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Ultrasound regulated flexible protein materials: Fabrication, structure and 
physical-biological properties 
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A B S T R A C T   

Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, 
repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate 
protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk 
fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times 
and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the 
results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning 
electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic 
mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids 
the interactions between the calcium ions and silk molecular chains which leads to increased amounts of 
intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in 
water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed 
higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and 
flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and 
proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and 
non-contact material processing method for the wide applications of protein-based biomaterials.   

1. Introduction 

Natural silk, which is highly available due to its use in the textile 
industry, has become a widely studied protein material in the biomed
ical and bioengineering field. As a renewable resource available in large 
quantities, silk is also nontoxic and highly biocompatible [1–6]. Natural 
silk fibers are comprised of silk fibroin protein fibers with a glycoprotein 
coating. Silk fibroin (SF) is a complex molecular chain built from amino 
acids that form a large segment (H-chain), a small segment (L-chain) and 
a small glycoprotein (P25 protein). Among them, the relatively hydro
phobic H-chain fibroin is linked to the hydrophilic and relatively elastic 
L-chain fibroin [1,7–8]. Silk fibroin chains initially exist as aggregates 
and micelles in liquid silk within the silkworm glands, which plays an 
important role in the formation of β-sheet structure. These β-sheet 

structures generally lead to a crystallinity of about 60 ~ 75% in the silk 
proteins [1,7–10]. However, it is extremely difficult to reach these levels 
of crystallinity in regenerated silk fibroins. The percentage of β-sheet 
structures in the regenerated silk material directly influences silks de
gradability, thermal stability and mechanical properties. Therefore, 
methods to prepare and dissolve silk fibroins that could allow for 
structural regeneration of the initial silk secondary structures were 
intensively investigated [11–15]. Numerous studies have used various 
solvents that imitate silkworm spinnerets to influence the conformation 
and properties of regenerated silk fibroin macromolecules [11–16]. It 
has also been suggested that the conformation of silk fibroin is related to 
the solvents during the regeneration process. Organic polar solvents can 
lead to the formation of β-sheet structures, while non-polar solvents 
have been shown to interact with silk fibroin causing the formation of 
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random coils and α-helix structures [9,11–16]. 
Ultrasound can produce a series of compressional waves which are 

interspaced by medium propagation to construct divergent, planar or 
focused sound fields through the transmission of mechanical vibrational 
energy [17–20]. Ultrasound has been found to produce mechanical, 
acoustic-thermal, chemical and biological effects by directly altering the 
physical and chemical properties of a material [21–28]. Ultrasound was 
previously often used to prepare biologically functional hydrogels with 
specific mechanical properties [19], drug delivery carriers for targeted 
therapy [20] and environmentally friendly adsorption and filtration 
materials [21]. Susanin et al. [22] found that the proportion of α-helix 
conformation decreased and β-turns and β-sheets structure increased 
after 24 kHz ultrasound treatment with a duration of 5 min for silk 
fibroin proteins regenerated from a LiBr-based aqueous system. Li et al. 
[23] revealed that the initial random coils and β-turns of myofibrillar 
proteins could be transformed into an α-helix or β-sheet structure in 
response to an ultrasound-microwave treatment. Su and Cavaco-Paulo 
[24] reviewed the effects of ultrasound on protein functionality and 
revealed that ultrasound is an effective tool for the formation and sta
bilization of protein emulsions and dispersions, which provides energy 
for conformational changes in protein structure, and acts as a medium 
for the intensification of enzymatic process. Sliva et al. [25] investigated 
the mechanism of microsphere formation from bovine serum albumin 
and silk fibroin using ultrasound. It was found that when the high shear 
forces generated from ultrasound were applied to the aqueous/organic 
solvent system, the accommodation of SF to the biphasic system inter
face tended to promote self-assembly of the β-sheet structure, while the 
globular proteins retained their secondary structures during the particle 
formation. Although ultrasound has been shown to be an effective 
method for altering the structure of proteins, its ability to induce 
conformational transformations of polypeptides and its transmission 
mechanism are still unclear. 

In this work, the structural transformation and physical-biological 
property changes of silk fibroin (SF) films fabricated in a formic acid- 
CaCl2 system was comparatively demonstrated under different ultra
sonic time and power. The regenerated silks morphology, secondary 
structures such as intermolecular and intramolecular β-sheet were 
investigated by SEM and FTIR. The silks crystallinity and thermody
namic parameters were also characterized by XRD and DSC, respec
tively. Furthermore, their thermal stability, mechanical properties, air 
permeability, as well as the hydrophilicity were investigated. Finally, a 
detailed mechanism of ultrasound on silk fibroin materials was proposed 
in this study. 

2. Experimental section 

2.1. Materials preparation 

Bombyx Mori silkworm cocoons from China were first degummed 
into silk fibroin fibers, and dissolved into a formic acid-CaCl2 solution 
(4.00 wt%) to form the 8.00 wt% silk fibroin solution [4]. An ultrasonic 
equipment (Ymnl-950Y, Nanjing Emmanuel Instrument & Equipment 
Co., Ltd, China), composed of a probe-type ultrasound source equipped 
with a 2 mm diameter titanium microtip, is used for ultrasonic treatment 
of the silk fibroin solution. The output power of the machine can be 
controlled between 9 W and 950 W according to the amplitude ratio. 
The reaction vessel is an open glass cup with a diameter of 60 mm and a 
height of 72 mm. An equal volume of regenerated silk fibroin solution 
(about 50 mm high) was put into the reaction vessel each time, where 
the end of the probe source was 10 mm below the solution surface. The 
first group received ultrasonic treatment with 600 W power with time 
points of 0 min, 1 min, 5 min, 15 min and 30 min. The treated solution 
was then cast into films and washed with DI water for 5 mins to remove 
solvent residues. Finally, the silk films were vacuum dried for 48 hrs to 
form the final materials (Fig. 1). Samples of the first group are denoted 
as MSF, MSFT-1, MSFT-5, MSFT-15, MSFT-30 based on their treatment 

time. The second group received ultrasonic treatments with varying 
power of 100 W, 300 W, 500 W, 700 W and 800 W while the time stayed 
constant at 30 min.Te solution from the second group was prepared into 
films with the same method that was discussed in the first group 
(Fig. 1a). The samples in the second group were named as MSFP-100, 
MSFP-300, MSFP-500, MSFP-700, MSFP-800 based on their treatment 
powers. 

The power intensity generated by the ultrasonic source is given by 
eqaution (1) [29]: 

I = P2
a(2ρÂ⋅C)− 1 (1) 

where I is the sound intensity, ρ and c are the medium density and the 
sound velocity, respectively, and Pa is the sound pressure amplitude, 
which is related to the time t and the frequency f of the wave. Ultrasound 
can generate bubbles which can diffuse in the fluid. Generally, the 
acoustic energy is transmitted to bubbles, which expand during the 
negative acoustic pressure, while contract during the positive one, and 
accumulate continuously to grow through a liquid medium. When the 
bubble resonance is reached, the sound pressure exceeds the threshold 
and the bubble collapse occurs, which releases huge energy and forms 
the phenomenon of ultrasonic cavitation. The velocity of the bubble is 
inversely proportional to the area of the circle from the center of the 
ultrasound, as described in eqaution (2) [30–31]: 

u
U

=
R2

r2 (2)  

K =
1
2

ρ
∫∞

R
u2Â⋅4πr2dr = 2πρU2R3 (3) 

where R represents the radius of the bubble, U is the surface velocity 
at time t, u is the velocity at any distance r (>R) from the center of the 
bubble. The kinetic energy K of the bubble is given by eqaution (3) 
[30–31], where ρ is the density of the medium. When a bubble spreads 
from a collapsed to the surrounding fluid, the energy produced can 
accelerate the mass transfer rate between the interface, and the vapor 
liquid pressure also increases as the reaction temperature, which can 
accelerated the efficiency of the heterogeneous reaction. Therefore, the 
sound pressure, the hydrostatic pressure, the frequency, and the 
maximum density of the liquid can determine the bubble size of the 
cavitation, as shown in equation (4) and (5) [30]: 

Rr =

̅̅̅̅̅̅̅̅̅̅̅
3γP∞

ρω2

√

(4)  

Rmax =
4

3ωa
(Pa − Ph)

(
2

ρPa

)1/2[

1 +
2

3Ph
(Pa − Ph)

]1/3

(5) 

where Rr and Rmax are the bubble size and the maximum size of the 
bubble, respectively. γ is the specific heat ratio of the gas inside the 
bubble, P∞ and Ph are the ambient fluid pressure and extra (hydrostatic) 
pressure, respectively. ρ is the liquid density, ω is the angular frequency 
of the ultrasound. The above equations can be predicted by an optimum 
power density during sonication, to obtain the maximum reaction rate. 

2.2. Characterization 

2.2.1. Scanning electron microscope 
Scanning electron microscope (SEM, JSM-7600F, JEOL, Japan) was 

used to observe the morphology of different regenerated silk fibroin 
films. After being coated with conductive carbon double-layer tape, the 
sample was gold-plated (20 mA, 3 times, 30 s each time) by using a 
sputter coater (JFC-1600, JEOL, Japan) under voltage 5 ~ 10 kV and 15 
mm distance. 
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Fig. 1. (a) Schematic preparation of flexible 
silk fibroin (SF) protein materials using ul
trasound. (b) SEM images of ultrasound- 
treated SF films for (MSF) 0, (MSFT-1) 1, 
(MSFT-5) 5, (MSFT-15) 15 and (MSFT-30) 
30 min under 600 W power, and at (MSFP- 
100) 100 W, (MSFP-300) 300 W, (MSFP-500) 
500 W, (MSFP-700) 700 W and (MSFP-800) 
800 W intensity for 30 min, respectively (1 
µm scale bar), where the inserted (I-X) im
ages correspond to their local enlarged views 
(50 nm scale bar). (c) FTIR absorbance 
spectra of films MSF 0, MSFT-30 and MSFP- 
800 in the 1000 ~ 1820 cm− 1 region. (d) 
The protein secondary structure contents in 
ultrasound-treated SF films calculated by a 
curve fitting method for Amide I region. (e) 
XRD spectra of films MSF 0, MSFT-30 and 
MSFP-800. (f) The Silk I and II contents in 
ultrasound-treated SF films, calculated from 
XRD curves.   
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2.2.2. Fourier-Transform infrared spectroscopy 
Fourier transform infrared spectrometer (FTIR, Nicolet-Nexus 670, 

Nicolet, USA) was used to obtain the infrared spectrogram of these silk 
fibroin films. The spectrum was recorded in the wavenumber range of 
400 ~ 4000 cm− 1 at 4 cm− 1 and 128 times each scan. The curve-fit of 
peaks in the amide I region was performed using the Origin software. 

2.2.3. X-ray diffraction 
X-ray diffractometer (XRD, D/max 2500/PC, Rigaku, Japan) was 

used to measure the crystal structure of sample with the tube pressure of 
40 kV, the tube flow of 100 mA, the diffraction angle 2θ range of 5◦ ~ 
50◦, and the scanning speed of 5◦⋅min− 1. 

2.2.4. Differential scanning calorimetry 
Thermal properties of samples were obtained using thermal analysis 

(STA7300 TG-DTA, Hitachi, Japan) in nitrogen atmosphere with a flow 
rate of 50 mL⋅min− 1 during ambient temperature to 650 ◦C at a heating 
rate of 10 ◦C⋅min− 1. In order to understand the glass transition process of 
different silk fibroin samples, step-scan modulation differential scanning 
calorimeter (SSDSC, Diamond DSC, PerkinElmer, USA) was used with a 
heating rate of 10℃ min− 1, a 2 ℃ step and an isothermal time of 1 min. 

2.2.5. Thermogravimetric analysis 
Thermogravimetric analysis (TG, Pyris 1, PerkinElmer, USA) was 

used to measure the mass percentage changes with temperature for 
different silk fibroin samples. Sample with a mass of about 5–6 mg was 
taken into pan, heated from ambience temperature to 650 ◦C at a 
heating rate of 10 ◦C⋅min− 1 in a nitrogen atmosphere with a gas flow of 
50 mL min− 1. The first derivative of the thermogravimetric analysis 
curve (DTG) was also presented to reflect the degradation rate and the 
intermediate degradation temperatures. 

2.2.6. Water contact angle measurement 
The surface wettability of silk films under different ultrasonic con

ditions was measured and analyzed by a water contact angle meter 
(WCA, DSA30S, KRUSS, Germany) through dropping 2 μl of pure water 
droplets on the random surface of the sample for 10 s. 

2.2.7. Bio-enzymatic degradation 
Protease XIV was dissolved in a PBS (pH = 7.2) buffer solution with a 

concentration of 0.2 mg/ml (1.4U/ml). The silk fibroin film with a mass 
of 40 ± 5 mg was then placed into a centrifuge tube with 5 mL of pro
tease solution and was place in a constant 37 ◦C water bath. After 
incubating for 6, 24, 72 h respectively, the samples were vacuum-dried 
to remove liquid and weighted. Throughout the entire process, fresh 
protease solution was regularly replaced to ensure that the enzyme ac
tivity was maintained at the ideal level during the degradation process. 
The experiment was repeated for the films placed in a PBS buffer solu
tion as the control group. 

2.2.8. Cytotoxicity and biocompatibility 
Mouse fibroblasts (L929) were used to evaluate the biocompatibility 

of silk fibroin films. Before the cell experiment, silk films were cut into 
discs of appropriate size. In order to sterilize the films, they were first 
placed under a UV light for two hours and then soaked in 70% ethanol. 
After rinsing three times with PBS to completely remove the ethanol, the 
samples were placed in a 96-well plate. Then take out the pre-incubated 
dishes, digest the adherent cells with trypsin, remove the trypsin, sus
pend the L929 cells in new Dulbecco’s modified Eagle medium (DMEM) 
at 104 cells/cm3, and add 10 %(v/v) of fetal bovine serum. L929 cells 
were seeded on silk fibroin membrane, placed in a cell culture incubator 
at 37 ◦C and 5% CO2, and passed MTT (3-[4,5-dimethylthiazole-2]- 2,5- 
diphenyl Tetrazolium bromide) method to evaluate the cell viability of 
different scaffolds. After the cells were incubated on the membrane for 
1, 3, and 5 days, the supernatant was removed, washed twice with PBS, 
and 200 μl of 0.5 mg/ml MTT solution was added. After incubating for 4 

h in the incubator, the supernatant was removed. Replace the MTT so
lution with 200 μl of DMSO and shake for 10 min at room temperature to 
completely dissolve the crystals formed by formazan, then measure the 
UV absorbance at 490 nm on the BioTek immunoassay analyzer (EL- 
x800), and set three parallel samples. Take the average value, set up a 
group of cell control groups without material, and calculate the cell 
viability with the following equation (6) [12–13]: 

Viability =
Ds

Dc
× 100% (6) 

where Ds is the absorbance of the stent and Dc is the absorbance of 
the control. 

2.2.9. Breathability analysis 
The gas permeability (breathability) analysis of SF film under 

different thicknesses was performed through a Capillary Flow Porometer 
(CFP, ipore-1500AEX-Clamp, Porous Materials, Inc., USA) and the mass 
change of silica gel in glass bottle, respectively. Different sample solu
tions were cast to form films with 0.4 mm and 0.8 mm thicknesses, and 
then cut into a same 2 × 1.5 cm2 area, and tested at 25 ℃, 70 KPa 
pressure and in nitrogen atmosphere. The gas permeability P (m3Â⋅m- 

2Â⋅h-1Â⋅kPa− 1) of the films can be calculated according to equation (7): 

P =
Q

ΔpÂ⋅A
(7) 

where Q is the gas flow rate at each pressure, Δp is the trans
membrane pressure difference, and A is the membrane area. At least 
three measurements were taken for each sample. 

3. Results and discussion 

3.1. Surface morphology 

The morphology of regenerated silk films treated with different ul
trasonic treatments were observed by scanning electron microscopy 
(SEM), as shown in Fig. 1b. Films treated with different time periods 
showed different morphology at the surface level (Fig. 1b, MSF ~ MSFT- 
30). The films without ultrasound showed uniform particle connectors at 
the scale of 1 μm (Fig. 1b, MSF), and the local magnified image at the 
scale of 50 nm also clearly showed nanoparticles (Fig. 1b(I)), which was 
consistent with results in the previous studies [4,13,32]. Films treated 
with 600 W for 1 and 5 min began to show stripe projection, and the 
particles began to grow swelling with a local agglomeration and bulge 
(Fig. 1b, MSFT-1, MSFT-5), while the local magnified images with a 105 

magnification (50 nm scale bar) showed that more tiny holes and gaps 
appeared among nanoparticles compared to that of without ultrasound 
(Fig. 1b(II), 1b(III)). After the 15 mins treatment, the particles on the 
film surface were loosely distributed with more cracked with island-like 
structures (Fig. 1b, MSFT-15). Ultrasound treatment that lasted for 30 
min (Fig. 1b, MSFT-30) caused the cracks to become larger, while the 
local particle size seemed smaller than that of 15 mins samples (Fig. 1b 
(IV)). For all film treated with different ultrasonic intensity during 30 
mins, their apparent characteristics are also different (Fig. 1b, MSFP- 
100 ~ MSFP-800). As the ultrasonic intensity gradually increased, the 
film treated with 100 W began to show local continuous convex and 
smooth planes, and the film treated with an intensity of 300 W devel
oped agglomeration and projection among particles. The film treated 
with 500 W was closely arranged with particles and appeared cracks like 
island, while the film treated with 700 W and 800 W showed relatively 
uniform particle distribution. At the scale of 50 nm bar, all films showed 
different distribution of nanoparticles, with tiny holes or gaps between 
them (Fig. 1b(Ⅵ) ~ 1b(X)). From these images, it was possible to find 
the effect of various ultrasonic powers on the topology of the SF films. 
Simultaneously, it also indicated that the ultrasound could reduce the 
agglomeration of the fibers, distribute them evenly throughout the silk 
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matrix, and increase the gaps between nanoparticles. 

3.2. Structural analysis 

Fourier transform infrared spectroscopy (FTIR) is a powerful method 
to analyze the secondary structure of proteins (Figure S1) [27]. In 
general, the spectral region of 1700–1500 cm− 1 is the absorption region 
of Amide I and Amide II groups [4,7,32–34], while the Amide III region 
is from 1350 to 1200 cm− 1. The N–H stretching vibration of silk protein 
is shown in the Amide N region (3310 ~ 3270 cm− 1) which is a part of 
the Fermi resonance doublet and is connected with its second compo
nent, Amide N′ (3100 ~ 3030 cm− 1) [33–35]. Among the listed regions, 
the Amide I region is the most commonly used region for quantitative 
analysis of secondary protein structure [1,33]. For regenerated MSF 
films obtained by using ultrasonic treatment of different time or power, 
the characteristic peaks of the infrared spectrum of the samples shifted 
with the extension of ultrasonic time or intensity (Fig. 1c). Specifically, 
for ultrasound times of 0 min to 30 mins, the peak of 1649 cm− 1 grad
ually moved to 1647 cm− 1, 1538 cm− 1 to 1544 cm− 1, and 1250 cm− 1 to 
1255 cm− 1, as well as 2931 cm− 1 to 2945 cm− 1 and 3271 cm− 1 to 3269 
cm− 1(Figure S1) . Similarly, for different ultrasonic power treated MSF 
samples, when power increased from 100 W to 800 W, the peak grad
ually shifted from 1649 cm− 1 to 1639 cm− 1, 1538 cm− 1 to 1532 cm− 1, 
1250 cm− 1 to 1246 cm− 1, 3234 cm− 1 to 3227 cm− 1 (Figure S1a). 
Moreover, all peak widths in Amides I, II and III were significantly 
increased after the ultrasound treatment, which indicates the partial 
transition of intermediate silk I structure to β-sheet crystal dominated 
silk II structure occurred for ultrasound treated samples (Fig. 1c). 

In order to further understand the effects of different ultrasonic time 
and intensity on the secondary conformation content of protein, peaks 
curve-fittings in the Amide I region were carried out (Figure S1c), and 
results are shown in Table S1 [27]. The fitted individual peaks can be 
assigned as side chains (S), intermolecular β-sheets (Ber), intramolecular 
β-sheets (Bra), random coils (R), α-helix (A) and β-turns (T), as we 
described previously [4,27]. It was found that as the ultrasonic treat
ment time increased, the total β-sheet content (sum of the intermolec
ular (Ber) and intramolecular β-sheets (Bra)) increased gradually from 
13.41% for MSFT-1 sample to 18.68% for MSFT-30 sample, while 
random coils decreased from 39.33% for MSFT-1 sample to 34.06% for 
MSFT-30 sample (Fig. 1d). For the silk fibroin samples treated with 
different ultrasonic power, their secondary structures also showed the 
same trend of change. With the power increasing from 100w to 800w, 
the total β-sheet content increased from 17.39% to 20.52%, while the 
random coils decreased from 35.85% to 31.45% (Fig. 1d). However, we 
also found that with the increase of the ultrasound time or power, the 
intramolecular β-sheet content decreased, while both the intermolecular 
β-sheet and α-helix contents increased (Table S1). 

It should be noted here that the total β-sheet content measured after 
the film fabrication is not the maximum β-sheet crystallinity that can be 
obtained from the silk film. Through additional treatments, such as long- 
term (>1h) annealing in water or methanol, the secondary structure of 
the ultrasonic silk films may be completely different. Figure S2 and 
Table S2 respectively demonstrated the FTIR spectra and the calculated 
secondary structure percentages of the sonicated SF films annealed in 
water for 1 h. The results showed that for all silk films, a greater total 
β-sheet content (>50%) can be obtained. However, due to this addi
tional annealing treatment, the secondary structure change trend of the 
samples caused by the increase in the ultrasound time or power is no 
longer obvious. 

XRD is then used to study the crystallinity of silk fibroin [35]. The 
main structure of Silk I conformation includes ordered α-helix and coils, 
with diffraction angles that appear at 24.7◦, 28.2◦ and 27.9◦. The Silk II 
structure is mainly β-sheet structures which corresponds to peaks 
around 20.4◦, 24.1◦, 25.6◦ and 30.9◦ [23,35–38]. Fig. 1e showed that 
the diffraction peak of untreated silk sample (MSF) is at 24.7◦ and 28.2◦, 
indicating a Silk I structure, As the ultrasonic time increased (1 min ~ 30 

mins), the peak was widened (MSFT-1 ~ MSFT-30), and a new peak at 
24.1◦ (MSFT-30) appeared which implied the existence of Silk II (β-sheet 
crystalline) structure [23]. Meanwhile, besides two peaks around 24.1◦

and 25.6◦, another shoulder peak at 20.4◦ was also shown for samples 
treated with 100 W to 800 W ultrasound (MSFP-100 ~ MSFP-800), 
respectively (Figure S3a). The contents of Silk I and Silk II structure of all 
SF films were calculated by a Gaussian fitting method (Figure S3b), and 
summarized in Table S3, which showed that Silk I content decreased 
while Silk II structure (β-sheet crystalline) increased with the enhanced 
of ultrasonic effect (time and intensity) (Fig. 1f). These results were 
similar with those from FTIR calculation (Fig. 1d, total β-sheets in 
Table S1). Wu et al. [39] demonstrated that the random coils or β-turns 
structure in silk fibroin protein can be transformed into α-helix structure 
during ultrasound treatment, and then the unstable α-helix structure 
could easily be transformed into β-sheet structure due to hydrogen 
bonding. Zheng et al. [40] also confirmed that the conformation of silk 
fibroin would undergo transformation with the increase of ultrasonic 
power. Besides, some studies [41–43] also proved that the long-time 
sonication could make the random coils converted to stable β-sheet 
structures and accelerate the formation of silk fibroin gels. Therefore, 
ultrasound time and power can precisely regulate the secondary struc
tures and the crystallinities of silk fibroin materials. 

3.3. Thermal analysis 

Thermal analysis (Fig. 2) is one of the most important techniques to 
characterize the macroscopic physical properties of materials due to its 
ability to reveal the microphase structures for various materials [44]. 
Fig. 2a showed the standard DSC curves of silk samples treated by using 
600 W ultrasound for 0 min (MSF) ~ 30 mins (MSFT-30). And the DSC 
curves of samples under 100 W (MSFP-100) ~ 800 W (MSFP-800) ul
trasonic power for 30mins were showed in Figure S3c. Three thermal 
events appeared in all samples: the dehydration from ambient temper
ature to 100 ℃, glass transition at a range of 150 ℃ to 250 ℃ and the 
decomposition after 250 ℃ [45–46]. All samples treated with different 
times showed a small dehydration peak in DSC curves while those 
treated with different power intensities were inconspicuous, which 
implied that under the same condition, the change of ultrasonic power 
had a greater effect on the bound-water content of the films when 
compared to the changes due to the length of ultrasonic treatment. 
Meanwhile, DSC results showed that the decomposition of endothermic 
peaks of all the samples treated by ultrasound were shifted slightly to a 
higher temperature (TDSC-p, Fig. 2a). To further understand the glass 
transformation process of the samples, modulating StepScan DSC was 
carried out [44–45] for all silk films. The modulating DSC profiles of silk 
protein with different ultrasonic time were shown in Fig. 2b. With the 
increase of ultrasonic time, the glass transition temperature and specific 
heat increment of silk fibroin samples decreased, which suggested that 
ultrasound could raise the mobility of silk fibroin chains (Tg, Table 1). 
The same phenomenon also appeared on those samples treated with 
different intensity (Figure S3d). 

The thermogravimetric analysis (TGA) of the samples treated with 
different ultrasonic time also showed that the samples had been dehy
drated around 100℃ while the molecular chain started to break around 
300 ℃ which resulted in a decomposition reaction (Fig. 2c). The 
inserted DTG curve showed the rate of decomposition for each corre
sponding sample. TP temperature on DTG (Fig. 2c ́ inserted in Fig. 2c) 
represents the temperature corresponding to the maximum weight loss 
rate of the sample. Fig. 2d demonstrated the changing trend of Tg, TDSC-p 
and Tp under different ultrasonic time and power. It can be found that at 
Tp temperature decreased slightly with the increase of ultrasonic time or 
ultrasonic power (Fig. 2d). And the residual mass at 400 ℃ of the sample 
with longer ultrasonic time or with bigger power intensity is slightly 
higher (Yr=400/%, Table 1). 
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3.4. Mechanical properties 

Fig. 2e shows the tensile stress–strain curves of the regenerated silk 
fibroin films after ultrasonic processing. To mimic the typical water- 
swelling condition in a biological environment, all samples were first 
immersed in deionized water at 37 ℃ for 20 min before the DMA test. 
The elongation of silk fibroin films with ultrasonic treatment was 
significantly improved (Fig. 2e, curve MSFT-1 ~ MSFT-30) when 
compared with the untreated film (Fig. 2e, curve MSF). The elongation 
ratio of silk fibroin membrane treated with the 600 W ultrasound was 
about 1.5 times (MSFT-1), 2.1 times (MSFT-5), 2.3 times (MSFT-15) and 
2.9 times (MSFT-30) to the elongation ratio of non-ultrasound sample, 
respectively (calculated from Table 1). When compared with the un
treated sample (MSF), the elastic modulus of ultrasound treated samples 

(MSF-1, MSF-5, MSF-15, MSF-30) are smaller. However, the elastic 
modulus and the extension strength of treated silk fibroin films 
increased with the increase of ultrasonic time (Table 1), such as the 
elastic modulus increasing from 0.53 ± 0.21 MPa for MSFT-1 to 1.97 ±
0.47 MPa for MSFT-30 (Table 1). Simultaneously, silk fibroin films 
under different ultrasonic intensities also showed the similar tendency 
(Figure S4). As the ultrasonic intensity increase, the elastic modulus of 
the films also increased, from 0.08 ± 1.21 for MSFP-100 to 9.13 ± 0.31 
for MSFP-800 (Table 1). The histogram of young’s modulus of all sam
ples clearly shows the influence of ultrasound on the elastic properties of 
the samples (Fig. 2f). After ultrasonic treatment, the breaking strength 
and elongation of silk films were all significantly improved except for 
the MSFP-800 sample. The strength of extension of the 800 W treated 
sample was the largest among all the samples (19.13 ± 1.93 MPa), but 

Fig. 2. (a) Standard DSC curves of silk fibroin films with different ultrasonic time (0 ~ 30 mins). Tw, Tg and Td represented the dehydration, glass transition and 
decomposition regions in standard DSC curve, respectively. (b) Reversing heat capacity measured from the modulating Step-Scan DSC curves of the samples with 
different ultrasonic time (0 ~ 30 mins). (c) TG and DTG (inserted figure c’) analysis of SF films under different ultrasonic treatment (0 ~ 30 mins). (d) The changing 
trend of Tg, TDSC-p and Tp of different SF films. Tg and TDSC-p represented glass transition temperature and decomposition peak temperature from DSC measurement, 
and Tp is the temperature at the maximum weight loss rate of the sample from DTG curve. (e) Stress–strain curves of SF films under different ultrasonic treatment (0 
~ 30 mins). (f) Elastic modulus of SF films as a function of ultrasonic time (0 ~ 30 mins; MSF, MSFT-1, MSFT-5, MSFT-15 and MSFT-30) and ultrasonic intensity 
(100 ~ 800 W; MSFP-100, MSFP-300, MSFP-500, MSFP-700 and MSFP-800). Each sample was immersed in water for 20 min prior to DMA testing. 
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with the smallest elongation of 25.91 ± 0.12 %. Generally, the strength 
and elongation rate for each material is contradictory. If a material is 
more rigid (strength), then the sample will have poorer ductility 
(elongation ratio) [47]. However, in this work, for treated samples only, 
both of the values can increase together by increasing ultrasonic time or 
intensity. It is well known that the elongation at break was determined 
by the alignment of protein molecular chains [4,8,48–51]. Therefore, 
there could be two reasons for this phenomenon: (1) ultrasound helped a 
part of the noncrystalline region of SF chains form a more ordered 
orientation; and (2) the water molecules had a stronger plasticizing ef
fect on the silk fibroin molecular chains during the ultrasound treatment 
[47–50]. After drying and soaking in water, the silk molecular chains 
were aligned [49–50], which allowed for the intermolecular β-sheets to 
form that promoted materials strength and flexibility. Therefore, with 
the increase of the ultrasound time or power, both the ductility and ri
gidity of silk fibroin films can be greatly improved. 

3.5. Biological properties 

In addition, the effects of ultrasound on the material’s biological 
properties, including hydrophilicity, enzymatic degradability and 
biocompatibility were further investigated (Fig. 3 ). First, the water 
contact angle was measured, which is an important parameter that af
fects the adhesion, proliferation, migration and viability of cells. The 
water contact angle decreased from 95.92◦ to 66.40◦ with the ultrasonic 
time increasing from 0 min to 30 mins, and the angle also decreased 
from 87.76◦ for the 100 W intensity to 67.37◦ for the 800 W intensity 
ultrasonic power (Fig. 3a). The pure SF film has a hydrophobic property 
due to its carboxyl group, amine group, hydroxyl group and three- 
dimensional nanofibrous structure [52]. After ultrasound treatment, 
more hydrophilic chain segments were presented to the material surface 
[52–53]. Wang et al. [53] also found that the ultrasonic treatment can 
cause the realignment of the protein molecules and improve their hy
drophilicity and thermal stability of silk fibroin. Therefore, more hy
drophilic interaction between molecular chains could be exhibited. 
Hence, the results suggested that the ultrasound-treated SF films became 
more hydrophilic with the increase of treatment time and power. 

The degradation study of silk films in proteinase K solution showed 
that as ultrasonic treatment power increased, the rate of degradation 
also increased (Fig. 3b). While their degradation in deionized water and 

in PBS buffer solution exhibit very low degradation and their weight 
remained fairly stable over the time (Figure S5). The apparent 
morphology, microstructure and molecular weight of the membrane 
samples could also directly affect the enzymatic degradation rate. After 
6 h, the total mass losses of films treated at 100–800 W power were 
measured to be about 20、30.2、31.6、35.3 and 40%, respectively. 
After 24 h, the masses continued to degrade and demonstrated a rela
tively high level of degradation. At 72 h, their remaining masses reduced 
to 58.6% for MSF, 40.5% for MSFP-100, 38.5% for MSFP-300, 35.9% for 
MSFP-500, 30.4% for MSFP-700 and 25.7% for MSFP-800 of the original 
mass, respectively. The enzymes degradation rate of film that weren’t 
treated with ultrasound was the slowest among all samples. The samples 
treated with ultrasonic time under the same power also showed the same 
degradation trend in enzyme protein solution (Fig. 3c). With the 
extension of ultrasonic time, the degradation rate of film in the enzyme 
increased [54–56]. At 72 h, their remaining masses reduced to 52.9% for 
MSFT-1, 48.4% for MSFT-5, 44.9% for MSFT-15, and 39.1% for MSFT- 
30 of the original mass, respectively. Mi et al. [54] produced chitin/ 
poly(D,L-lactide-co-glycolide) composite microspheres as a drug- 
delivery system. They found that the amorphous structure of the 
blends allowed rapid water penetration. Numerous studies [9,54–59] 
also demonstrated that enzymatic biodegradation process and bio
stability of biopolymer materials are comparatively complicated, which 
could be associated with the structure, the surface morphology, and the 
molecular interaction between polymer chains. During the ultrasound 
treatments, both the hydrophilicity and the molecular arrangement of 
the silk films were significantly improved, which may contribute to the 
faster degradation of the material. 

Films treated with ultrasound for 1 ~ 30 min, as well as those treated 
with ultrasound at 100 ~ 800 W, were selected for the cell biocom
patibility and viability test (Fig. 3d). The results illustrated that>80% of 
the cells in all samples survived during the culture time. Simultaneously, 
the cells survival rate and proliferation rate of all samples increased with 
increased culture times. For example, the cell survival rate of MSF-30 
samples was 95% at 24 h of incubation and 107% and 114% at 48 
and 72 h, respectively. These results indicated that the ultrasound- 
treated films can provide a favorable environment for cells attachment 
and proliferation. After incubation for 24 h, the cell viabilities (111%- 
131%) in the films treated with ultrasound (MSFT and MSFP) were 
higher than that treated without ultrasound (MSF, 105%). The trend at 

Table 1 
Thermal and mechanical properties of ultrasound treated silk fibroin films obtained from DSC, TG and DMA measurements*.  

Sample Time/min 
or 
Intensity/W 

Tg 

/℃ 
ΔCp 

/J⋅℃-1 
TDSC-d 

/℃ 
Yr=400 

/% 
Elastic modulus 
/MPa 

Strength of extension 
/MPa 

Elongation 
/% 

MSF 0 t, I 190.17 ± 0.21 0.91 
±0.07 

343.27 ± 1.11 63.94 
±0.17 

5.28 
±1.43 

4.86 
±0.34 

186.64 
±1.20 

MSFT-1 1 t 189.81 ± 0.52 0.60 
±0.06 

343.76 ± 1.02 63.98 
±0.19 

0.53 
±0.21 

1.14 
±0.12 

275.39 
±2.41 

MSFT-5 5 t 188.62 ± 0.54 0.60 
±0.07 

343.85 ± 1.16 64.42 
±0.16 

0.80 
±0.35 

1.72 
±0.21 

388.93 
±3.71 

MSFT-15 15 t 180.01 ± 0.63 0.59 
±0.10 

344.45 ± 1.38 64.56 
±0.18 

0.95 
±0.33 

2.02 
±0.43 

419.16 
±4.24 

MSFT-30 30 t 174.84 ± 0.72 0.43 
±0.11 

345.63 ± 1.45 64.79 
±0.11 

1.97 
±0.47 

4.06 
±0.72 

542.36 
±1.33 

MSFP-100 100I 194.47 ± 0.61 0.74 
±0.08 

330.21 ± 1.33 62.27 
±0.12 

0.08 
±1.21 

0.26 ± 0.53 362.13 
±0.75 

MSFP-300 300I 192.72 ± 0.64 0.67 
±0.07 

331.19 ± 1.52 62.71 
±0.17 

0.81 
±0.44 

1.22 ± 0.66 234.72 
±0.22 

MSFP-500 500I 191.42 ± 0.52 1.08 
±0.04 

335.51 ± 1.51 62.74 
±0.14 

1.17 
±0.52 

2.25 ± 0.34 212.34 
±0.27 

MSFP-700 700I 182.56 ± 0.47 0.65 
±0.06 

336.88 ± 1.47 63.67 
±0.13 

2.05 
±0.71 

2.56 ± 0.27 237.13 
±0.16 

MSFP-800 800I 176.24 ± 0.59 0.63 
±0.11 

339.35 ± 1.42 64.08 
±0.16 

9.13 
±0.31 

19.13 ± 1.93 25.91 
±0.12 

* Superscripts t and I represent ultrasonic time and ultrasonic intensity, respectively. Tg, ΔCp and TDSC-d were derived from the glass transition temperature, specific 
heat increment and decomposition peak temperature on the DSC curves, respectively. Yr=400 denoted the mass residual amount of the sample at 400℃ on the TG curve. 
The elastic modulus, strength of extension and elongation were obtained from DMA measurements; Each sample was tested at least 5 times. 
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48 h and 72 h was similar to that at 24 h. Moreover, the films treated 
with longer ultrasonic time (MSFT-30) or higher ultrasonic intensity 
(MSFP-800) possessed more cell adhesion and growth. The cell growth 
viability reached 150% on the film treated for 30 min and 800 W ul
trasound, which demonstrated that appropriate ultrasonic treatment 
material was more conducive to cell adhesion and growth. We have 
discussed that different surface micro-patterns could manipulate cells 
growth and proliferation on biopolymer blend films [59]. Dong et al. 
[60] also investigated the growth of cells on the zein protein films, and 
found that the cell adhesion was improved as the surface particle size 
decreased. Zhang et al. [61] revealed that the behavior of cell attach
ment and proliferation mostly depended on the material surface char
acteristics, include the hydrophily. Our experiment results also proved 
the feasibility of using the tunable microstructure of the ultrasound- 
controlled silk protein materials as substrates for cell culture in 
biomedical field. 

The breathability analysis results of SF films also showed significant 

differences. For the 0.4 mm film samples (Fig. 3e), as the ultrasound 
time increased from 1 min to 30 mins, the air permeability increased 
from 7.79 ± 3.78 to 81.49 ± 5.53 m3⋅m− 2⋅h− 1⋅kPa− 1. For the 0.8 mm 
film samples (Fig. 3f), the increasing trend is the same (Table S4). 
Similar phenomena were also observed for samples treated with 
different ultrasonic intensities (Fig. 3e, 3f and Table S4). Therefore, the 
air permeability of the SF film can be greatly improved by increasing the 
ultrasonic treatment time or intensity, and reduced by increasing the 
film thickness. This may be due to the formation of unique silk nano
structures during the ultrasound treatments, as shown by the SEM study. 

3.6. Mechanism of ultrasound on silk material 

Based on the above results, we envision the following mechanistic 
(Fig. 4) understanding of the effect of ultrasound on the structural, 
thermal, mechanical and biological properties of silk fibroin materials 
fabricated from the FA-CaCl2 solution (Fig. 4a). Generally, the Bombyx 

Fig. 3. ga) Water contact angle of SF films ultrasonically treated with different time from (I) 0 min to (II) 30 mins at 600 W, and under different intensity from (III) 
100 W to (IV) 800 W for 30 mins, respectively. Protease XIV enzymatic degradation profiles of (b) MSF, MSFP-100, MSFP-300, MSFP-500, MSFP-700 and MSFP-800, 
and (c) MSF, MSFT-1, MSFT-5, MSFT-15 and MSFT-30 film samples. (d) The mouse fibroblast cell (L929) viability after 0, 1, 3, 5 days, on the surfaces of MSF, MSFT- 
1, MSFT-30 and MSFP-100 and MSFP-800 samples using a glass surface as the control (** p < 0.01). The breathability of ultrasound treated SF films with (e) 0.4 mm, 
and (f) 0.8 mm thickness, measured at 25 ℃, 70 KPa pressure and nitrogen atmosphere. 
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mori silk fibroin protein is composed of three proteinaceous components: 
a heavy chain (H-chain, ca. 350 kDa) contained alternating hydrophobic 
and hydrophilic regions; a light chain (L-chain, ca. 25 kDa) possessed 
more hydrophilicity and linked to H-chain via disulfide bonds; and a 
small glycoprotein P25 protein (of ca. 30 kDa) that maintained the 
integrity of the complex through non-covalent hydrophobic interactions 
with the H-chain and L-chain [1,62]. Based on the theoretical hydro
phobicity map of the H-chain in the SF [62], a large number of hydro
phobic amino acid residues, such as the blocks of (Gly-Ala-Gly-Ala-Gly- 
Ser)n, can promote the self-assembly of SF molecules. During this period, 
the H-chain can undergo a significant conformational transition in the 
solution state [62]. Under the mechanical shear and heat transfer pro
moted by ultrasound, the agglomeration of SF molecules and the self- 
assembly of the protein micellar system can be further enhanced by 
hydrophobic interactions [62]. Previous studies [4] have showed that 
the FA-CaCl2 solvent system was able to turn the stacked β-sheet crystals 
in silk fibroin fibers into single-layer intramolecular β-sheets or random 
coils in the solution [4,13,32]. In this work, it was found that ultrasound 
treatment could evenly distribute the calcium ions throughout the so
lution system (Fig. 4b), and enhance the penetration of calcium ions into 
the silk structure. Ultrasound also stretched the silk molecular chain 
segments, making the chain segment rearrange in a more orderly fashion 
as intermolecular β-sheets and α-helix increased, while random coils and 
β-turns decreased in the silk fibroin structure (Fig. 4c). The increase in 
intermolecular β-sheets and α-helix contents caused the silk to be 
insoluble in water with both mechanical strength and flexibility 
(Fig. 4c). In addition, ultrasound also increased the gap between the 
molecular chain segments and exposed more hydrophilic groups. These 
structures enhanced gas permeability of the samples, and promoted cell 
adhesion, differentiation and growth within samples such as MSFT-30 
and MSFP-800. Overall, our results suggested that the ultrasonic treat
ment in FA-CaCl2 solution greatly improved various physical properties 
and biological responses when compared to untreated films. 

4. Conclusions 

This study presented a mechanism study on the structural 

transformation and physical and biological properties of regenerated 
Bombyx Mori silk fibroin films under various ultrasonic treatments. The 
study revealed that the intensity and action time of ultrasonic treatment 
could facilitate the self-assembly of silk molecules, and enhance the 
interactions between calcium ions and silk molecular chains, which 
promoted the formation of β-sheets crystals. With the increase of ul
trasonic intensity or the prolongation of time, the intermolecular 
β-sheets and α-helix structures increased, which caused the silk films to 
be insoluble in water with enhanced mechanical strength and flexibility. 
Simultaneously, their glass transition temperature and the specific heat 
increment decreased, and possessed a good thermal stability with a 
tunable enzymatic degradation rate. Importantly, we have found that 
high-intensity and longer ultrasonic treatment enable silk fibroin film to 
obtain better hydrophilic swelling performance, higher breathability 
and greater cell compatibility, due to the increase of hydrophilicity and 
intermolecular interactions in SF films. With these results, a model was 
proposed to explain the mechanism of ultrasonic treatments on the SF 
films. This study offered an important strategy on how to physically 
manipulate the structure of silk-based biomaterials in order to tune its 
properties by simply using ultrasound. These properties can be applied 
to the fields of biomedicine and sustainable materials, such as air or 
chemical filters, controlled drug delivery systems, and wound dressings 
or artificial tissues that provide unique biocompatibility and excellent 
mechanical strength and flexibility. 
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