac and Perčec Tadić 
2017). However, the changes in trend revealed that homog-
enisation changed the amount but also the statistical sig-
nificance of the trend. Positive trends become significant, 
while negative ones become not significant after homogeni-
sation. Coefficients of correlation among pairs of stations 
became higher and more similar due to homogenisation. 
In this study, the robustness of the homogenisation method 
was tested, while the dataset was extended to 122 stations 
and to a longer time period.

The study was organised as follows: in Sect.  2, we 
describe the main characteristics of the country and the 
data. In Sect. 3, we describe the clustering, homogenisa-
tion and spatial interpolation methods, the accuracy meas-
ures and the climate monitoring products to be derived. 
Sect. 4 presents the results of the applied methods. In 
Sect. 5, we present selected national climate monitoring 
products. The discussion and conclusions are presented 
in Sect. 6. The table with station metadata and a list of 
breaks is presented in Appendix. The charts of the time 
series of the original and homogenised data are provided 
in Online Resource 1.

2 � Data

Croatia is a southeastern European country situated on 
the eastern coast of the Adriatic Sea with a Dinaric ridge 
separating its maritime from the continental part, which 
belongs to the Pannonian Basin (Fig.  1). This defines 
several climatic factors that shape the climate of Croatia: 
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diverse orography ranging from 0 to 1700 m, position 
at the coast of the Adriatic Sea, longitude and latitude 
(Figs. 2 and 3 in Perčec Tadić 2010). The result was a 
large mean annual temperature span over a small country, 
from 4 °C in the mountains to more than 17 °C along the 
coast for the normal period of 1981–2010. These spatial 
temperature differences with the cold elevated locations, 

slightly warmer continental areas and even warmer Adri-
atic coast with the warmest southern Adriatic are to be 
modelled for the entire territory with the proposed spatial 
interpolation method. Standard deviations of the mean 
annual temperature are up to 0.8 °C, compared to 0.4 °C 
at the coast, where variability is lower due to maritime 
influence.

Fig. 1   Map of Croatia and meteorological stations divided into nine 
regions based on the clustering algorithm: eastern continental (econ), 
central continental (ccon), western continental (wcon), Lika plateau 
(lika), mountainous (moun), Istria (istr), Adriatic hinterland (hadr), 

northern Adriatic (nadr) and southern Adriatic (sadr). The colour of 
the symbols denotes a region, while the number inside the symbol is 
the ID of the station
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Data used in this study were monthly mean tempera-
tures from 122 Croatian main and climatological meteoro-
logical stations from the period 1981–2018 (station posi-
tions are denoted by circles in Fig. 1). There were 27% of 
stations with complete data records, but the stations with 
missing data were also used if at least 25 years of data 
are available. Croatian land fits in a square of approxi-
mately 466 × 462 km2, but due to its peculiar shape, its 
area is just 57 750 km2. If the distribution of the stations 
would be regular in space, there would be one station on 
each 22 × 22 km2. However, the density of the meteoro-
logical stations was uneven across the country and not 
perfectly balanced across the elevation range (Figs. 4 and 
5 in Perčec Tadić 2010).

3 � Methods

The present study addresses (1) the homogenisation of 
monthly temperature data measured at the stations, (2) 
spatial interpolation to a regular 1 km grid and (3) calcu-
lation of the gridded climate monitoring products. The R 
framework (R Core Team 2020) was used for calculations 
and visualisations. The main packages used were climatol 
(Guijarro 2019) for homogenisation, gstat (Pebesma 2004; 
Gräler et al. 2016) and automap (Hiemstra et al. 2009) 
for spatial interpolation, raster (Hijmans 2020) for raster 
manipulations and calculations and spatialEco (Evans 
2020) for spatial trend analysis.

3.1 � Clustering

For the homogenisation method to be reliable, homog-
enisation must be performed on data with similar climate 
regimes (Mamara et al. 2013; Marcolini et al. 2019; Gui-
jarro 2021). Ward’s hierarchical clustering or the method 
of minimum variance (Ward 1963) was performed to 
group stations according to the similarity in temperature 
regimes, which was shown to be a first approximation 
of the climate regions. We were looking for clusters of 
stations that have similar sequences of temperature dif-
ferences for consecutive months. Similarity between 
sequences was measured by ordinary Euclidean distance. 
The method started from a single sequence in each cluster 
and iteratively merges sequences based on minimal dis-
tance. Ward’s algorithm assures that intragroup similarity 
is maximised while intergroup similarity is minimised. 
The clustering results with a selected number of clusters 
that are expected to contain stations with the most simi-
lar temperature series and hence are suitable for further 
homogenisation inside the clusters.

3.2 � Homogenisation

Homogenisation can be performed by comparing each can-
didate series with another station series or with a composite 
reference series. Among several methods used in the large 
MULTITEST project, the ACMANT method provided the 
most accurate homogenisation of individual time series, 
resulting in the reconstruction of local climate variability 
(Domonkos et al. 2021; Domonkos 2021). This method was 
closely followed by climatol. Both methods use composite 
reference series, while pairwise methods using a single ref-
erence series seem to be more efficient for the detection of 
the mean climatic trends over large geographical regions 
(Coll et al. 2020; Domonkos et al. 2021; Domonkos 2021). 
Among the homogeneity tests, the SNHT has been used 
quite extensively (Venema et al. 2012; Mamara et al. 2013; 
Kolendowicz et al. 2019; WMO 2020; Coll et al. 2020). In 
the R package climatol used in this paper, the SNHT was 
applied to the differences between candidate and compos-
ite reference series, both in the normalised form, to recon-
struct local climate variability (Guijarro 2019, 2021). The 
normalisation was calculated by subtracting the mean and 
dividing it by the standard deviation over the entire data 
series of 456 months (38 years). In the first homogenisa-
tion stage, the SNHT was applied iteratively on overlapping 
windows of 120 terms sliding forward by 60 terms, which is 
one way of detecting multiple breakpoints in one series. In 
the second stage, the test was applied to the whole series. In 
the process, the series were split into two fragments at the 
position where the test values were above the SNHT thresh-
old. Thresholds for the SNHT statistic T were denoted by 
SNHT1 for the first stage and SNHT2 for the second stage 
(Guijarro 2019). For our sample size, the listed critical val-
ues of the SNHT statistic T for a 95% confidence level would 
be 9.33 for a first stage over 120 terms and 10.272 for a 
second stage over 450 terms (closest to our samples’ size of 
456 months), according to Khaliq and Ouarda (2007). These 
are theoretical thresholds simulated from large sets of ran-
dom normal numbers with up to 50,000 members by Khaliq 
and Ouarda (2007), similar to Alexandersson and Moberg’s 
(1997) thresholds for series up to 200 members. However, 
the range of the estimated SNHT T values in our real-world 
dataset was much larger, presumably due to deviation from 
the theoretical randomness (Mamara et al. 2013), with val-
ues comparable to those suggested in Meseguer-Ruiz et al. 
(2018) and Curci et al. (2021). Consequently, we chose to 
test several critical T values that were higher than theo-
retical, where higher values correspond to less strict break 
detection criteria. There were several options for selecting 
the final homogenised series, and we selected the series with 
the original data being retained at the end of the series, as 
in Marcolini et al. (2019) and Meseguer-Ruiz et al. (2018).
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3.3 � Regression kriging

Regression kriging (RK) is a combined SIM (Li and Heap 
2014) that accounts for large-scale spatial variability through 
the dependence of the target variable on the spatial predic-
tors. Additionally, it accounts for the local, or small-scale, 
part of the remaining variability through the model of spa-
tial autocorrelation. The procedure can be described in four 
steps: (1) assess the relationship of the dependent variable 
(monthly temperature) with climatic factors of altitude, dis-
tance to the sea, latitude and longitude (predictors) through 
multiple linear regression (MLR), (2) establish the vario-
gram model of spatial autocorrelation of residuals ( ̂e ) where 
residuals are the differences between observed values and 
the values predicted by MLR, (3) evaluate the accuracy of 
predictions with leave-one-out cross-validation on station 
locations, and (4) calculate prediction maps and normalised 
error maps (Hengl et al. 2004; Perčec Tadić 2010). In the 
process, only the significant predictors in the MLR model 
were retained based on a t test applied to the regression coef-
ficients under a significance level of 0.05. The remaining 
residuals were interpolated by kriging.

The sample variogram was calculated from residu-
als for regular distance intervals (bins) 

[

hj, hj + �
]

 by the 
semivariance:

Here, the spatial locations of stations were denoted by si , 
where Nj is the number of station pairs separated by a dis-
tance h belonging to interval 

[

hj, hj + �
]

 , and hj is the average 
of all Nj h′s (Pebesma 2014) .

Four variogram models were tested by default while 
fitting the variogram model to the sample variogram: 
spherical, exponential, Gaussian and Matern. The initial 
variogram parameters, nugget, partial sill and range, were 
estimated from the data automatically. The fitting of the 
variogram model was controlled by adjusting the mini-
mum number of points in a bin, min.np.bin (Hiemstra et al. 
2009). The default value of five points was too low for our 
spatial data configuration. In many months, the first to the 
third bin in the sample variogram would produce too jit-
tery semivariance, so the optimal value was selected as one 
that minimises the RMSE of the mean temperature through 
leave-one-out cross-validation (loocv). For interpolation 
of the residuals that remain after MLR, we adopted an 
option of kriging in a local neighbourhood, while point 
kriging and kriging of the block mean values are also avail-
able (Pebesma 2004; Hiemstra et al. 2009; Gräler et al. 
2016). The default setting of using all observations for the 
prediction at each grid cell is not optimal for a peculiarly 

(1)

�̂(hj) =
1

2Nj

∑Nj

i=1
(̂e(si) − ê(si + h))

2
,∀(si, si + h) ∶ h ∈

[

hj, hj + �
]

.

shaped and climatologically diverse country such as Croa-
tia; hence, we carefully balance the number of the nearest 
observations, nmax, and the maximum distance from the 
prediction location to the observations, maxdist, to avoid 
the stations from a climatologically different region. The 
optimal values were selected through loocv as for the opti-
mal min.np.bin.

3.4 � Accuracy assessment

The performance of the multiple linear regression model 
is evaluated through the coefficient of determination R2 
adjusted for the number of predictors (Draper and Smith 
1998). The RK performance at the prediction locations was 
again assessed through the loocv procedure. The mean error 
(ME) and root-mean-square error (RMSE) were calculated 
at prediction locations:

where the observed temperatures at spatial locations sj 
were denoted by z

(

sj
)

 and the loocv predictions by ẑ
(

sj
)

, 
while their differences were called residuals. The stand-
ard deviation of the observations is denoted by �z . Com-
parison of the RMSE across the months is performed 
through RMSE normalised by the standard deviation of 
observations:

As a rule of thumb, we consider that prediction is accu-
rate if RMSEr < 0.4 (Hengl et al. 2004), in which case the 
accuracy defined by

is above 84%. The normalised kriging error map is cal-
culated as the square root of the prediction variance map 
divided by the standard deviation of the prediction variable 
(Burrough et al. 1998; Hengl 2009; Perčec Tadić 2010). A 
normalised prediction error lower than 0.4 is considered a 
satisfactory prediction since in this case, the model predicts 
more than 84% of the total variation. Otherwise, if this error 
was above 0.8, the model accounts for less than 36% of the 
variation (Hengl 2009). Those errors also propagate and 
affect the derived climate monitoring products. On the sta-
tions’ locations, the effect of the errors can be noticed as 
differences between measured and interpolated values.

(2)ME =
1

l

∑l

j=1

[

z
(

sj
)

− ẑ
(

sj
)]

(3)RMSE =

√

1

l

∑l

j=1

[

z
(

sj
)

− ẑ
(

sj
)]2

(4)RMSEr =
RMSE

�z
.

(5)accuracy = 1 − RMSEr2
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3.5 � Climate monitoring products

Climate standard normals (monthly means) and trends are 
calculated from the homogenised station data. Gridded cli-
mate standard normals were calculated from the monthly 
grids as a mean over the period 1981–2010, from which the 
grids of monthly anomalies are calculated by subtracting the 
monthly climate standard normal grid from each monthly 
grid. The derived spatial means of monthly anomalies 
aggregated over the country were among the most impor-
tant national climate monitoring products (WMO 2017a).

Temperature trends and their significance were calculated 
from the monthly grids over the period 1981–2018. Theil-
Sen slope was calculated to estimate the trend over 10 years, 
and the Mann-Kendal test was used to assess its significance 
(under the significance level 0.05). The nonparametric Pettitt 
rank test (Verstraeten et al. 2006) was applied to temperature 
anomalies to estimate a year when a change in the mean 
temperature appears over Croatia. The areas on the maps 
where the trends were not significant were displayed using 
50% transparency. The normals and trends calculated from 
the homogenised station series were presented on the cor-
responding gridded maps.

4 � Results

4.1 � Clustering

Hierarchical clustering was performed to group the stations 
according to similarity in temperature regimes, which was 
a prerequisite for further homogenisation. Starting from the 
smallest possible number of clusters, i.e., two, we can dis-
tinguish the maritime and continental temperature regimes 
(not shown). Going down the dendrogram tree, more details 
about the climate characteristics appear. With three clusters, 
the continental cluster was divided between continental low-
land and the mountainous region, leaving the maritime clus-
ter unaffected. With four clusters, differences between the 
northern and southern Adriatic data regimes appear in mari-
time clusters. With five clusters, we can see that most of the 
eastern part of the continental lowland (econ) was different 
from the rest of the central and western continental regimes. 
With six clusters, the southern Adriatic cluster was split into 
the hinterland (hadr) and coast (sadr). With seven clusters, 
the mountain region was split into the Lika Plateau (lika) and 
higher mountain tops (moun). Eight clusters revealed that 
the Istria Peninsula (istr) was distinct from the rest of the 
northern Adriatic stations (nadr), and finally, nine clusters 
reveal a small distinction between the western (wcon) and 
central-northern continental (ccon) lowland (Fig. 1). Even 
though the temperature series of the last two clusters were 
similar, we decided to separate them to have a more balanced 

number of stations across the clusters. We did not proceed 
with a larger number of clusters since for ten clusters, some 
microlocation characteristics emerged on southern Adriatic 
islands that were too local to be investigated in this research. 
After the nine regions with similar temperature regimes were 
determined, homogenisation was performed for each region 
separately. We note that the stations in each cluster were 
also grouped geographically, although geographical loca-
tions were not explicitly included in the algorithm. A notable 
exception was the region moun covering the mountain tops, 
which also includes station Puntijarka (ID = 25, h = 988), 
which geographically belongs to the wcon region but is nev-
ertheless characterised as a mountain station. This showed 
that the clusters were also well aligned with the orography. 
Consequently, the obtained clusters can be recognised as a 
first approximation of the climate regions.

Coefficients of correlation over the pairs of nearest sta-
tions in the same region are above 0.9, supporting the simi-
larity inside the clusters and gradually decrease with the 
distance between the stations.

4.2 � Homogenisation

Due to the limitations of the SNHT thresholds derived 
from synthetic series, we tested the robustness of the test 
by choosing six combinations (denoted as test1 to test6 
in Table 1) of the SNHT thresholds for the two stages of 
homogenisation. It appeared that this affects the number 
of detected breaks of homogeneity. Test1 with the highest 
SNHT threshold allowed for more variation between the 
candidate and the reference series and hence the smallest 
number of breaks. In that case, 70 breaks were detected in 
all regions. Test6, with the lowest SNHT threshold, was the 
strictest in break detection, with 288 breaks suggested over 
the regions. Setting the SNHT threshold as in test6 would 
result in a higher level of homogeneity and smoother spatial 
temperature fields.

Without quality metadata, there is no objective decision 
on which SNHT threshold combination to choose. How-
ever, homogenisation makes the temperature trends more 
uniform across the region (Nimac and Perčec Tadić 2017), 
so we compared the trends for datasets where only miss-
ing data have been interpolated (OR stands for original in 
Fig. 2) with trends for test1 to test6, which are expected to 
be changed by homogenisation. We showed the compari-
son for test1 (HO stands for homogenised in Fig. 2), which 
already reduced the largest isolated negative trends in dataset 
test0 (OR in Fig. 2) in September and October, including 
one in September that was marked as significant (Station 
141). Most positive isolated significant trends in econ and 
ccon in May were reduced to nonsignificant ones. The same 
happened in wcon in March and in lika, istr, hadr and sadr 
in January. Reduced were also isolated positive significant 
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trends in hadr in February and in hadr and sadr in October. 
Nevertheless, several negative trends, although not signifi-
cant at the 0.05 level, remain during September, October 
and December. However, those were the months with the 
smallest positive and sometimes negative temperature trends 
compared to other months in the entire Croatian territory. 
Using more strict SNHT thresholds (test2 to test6) makes 
trends’ significance more spatially homogenous in some but 
not in all regions, so test1 SNHT thresholds are used further 
in the analysis for break detection and homogenisation.

The inventory of detected breaks for all the stations is 
presented in Appendix together with the percentages of 
the original data, missing data that were interpolated and 
the data created during homogenisation. The breaks were 
detected in 54 out of 122 data series. Altogether, 70 breaks 
were identified. There were 41 stations with one identified 
break, 10 stations with two breaks and three stations with 
three identified breaks.

It was preferable that stations with many breaks and/or 
with a substantial percentage of altered original data were 
not clustered in space. Indeed, Fig. 3 shows a balanced spa-
tial distribution of high-quality stations with no breaks (cir-
cles) and a small percentage of interpolated missing data 
(blue symbols). The less favourable situation can be noticed 
in ccon, wcon, sadr and hadr regions where there are clus-
ters of stations with more than 40% of altered data (yellow, 
orange or red symbols in Fig. 3).

A comparison of the monthly percentage of the original, 
homogenised or interpolated (missing) data is presented in 
Fig. 4. The percentage of missing data in each month shows 
that from 1981 to July 1991, approximately 10–15% of the 
overall monthly data from the 122 stations were missing. 
These data were interpolated. In 1991, the war in Croatia 
started, and then the largest drop in the percentage of avail-
able data occurred, with 30% of stations missing in Septem-
ber 1991 and 35% missing in December 1991 and January 
1992. Around July 1994, the percentage of missing data 
was approximately 20%, dropping to 10% in 1997 and to 
5% around October 2000. Until 2015, this was the obser-
vation period with the most data available. After that, the 

percentage of missing data slightly increased due to four 
stations that were closed in 2014 and 2015.

The decision to keep, for climate monitoring purposes, 
the homogenised series that have the original data at the end 
of the period was reflected in the monthly share of the data 
altered by the homogenisation. The percentage of data was 
larger at the beginning of the period, from 1981 until July 
1991, when approximately 30–40% of stations were homog-
enised in a month. Until 2000, approximately 20–30% of the 
monthly data were homogenised, dropping to 10–20% from 
2000 until 2006. After that, the percentage of the homog-
enised data was below 10% in a month (Fig. 4).

A detailed comparison of the original and homogenised 
series for each station is provided in Online Resource 1. Those 
charts were also used to visually check if there are some large 
alterations of the data after homogenisation. Without avail-
able digitized metadata of dates of relocation, change of the 
observer or change in the environment to assist break detec-
tion, it is advisable to try to confirm at least the largest pro-
posed changes by consulting published breaks or the available 
paper metadata reports, which is discussed in Sect. 6.

The differences between the original and homogenised 
series were used to calculate the ME and RMSE at the sta-
tion and regional levels to assess the effects of homogenisa-
tion. The substantial portion of the data without any adjust-
ment is disregarded from ME and RMSE calculations since 
they would mask the overall size of the adjustments. The ME 
calculated from differences of HO and OR data (adjustment) 
was mostly negative with a median of -0.5–0.0 °C (lower HO 
than OR, mostly in the beginning of the period) except for 
econ and lika regions where a median of ME was 0.3 °C and 
istr with 0.4 °C (Fig. 5a). Median RMSEs were 0.2–0.5 °C 
except for hadr with 0.72 °C (Fig. 5b).

4.3 � Regression kriging

Due to the differences in temperature regimes across cli-
matological regions, we preferred to develop kriging in a 
local neighbourhood. Therefore, we needed to select the 
optimum maximum distance (maxdist) and the number of 

Table 1   Comparison of the number of detected homogeneity breaks 
depending on the SNHT statistic T for the nine regions (columns 
from econ  to sadr) and the total sum of breaks over all nine regions 

(sum) for the six tests performed. In the SNHT column, the first num-
ber is SNHT1, and the second is SNHT2

test SNHT econ ccon wcon lika moun istr hadr nadr sadr sum

test1 (35, 70) 3 14 21 3 1 5 6 9 8 70
test2 (35, 35) 11 18 26 4 4 7 10 12 17 109
test3 (25, 50) 12 24 34 7 1 10 8 13 18 127
test4 (25, 25) 18 28 44 8 5 14 13 16 24 170
test5 (15, 30) 22 46 60 9 7 19 17 26 29 235
test6 (15, 15) 24 55 75 13 9 20 24 32 36 288
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nearest neighbours (nmax) to be used for kriging in each 
grid cell. Additionally, for the variogram estimation, the 
minimum number of point pairs over the bins of the dis-
tances was optimised (min.np.bin). Possible values need to 
consider the approximate size of the region that is a square 
of 400 × 400 km, the peculiar shape of the country, the num-
ber of stations available in each grid point (Fig. 6) and the 
assumption that based on climatic differences, we prefer not 
to use stations from the coast to predict temperature in conti-
nental Croatia and vice versa (Zaninović et al. 2008).

We determined the number of neighbouring stations for 
various search radii between 20 and 400 km with a 20 km 
step. For the example of a search radius of 100 km, there 
are more than 40 stations available for local interpolation 
in the western continental region but not more than 10 over 
peripheral parts of the domain (Fig. 6). This was to be con-
sidered when optimising the parameters for kriging in a local 
neighbourhood.

Optimisation of the RK parameters was conducted for a 
minimum number of points in a bin for variogram estimation 

Fig. 2   Trends (colour) and significance at the 0.05 level (symbols) in 
mean monthly and annual temperatures for the stations in continen-
tal and mountainous (a) and coastal (b) regions. On the OR (original 
data) panels, the point symbol denotes whether the trend in the origi-
nal data is significant. On the HO (homogenised) panels, the symbols 

also denote the change of the significance of the trends between OR 
and HO datasets: symbol sign denotes the significant trend in both 
datasets, gain shows that trend changed from nonsignificant to signifi-
cant and loss if the opposite happened. For nonsignificant trends, no 
symbol is used
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(min.np.bin) and for the maximum number of points (nmax) 
and maximum distances to the points (maxdist) to be 
used for kriging predictions. The parameters tested were 
min.np.bin ∈ {40, 50, 60},maxdist ∈ {80, 120, 160, .., 400}

x1000m and nmax ∈ {5, 15, 20, .., 120, 122} , giving a total of 
351 combinations for each month. The performance was eval-
uated with loocv RMSE, and all tree min.np.bin values were 
shown to be equally good (not shown). When setting nmax = 5 
or maxdist = 80 km, the RMSEs were above 10 °C, so those 
were excluded from further consideration. The RMSEs aver-
aged over the locations and min.np.bin for each of the remain-
ing combinations of nmax and maxdist were lower than 0.9 °C 

(Fig. 7a and b). The selection of the optimal maxdist, among 
those longer than 120 km, is no longer as sensitive (Fig. 7a). 
The optimal nmax was found to be 45 or 55 (Fig. 7a and b). 
Setting it higher than 55 will not affect RMSE too much, while 
setting it lower than 45 will increase RMSE by approximately 
0.2 °C. Finally, 34 out of 351 combinations were selected as 
the best combinations for all 456 months based on the lowest 
RMSE. The combination of the parameters min.np.bin = 40, 
nmax = 45 and maxdist = 160 km (40_045_160) was selected 
as the best in 28.9% months, followed by 40_055_160, which 
was the best in 18.9% of months. The RMSEs were slightly 
higher in winter months and in November.

Fig. 3   Spatial distribution of stations according to the number of 
breaks (n.breaks denoted by symbols’ shape) and according to the 
percentage of interpolated and/or homogenised data (INHO, denoted 

by symbols’ colour and label text). The map in the background shows 
the orography (DEM)
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This decrease in the final number of optimal combina-
tions to 34 suggests a possible simplification. Namely, one 
can choose the best combination of the parameters for each 
calendar month (12 models) or even a single combination 
for all months in the dataset. The impact of these simpli-
fications on the loocv RMSE is shown in Fig. 8. Overall, 
the medians of RMSEs were the lowest from March to July 
(0.5–0.6 °C), reaching 0.8 °C in Jan and Dec, with bulk val-
ues below 0.9 °C (Fig. 8). It is seen that the simplification 
increased the RMSE by less than 0.05 °C. Based on this, 
we selected a single set of parameters (40_045_160) to be 
used for kriging in a local neighbourhood for all months.

The next step was to select the variogram model. The 
optimal variogram model for each month is selected among 
four models and fitted to an experimental variogram. Matern 
(Ste) is the best model for 63% of the months, followed by 
Spherical (Sph) in 26% of the months and Gaussian (Gau) 
in 10% of the months, while the Exponential (Exp) model is 
selected as the best one only once. The nugget values were 
0.0–1.5 °C, the partial sill was 0.0–1.1 °C, and the variogram 
range was 10–300 km. The nugget was larger than 1.5 °C for 
cases of 12/1998, 11/2011, 12/2015 and 12/2016, the partial 
sill was larger than 2 °C for 4/1995, and there were two infi-
nite ranges for 4/1995 and 3/2000. They were used as such 
for the gridding since they did not blow up the loocv RMSE.

The median of the monthly adjusted R2 is above 0.9 in 
all months, suggesting that the high proportion of the spa-
tial variability is explained by the climatic factors through 
MLR (Fig. 9a). The accuracy of RK (Eq. 4 and 5) based 
on the loocv RMSE was above 0.84 throughout the year 
(Fig. 9b) and was slightly higher in the cold part of the 
year. Recalling Eq. 5 and that the accuracy is higher if the 
RMSE was lower, we would expect a higher accuracy in 
the warm part of the year (recall Fig. 8). However, since 
the accuracy was calculated from RMSE normalised by 
the variance of the data (Eq. 5), a higher variance of the 
data reduces the RMSE (Eq. 4) and increased the accuracy, 
leading to higher accuracy during colder months (Fig. 9b).

Final regression kriging prediction and normalised error 
maps were presented for the two selected months, a winter 
month and a summer month, which had the largest warm 
anomalies in the whole dataset (Fig. 10). The regression 
kriging predictions (maps in Fig. 10a and c) were in line 
with the observations (circles in Fig. 10a and c). Somewhat 
higher normalised errors (Fig. 10b and d) were found over 

Fig. 6   The number of neighbouring stations available for interpola-
tion in each grid cell for a search radius of 100 km

Fig. 4   The monthly percentage 
of original (OR), homogenised 
(HO) and interpolated (IN) data

Fig. 5   The mean error (a) and root mean square error (b) calculated 
from differences in measured and homogenised data for the regions. 
Only values that are changed by homogenisation are used in the cal-
culation of ME and RMSE
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isolated mountains in eastern continental Croatia and over 
the Adriatic coast. We suspected that prediction accuracy 
can be improved only by additional measurements.

5 � Climate monitoring products

In this section, we present and discuss several climate 
monitoring products that can be operationally derived from 
homogenised station data as well from a series of monthly 

Fig. 7   Loocv RMSE for 
the optimisation of the RK 
parameters. Change in monthly 
RMSE over nmax for different 
maxdist (a). Change in monthly 
RMSE averaged over maxdist 
(b). Colour coding is the same 
for figures a and b and refers to 
months

Fig. 8   Comparison of the monthly loocv RMSE for three sets of 
experiments: the best RK parameter combination for each month 
(best), a single combination for each calendar month (month.single) 
and a single combination for all months (single)

Fig. 9   Adjusted R2 of the MLR Model (a) and loocv accuracy for RK 
(b)
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maps. Some of the most important national climate moni-
toring products are the monthly and annual climate stand-
ard normals (WMO 2017b). Here, we highlighted the main 
seasonal and regional temperature characteristics deduced 
from the homogenised stations’ normals for the 1981–2010 
period (Fig. 11).

Winter: In continental Croatia (econ, ccon and wcon), 
the coldest winter month is January (Fig. 11). Then, follow 
slightly less cold December and February. In lika and hadr, 

January was the coldest, while December and February 
temperatures were almost the same. Over the moun region, 
January and February are equally cold. The exception was 
the highest mountain station (Zavižan, ID = 41), where the 
coldest is February, followed by January and December. 
Near and on the coast, in istr, nadr and sadr, the coldest 
months are January, February and December in that order, 
with January and February temperatures being almost the 
same at many stations.

Fig. 10   Prediction (a, b) and normalised errors (c, d) for the months with the most pronounced warm temperature anomalies in winter (January 
2007, a and c) and summer (June 2003, b and d)
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Spring and autumn: The spring/autumn pairs of months: 
Mar/Nov, Apr/Oct, May/Sep have very similar temperatures 
in continental Croatia, with spring months being slightly 
warmer than their autumn pairs primarily due to longer 
days. The exception was Ogulin (ID = 18, alt = 328 m), with 
monthly temperatures closer to the continental regime but 
with warmer autumn than spring months, which are the char-
acteristics of the intermittent lika and moun region. This is 

the result of its position on the border of those regions. In 
intermittent lika and moun regions, the differences between 
spring/autumn months are larger compared to continental 
regions and in favour of warmer autumn pairs (showing 
already present maritime influence). In maritime Croatia 
(istr, hadr, nadr, sadr), the autumn is even warmer than 
spring, compared to lika and moun regions. In spring, the 
land is getting warmer, but the colder sea is slowing down the 

Fig. 11   Annual course of homogenised monthly temperature data. Stations are grouped according to regions. Continental and mountainous 
regions are on the left, and maritime regions are on the right. Months are differentiated by the colour of the symbols
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Fig. 12   Maps of mean monthly temperatures for the period 1981–2010. Each map also shows homogenised station normals
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heating of the air, while in autumn, the sea is acting as a heat 
container that makes the autumn cooling slower and hence 
autumn months warmer than their spring pairs at the coast.

Summer: In all the regions, the warmest summer months 
are July, August and June in that order. In continental Croa-
tia, the differences in August and July temperatures are less 
distinct than the differences from June temperatures to those 
two. In maritime Croatia, the August and July temperatures 
are almost the same, while the June temperature is 1–2° 
colder. This change from the continental to maritime tem-
perature regimes of the warmest months can be noticed in 
lika and moun Croatia by widening the difference in the June 
temperature from more similar July and August.

There were several stations with special local characteris-
tics. Station Zagreb-Grič (ID = 38, alt = 157 m) was warmer 
than other close city stations, showing the urban island tem-
perature effect. Coastal Istrian stations (IDs 24, 102, 117, 
120, 122) were warmer than inland ones. The highest sta-
tion, Zavižan (ID = 41, alt = 1594 m), was already mentioned 
as the station with the coldest temperatures in Feb. Surpris-
ingly, station Split-Marjan (ID = 32, alt = 122 m), which was 

geographically on the southern Adriatic coast, was classified 
in the neighbouring hadr region. We suspect that it could 
be the influence of the microlocation in elevated city for-
est, which makes its temperature regime closer to the higher 
elevation stations of the hinterland (hadr).

Next, we present the grids of monthly temperature climate 
standard normals for 1981–2010 together with the station 
data (Fig. 12). The same colour bar for all months allows 
for insight into the annual course of the mean temperature. 
The agreement between interpolated and measured values 
on station locations can be visually confirmed, even though 
the maps of the normals are aggregated from the time series 
of monthly grids over the period 1981–2010 and not directly 
interpolated from the station normals. This means that the 
interpolation method can reproduce aggregated values such 
as the means.

The monthly temperature differences between climato-
logical regions based on station normals (Fig. 11) are also 
confirmed over the grids. For example, subtracting February 
from the January grid confirms that January was colder than 
February in continental Croatia (Fig. 13a). Approaching 

Fig. 13   Differences between mean monthly temperatures for the 
period 1981–2010. Shown are differences between the two coldest 
months, Jan-Feb (a), and then differences for the pairs of spring and 

autumn months with similar temperatures: Mar-Nov (b), Apr-Oct (c) 
and May-Sep (d). The last map shows the differences between the 
two warmest months, Jul-Aug (e)

Fig. 14   Time evolution of the monthly temperature anomalies [°C] over the 1981–2018 period averaged for the country. The anomalies were cal-
culated from monthly grids by subtracting the gridded monthly normals for 1981–2010
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the coast, the mean temperature of those two months was 
becoming more similar. The spring months have similar or 
slightly warmer temperatures than the autumn months over 
continental Croatia, which was slightly more pronounced 
in March, which was up to 1 °C warmer than November 
(Fig. 13b). However, in the intermittent Lika and moun-
tain region and towards the coast, those differences start 
to change in favour of warmer autumn months due to the 
warming effect of the sea. This is pronounced the most in the 
case of the Apr/Oct pair (Fig. 13c), where October can be 
2–3 °C warmer than April on the coast, while over the con-
tinent, the differences were smaller. The least pronounced 
temperature difference was for May/September, where May 
was slightly warmer in the continent and September at the 
coast (Fig. 13d). The two warmest months, July and August, 
have quite similar temperatures at the coast, while July was 
slightly warmer than August on the continent. This analysis 
also confirmed the success of the interpolation method to 
reproduce the spatiotemporal characteristics of the annual 
cycle of mean monthly temperatures deduced from station 
data (Fig. 11).

One of the most often used climate monitoring charts is 
the time evolution of the temperature anomalies calculated 
from grids and averaged over the regions (Fig. 14). Positive 
monthly anomalies (red in Fig. 14) were more frequent and 
lasted over several consecutive months after approximately 
2000. The Pettitt test applied to monthly anomalies detected 
a significant change in the mean in 2000 and an increase of 
1 °C in the mean temperature over the later period, indicat-
ing the climate change.

Temperature trends based on homogenised monthly 
temperatures from weather stations give us more detailed 
insight into this climate change (point symbols in Fig. 15). 
Positive but nonsignificant warming was observed in Janu-
ary, February and March at most stations. The trend was 
significant and positive at a few stations in the nadr in Jan-
uary (0.5–0.6 °C/decade), at 15 coastal and Adriatic hinter-
land stations in February (0.5–0.8 °C/decade) and at a few 
coastal stations in March (0.3–0.5 °C/decade). Positive and 
significant trends were observed in April (0.4–0.9 °C/dec-
ade). In May, all stations experienced positive trends, but 
they were significant at only several stations, mainly in the 
wcon, nadr and sadr regions (0.4–0.7 °C/decade). In June, 
all stations had positive significant trends (0.5–1.0 °C/

decade). In July and August, most of the stations expe-
rienced positive significant trends (0.4–0.9 °C/decade), 
and only a few had positive nonsignificant trends. In Sep-
tember and October, all stations had nonsignificant weak 
trends. Almost all stations had significant positive trends in 
November (0.5–1.0 °C/decade). In December, all stations 
had nonsignificant weak trends.

The overall annual temperature trend was positive and 
significant at all stations (0.3–0.7 °C/decade).

Furthermore, trends for each calendar month were calcu-
lated from the 38 monthly maps from the 1981–2018 period 
and presented in Fig. 15 together with the station data. Pos-
itive but not always significant trends prevail. Significant 
strong warming was observed and mapped over the entire 
Croatian territory in April, June, July, August and Novem-
ber. In April, a significant trend of 0.5–0.7 °C/decade was 
present in econ and ccon and along the coast and was even 
stronger in wcon and over parts of the moun region, where it 
reaches 0.7–0.9 °C/decade. In June, the strongest warming 
was experienced in wcon and over parts of the moun, nadr 
and istr regions, 0.8–1.0 °C/decade. Econ and ccon experi-
enced June trends of mostly 0.7–0.8 °C/decade. The June 
trend was 0.5–0.7 °C/decade in continental and southern 
mountains and in lika and 0.7–0.8 °C/decade over the rest of 
the territory. July was warming by 0.4–0.6 °C/decade along 
the coast, up to 0.6–0.8 °C/decade inland. August trends 
were 0.4–0.6 °C/decade in lika, 0.5–0.7 °C/decade along the 
coast, 0.6–0.8 in moun, wcon and ccon and up to 0.9 °C/dec-
ade in econ region. The July and August maps look similar, 
but there was noticeably stronger warming during August in 
the continental regions. The strongest significant trends are 
measured and mapped in November. The strongest trends 
were around the capital of Zagreb, reaching 1.0–1.1 °C/
decade. The rest of the wcon was experiencing a trend of 
0.9–1.0 °C/decade. The ccon and econ were warming by 
0.8–0.9 °C/decade, slightly slower over eastern continental 
mountains. The main mountain Dinaric region that separates 
the continental part of the country from the Adriatic was 
warming by 0.7–0.9 °C/decade, while the coast was warm-
ing by 0.5–0.7 °C/decade. In May, only the western conti-
nental region and smaller parts along the coast experienced a 
significant trend of 0.3–0.5°/decade. The measured amount, 
sign and significance of trends estimated at meteorological 
stations (point symbols in Fig. 15) were accurately captured 
on the trend maps calculated from the monthly maps.

Finally, the mean annual temperature for the normal 
period 1981–2010 was calculated from the monthly normals 
(Fig. 16a); then, annual anomalies were calculated as differ-
ences of each annual grid and the annual normal (Fig. 16b) 
and spatially aggregated over Croatia, while the annual trend 
was calculated from the 38 mean annual temperature grids 
(Fig. 16c). Each annual grid was calculated as the mean from 
the corresponding monthly grids. The annual temperature 

Fig. 15   Monthly temperature trends for the period 1981–2018. The 
significant trends are presented in full colour (*T trend), while non-
significant trends are shown with 50% transparency (T trend). The 
trends from station data are presented as point symbols for each sta-
tion. The statistically significant trends are circled with black and the 
nonsignificant with green colour. Months with dominantly significant 
trends are marked with an asterisk (*)

◂
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climate standard normal for 1981–2010 in Croatia ranges 
from 1 °C on the highest Croatian mountain Dinara to 17 °C 
in the southern Adriatic (Fig. 16a). Annual anomalies were 
dominantly positive from 1999, up to 1.4 °C (Fig. 16b). 
After 1999, only 2004, 2005 and 2010 were colder than aver-
age, with 2005 being noticeably colder (for 0.7 °C). The 
Pettitt test applied to annual anomalies detected a significant 
change in 1998, with the same amount of 1 °C of the tem-
perature increase as calculated from the monthly anomalies. 
Annual temperature trends were the highest in the capital of 
Zagreb and its surroundings, above 0.6 °C/decade (Fig. 16c). 
The rest of this western continental region, the large part 
of the northern mountainous region, the most eastern con-
tinental region and the farthest southern Dalmatia experi-
ence strong temperature trends of 0.5–0.6 °C/decade. The 
central continental region, Istria, Lika, the southern moun-
tainous region and most of the Adriatic coast exhibit a trend 
of 0.4–0.5 °C/decade. There were regions in the Adriatic 
hinterland and southern Adriatic with trends below 0.4 °C/
decade.

6 � Discussion and conclusions

This study presents the most extensive set of monthly 
homogenised station data and the first set of monthly grids 
at a 1 km spatial resolution suitable for climate monitoring 
in Croatia. Well-known homogenisation and interpolation 
methods have been applied in the study, with the exten-
sive analysis and optimisation of the parameters for both 
methods.

Homogenisation could not be supported by the digitised 
metadata, so conservative SNHT critical levels were used 

to avoid oversmoothing the observed monthly temperatures. 
They were higher than those suggested in Khaliq and Ouarda 
(2007), who derived the critical SNHTs from synthetic white 
noise series. Climatological anomalies will show some 
degree of station autocorrelation, spatial cross-correlation 
and local or general trends depending on the type of climatic 
variable, its spatial variability, the density of the observ-
ing network and the temporal scale of the data (Mamara 
et al. 2013; Guijarro 2021; Willett et al. 2014). That is why 
the default SNHT thresholds in the climatol are higher than 
those obtained in Khaliq and Ouarda (2007). We compared 
the climatol visualisation outputs, breaks and derived trends 
for several SNHT1 and SNHT2 combinations, resulting in 
higher than default SNHT thresholds, similar to Curci et al. 
(2021) and Meseguer-Ruiz et al. (2018). Compared to our 
preliminary homogeneity study (Nimac and Perčec Tadić 
2017), approximately 40% of the breaks identified there were 
in the same year or even month as the breaks detected in 
this study. We were able to compare the proposed breaks 
of homogeneity (Appendix) with the breaks and paper 
metadata for 22 stations documented in Pandžić and Likso 
(2010). We found that most of the abrupt breaks are success-
fully detected in both studies, while the differences could 
be due to a more general version of SNHT in Pandžić and 
Likso (2010), which detects artificial linear trends in tem-
perature series in addition to abrupt breaks. The remaining 
differences can be due to different periods and SNHT critical 
values and annual time scales in Pandžić and Likso (2010) 
compared to monthly values in the present study.

Regarding homogenisation, negative adjustments over the 
climate regions agree with the negative adjustment reported 
for E-OBS (Squintu et al. 2019). However, the sizes of the 
adjustments with median values of -0.5–0.0 °C were larger 

Fig. 16   Mean annual temperature for the period 1981–2010 calcu-
lated from the mean monthly grids (a). Temporal evolution of the 
temperature anomalies from 1981–2010 normal, spatially averaged 

over the country (b). Annual temperature trend for the period 1981–
2018 calculated from the annual grids (c)
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than in Squintu et al. (2019) who assessed the statistical 
performance of the homogenisation using all the data. In our 
research, ME and RMSE (Fig. 5) were calculated only from 
the data corrected due to homogenisation resulting in larger, 
but we believe more objective estimates of the adjustments.

Monthly grids were accompanied by normalised error 
maps that provide an estimate of accuracy. Parts of the maps 
with normalised errors above 0.4 were considered less accu-
rate, which was observed in isolated elevated regions with-
out observations available.

Maps of monthly and annual climate standard normals 
and trends were calculated from the time series of monthly 
grids. Another approach to calculate such a product would 
be an interpolation of the station values of the normal or 
trend. However, with interpolated monthly values of the tem-
perature, we were able to reproduce the normals and trends 
of the monthly and annual temperatures comparable to those 
calculated from station data. The interpolation procedure 
reproduced the spatial characteristics of colder January than 
February over the continental regions, warmer spring than 
autumn months in the continental regions, warmer autumn 
than spring months in the intermittent and coastal regions 
and warmer July than August inland (Fig. 13), the character-
istics that were also observed from the station data (Fig. 11).

The months with significant positive trends in tempera-
ture, that is, April, June, July, August and November, expe-
rience stronger trends over continental and mountainous 
regions compared to the coast (Fig. 15). The established 
land/sea warming ratio of 1.3–1.4 over Croatia follows the 
global land/sea warming ratio (Sutton et al. 2007), which is 
in the range of 1.36–1.84, independent of global mean tem-
perature change. Intuitive and older theories would explain 
this difference by the smaller heat capacity of soil, which 
as a consequence heats more rapidly. Manabe et al. (1991) 
questioned this and pointed out that over the oceans, air can 
cool down by evaporation at the sea surface, while over the 
land, the moisture content was constrained, so the warming 
becomes stronger. In dry air, more sensible heat warms the 
air, slowing cloud formation and enhancing further drying 
and consequently more heating. More recent theories would 
rely more on moisture and energy balance examined by sev-
eral climate models (Sutton et al. 2007). Joshi et al. (2008) 
examined a large ensemble of climate model integrations 
and showed that the land/sea contrast in equilibrium but also 
in transient radiation simulations was associated with local 
feedbacks such as different changes in the temperature lapse 
rate over land and sea and the change in a hydrological cycle 
over land, rather than with externally imposed radiative forc-
ing. The context for interpreting equilibrium climate sensi-
tivity (ECT) and transient climate response (TCR) from the 
CMIP6 Earth system models is presented in detail in Meehl 
et al. (2020).

Elevation-dependent warming (EDW) is another observed 
feature of global climate change, and there is evidence for 
it over the Alps, Rockies, and the Tibetan Plateau, all of 
which are in the mid-latitudes (Miller et al. 2021). Pepin 
et al. (2015) concluded that there is evidence that many, 
but not all, mountain ranges show enhanced warming with 
elevation. Higher elevation stations in Croatia (between 750 
and 1594 m) showed significant warming annual and sum-
mer trends, but similar and even stronger trends are found 
at lower elevation stations. A similar absence of EDW was 
also observed over close regions of the mid-latitude eastern 
Italian Alps (Tudoroiu et al. 2016).

The highest annual trend (0.67 °C/decade) in the capi-
tal of Zagreb is not just a result of climate change but also 
urbanisation. Nimac et al. (2021) observed a strong increase 
in the number of summer days (9 days/decade), while the 
number of tropical nights increased by 8 days/decade during 
the period 1990–2019. Consequently, the summer months 
are going to be more uncomfortable for citizens.

Annual trends of 0.3–0.7 °C/decade are significant for 
the entire country. They are stronger than the trends of 
0.26 °C/decade over the Pannonian Basin for 1970–2005 
from the E-OBS (Table 2 in Lazić et al. 2021), probably 
due to the temperature rise after 2005. They are compara-
ble with annual trends of approximately 0.4°/decade for the 
1980–2019 period for the Abruzzo region in central Italy 
(Curci et al. 2021), where a similar approach is used for 
homogenisation of the data series. It seems that the observed 
trends over the Mediterranean are 2–2.5 times stronger than 
the global mean warming, especially during summer (van 
Oldenborgh et al. 2009). Serious warnings come from the 
climate model results, which predict that the Mediterranean 
region is likely to warm at a rate approximately 20% larger 
than the global annual mean surface temperature (Lionello 
and Scarascia 2018). The values are particularly high in 
summer and in the continental areas north of the basin, 
where warming will generally be 50% stronger than at the 
global scale and locally even twice as large (Lionello and 
Scarascia 2018). The region will face consequences such as 
devastating heatwaves, water shortages, loss of biodiversity 
and risks to food production.

The monthly anomalies from the 1981–2010 average 
for Croatia (Fig. 14) are comparable with the temperature 
anomalies1 over Europe derived from ERA-Interim reanaly-
sis data (subsided later by ERA5 (Hersbach et al. 2020)) 
and provided by the Copernicus Climate Change Service. 
Anomalies for April, June, July, August and November (not 
shown) were mostly strong and positive from the begin-
ning of the twenty-first century, which is related to already 

1  C3S tempe​ratur​e anoma​ly for Europe.

https://climate.copernicus.eu/sites/default/files/inline-images/ts_1month_anomaly_Global_ei_2T_201812.png
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discussed significant positive trends in station data over the 
entire country in those months (Fig. 15).

Even though the presented analysis is based on data for a 
limited area, we believe that the methodology is useful for 
the development of any similar research and climate moni-
toring products. We presented the power of clustering in 
defining the nine Croatian climate regions and showed how 
homogenisation affects the trends in the data. Additionally, 
we highlighted the importance of objectively estimating the 
parameters of local neighbourhoods for kriging and showed, 
at least for Croatia, that a single set of these parameters can 
be used for all months with a negligible increase in the 
RMSE.

The monthly maps are produced for the period 1981–2018 
together with the error estimates. Looking at the aggregated 
statistical values derived from the monthly maps, it was 
confirmed that the interpolation method can successfully 
reproduce the means (Fig. 12 and Fig. 16a), annual cycle 
differences (Fig. 13) and trends (Fig. 15 and Fig. 16c). The 
maps were used further to derive the monthly anomalies.

This study presents the last four decades of mean air tem-
perature and its change over Croatia, pointing to prevailing 

positive annual anomalies in the twenty-first century and 
strong and significant warming trends. From the beginning 
of the twenty-first century, average monthly anomalies are 
often positive and up to 4.7 °C (January 2007) warmer than 
the average and only occasionally negative (Fig. 14). The 
measured amount, sign and significance are accurately cap-
tured on the trend maps calculated from the monthly maps 
(Fig. 15). The significant strong warming of 0.3–1.0 °C/dec-
ade was observed and mapped over the entire Croatian terri-
tory in April, June, July, August and November together with 
the significant annual trends of 0.3–0.7 °C/decade (Fig. 16c) 
that were stronger inland than on the coast. The EDW was 
not confirmed for Croatian Dinarides.

The new monthly temperature grids belong to the devel-
oping CroMonthlyGrids dataset that is intended to support 
climate monitoring, climate change detection and adaptation 
planning on national and local administrative levels. Further 
grids are in preparation for minimum and maximum tempera-
tures and monthly precipitation. These grids will form the 
basis for the calculation of climate normals and operational 
national climate monitoring products with further applications 
in sectors such as hydrology, forestry, agronomy or health.

Table 2   Spatiotemporal inventory of detected homogeneity breaks. 
The columns denote a region, station identifier (ID), station name 
(Station), start and end of the data available in the relational database, 

percentage of original (OR), interpolated (IN) and homogenised (HO) 
data in the final series and time of the breaks (brk1 to brk3) with the 
SNHT value in brackets

Region ID Station Start End OR IN HO brk1 brk2 brk3

econ 8 Gradište 1981–01 2018–12 58 - 42 1996–11 (118) - -
econ 19 Osijek 1981–01 2018–12 99 1 - - - -
econ 20 Osijek - Klisa aerodrom 1981–01 2018–12 45 29 26 2002–02 (50.5) - -
econ 53 Brestovac Belje 1981–01 2018–12 83 17 - - - -
econ 63 Donji Miholjac 1981–01 2018–12 100 - - - - -
econ 66 Đakovo 1981–01 2018–12 96 4 - - - -
econ 72 Ilok 1981–01 2018–12 73 27 - - - -
econ 143 Valpovo - Tiborjanci 1981–01 2018–12 63 5 32 1994–12 (40.4) - -
econ 145 Vinkovci 1981–01 2014–05 86 14 - - - -
econ 158 Županja 1981–01 2018–12 80 20 - - - -
ccon 3 Daruvar 1981–01 2018–12 59 - 41 1996–09 (163.2) - -
ccon 31 Slavonski Brod 1981–01 2018–12 100 0 - - - -
ccon 35 Varaždin 1981–01 2018–12 100 - - - - -
ccon 58 Čakovec 1981–01 2018–12 92 6 2 2018–04 (40.7) - -
ccon 67 Đurđevac 1981–01 2018–12 100 - - - - -
ccon 71 Hrvatska Kostajnica 1981–01 2018–12 77 23 - - - -
ccon 78 Koprivnica 1981–01 2018–12 43 0 57 2011–01 (85.1) 2012–10 (48.3) -
ccon 85 Kutina 1981–01 2018–12 73 27 - - - -
ccon 91 Lipik 1981–01 2018–12 50 19 31 2000–06 (153.1) - -
ccon 94 Ludbreg - Hrastovsko 1981–01 2018–12 21 1 78 2011–04 (42.6) - -
ccon 99 Našice 1981–01 2018–12 93 7 - - - -
ccon 100 Nova Gradiška - Cernik 1981–01 2018–12 57 15 27 1996–12 (50.2) - -

Appendix
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Table 2   (continued)

Region ID Station Start End OR IN HO brk1 brk2 brk3

ccon 103 Novi Marof 1981–01 2018–12 56 7 37 1997–02 (45.3) - -
ccon 104 Novska 1981–01 2018–12 73 27 - - - -
ccon 106 Opeke 1981–01 2007–06 13 31 56 2002–08 (39) - -
ccon 118 Požega 1981–01 2018–12 41 21 38 1992–12 (62.7) 2005–11 (73.5) -
ccon 127 Slatina - Medinci 1981–01 2018–12 61 3 36 1995–11 (89.6) - -
ccon 135 Sunja 1981–01 2018–12 37 1 62 2005–02 (94.5) - -
ccon 146 Virovitica 1981–01 2018–12 69 31 - - - -
ccon 147 Voćin 1981–01 2018–12 48 9 44 2000–05 (86.6) - -
wcon 1 Bilogora 1981–01 2018–12 98 2 - - - -
wcon 2 Bjelovar 1981–01 2018–12 38 - 62 1988–11 (35.4) 1998–10 (35.4) 2004–07 (37.2)
wcon 10 Karlovac 1981–01 2018–12 46 - 54 1993–01 (48.3) 2001–08 (56.4) -
wcon 13 Krapina 1993–09 2018–12 67 33 - - - -
wcon 14 Križevci 1981–01 2018–12 50 - 50 2001–02 (110.7) - -
wcon 18 Ogulin 1981–01 2018–12 100 - - - - -
wcon 30 Sisak 1981–01 2018–12 87 2 12 1985–07 (45.1) - -
wcon 38 Zagreb - Grič 1981–01 2018–12 100 - - - - -
wcon 39 Zagreb - Maksimir 1981–01 2018–12 73 - 27 1991–06 (122.1) - -
wcon 40 Zagreb - Pleso aerodrom 1981–01 2018–12 99 1 - - - -
wcon 50 Bosiljevo 1981–01 2018–12 74 0 26 1984–01 (40.8) 1990–12 (75.9) -
wcon 59 Čazma 1981–01 2018–12 58 3 39 1987–03 (72.9) 1996–09 (38) -
wcon 74 Jastrebarsko 1981–01 2014–07 84 16 - - - -
wcon 105 Oborovo 1986–01 2018–12 44 14 43 2002–06 (57.4) - -
wcon 112 Petrinja 1981–01 2018–12 27 20 53 2008–05 (73.2) - -
wcon 113 Pisarovina 1981–01 2018–12 58 4 39 1995–11 (41) - -
wcon 119 Pregrada 1992–02 2018–12 70 30 - - - -
wcon 123 Samobor 1981–01 2018–12 11 5 84 1987–03 (43.6) 2014–12 (74.5) -
wcon 128 Slunj 1981–01 2018–12 87 13 - - - -
wcon 133 Stubičke Toplice 1981–01 2018–12 92 8 - - - -
wcon 138 Sv. Ivan Zelina 1981–01 2018–12 85 15 - - - -
wcon 141 Topusko 1981–01 2018–12 56 20 25 1990–12 (44.4) - -
wcon 151 Lekenik 1981–01 2018–12 21 3 76 2011–02 (86) - -
wcon 154 Zabok 1991–05 2018–12 72 28 - - - -
wcon 155 Zagreb - Botinec 1981–01 2014–12 41 11 48 1988–11 (39.1) 2000–05 (44.7) -
wcon 156 Zagreb - Rim 1981–02 2018–12 98 2 - - - -
lika 7 Gospić 1981–01 2018–12 58 - 42 1996–11 (47.5) - -
lika 62 Donji Lapac 1982–06 2018–12 50 29 21 1999–11 (37.5) - -
lika 70 Gračac 1981–01 2018–12 69 14 16 1987–03 (102) - -
lika 80 Korenica 1981–01 2018–12 82 18 - - - -
lika 90 Ličko Lešće 1981–01 2018–12 100 - - - - -
lika 93 Lovinac 1981–01 2018–12 73 27 - - - -
moun 21 Parg 1981–01 2018–12 100 - - - - -
moun 25 Puntijarka 1981–01 2018–12 97 3 - - - -
moun 41 Zavižan 1981–01 2018–12 97 3 - - - -
moun 44 Baške Oštarije 1981–01 2010–10 73 27 - - - -
moun 92 Lokve Brana 1981–01 2015–11 83 8 9 1984–05 (47.4) - -
moun 149 Vrelo Ličanke 1981–01 2018–12 100 - - - - -
istr 22 Pazin 1981–01 2018–12 100 - - - - -
istr 24 Pula 1981–01 2018–12 61 1 38 1995–08 (88.3) - -
istr 42 Abrami 1981–01 2017–02 28 5 67 2006–08 (39.2) - -
istr 51 Botonega 1987–05 2018–12 37 17 46 2004–11 (104.4) - -
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Table 2   (continued)

Region ID Station Start End OR IN HO brk1 brk2 brk3

istr 60 Čepić 1981–01 2018–12 97 3 - - - -
istr 102 Novigrad - Celega 1982–05 2012–01 75 25 - - - -
istr 117 Poreč 1981–01 2018–12 69 2 29 1992–09 (95.8) - -
istr 120 Pula - aerodrom 1981–01 2018–12 95 5 - - - -
istr 122 Rovinj 1981–01 2018–12 80 4 15 1988–06 (59) - -
hadr 11 Knin 1981–01 2018–12 100 0 - - - -
hadr 32 Split - Marjan 1981–01 2018–12 100 - - - - -
hadr 65 Drniš 1981–01 2018–12 85 15 - - - -
hadr 73 Imotski 1981–01 2018–12 100 0 - - - -
hadr 84 Kuna 1981–01 2018–12 78 - 22 1989–07 (40.4) - -
hadr 121 Ričice - Brana 1993–01 2018–12 68 32 - - - -
hadr 126 Sinj 1981–01 2018–12 53 0 47 1998–10 (41.4) - -
hadr 139 Šestanovac 1981–01 2018–12 5 2 93 1989–05 (44.2) 2017–01 (47.3) -
hadr 150 Vrgorac 1981–01 2018–12 16 10 74 1998–09 (104.2) 2014–03 (35) -
nadr 17 Mali Lošinj 1981–01 2018–12 97 3 - - - -
nadr 26 Rab 1981–01 2018–12 97 3 - - - -
nadr 27 Rijeka 1981–01 2018–12 100 - - - - -
nadr 28 Rijeka - aerodrom 1981–01 2018–12 77 23 - - - -
nadr 29 Senj 1981–01 2018–12 100 - - - - -
nadr 34 Šibenik 1981–01 2018–12 54 3 44 1997–08 (82.5) - -
nadr 36 Zadar 1981–01 2018–12 100 - - - - -
nadr 37 Zadar - aerodrom 1981–01 2018–12 90 10 - - - -
nadr 48 Biograd na moru 1981–01 2018–12 87 3 11 1985–04 (38.2) - -
nadr 55 Cres 1981–01 2018–12 100 - - - - -
nadr 56 Crikvenica 1981–01 2018–12 30 2 68 1991–10 (57.5) 1997–03 (57.1) 2011–03 (46.7)
nadr 81 Krk 1981–01 2018–12 67 33 - - - -
nadr 101 Novigrad 1981–01 2018–12 81 19 - - - -
nadr 110 Pag 1981–01 2018–12 25 4 71 1989–02 (35.5) 2002–10 (42.9) 2009–06 (47.2)
nadr 124 Sestrice Vele 1981–01 2018–12 100 - - - - -
nadr 125 Silba 1981–01 2018–12 96 4 - - - -
nadr 130 Starigrad - Paklenica 1992–04 2018–07 68 32 - - - -
nadr 137 Sv. Ivan na Pučini 1984–02 2018–12 88 12 - - - -
sadr 4 Dubrovnik 1981–01 2018–12 100 - - - - -
sadr 5 Dubrovnik - aerodrom 1981–01 2018–12 62 9 28 1993–10 (50.3) - -
sadr 9 Hvar 1981–01 2018–12 100 - - - - -
sadr 12 Komiža 1981–01 2018–12 37 2 61 2005–02 (108.4) - -
sadr 15 Lastovo 1981–01 2018–12 100 - - - - -
sadr 16 Makarska 1981–01 2018–12 36 7 57 2012–03 (37.1) - -
sadr 23 Ploče 1981–01 2018–12 100 - - - - -
sadr 33 Split - aerodrom 1981–01 2018–12 98 2 - - - -
sadr 49 Bol 1981–02 2018–12 28 19 52 2008–04 (45.7) - -
sadr 69 Goveđari klim 1981–01 2018–12 96 4 - - - -
sadr 75 Jelsa 1981–01 2018–12 96 4 - - - -
sadr 79 Korčula 1981–01 2018–12 62 2 36 1995–06 (43.6) - -
sadr 107 Opuzen 1981–01 2018–12 27 4 69 2008–02 (43.5) - -
sadr 108 Orebić 1981–01 2012–02 77 23 - - - -
sadr 111 Palagruža 1981–01 2018–12 91 9 - - - -
sadr 131 Ston 1981–01 2018–11 58 17 25 2000–07 (64.7) 2006–06 (56.8) -
sadr 136 Sutivan 1981–01 2018–12 26 3 70 2008–02 (66) - -
sadr 144 Vela Luka 1981–01 2018–12 96 4 - - - -
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