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ABSTRACT ARTICLE HISTORY
Many tick species are invading new areas because of anthropogenic Received 27 April 2017
changes in the landscape, shifting climatic variables and increasing %??pted 22 November
populations of suitable host species and tick habitat. However, the

relative influences of habitat and hosts in tick dispersal and tick KEYWORDS
population establishment remain in question. A spatially explicit Agent-based models; case
agent-based model was developed to explore the spatio-temporal study; invasion biology;
dynamics of a generic tick population in the years immediately range expansions; ticks
following the introduction of ticks into a novel environment. The

general model was then adapted to investigate a case study of two

recent tick species invasions into the Mid-Atlantic United States. The

recent simultaneous range expansions of two ixodid tick species,

Ixodes affinis and Amblyomma maculatum, provided an opportunity to

determine ifinvasion patterns observed in the field could be replicated

in silico on a small scale. The models presented here indicated that for

generalist parasites, habitat connectivity is a better indicator than host

mobility for spatial and genetic patterns of parasite range expansion.

In addition, our results demonstrate the utility of including genetic

variables into agent-based models: gene flow functions as a proxy for

measuring dispersal, and models can be validated using results from

the field.

1. Introduction

Ticks are blood-feeding ectoparasites that parasitize humans and animals and are second
only to mosquitoes in spreading vector-borne diseases worldwide (Dennis, Goodman, &
Sonenshine, 2005). Many tick species are expanding their ranges as a result of anthro-
pogenic changes in the landscape, shifting climatic variables and increasing populations of
suitable host species and suitable tick habitat (Childs & Paddock, 2003; Ogden et al., 2008,
2008). Climate change has been forecasted to lead to an overall increase in tick habitat in
the coming years and is already facilitating tick range expansions worldwide, leading to
increasing disease risks (Cumming & VanVuuren, 2006; George, 2008; Leger, Vourch, Vial,
Chevillon, & Mccoy, 2012). It is essential to understand factors that limit tick distribution in
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order to predict disease emergence, as eradication of ticks and their associated pathogens,
once established, may be impossible (Cumming & VanVuuren, 2006; Leger et al., 2012).

Tick invasions are different from invasions by other taxa because tick life history is
sharply demarcated between periods of movement on-host and longer relatively stationary
periods off-host. In order to understand the movement patterns of ticks across a landscape,
the suitability of both abiotic and biotic factors must be considered. Ticks have a complex
life history that may involve differing host preferences throughout ontogeny and must
find suitable hosts at each life stage in order to feed, grow and reproduce. Ticks depend
on the large-scale movements of their hosts to transport them across a landscape and are
particularly vulnerable to environmental pressures, such as desiccation, when they are free-
living off-host (Leger et al., 2012). Host specificity is key to any parasites’ ability to disperse
across a landscape and invade new areas (Kruse, Hare, & Hines, 2011). Because many
human-biting species of ticks are generalists and can feed on a variety of avian, mammalian
and reptilian species throughout ontogeny, these tick range expansions are likely limited
predominantly by environmental and climatic variables, including landscape use, habitat
availability and the presence of suitable micro-climates (Cumming & VanVuuren, 2006).
Ticks are strongly dependent on both host availability and environmental factors for their
survival and reproduction in any habitat (Leger et al., 2012), but the relative importance
of hosts and habitats in tick range expansions has never been fully explored.

Models have been used to elucidate the complex life history of ticks and to mitigate
tick-borne disease risk. Differential equation-based, age-structured difference and matrix-
based models have provided insight into the population dynamics of ticks and the dy-
namics of tick-borne disease (Gaff, Gross, & Schaefer, 2009; Haile & Mount, 1987; Mount,
Haile, & Daniels, 1997; Ros & Pugliese, 2007; Sandberg, Awerbuch, & Spielman, 1992).
Spatially explicit components have been added using remote sensing, GIS and partial
differential equation models (Bunnell, Campbell, & Squires, 2004; Diuk-Wasser et al.,
2010; Radcliffe & Rass, 1984). While helpful, most of these models focus primarily on
proportional interactions between ticks and hosts that inform our understanding of tick
populations and pathogens, but not individual movement. Spatially explicit agent-based
models simulate the actions of individual ticks and hosts and can be used to capture the
mechanistic phenomena underlying individual episodes of range expansion (Gaff, 2011;
Gaft & Nadolny, 2013; Madhav, Brownstein, Tsao, & Fish, 2004; Wang, Grant, & Teel,
2012; Wang et al., 2015).

Here, a spatially explicit agent-based model was developed to simulate the spatio-
temporal dynamics of three-host tick populations in the years immediately following
the introduction of ticks to a novel environment. Using this model, derived from the
TICKSIM model (Gaff, 2011; Gaft & Nadolny, 2013), it was possible to determine the
relative strength of influence that host and habitat-based parameters have on invasion
rate, population density, geographic pattern of tick invasion and the genetic diversity
in resulting tick populations. In addition to addressing broad questions, the model was
used to investigate the case study of two recent tick species invasions in Virginia. The
recent simultaneous range expansions of the two ixodid tick species, Ixodes affinis and
Amblyomma maculatum, into the Mid-Atlantic region of the US provided an opportunity
to compare the relative influences of host and habitat choice on invasion dynamics and
genetic connectivity (Nadolny, Wright, Hynes, Sonenshine, & Gaft, 2011; Nadolny et al.,
2015; Wright et al,, 2011). Information gleaned from literature values, field studies on tick
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ecology and lab studies on tick genetic connectivity was used to parameterize the model,
and the emergent properties were compared to determine if the invasion patterns seen in
the field could be replicated in silico on a small scale.

In the sections that follow, we will provide some background information and modelling
considerations and describe the model following the protocol recommended for agent-
based models by Grimm et al. (2010). The general performance of the model will be
evaluated, as will the sensitivity of simulated tick dynamics to changes in habitat and host-
related parameters. Finally, the applications of the model will be demonstrated through
determining the relative influence of habitat suitability and host density on simulated
invasions by a generalized tick, and the influence of habitat connectivity on the genetic
signatures of newly established populations of simulated I. affinis and A. maculatum.

2. Background information and modelling considerations

Two tick species, I. affinis and A. maculatum, are concurrently expanding their ranges
into the Mid-Atlantic region of the US and have been observed invading in different
geographic patterns, and with different genetic signatures (Nadolny et al., 2015).Ixodes
affinis has been implicated in the sylvatic cycle of Borrelia burgdorferi, the agent of Lyme
disease, while A. maculatum is a known vector of numerous pathogens of medical and
veterinary importance, including Rickettsia parkeri, the agent of Tidewater spotted fever
(Oliver, 1996; Teel, Ketchum, Mock, Wright, & Strey, 2010). Ixodes affinis is generally
found in disturbed forested habitat and is a generalist tick species that feeds on small
mammals and birds during immature life stages, and medium and large mammals during
the adult stage. This tick species exhibits genetically well-mixed populations that are likely
created and maintained through short-distance dispersal events throughout the contiguous
forested habitat that is abundant in the Mid-Atlantic (Nadolny et al., 2015).

Amblyomma maculatum is another generalist tick species that feeds on birds and
mammals but is found only in disturbed open habitats, which are patchily distributed
throughout the Mid-Atlantic (Harrison et al., 2010; Wright et al., 2011). Populations of
this tick species are genetically isolated from other nearby populations, and each population
is likely founded by multiple long-distance founding events and then maintained by the
high densities of rodent hosts that are present in grass-dominated habitats (Nadolny
et al., 2015). Both I affinis and A. maculatum generally complete their life cycle in one
year and have significant overlap in the hosts parasitized at all life stages (Harrison et al.,
2010; Teel et al., 2010). One notable difference is that I. affinis are not known to feed
on domesticated artiodactyls, such as cattle, whereas A. maculatum will readily feed on
cattle as adults; because the cattle industry is far less developed in the Mid-Atlantic than
in other areas where these tick species are established, cattle and cattle pasture are not
explicitly included in our models. Their different range expansion patterns and differences
in genetic connectivity can likely be explained by the disparate habitat needs of these tick
species rather than differences in host preferences. We hypothesize that differential survival
in different habitat types is an important factor in determining genetic and spatial spread
of ticks, and that these patterns observed in situ can be modelled through the inclusion
of heterogeneous habitats and species-specific mortality rates associated with different
habitats.
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While genetic connectivity has long been used as a proxy for measuring species dispersal
among habitat patches (Ibrahim, Nichols, & Hewitt, 1996), there has been no inclusion
of genetic parameters in models describing ticks. It has been suggested that incorporating
population genetics into agent-based models would be useful for describing many evolu-
tionary processes (Deangelis & Mooij, 2005), but inclusion of genetic components in agent-
based models of range expansion and invasion of any species is rare (Bialozyt, Ziegenhagen,
& Petit, 2006; Kekkonen, Wikstrm, & Brommer, 2012; Pertoldi & Topping, 2004). By
including genetics in agent-based models of species undergoing range expansions, it is
possible to validate models using the genetic diversity and connectivity observed in the
field.

The agent-based model described here is derived from previous TICKSIM models,
which modelled tick-host interactions and emergent patterns of disease prevalence (Gaff,
2011; Gaff & Nadolny, 2013). The current model has been altered in some significant
ways from these previous iterations. First, the presence of a pathogen passed between
ticks and hosts has been removed in order to generalize the model beyond a specific tick-
pathogen system and to focus specifically on tick range expansions. Pathogen dynamics
can be reintroduced in later, more complex models. Second, while the initial TICKSIM
only tracked ticks and hosts, our version of the model also tracks spatially explicit tick
populations, and their appearance in space and time, by colour-coding habitat cells based
on the presence or absence of ticks. This allows measurement of invasion rate, spatial
pattern of invasion and tick population densities overall and in specific habitats. Third,
this model includes heterogeneous habitats and includes a desiccation parameter that
affects ticks directly to induce mortality in poor-quality habitat patches. Finally, this model
includes maternally inherited genetic haplotypes to simulate patterns of mitochondrial
gene flow among tick populations.

Other recent agent-based models have included heterogeneous habitats, as well as
multiple hosts which ticks can interact. Recent models of lone star tick (Amblyomma
americanum) populations in Texas used tick-host-climate-landscape interactions to sim-
ulate field conditions and determine the influence of climate change and seasonality on
tick populations (Wang et al., 2012, 2015). These models predicted tick density increases
after the addition of a greenbelt to a Texas city and changes in tick densities with the effects
of climate change on the seasonal activities of tick hosts. While both these models and the
present model include heterogeneous habitat, multiple host types, host home ranges and
climate variables; the present model differs in several important ways. The focus of the
present model is on tick invasions, not on established populations of ticks. Although the
landscape in the present model is markedly less complex than the landscapes modelled by
Wang et al. (2012, 2015), each individual tick is tracked, each host movement is tracked
and there is higher temporal resolution.

One other recent model that examines tick range expansions focused on the role of
different host types on the range expansion of the blacklegged tick (Ixodes scapularis)
into Canada (Madhav et al., 2004). Madhav et al. (2004) found that long-range hosts
(e.g. deer) increase invasion rate, high densities of short-distance hosts (e.g. mice) can
slow invasions and migratory birds play an important role in the movement of these
ticks across landscapes. In this cellular automata model, the authors measured only the
effects of varying host parameters on area colonized, using a simplified, spatially explicit
landscape. While our model shares many commonalities with the I scapularis model,
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Madhav et al. (2004) did not test the influence of different habitat types on invasions,
nor did they monitor invasion rate, tick population connectivity or geographic patterns
of tick populations. The I. scapularis model was also deterministic, rather than stochastic,
which does not take into account individual tick and host interactions, and modelled the
influence of tick burden on invasion, which was not tested in the model presented here.
A final difference is that the I. scapularis model operated at a coarse resolution of 1km?,
while our model operated at a fine resolution, with a total extent of only 165 ha.

This model is based on the premise that interactions between individual ticks, their hosts
and their habitats generate the patterns observed in tick range expansions. By varying host
and habitat parameters and including stochastic effects, it is possible to determine the
relative influence of host and habitat parameters on tick invasions at the local scale. By
measuring invasion rate, tick population density, geographic patterns of tick population
establishment, and genetic diversity and connectivity of tick populations, it is possible to
answer the following questions: (1) Does host density or habitat quality have the greater
influence on tick invasions and (2) How does habitat connectivity influence the genetic
connectivity and genetic diversity of invading ticks?

3. Model description

This model description follows the Overview, Design concept and Details (ODD) protocol
for describing agent-based models developed by Grimm et al. (2010) and consists of six
elements. The first three elements provide an overview, the fourth element explains general
concepts underlying the model design and the last two elements provide details. The
following description is for a set of complementary models, a general model (Model S1)
and a case study model (Model S2). Model S1 was a general model of tick population
establishment, with no tick species-specific inputs, and tick-host interactions simulated
within a homogeneous habitat. Model S1 was used to assess general model performance,
perform sensitivity analyses and address questions on the influence of host density and
habitat quality on tick invasions. Model S2 utilizes the same underlying mechanics as
Model S1 (described in detail below), but allows for the investigation of a case study using
species-specific inputs from I affinis and A. maculatum. Model S2 incorporates multiple
habitats and species-specific survival rates in each habitat type. This allows for investigation
into the effects of habitat connectivity on tick invasion patterns and the resulting genetic
diversity of new tick populations.

(1) Purpose

The purpose of this model is to simulate the spatio-temporal dynamics and genetic
diversity of new tick populations after an initial introduction event to a novel area
in response to varying host and habitat parameters, and to better understand the
underlying mechanisms leading to the establishment and dispersal of tick popula-
tions across a landscape. The results of these simulations will help determine the
relative importance of host density, host dispersal distance and habitat suitability in
shaping the spatial patterns, invasion rate, population density and genetic diversity
and connectivity of newly establishing tick populations. The ability to reproduce the
spatial and genetic connectivity patterns observed in situ of invading tick species L.
affinis and A. maculatum is of particular interest.
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(2) Entities, state variables, and scales
(a) Agents/individuals

This model considered the interactions among three populations of agents:
long-distance dispersing hosts (e.g. deer), short-distance dispersing hosts (e.g.
mice) and ticks. Hosts were characterized by the following state variables:
identification number, home base, home range size, mortality rate, number
of ticks currently feeding on the host and the maximum number of ticks able to
attach to the host at one time. To keep host populations constant, if a host died it
was immediately replaced by another host, which was created on a random cell.
The home base of each host was the X, Y coordinates of the cell it was created
on. Each host had a specific home range and was only able to move within a
certain subset of cells away from their home base. Host categories varied in the
distance they could travel per time step and the size of their home range. Hosts
moved ticks that were attached across the landscape, and ticks could only move
when on a host. A host could carry up to the specified maximum number of
ticks, and if a host died, all ticks on that host also died.

Ticks were characterized by the following state variables: identification number,
sex, life stage, activity, identity number of current host and maternally inherited
genetic haplotype. Ticks were assigned a sex (male or female) at birth and moved
through the following four life stages throughout ontogeny: egg, larva, nymph
and adult. Tick host preferences changed depending on life stage and were
reflected by probabilities of successful attachment to each host category. Ticks
moved through three activities during each life stage: resting (which includes
developing), questing and feeding. Adult female ticks completed a final activity,
laying eggs, after feeding. The tick population did not remain constant. Mating
was not explicitly included in this model, but ticks were assumed to mate on-
host, so female ticks were able to lay eggs after a successful bloodmeal. There
was a set number of haplotypes divided equally between the initial ticks at
the start of each simulation (e.g. if there were eight initial haplotypes and
32 initial ticks, there would be four ticks of each haplotype), and each new
tick ‘hatched’ throughout the course of the simulation inherited its haplotype
from its mother. Parameter values for hosts and ticks can be found in Table 1.
Parameter values were derived from the literature where available, or parameter
values were estimated for a generalized tick model (GTM) based on literature
reviews and field data.

(b) Spatial units

Environmental conditions did not change on a cell by cell basis, but cell colour
was used to indicate changes in tick occupancy patterns. Cells were either
unoccupied, occupied (between one and five ticks of any life stage present)
or populated (six or more ticks present on that cell). New tick populations
were observed through the colour variables of cells, with colour reflecting
patch occupation by ticks. A green colour variable indicated the background
environment where no ticks are present. Once a tick was hatched or moved
onto a cell, that colour variable turned to yellow to indicate that ticks were
present. If six or more adult ticks occupied a cell simultaneously, that colour
variable changed to red to indicate that a population of ticks was present
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Table 1. Baseline parameter values used in model.

Entities

Parameter

Category or value/unit

Reference or Reasoning

Environment

Patches

LD hosts

SD hosts

Ticks

Simulation extent (ha)
Number of cells

Hectares/patch
Time of year (t), influencing
tick mortality

Desiccation parameter (D)

Occupied (yellow) patch
(# ticks needed)
Population (red) patch
(# ticks needed)

Initial deer population
Deer rate of movement

Deer home range

Deer mortality

Max ticks per deer

Initial mouse population
Mouse rate of movement

Mouse home range

Mouse mortality

Max ticks per mouse

Prob. larva attachment on
deer

Prob. larva attachment on
mouse

Prob. nymph attachmenton
deer

Prob. nymph attachment on
mouse

Prob. adult attachment on
deer

Prob. adult attachment on
mouse

Initial tick population

Eggs laid per female

Time from egg to hatching
Molt time larva to nymph
Molt time nymph to adult
Maximum questing time
Length of blood meal

Initial number of haplo-
types

165

2601 (25 cells in all
directions from 0,0)

.06

.1in Jan, Feb, Mar, Jul, Oct,
Nov and Dec; .01 in Apr,
May, Jun, Aug, Sep

1

1 tick of any life stage
At least 6 adults

50

1 patch per time step,
random walk

13 patches in any direction
from home base, total of
729 patches (50 ha)

.02

30

800

.5 patches per time step,
random walk

1 patch in any direction
from home base, total of 9
patches (.56 ha)

.02

30

.01

9

.01
75
75
.01

32 nymphs

1500

120 days

90 days

90 days

120 days

6days (for adults, nymphs,
and larvae)

8

SA
SA

SA
Gaff and Nadolny (2013)
SA
SA
Fish and Howard (1999)

Nadolny (2016)
SA

SA, Nadolny (2016)

Gaff and Nadolny (2013)

SA

Nadolny (2016)

SA

SA, Nadolny (2016)

Gaff and Nadolny (2013)

SA

GTM Harrison et al. (2010), Teel et al. (2010)
GTM Harrison et al. (2010), Teel et al. (2010)
GTM Harrison et al. (2010), Teel et al. (2010)
GTM Harrison et al. (2010), Teel et al. (2010)
GTM Harrison et al. (2010), Teel et al. (2010)
GTM Harrison et al. (2010), Teel et al. (2010)
SA

Teel et al. (2010), Oliver et al. (1987)

Teel et al. (2010), Oliver et al. (1987)

Teel et al. (2010), Oliver et al. (1987)

Teel et al. (2010), Oliver et al. (1987)

Teel et al. (2010), Oliver et al. (1987)

Teel et al. (2010), Oliver et al. (1987)

SA

Notes: LD indicates long-distance dispersing hosts (e.g. deer), SD indicates short-distance dispersing hosts (e.g. mice). A
reference or a reason for the assumption is provided for each parameter. SA indicates that values were chosen based
on computational limits determined by sensitivity analyses or trial and error. GTM indicates that values were chosen to
represent a generic three-host tick model, with larvae and nymphs feeding primarily on small mammals and adults feeding
on deer, informed by lists of preferred hosts for /. affinis (Harrison et al., 2010) and A. maculatum (Teel et al., 2010).

(Fish & Howard, 1999). Once the colour variable for a cell had changed from
green to yellow or from yellow to red, it would remain changed until the first
day of the next year, when all cells were reset to green. The occupancy of that
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cell did not change, only the colour variable; any cell that was either occupied or
populated would immediately turn back to the appropriate yellow or red colour
during the first time step of the new year. This enabled output at the end of the
simulation to reflect only the most recent years tick occupancy patterns across
the simulated landscape. We chose to reflect only the most recent years tick
occupancy patterns because when sampling a tick population in situ, only the
ticks present are able to be sampled. Cell colours were recorded at each time
step, to be used as a proxy for tracking tick population establishment. Including
multiple years worth of ticks in our final sampling output would both inflate the
number of ticks and unreasonably expand their area of occupancy.
The presence or absence of ticks of each haplotype across space was also
monitored by a cell variable. The haplotype variable recorded if there were
any ticks of each haplotype as a simple presence/absence variable for each cell.
Like the colour variable, once a haplotype had been recorded in a cell, that
record remained until the first day of the next year, when all haplotype variables
were reset to enable only the most recent years distribution of haplotypes across
the landscape to be recorded at the end of the simulation, for reasons described
above.

(¢) Environment
The environment was set up as a grid of 51 x 51 patches, with each cell roughly
representing .06 ha for a total simulated area of roughly 165ha, with hard
(reflective) boundaries. Hard boundaries were chosen because wrapping bound-
aries would result in unrealistic jumps in tick occupancy from one end of the
simulation to the other. The highest hierarchical level in the model was the
abiotic environment and its fluctuations. Type of habitat was determined by
a desiccation parameter D that influenced tick survival at all life stages when
the ticks were off-host (questing or resting). Desiccation could be increased to
increase tick mortality (indicating habitat of poorer quality), or decreased to not
influence tick mortality (indicating good habitat where ticks were easily able to
survive off-host). The general model was run with one, homogenous habitat
(one desiccation parameter for the whole environment, Model S1), but we
incorporated multiple habitats in different parts of the environment, each with
its own desiccation parameter to investigate the effects of habitat connectivity
on tick invasions (Model S2). Regardless of whether a single habitat or multiple
habitats with different desiccation values were used, habitats were constant and
the desiccation parameters did not change during the simulation.
Time of year (¢) also factored into tick mortality. Each time step represented one
day, and ticks were more likely to die in late fall (October and November), winter
(December through March) and mid-summer (July) than in other months when
weather conditions were more favorable (Table 1). Each simulation ran for 1080
time steps, or 3 years, to give tick populations sufficient time to establish and
spread.

(3) Process overview and scheduling
The model proceeds in daily time steps. Within each day or time step, six modules
happen in the following order: set day of year, tick changes, host changes, calculate
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new populations, calculate haplotype distributions and reset (Figure 1). Within each
module, individuals are processed in random order.
(4) Design concepts

(a) Basic principles
The underlying principle of this model is that independent agents interact with
one another and simulate the interactions that ticks would have with hosts in
the field. Ticks interacted with hosts using them as blood meals, and ticks had
a probability of attaching to each host type that changed throughout ontogeny,
with higher probabilities indicating increased preference for that host. Each tick
was assigned a genetic haplotype that was passed onto offspring. Hosts moved
across the landscape according to their type (i.e. species) and were constrained
by home ranges. Tick mortality was influenced by habitat (desiccation), time
of year and host availability. Through these interactions, ticks were transported
across the environment by hosts and established new populations with specific
genetic signatures.

(b) Emergence
The emergent property being modelled is the establishment of new populations
of ticks that then either sustain themselves or die out. Population establishment
was measured in four ways: invasion rate, tick population density, genetic
diversity and connectivity, and patterns of spatial spread.

(c) Sensing
Ticks sensed hosts only within their own cell and had a given probability of
successful attachment and feeding on that host (Table 1). After host movement
in each time step, ticks sensed hosts and either attached successfully or did not
successfully attach and continued to quest. Ticks could not attach to hosts that
were already carrying the maximum number of ticks for that host. Ticks also
interacted with the environment, as both desiccation and time of year were
factored into calculating tick mortality during each time step.
Hosts did not sense or interact with other hosts and moved around the environ-
ment independently of one another in this simple model. Ticks did not sense
or interact with other ticks, even to mate; any adult female that had successfully
completed a bloodmeal would reproduce, as ticks mate on-host and probability
of predation on fed females was not included in this model.

(d) Interaction
Ticks sensed hosts within their cell and attached to a host to attempt to suc-
cessfully obtain a blood meal. Once a tick had successfully attached to a host, it
switched from ‘questing’ activity to ‘feeding’. A tick would feed on a host for a
specific number of days. Once the tick was engorged, it would detach from the
host and drop off on whatever cell that host had moved to during the interim
time steps. The tick would then transition to ‘resting’, while it transitioned from
one life stage to the next. After a given number of time steps, the tick would again
begin questing and would attempt to attach to its next host. Adult female ticks
laid a set number of eggs after completing their final bloodmeal. Through the
interactions of ticks with hosts, ticks could be transported across the landscape
and seed new populations with specific genetic signatures.



LETTERS IN BIOMATHEMATICS (&) 11

(e) Stochasticity
Stochasticity was included in calculating host movement, host mortality, tick
mortality and successful tick attachment to hosts while questing. Probabilities
for stochastic parameters are described in Table 1. The processes were stochastic
for each run and each agent had equivalent fitness.
(f) Observation
The following metrics were monitored throughout each time step: the number
of ticks in each life stage, the number of occupied (yellow) and populated (red)
cells, the location of each occupied cell, the location of each populated cell,
the number of ticks of each haplotype and the presence or absence of ticks of
each haplotype in each cell. Cell colours were used as a proxy for tracking tick
population establishment or tick presence throughout year. Metrics were used
to determine the following four outputs: tick population density, tick invasion
distance, tick genetic diversity and the spatial pattern of the tick spread. Tick
population density was measured by two metrics, the number of cells occupied
by at least one tick (yellow cells) and the number of cells with tick populations
(six or more ticks present, red cells). Tick invasion distance was measured using
four outputs: the distance from origin to the furthest cell occupied by at least
one tick, the distance from origin to the furthest cell containing a population of
ticks, the mean distance from the origin to occupied cells and the mean distance
from the origin to cells containing a tick population. Tick genetic diversity was
measured by the number of surviving haplotypes. Finally, the spatial pattern of
tick spread was measured by the number of clusters of occupied and populated
cells. A cluster was defined as being three or more cells away from the nearest
red or yellow cell, and made of two or more red or yellow coloured cells.
(5) Initialization
Each simulation began with a landscape with a set number of randomly distributed
hosts of both species, and an initial number of ticks created in the cell at the centre
of the simulation (at X,Y coordinate 0,0). Each simulation ran for 1080 time steps,
or 3 years, to give tick populations sufficient time to establish and spread. The initial
state of the simulation used base parameters outlined in Table 1, which were derived
from values in the literature, and in previous versions of this model (Gaff, 2011; Gaft
& Nadolny, 2013).
(6) Input data
This model did not use input data to represent time-varying processes.
(7) Submodels
(a) Process passage of time
To account for passage of time, each time step represented one day. Time of year
influenced tick mortality. For simplicity, each year was divided into 360 days,
and each month (30 days) had a parameter that influenced tick mortality. Ticks
were more likely to die during summer and winter months, when heat or cold
are significant stressors (Table 1). Studies of other tick species have attributed
significant inter-stage tick mortality to variations in rainfall, temperature and
relative humidity (Mount et al., 1997; Randolph, 1994).
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(b) Process tick life cycle
Each time step, each individual tick had a given probability of dying. Tick mor-
tality (M) depended on time of year (), habitat (represented by the desiccation
parameter D, which could change depending on the type of habitat ticks were
in, as in Model S2), total tick population size (N) and carrying capacity, or
maximum number of ticks permitted in the simulation (k), and was calculated
as
M=txD=x*N/k

where t reflected the relevant value from Table 1; N was re-counted at the
beginning of each time step; D was a constant that could be varied from 1 (no
effect on tick mortality) to 50 (significant influence on tick mortality) and k
was set to 50,000 as a computational constraint and a reasonable environmental
limitation. Once per time step, a random number between 0 and 1 was generated
for each tick; if the random number was less than M, the tick would die.
Ticks could rest (indicating time spent molting or in quiescence between life
stages), quest, feed and reproduce. After a certain amount of time in a given
activity, ticks would change to the next chronological activity (Figure 1).Ticks
quest to find hosts, take bloodmeals and progress to the next life stage. If a tick
exceeded the maximum questing time (Table 1), it would die. Each tick in a
questing life stage (larvae, nymphs and adults) began questing by identifying a
potential host, which was any host occupying the same habitat cell with fewer
than the number of maximum ticks per host already attached. If a potential
host was present, ticks would successfully attach if a random number generated
between 0 and 1 was less than the attachment probability specific to that host
and life stage (Table 1). For example, larval ticks had a higher likelihood of
successfully attaching to a mouse than a deer. After successfully attaching, lists
were updated to track the number of ticks currently feeding on each host, and
the ticks would feed for six days. After feeding, the fed tick would drop off in
whatever habitat cell the host was in at the end of the six days and would change
activity to the next activity laid out in Figure 1. Adult males would die after
feeding and presumably mating, while adult females would lay eggs and then
die. It is assumed that adult males of both species fed only once, on one host —
if they drop off, they die.

(c) Process host mortality and movement
Long-distance and short-distance host movement and mortality was processed
the same way, albeit with different numbers allocated to distance and home
range size (Table 1). When hosts were created, the centre of their home range
would be the habitat cell in which they were ‘born’. Each time step, hosts could
move a given number of cells (deer or mouse rate, Table 1) in any direction from
the centre of their home range. If the host was farther than a given number of
cells (deer or mouse home range, Table 1) away from the centre of their home
range, they would turn to move back towards that centre during the next time
step. In this way, hosts would always remain within a home range of a given
size.
Each time step, each individual host had a given probability of dying. Host
mortality was set at .02 (Table 1) for both short-distance and long-distance
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hosts to maintain some level of turnover in the simulation. Each time step, a
random number between 0 and 1 was generated; if the random number was less
than .02, that host would die. To keep host populations constant, for each host
that died another was created immediately and placed on a random habitat cell.
If a host died, all ticks on that host also died, but were not replaced.

(d) New populations
In homogenous habitat (Model S1), populations of ticks were visualized by
changing cell colour. To visualize only recent tick populations, the visualization
of populations would reset after every 360 time steps, as described above. If
there were no ticks on a habitat cell, the cell would remain its green background
colour. If there were one or more ticks on a cell, the cell would change colour
to yellow to indicate the cell was occupied. If there were six or more adult ticks
on a cell, the cell would turn red, to reflect the presence of a population, i.e. that
the cell was populated. From then on, the number of ticks on each cell would be
counted every time step, and cells would change colour to reflect tick occupancy.
Cells would stay coloured until the next reset at the beginning of the next year.
In heterogeneous habitat (Model S2), populations were not visualized, but the
number of ticks present in each cell were recorded.

(e) Determine genetic connectivity
To keep track of genetic connectivity, the number of ticks of each haplotype was
counted on each cell and updated each time step. This resulted in a running total
of the maximum number of ticks with each haplotype that had been present
on each cell. This number was reset each year, so that only the most recent
occupancy since the beginning of the year was recorded for each cell.

The model was programmed using NetLogo version 5.0. This software was written by
Uri Wilensky in 1999 and is freely available (http://ccl.northwestern.edu/netlogo/). The
model was run on the high-performance computing cluster using BehaviorSpace to run
experiments ‘headless’, from the command line. All statistical analyses on model results
were completed in R and MATLAB (MathWorks, Inc, 2015; R Core Team, 2015).

4, General model evaluation (Model S1)
4.1. General model performance

To evaluate general model performance, the model was initialized with 32 nymphal ticks
of eight haplotypes, four ticks of each haplotype, dropped at the centre of homogenous
habitat with a desiccation parameter of 1.0, which does not influence tick mortality. Tick
mortality was therefore influenced only by seasonal and stochastic effects. The simulation
was started on 01 March, to begin in the spring when nymphs of I. affinis and A. maculatum
are active. All parameter values were set at base values as indicated in Table 1. The resulting
phenologies of each tick life stage (Figure 2, based on an average of 25 runs with Table
1 inputs) show nymphs peaking in the spring, adults peaking in the summer and larvae
peaking in the winter each year. Growing annual numbers of nymphs and adults indicated
that the tick population was increasing every year, and that the model was coded properly.


http://ccl.northwestern.edu/netlogo/
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Figure 1. Flow diagram for processes for each time step of agent-based model.
Notes: Boxes and solid lines indicate model processes and transitions. Inset shows sub-processes within changing tick
activities. Reset tick populations and haplotypes reverted back to initial conditions, which were updated to reflect current

occupancy at the next time step.

Table 2. Parameters varied in sensitivity analyses.

Parameter Min Max Increment
Initial ticks 1 121 30
Initial deer 10 170 40
Initial mice 200 2000 600
Deer home range size 1 16 5
Mouse home range size 25 3.25 75
Deer rate of movement 1 1 5
Mouse rate of movement .25 1.75 5
Max ticks/deer 30 310 70
Max ticks/mouse 5 130 25
Desiccation (D) 1 41 10
Initial # of haplotypes 2 16 2,4,8,16

Notes: These parameters were chosen based on what the literature suggested could be the most important factors

in determining tick invasion patterns. Increments were chosen based on the literature and modified according to
computational constraints (Table 1).

4.2. Sensitivity analyses

To identify the factors with the greatest influence on tick invasion, sensitivity analyses
were performed on nine parameters (Table 2). Each of the parameters was varied one
at a time as shown in Table 2, while keeping all other parameters constant as shown
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in Table 1. Each variant of each parameter was run 25 times until 1080 time steps (3
years), or until the tick population was extirpated. A priori power analyses conducted
with G*Power version 3.0.10 indicated that 25 runs per parameter set would be sufficient
to provide statistical significance (Faul, Erdfelder, Lang, & Buchner, 2007). For each
parameter variation, metrics to determine the following four outputs were recorded at the
last time step of the simulation: tick population density, tick invasion distance, tick genetic
diversity and the spatial pattern of the tick spread. Cluster analysis was computed using
the DBSCAN package for MATLAB (MathWorks, Inc, 2015). Spearman rank correlation
coeflicients were calculated to determine the relative influence each parameter exerted on
the measured variables (Tables 3 and 4).

Some patterns that emerged from the sensitivity analyses were striking, though not
wholly unexpected. Mouse density and mouse home range size exerted the largest influ-
ences on tick population density at the end of the third year, with more mice with larger
home ranges resulting in higher tick densities. Deer home range size had the greatest
influence on invasion rate and on the spatial patterns of tick invasions in heterogeneous
habitat. Larger home ranges of long distance dispersers resulted in faster spread and
more clustering. The maximum number of ticks attached to a deer was not significantly
correlated with any invasion metric, although increasing the number of ticks that could be
attached to a mouse positively influenced the number of populations established. The initial
number of haplotypes had the greatest influence on the percentage of haplotypes surviving
at the end of three years. More initial haplotypes resulted in more die-off of haplotypes
through stochastic effects and a smaller percentage surviving through the end of the third
year. However, increasing the number of initial haplotypes significantly increased the mean
number of haplotypes surviving at the end of year three (Spearman correlation coefficient
=.96,p < .01).

4.3. General model application: hosts density vs. habitat quality

One essential question when dealing with tick range expansion is the relative influence of
habitat and hosts in determining dispersal and establishment. Because ticks spend much
of their lives oft-host, generalist ticks may establish anywhere that has suitable climatic
conditions (Cumming & VanVuuren, 2006). However, ticks depend on hosts not only for
sources of bloodmeals, but also to move them across a landscape.

To test whether host density or habitat quality had the largest influence on tick invasions,
a set of four models was run 100 times per parameter set. The models varied habitat quality
between good and poor, and host density between high and low (Figure 3). Changing
the number of available mice and deer varied host density, and changing the desiccation
parameter varied habitat quality. High host levels were set at 1600 mice and 120 deer, and
low host levels were set at 200 mice and 15 deer. Good quality habitat was created by a low
desiccation parameter that did not influence tick mortality (D = 1), while introducing a
high desiccation parameter (D = 30) created poor quality habitat. The magnitude difference
between high and low desiccation parameters was larger than that between high and
low host densities, because humidity can vary tremendously between adjacent habitat
fragments, but adjacent host densities exhibit lower variation because of host movements.
Each model was run on a landscape of homogenous habitat that did not change over time,
and all metrics other than host density and habitat were kept at baseline levels (Table 1).



Table 3. Spearman rank correlation table from sensitivity analyses.

Spearman rank correlation coefficients

Initial Mouse Deer Deerhome Mouse home Deerrate of Mouse rate of Max ticks/ Max ticks/ Initial no.
Output Metric ticks density density  range range movement  movement deer mouse D haplotypes
Tick invasion distance Distance to furthest populated patch -.13 .23 57% .87% .28 AT* .07 -.06 33%  —45% -.05
Tick invasion distance Distance to furthest occupied patch .14 21 TJ1* 9* .54% 63* 12 -.01 -06 -51*% .18
Tick invasion distance Mean distance to populated patches -.28  -.31 66% .85% =21 34 .04 -.02 31% =21 .09
Tick invasion distance Mean distance to occupied patches  -23  -35 78% 9* 2 .53% -.09 -.03 -14 -2 .04
Tick population density Number of populated patches -01 .81* -31* 12 .53% -.18 15 -1 58%  -.62% -.04
Tick population density Number of occupied patches .58%  .89* .88* .82% .92% 14 .38% .05 -09 -.89* 21
Spatial pattern of tick spread Number of clusters -02 -32 14 .65% -24 23 -23 -.09 .03 -.05 .18
Tick genetic diversity Surviving % haplotypes 68% .16 A9% .54% 24 .06 -.03 .08 .19 -63*  -.84*

Notes: Occupied patches had one or more ticks on a cell, and populated patches had six or more ticks occupying a cell. Correlation coefficients with a strong positive correlation are close to 1, and
those with a strong inverse correlation are close to —1. Spearman rank correlation coefficients are presented here, with stars indicating a significance level of p < .01. Bolded correlation coefficients
indicate the parameter that resulted in the largest effect size for each metric. All distances were measured from the cell where initial ticks were dropped, cell {0,0}.
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Figure 2. Seasonal phenology of numbers of (A) larvae, (B) nymphs and (C) adult ticks in a generalized
model.
Notes: Trends depicted are averages from 25 runs of the general tick Model S1 using the parameters outlined in Table 1.

Invasion metrics were measured at the last time step after 3 years for each run. Partial
rank correlation coefficients (PRCC) were computed to determine the relative influence of
hosts and habitats on invasion metrics (Table 5), and boxplots were generated to display
the differences between means among the four models (Figure 4).

In homogenous habitat, host density was found to have a relatively greater influence
on almost all invasion metrics, although both host density and habitat quality showed
significant effects on all invasion metrics (Table 5). Higher host densities resulted in higher
tick densities, faster invasion rate, more clusters and more genetic diversity of ticks at the
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Good habitat quality Bad habitat quality

High host
density

Low host
density

Figure 3. Models testing the influence of habitat quality and host density on tick invasions.

Notes: Habitat quality was modelled as either good? (D = 1) or bad? (D = 30), and host density was either high? (1600
mice, 120 deer) or low? (200 mice, 15 deer). These images represent example runs of the tick populations exposed to
these conditions across homogeneous landscapes after three years. Green cells are unoccupied habitat, red cells indicate
populated cells with > 6 adult ticks, and yellow cells are occupied by at least one tick of any life stage.

end of three years. Higher desiccation, or poor habitat, resulted in lower tick density, slower
invasion rate, fewer population clusters and less genetic diversity. Interactions between host
quantity and habitat quality produced different outcomes across invasion metrics (Figure
4). For example, when hosts were abundant and habitat quality was high, invasion distance,
density and genetic diversity were all higher than in any of the other models. The number of
clusters, however, was highest when hosts were abundant but habitat was poor, indicating
that tick populations likely established for only short durations before winking out, but
ticks were able to feed, move and reproduce freely enough that many small populations
could remain for at least three years. The number of tick population clusters was lowest
when populations were only rarely able to persist (few hosts and poor habitat), but the
number of clusters was also low when one large population resulted in one large cluster
across the whole simulated environment.
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5. Casestudy model application: influence of habitat connectivity on genetics
(Model S2)

While the above results suggested that host density is more important than habitat quality,
field data can show otherwise. Since 2009, our lab has conducted an intensive tick field
surveillance effort in southeastern Virginia, during which we observed two tick species
invading across the landscape (Nadolny, 2016; Nadolny, Wright, Sonenshine, Hynes,
& Gaff, 2014; Nadolny et al.,, 2011; Wright et al., 2011). We found that although I
affinis and A. maculatum were expanding their ranges simultaneously, they were doing
so in different spatial patterns and with different genetic connectivity and structure in
the resulting populations (Nadolny, 2016; Nadolny et al., 2015). We found I. affinis in
contiguous populations in the well-connected disturbed forested habitats that are common
in the southeast, and I. affinis populations exhibited high genetic homogeneity as a result.
Conversely, A. maculatum populations were only found in grassy habitat patches and were
often only present for a period of a few years before the process of ecological succession
extirpated the local population (Nadolny, 2016). Amblyomma maculatum tick populations
found in these habitat patches showed genetic dissimilarity to other populations, with
each population being genetically distinct from its neighbours (Nadolny et al., 2015).
Despite these differences in spatial and genetic patterns, both tick species are trophic
generalists, parasitizing a diverse and overlapping assortment of birds and small mammals
as immatures, and feeding on large mammals such as white-tailed deer as adults (Harrison
et al., 2010; Heller et al., 2016; Teel et al., 2010).

To address the importance of habitat heterogeneity and test the effects of habitat con-
nectivity on tick genetic connectivity, two models, each with multiple habitat types, were
adapted from the generic tick model by varying the desiccation parameter in designated
regions of the simulation (Figure 5). Because both tick species are trophic generalists but
appear to be habitat specialists, the same life history parameters (Table 1) were used to
model each tick species. The two models were each run 100 times, with one modelling ticks
moving through well-connected matrix of high quality habitat with patches of poor habitat
and one modelling ticks moving through a matrix of poor habitat to patches of high-quality
habitat. The model with well-connected high-quality habitat represented L. affinis moving
through contiguous preferred forested habitats and experiencing higher mortality in field
patches, while the other model represented the observed tendency of A. maculatum to
establish only in patchy field habitats and experience increased mortality in well-connected
forested habitats (Figure 5). The configurations of habitat were kept consistent between the
two models, but the desiccation parameters were reversed to indicate each ticks respective
habitat preferences. The presence or absence of each haplotype was recorded in each cell,
and each habitat type was separately tracked to determine the genetic makeup of the tick
population within that habitat at the end of three years. Tracking the presence of haplotypes
in each habitat also provided a proxy for tracking tick presence in each habitat. To recreate
the patterns of genetic and spatial connectivity, we observed in the field and we would
expect the I affinis model to result in one contiguous tick population with a similar genetic
makeup throughout the forested area of simulation, while the A. maculatum model should
result in genetically distinct populations in each patch of field habitat (Figure 5).

To analyse the similarity between tick populations in each habitat, a binary similarity
coefficient was used. These are simple similarity measures based on presence-absence data,



Table 4. P values for the Spearman rank correlations from sensitivity analyses shown in Table 3.

Spearman rank correlation P-values

Initial Mouse Deer Deerhome Mouse home Deerrate of Mouse rate of Max ticks/ Max ticks/ Initial no.

Output Metric ticks density density  range range movement  movement deer mouse D haplotypes
Tick invasion distance Distance to furthest populated patch .14 .02 <.01 <.01 <.01 <.01 .07 77 <.01 <.01 .61
Tick invasion distance Distance to furthest occupied patch .12 .04 <.01 <.01 <.01 <.01 12 .86 .27 <.01 .08
Tick invasion distance Mean distance to populated patches <.01  <.01 <.01 <.01 .02 <.01 .04 .97 <.01 .02 .38
Tick invasion distance Mean distance to occupied patches .01 <.01 <.01 <.01 .03 <.01 —.09 .94 13 .02 .69
Tick population density Number of populated patches 94 <01 <.01 .23 <.01 13 15 .18 <.01 <.01 71
Tick population density Number of occupied patches <.01 <01 <.01 <.01 <.01 22 .38 .35 46 <.01 .03
Spatial pattern of tick spread Number of clusters .83 <01 13 <.01 .01 .05 -.23 .34 .57 .59 .07
Tick genetic diversity Surviving % haplotypes <01 .12 <.01 <.01 .01 .63 —.03 .57 .04 <.01 <.01

Note: Occupied patches had one or more ticks on a cell, and populated patches had six or more ticks occupying a cell.
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Figure 4. Boxplots comparing means between four treatments groups testing influence of host density
(with host density designated as ‘high’ or ‘low’) and habitat quality (with habitat quality designated
as ‘bad’ or ‘good’) on invasion metrics. Metrics are (A) tick invasion distance, measured by adding
together all rate metrics, (B) tick invasion distance, measured by multiplying together all rate metrics,
(C) tick population density, measured by adding together all density metrics, (D) tick population density,
measured by multiplying together all density metrics, (E) genetic diversity and (F) number of clusters.
Notes: Rate metrics included maximum and average distances to occupied and populated patches, and density metrics
included number of populated and occupied patches. In lieu of presenting all box plots produced for rate and density
metrics, only the additive (+) and multiplicative (x) plots are shown to give an overview of the trends seen. Lines through
the middle of each box represent the median, and whiskers extend to lower and upper quartiles (25th and 75th percentile).
Outliers are represented with clear circles.

usually of species in habitats (Krebs, 2014). Here, haplotypes were used instead of species,
and Sorensens index was used to compute a similarity coeflicient between tick populations
in each pair of habitat types (Krebs, 2014). Because there were three habitats (one forest
and two field patches), the results of all three pairwise comparisons were summed to create
a general similarity index that was used for statistical analysis. Because many cells did not
have haplotypes present, the data were zero inflated and non-normal, so Wilcoxon rank
sum tests with continuity corrections were used to compare means between the treatment
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Table 5. Partial rank correlation coefficients (PRCC) measuring effects of host density and habitat quality
on tick invasions.

Outputs Metrics Host PRCC Habitat PRCC

Tick population density Occupied and populated patches .92 —.67
(additive)

Tick population density Occupied and populated patches .78 —.64
(multiplicative)

Tick population density Number of occupied patches .92 —.65

Tick population density Number of populated patches .58 —.69

Spatial pattern of tick spread Number of clusters .63 .26

Tick genetic diversity Percentage surviving haplotypes .57 —.48

Tick invasion distance Distance to occupied and populated 74 —.4
patches (additive)

Tick invasion distance Distance to occupied and populated .63 —.37
patches (multiplicative)

Tick invasion distance Mean distance to populated patch .45 —.17

Tick invasion distance Mean distance to occupied patch .68 —.13*

Tick invasion distance Max distance to populated patch .63 —.50

Tick invasion distance Max distance to occupied patch .87 —.54

Notes: PRCCs are between input parameters of the models (host density vs. habitat quality) and the output metrics
measuring tick population density, spatial pattern of tick spread, tick genetic diversity and tick invasion distance. All PRCCs
except those indicated with * were significantly different, with p < .01. Additive and multiplicative indices were generated
through adding together or multiplying together all tick density metrics (number of occupied and populated patches) or
tick rate of invasion metrics (distance to furthest occupied and populated patches, and mean distance to occupied and
populated patches).

groups. The general similarity index, mean haplotype survival overall and mean haplotype
survival in each habitat type were compared between treatment groups (Figure 6).

To determine which tick species exhibited populations that were more genetically
similar, the general similarity index was compared between the I affinis model and the
A. maculatum model. We found that I. affinis populations were more similar among
habitats, while populations in each habitat in the A. maculatum models tended to be
more genetically distinct. Habitat connectivity also influenced the number of haplotypes
that persisted until the end of the simulation, with I affinis models resulting in more
haplotypes surviving than A. maculatum models. In I affinis models, there was also a
greater diversity of haplotypes in forested habitat, while A. maculatum models resulted in
proportionally more haplotypes present in field habitats. These results correspond with
population genetics patterns described by Nadolny et al. (2015), where I affinis across the
eastern US comprised two large, contiguous, genetically similar populations, while each
sampling site with a population of A. maculatum across the eastern US was genetically
distinct.

6. Discussion

No model is a perfect representation of the agents and environment that it represents,
and the present model has several limitations that are fully acknowledged. Because of the
stochasticity inherent in agent-based models, they generally do not provide proof of a
stable system, there is no single solution and results may not be generalizable or easy to
validate (Grimm & Railsback, 2005). However, most of these limitations can be overcome
by running sufficient numbers of simulations to avoid outliers. This model takes place
on a very small spatial scale, which, while useful for modelling local invasion patterns,
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Figure 5. Adapted model designs to investigate a case study of Ixodes affinis and Amblyomma
maculatum, and simplified tick populations depicting spatial and genetic differences in tick populations
caused by habitat preferences. (A) Models for testing the influence of habitat connectivity on genetic
connectivity, and reproducing patterns exhibited by /. affinis (left) and A. maculatum (right). In the /.
affinis model, initial ticks are dropped in the centre of the completely connected ‘forest’ habitat, which
has a desiccation parameter, D, of 1, indicating good tick habitat. The two ‘field’” patches (red and
yellow) both are poor habitat quality with D = 20 for /. affinis ticks. The A. maculatum model has the
reverse setup, with initial ticks dropped in forest habitat that poor quality, with nearby field patches
of higher quality. In both simulations, ticks were initialized at the 0,0 coordinate, in the centre of the
forest habitat, and life history parameters were identical. (B) Graphic depicting simplified populations
of I. affinis (left) and A. maculatum (right), derived from population genetics data published in Nadolny
et al. (2015). Yellow habitat patches represent field habitats, and green represents forested habitat,
as in the model depicted in 5A. Pie charts represent populations of each tick, with different colours
representing different haplotypes present in each population. Arrows represent pathways of dispersal
between populations. Tick images suggest where ticks of each species are most likely to be found.
Because |. affinis survives better in forested habitat, which is well connected in the Mid-Atlantic United
States, and in our simulation, we expect similar genetic makeups in each population, with little survival
in field habitats. In contrast, because A. maculatum is better suited to patchy field habitats, we expect
each habitat patch to contain its own population, with little genetic similarity between populations and
little survival in forested habitats.
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Figure 6. Boxplots depicting differences between means of four different invasion metrics for /. affinis
and A. maculatum models. Whiskers indicate lower and upper quartiles, and circles indicate outliers.
Results and significance levels of Wilcoxon rank sum test are indicated below each set of plots. Significant
differences were observed between /. affinis and A. maculatum (A) general similarity indices, (B) overall
genetic diversity (number of haplotypes remaining) at the end of three years, (C) the proportion of ticks
(haplotypes) remaining in forested habitat at the end of three years and (D) the proportion of ticks
(haplotypes) remaining in field habitats at the end of three years.

is unsuitable for broader inferences on a regional scale. The number of individual ticks
and hosts that could be included limited the scale of the model. It was decided to scale
the model down in order to maintain the individual-based nature of both ticks and hosts,
rather than inferring tick-host interactions and movements as other models have done
(Wang et al., 2012, 2015). This model used the standard threshold for an established
population of more than six ticks (Fish & Howard, 1999), which is appropriate for these
initial, small populations. Also, in this simple model, hosts do not interact with habitat or
other hosts, and the host population is kept constant, so host demography is not included.
Also, the edges of the model simulation are reflective, which would have strong influences
after more than a few years of simulated time. For that reason, simulations were kept to a
maximum time of three years, which enabled tick populations sufficient time to establish
and grow, but not ‘outgrow’ the small area of the simulation.

The general tick model yielded several interesting inferences regarding the effects of
hosts and habitats on tick range expansions. The results of sensitivity analyses indicated
that in homogeneous habitat, long-distance dispersing hosts (e.g. deer) had the greatest
influences on both invasion rate and the spatial patterns by which ticks invade, while
short-distance hosts (e.g. mice) had the greatest influence on tick densities. This supports
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the results from a spatially explicit cellular automata model of I scapularis invasion, which
indicated that ticks feeding primarily on deer increased invasion rate, while feeding on
mice reduced invasion rate (Madhav et al., 2004). However, our results also highlight
the importance of small mammal communities during the initial establishment of ticks,
and the link between abundant small mammals and the ability of an area to sustain large
numbers of ticks, which has never before been explicitly modelled.

Results from the general tick model comparing the relative influences of host density
with habitat quality suggested that both significantly influence tick invasion rate, pattern,
density and genetic diversity. Interestingly, in homogenous habitat, host density had the
largest influence on all invasion parameters measured. However, once heterogeneous
habitat was introduced in the adapted model to recreate patterns exhibited by I. affinis and
A. maculatum, connectivity between high- quality habitat patches significantly influenced
tick invasions. Habitat connectivity especially influenced the genetic connectivity between
tick populations, even at a very small spatial scale. Greater habitat connectivity resulted in
more genetic similarity between populations and more overall genetic diversity surviving
at the end of three years. Isolated habitat patches resulted in more genetically distinct
populations, with less overall genetic diversity surviving after three years.

These changes in genetic connectivity and diversity mimic the genetic patterns exhibited
by L affinis and A. maculatum in the field, where habitat preference resulted in significant
differences between the two species (Nadolny et al., 2015). In the model, the I affinis
simulation resulted in one genetically heterogeneous population concentrated in the
forest, and the A. maculatum simulation resulted in several genetically distinct populations
concentrated in the field patches. These results replicate the genetic patterns found in L
affinis and A. maculatum populations across the eastern US (Nadolny et al., 2015). Simply
changing the connectivity between preferred habitat patches for each tick species simulated
these genetic and spatial differences for the parameters used in these scenarios. Knowledge
of the genetic makeup of these populations in situ provides a measure of validation for this
model, and the generation of such close patterns suggests that the agent-based model was
robust, even at such a small spatial scale. The only alteration made between the models
representing I. affinis and A. maculatum was in the spatial structure of the desiccation
parameter; therefore, that is the only condition that could have been responsible for the
changes in patterns observed. Although there are other ecological differences between the
two tick species that could inform invasion patters, many of the important parameters
including common hosts parasitized, length of time feeding and lifespan are markedly
similar.

7. Future directions

The models presented comprise an initial investigation of some parameters which may
be important to tick range expansions and serve as a proof-of-concept for the utility of
agent-based models to address questions of biological invasions. As a result, there are many
things that we did not address. Since the focus of these models are on the initial invasion, we
did not track the tick population beyond three years post arrival. A tick carrying capacity
was also set to accommodate the computational limitations associated with agent-based
models tracking the actions of thousands of individual agents.
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Biologically, several important factors should be considered for future iterations of this
model. Both I affinis and A. maculatum parasitize birds as immatures (Harrison et al.,
2010; Teel et al., 2010), but due to the computational constraints of maintaining an agent-
based model that included individual tick-host interactions; it was impossible to model
a landscape of sufficient size to include avian movement. Also, other factors modelled
as identical between the two species may actually contribute to differences in spatial and
genetic patterns, such as mortality rates, durations of feeding, development periods or
feeding behaviour of male ticks (Oliver et al., 1987; Teel et al., 2010). Inclusion of genetic
information from male ticks would allow for the use of nuclear chromosomal markers in
addition to the maternally inherited markers used in this model. While the general tick
model parameters included in Table 1 were within the average range of behaviour for both
species, differences in these parameters should be considered in future, more sophisticated
models. Biological parameters such as the number of days a tick spent in each life stage or
feeding on a host were also left static, whereas it would be more true to life to vary those
parameters stochastically.

As written, the model presented here is a useful tool for learning about the relative
influence of habitat and host parameters on tick range expansions and genetic connectivity.
For future incarnations of this model, it will be useful to measure the spatial patterns
of spread more directly, including measuring the size of clusters and distance between
clusters. Monitoring the persistence of clusters of tick populations would also provide
useful information on the stability of tick populations throughout the years immediately
following a range expansion. Including more complex host dynamics, such as herding
behaviour, territory defence and interaction of hosts with the landscape will also be
important for more realistic models of tick-host interactions.

The effects of changing habitat over time are important for tick population establishment
and persistence, so for future models it would be interesting to change the desiccation
parameter over time to model the influence of succession or deforestation on tick popu-
lations. Also, the simulations presented here were at a very small spatial scale, where edge
effects may influence invasion rate after only a few years. Increasing the size of the model,
perhaps through the creation of a mixed deterministic/stochastic model, would allow for
more realistic model of tick invasions over regional spatial scales. A larger spatial scale
could include more host categories, such as migratory birds, and allow a more detailed
investigation of the influence of different host categories on the ability of tick populations
to establish and persist outside their native range.

Acknowledgements

We would like to heartily thank Elsa Schaefer for her technical feedback throughout the construction
of the model and the review process. We would also like to thank Wayne Hynes, David Gauthier
and Eric Walters for their thoughtful review of an earlier draft of this manuscript. Thanks also to
Volker Grimm and other anonymous reviewers for their suggestions on an earlier version of this
manuscript. Tick images were provided by Graham Snodgrass and Ellen Stromdahl of the US Army
Public Health Center Human Tick Test Kit Program.

Disclosure statement

No potential conflict of interest was reported by the authors.



LETTERS IN BIOMATHEMATICS (&) 27

Funding

Dr Nadolny was supported by a Science, Mathematics and Research for Transformation (SMART)
scholarship from the Department of Defense and the American Society for Engineering Education,
as well as a dissertation support grant provided by the Jayne Koskinas Ted Giovanis Foundation for
Health and Policy, a Medical, Urban, and Veterinary Entomology (MUVE) grant administered by
the Entomological Society of America, and a research grant from the Virginia Academy of Sciences.
The content is solely the responsibility of the authors and does not necessarily represent the official
views of any granting agency.

References

Bialozyt, R., Ziegenhagen, B., & Petit, R. J. (2006). Contrasting effects of long distance seed dispersal
on genetic diversity during range expansion. Journal of Evolutionary Biology, 19(1), 12-20.

Bunnell, F. L., Campbell, R. W., & Squires, K. A. (2004). Conservation priorities for peripheral
species: The example of British Columbia. Canadian Journal of Forest Research, 34(11), 2240-
2247.

Childs, J. E., & Paddock, C. D. (2003). The ascendancy of Amblyomma americanum as a vector of
pathogens affecting humans in the United States. Annual Review of Entomology, 48(1), 307-337.

Cumming, G. S., & VanVuuren, D. P. (2006). Will climate change affect ectoparasite species ranges?
Global Ecology and Biogeography, 15(5), 486-497.

Deangelis, D. L., & Mooij, W. M. (2005). Individual-based modeling of ecological and evolutionary
processes. Annual Review of Ecology, Evolution, and Systematics, 36(1), 147-168.

Dennis, D. T., Goodman, J. L., & Sonenshine, D. E. (2005). Tick-borne diseases of humans.
Washington, DC: ASM Press.

Diuk-Wasser, M. A., Vourc’h, G., Cislo, P., Hoen, A. G., Melton, F., Hamer, S. A., ... Fish, D.
(2010). Field and climate-based model for predicting the density of host-seeking nymphal Ixodes
scapularis, an important vector of tick-borne disease agents in the eastern United States. Global
Ecology and Biogeography, 19(4), 504-514.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power
analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods,
39(2), 175-191.

Fish, D., & Howard, C. (1999). Methods used for creating a national Lyme disease risk map. MM WR
Recommendations and Reports, 48(RR-7), 21-24.

Gaff, H. (2011). Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical
Biosciences and Engineering, 8(2), 463-473.

Gaff, H., Gross, L., & Schaefer, E. (2009). Results from a mathematical model for human monocytic
ehrlichiosis. Clinical Microbiology and Infection, 15, 15-16.

Gaff, H., & Nadolny, R. (2013). Identifying requirements for the invasion of a tick species and tick-
borne pathogen through TICKSIM. Mathematical Biosciences and Engineering, 10(3), 625-635.
George, J. E. (2008). The effects of global change on the threat of exotic arthropods and arthropod-
borne pathogens to livestock in the United States. Annals of the New York Academy of Sciences,

1149(1), 249-254.

Grimm, V., Berger, U., Deangelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD
protocol: A review and first update. Ecological Modelling, 221(23), 2760-2768.

Grimm, V., & Railsback, S. F. (2005). Individual-based modelling and ecology. In S. A. Levin (Ed.),
Princeton series in theoretical and computational biology. Princeton, NJ: Princeton University
Press.

Haile, D. G., & Mount, G. A. (1987). Computer simulation of population dynamics of the lone star
tick, Amblyomma americanum (Acari: Ixodidae). Journal of Medical Entomology, 24(3), 356-369.

Harrison, B. A., Rayburn, W. H., Toliver, M., Powell, E. E., Engber, B. R, Durden, L. A., Robbins, R.
G., Prendergast, B. F., & Whitt, P. B. (2010). Recent discovery of widespread Ixodes affinis (Acari:
Ixodidae) distribution in North Carolina with implications for Lyme disease studies. Journal of
Vector Ecology, 35(1), 174-179.



28 R. M. NADOLNY AND H. D. GAFF

Heller, E. L., Wright, C. L., Nadolny, R. M., Hynes, W. L., Gaff, H. D., & Walters, E. L. (2016).
New records of Ixodes affinis (Acari: Ixodidae) parasitizing avian hosts in southeastern Virginia.
Journal of Medical Entomology, 53(2), 441-445.

Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated
by different forms of dispersal. Heredity, 77, 282-291.

Kekkonen, J., Wikstrm, M., & Brommer, J. E. (2012). Heterozygosity in an isolated population of
a large mammal founded by four individuals is predicted by an individual-based genetic model.
PLoS ONE, 7(9), e43482.

Krebs, C.J. (2014). Ecological methodology (3rd ed.). In press. Chapter 12: Similarity coefficients and
cluster analysis. Retrieved from http://www.zoology.ubc.ca/~krebs/books.html

Kruse, 1., Hare, M. P., & Hines, A. H. (2011). Genetic relationships of the marine invasive crab
parasite Loxothylacus panopaei: An analysis of DNA sequence variation, host specificity, and
distributional range. Biological Invasions, 14(3), 701-715.

Leger, E., Vourch, G., Vial, L., Chevillon, C., & Mccoy, K. D. (2012). Changing distributions of ticks:
causes and consequences. Experimental and Applied Acarology, 59(1-2), 219-244.

Madhav, N. K., Brownstein, J. S., Tsao, J. I., & Fish, D. (2004). A dispersal model for the range
expansion of blacklegged tick (Acari: Ixodidae). Journal of Medical Entomology, 41(5), 842-852.

MathWorks, Inc. (2015). MATLAB 8.0 and Statistics Toolbox 8.1. Natick, MA: Author.

Mount, G. A., Haile, D. G., & Daniels, E. (1997). Simulation of blacklegged tick (Acari: Ixodidae)
population dynamics and transmission of Borrelia burgdorferi. Journal of Medical Entomology,
34(4), 461-484.

Nadolny, R. (2016). A hitchhikers guide to invasion biology: Describing the ecological mechanisms
underlying the range expansions of two ixodid tick species (Doctoral dissertation). Ann Arbor, ML
Retrieved from ProQuest Dissertations and Theses. (Accession No. [10119201]).

Nadolny, R., Gaft, H., Carlsson, J., & Gauthier, D. (2015). Comparative population genetics of two
invading ticks: Evidence of the ecological mechanisms underlying tick range expansions. Infection,
Genetics and Evolution, 35, 153-162.

Nadolny, R. M., Wright, C. L., Hynes, W. L., Sonenshine, D. E., & Gaff, H. D. (2011). Ixodes affinis
(Acari: Ixodidae) in southeastern Virginia and implications for the spread of Borrelia burgdorferi,
the agent of Lyme disease. Journal of Vector Ecology, 36(2), 464-467.

Nadolny, R. M., Wright, C. L., Sonenshine, D. E., Hynes, W. L., & Gaff, H. D. (2014). Ticks and
spotted fever group rickettsiae of southeastern Virginia. Ticks and Tick-borne Diseases, 5(1), 53-57.

Ogden, N. H., Bigras-Poulin, M., Hanincov, K., Maarouf, A., OCallaghan, C. J., & Kurtenbach, K.
(2008). Projected effects of climate change on tick phenology and fitness of pathogens transmitted
by the North American tick Ixodes scapularis. Journal of Theoretical Biology, 254(3), 621-632.

Ogden, N. H., Maarouf, A., Barker, I. K., Bigras-Poulin, M., Lindsay, L. R., Morshed, M. G,
O’callaghan, C. J., Ramay, F., Waltner-Toews, D., & Charron, D. F. (2006). Climate change and the
potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. International
Journal for Parasitology, 36(1), 63-70.

Oliver, J. H. (1996). Lyme borreliosis in the southern United States: A review. The Journal of
Parasitology, 82(6), 926-935.

Oliver, J. H., Keirans, J. E., Lavender, D. R., & Hutcheson, H. J. (1987). Ixodes affinis Neumann
(Acari: Ixodidae): New host and distribution records, description of immatures, seasonal activities
in Georgia, and laboratory rearing. The Journal of Parasitology, 73(3), 646-652.

Pertoldi, C., & Topping, C. (2004). The use of agent-based modelling of genetics in conservation
genetics studies. Journal for Nature Conservation, 12(2), 111-120.

R Core Team. (2015). R: A language and environment for statistical computing. Retrieved from
http://www.R-project.org

Radcliffe, J., & Rass, L. (1984). The spatial spread and final size of models for the deterministic
host-vector epidemic. Mathematical Biosciences, 70(2), 123-146.

Randolph, S. E. (1994). Population dynamics and density-dependent seasonal mortality indices of
the tick Rhipicephalus appendiculatus in eastern and southern Africa. Medical and Veterinary
Entomology, 8(4), 351-368.


http://www.zoology.ubc.ca/~krebs/books.html
http://www.R-project.org

LETTERS IN BIOMATHEMATICS (&) 29

Ros, R., & Pugliese, A. (2007). Effects of tick population dynamics and host densities on the
persistence of tick-borne infections. Mathematical Biosciences, 208(1), 216-240.

Sandberg, S., Awerbuch, T. E., & Spielman, A. (1992). A comprehensive multiple matrix model
representing the life cycle of the tick that transmits agent of Lyme disease. Journal of Theoretical
Biology, 157(2), 203-220.

Teel, P. D., Ketchum, H. R., Mock, D. E., Wright, R. E., & Strey, O. F. (2010). The Gulf Coast Tick:
A review of the life history, ecology, distribution, and emergence as an arthropod of medical and
veterinary importance. Journal of Medical Entomology, 47(5), 707-722.

Wang, H. H., Grant, W. E,, & Teel, P. D. (2012). Simulation of climate-host-parasite-landscape
interactions: A spatially explicit model for ticks (Acari: Ixodidae). Ecological Modelling, 243, 42—
62.

Wang, H. H,, Grant, W. E,, Teel, P. D., & Hamer, S. A. (2015). Simulation of climate-tick-host-
landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick
densities. Journal of Vector Ecology, 40(2), 247-255.

Wright, C. L., Nadolny, R. M,, Jiang, J., Richards, A. L., Sonenshine, D. E., Gaff, H. D., & Hynes, W.
L. (2011). Rickettsia parkeri in Gulf Coast Ticks, southeastern Virginia, USA. Emerging Infectious
Diseases, 17(5), 896-898.



	Modelling the Effects of Habitat and Hosts on Tick Invasions
	Original Publication Citation

	1. Introduction
	2. Background information and modelling considerations
	3. Model description
	4. General model evaluation (Model S1)
	4.1. General model performance
	4.2. Sensitivity analyses
	4.3. General model application: hosts density vs. habitat quality

	5. Case study model application: influence of habitat connectivity on genetics (Model S2)
	6. Discussion
	7. Future directions
	Acknowledgements
	Disclosure statement
	Funding
	References

