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ABSTRACT

Many tick species are invading new areas because of anthropogenic
changes in the landscape, shifting climatic variables and increasing
populations of suitable host species and tick habitat. However, the
relative influences of habitat and hosts in tick dispersal and tick
population establishment remain in question. A spatially explicit
agent-based model was developed to explore the spatio-temporal
dynamics of a generic tick population in the years immediately
following the introduction of ticks into a novel environment. The
general model was then adapted to investigate a case study of two
recent tick species invasions into the Mid-Atlantic United States. The
recent simultaneous range expansions of two ixodid tick species,
Ixodes affinis andAmblyommamaculatum, provided an opportunity to
determine if invasionpatternsobserved in thefield couldbe replicated
in silico on a small scale. The models presented here indicated that for
generalist parasites, habitat connectivity is a better indicator than host
mobility for spatial and genetic patterns of parasite range expansion.
In addition, our results demonstrate the utility of including genetic
variables into agent-based models: gene flow functions as a proxy for
measuring dispersal, and models can be validated using results from
the field.
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1. Introduction

Ticks are blood-feeding ectoparasites that parasitize humans and animals and are second
only to mosquitoes in spreading vector-borne diseases worldwide (Dennis, Goodman, &
Sonenshine, 2005). Many tick species are expanding their ranges as a result of anthro-
pogenic changes in the landscape, shifting climatic variables and increasing populations of
suitable host species and suitable tick habitat (Childs & Paddock, 2003; Ogden et al., 2008,
2008). Climate change has been forecasted to lead to an overall increase in tick habitat in
the coming years and is already facilitating tick range expansions worldwide, leading to
increasing disease risks (Cumming&VanVuuren, 2006;George, 2008; Leger,Vourch,Vial,
Chevillon,&Mccoy, 2012). It is essential to understand factors that limit tick distribution in
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LETTERS IN BIOMATHEMATICS 3

order to predict disease emergence, as eradication of ticks and their associated pathogens,
once established, may be impossible (Cumming & VanVuuren, 2006; Leger et al., 2012).

Tick invasions are different from invasions by other taxa because tick life history is
sharply demarcated between periods ofmovement on-host and longer relatively stationary
periods off-host. In order to understand themovement patterns of ticks across a landscape,
the suitability of both abiotic and biotic factors must be considered. Ticks have a complex
life history that may involve differing host preferences throughout ontogeny and must
find suitable hosts at each life stage in order to feed, grow and reproduce. Ticks depend
on the large-scale movements of their hosts to transport them across a landscape and are
particularly vulnerable to environmental pressures, such as desiccation, when they are free-
living off-host (Leger et al., 2012). Host specificity is key to any parasites’ ability to disperse
across a landscape and invade new areas (Kruse, Hare, & Hines, 2011). Because many
human-biting species of ticks are generalists and can feed on a variety of avian,mammalian
and reptilian species throughout ontogeny, these tick range expansions are likely limited
predominantly by environmental and climatic variables, including landscape use, habitat
availability and the presence of suitable micro-climates (Cumming & VanVuuren, 2006).
Ticks are strongly dependent on both host availability and environmental factors for their
survival and reproduction in any habitat (Leger et al., 2012), but the relative importance
of hosts and habitats in tick range expansions has never been fully explored.

Models have been used to elucidate the complex life history of ticks and to mitigate
tick-borne disease risk. Differential equation-based, age-structured difference and matrix-
based models have provided insight into the population dynamics of ticks and the dy-
namics of tick-borne disease (Gaff, Gross, & Schaefer, 2009; Haile &Mount, 1987; Mount,
Haile, & Daniels, 1997; Ros & Pugliese, 2007; Sandberg, Awerbuch, & Spielman, 1992).
Spatially explicit components have been added using remote sensing, GIS and partial
differential equation models (Bunnell, Campbell, & Squires, 2004; Diuk-Wasser et al.,
2010; Radcliffe & Rass, 1984). While helpful, most of these models focus primarily on
proportional interactions between ticks and hosts that inform our understanding of tick
populations and pathogens, but not individual movement. Spatially explicit agent-based
models simulate the actions of individual ticks and hosts and can be used to capture the
mechanistic phenomena underlying individual episodes of range expansion (Gaff, 2011;
Gaff & Nadolny, 2013; Madhav, Brownstein, Tsao, & Fish, 2004; Wang, Grant, & Teel,
2012; Wang et al., 2015).

Here, a spatially explicit agent-based model was developed to simulate the spatio-
temporal dynamics of three-host tick populations in the years immediately following
the introduction of ticks to a novel environment. Using this model, derived from the
TICKSIM model (Gaff, 2011; Gaff & Nadolny, 2013), it was possible to determine the
relative strength of influence that host and habitat-based parameters have on invasion
rate, population density, geographic pattern of tick invasion and the genetic diversity
in resulting tick populations. In addition to addressing broad questions, the model was
used to investigate the case study of two recent tick species invasions in Virginia. The
recent simultaneous range expansions of the two ixodid tick species, Ixodes affinis and
Amblyomma maculatum, into the Mid-Atlantic region of the US provided an opportunity
to compare the relative influences of host and habitat choice on invasion dynamics and
genetic connectivity (Nadolny, Wright, Hynes, Sonenshine, & Gaff, 2011; Nadolny et al.,
2015; Wright et al., 2011). Information gleaned from literature values, field studies on tick
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4 R. M. NADOLNY AND H. D. GAFF

ecology and lab studies on tick genetic connectivity was used to parameterize the model,
and the emergent properties were compared to determine if the invasion patterns seen in
the field could be replicated in silico on a small scale.

In the sections that follow,wewill provide some background information andmodelling
considerations and describe the model following the protocol recommended for agent-
based models by Grimm et al. (2010). The general performance of the model will be
evaluated, as will the sensitivity of simulated tick dynamics to changes in habitat and host-
related parameters. Finally, the applications of the model will be demonstrated through
determining the relative influence of habitat suitability and host density on simulated
invasions by a generalized tick, and the influence of habitat connectivity on the genetic
signatures of newly established populations of simulated I. affinis and A. maculatum.

2. Background information andmodelling considerations

Two tick species, I. affinis and A. maculatum, are concurrently expanding their ranges
into the Mid-Atlantic region of the US and have been observed invading in different
geographic patterns, and with different genetic signatures (Nadolny et al., 2015).Ixodes
affinis has been implicated in the sylvatic cycle of Borrelia burgdorferi, the agent of Lyme
disease, while A. maculatum is a known vector of numerous pathogens of medical and
veterinary importance, including Rickettsia parkeri, the agent of Tidewater spotted fever
(Oliver, 1996; Teel, Ketchum, Mock, Wright, & Strey, 2010). Ixodes affinis is generally
found in disturbed forested habitat and is a generalist tick species that feeds on small
mammals and birds during immature life stages, and medium and large mammals during
the adult stage. This tick species exhibits genetically well-mixed populations that are likely
created andmaintained through short-distance dispersal events throughout the contiguous
forested habitat that is abundant in the Mid-Atlantic (Nadolny et al., 2015).

Amblyomma maculatum is another generalist tick species that feeds on birds and
mammals but is found only in disturbed open habitats, which are patchily distributed
throughout the Mid-Atlantic (Harrison et al., 2010; Wright et al., 2011). Populations of
this tick species are genetically isolated fromother nearbypopulations, and eachpopulation
is likely founded by multiple long-distance founding events and then maintained by the
high densities of rodent hosts that are present in grass-dominated habitats (Nadolny
et al., 2015). Both I. affinis and A. maculatum generally complete their life cycle in one
year and have significant overlap in the hosts parasitized at all life stages (Harrison et al.,
2010; Teel et al., 2010). One notable difference is that I. affinis are not known to feed
on domesticated artiodactyls, such as cattle, whereas A. maculatum will readily feed on
cattle as adults; because the cattle industry is far less developed in the Mid-Atlantic than
in other areas where these tick species are established, cattle and cattle pasture are not
explicitly included in our models. Their different range expansion patterns and differences
in genetic connectivity can likely be explained by the disparate habitat needs of these tick
species rather than differences in host preferences.Wehypothesize that differential survival
in different habitat types is an important factor in determining genetic and spatial spread
of ticks, and that these patterns observed in situ can be modelled through the inclusion
of heterogeneous habitats and species-specific mortality rates associated with different
habitats.
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LETTERS IN BIOMATHEMATICS 5

While genetic connectivity has long been used as a proxy formeasuring species dispersal
among habitat patches (Ibrahim, Nichols, & Hewitt, 1996), there has been no inclusion
of genetic parameters in models describing ticks. It has been suggested that incorporating
population genetics into agent-based models would be useful for describing many evolu-
tionary processes (Deangelis &Mooij, 2005), but inclusion of genetic components in agent-
basedmodels of range expansion and invasion of any species is rare (Bialozyt, Ziegenhagen,
& Petit, 2006; Kekkonen, Wikstrm, & Brommer, 2012; Pertoldi & Topping, 2004). By
including genetics in agent-based models of species undergoing range expansions, it is
possible to validate models using the genetic diversity and connectivity observed in the
field.

The agent-based model described here is derived from previous TICKSIM models,
which modelled tick–host interactions and emergent patterns of disease prevalence (Gaff,
2011; Gaff & Nadolny, 2013). The current model has been altered in some significant
ways from these previous iterations. First, the presence of a pathogen passed between
ticks and hosts has been removed in order to generalize the model beyond a specific tick-
pathogen system and to focus specifically on tick range expansions. Pathogen dynamics
can be reintroduced in later, more complex models. Second, while the initial TICKSIM
only tracked ticks and hosts, our version of the model also tracks spatially explicit tick
populations, and their appearance in space and time, by colour-coding habitat cells based
on the presence or absence of ticks. This allows measurement of invasion rate, spatial
pattern of invasion and tick population densities overall and in specific habitats. Third,
this model includes heterogeneous habitats and includes a desiccation parameter that
affects ticks directly to inducemortality in poor-quality habitat patches. Finally, this model
includes maternally inherited genetic haplotypes to simulate patterns of mitochondrial
gene flow among tick populations.

Other recent agent-based models have included heterogeneous habitats, as well as
multiple hosts which ticks can interact. Recent models of lone star tick (Amblyomma
americanum) populations in Texas used tick–host–climate–landscape interactions to sim-
ulate field conditions and determine the influence of climate change and seasonality on
tick populations (Wang et al., 2012, 2015). These models predicted tick density increases
after the addition of a greenbelt to a Texas city and changes in tick densities with the effects
of climate change on the seasonal activities of tick hosts. While both these models and the
present model include heterogeneous habitat, multiple host types, host home ranges and
climate variables; the present model differs in several important ways. The focus of the
present model is on tick invasions, not on established populations of ticks. Although the
landscape in the present model is markedly less complex than the landscapes modelled by
Wang et al. (2012, 2015), each individual tick is tracked, each host movement is tracked
and there is higher temporal resolution.

One other recent model that examines tick range expansions focused on the role of
different host types on the range expansion of the blacklegged tick (Ixodes scapularis)
into Canada (Madhav et al., 2004). Madhav et al. (2004) found that long-range hosts
(e.g. deer) increase invasion rate, high densities of short-distance hosts (e.g. mice) can
slow invasions and migratory birds play an important role in the movement of these
ticks across landscapes. In this cellular automata model, the authors measured only the
effects of varying host parameters on area colonized, using a simplified, spatially explicit
landscape. While our model shares many commonalities with the I. scapularis model,
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6 R. M. NADOLNY AND H. D. GAFF

Madhav et al. (2004) did not test the influence of different habitat types on invasions,
nor did they monitor invasion rate, tick population connectivity or geographic patterns
of tick populations. The I. scapularis model was also deterministic, rather than stochastic,
which does not take into account individual tick and host interactions, and modelled the
influence of tick burden on invasion, which was not tested in the model presented here.
A final difference is that the I. scapularis model operated at a coarse resolution of 1 km2,
while our model operated at a fine resolution, with a total extent of only 165 ha.

Thismodel is based on the premise that interactions between individual ticks, their hosts
and their habitats generate the patterns observed in tick range expansions. By varying host
and habitat parameters and including stochastic effects, it is possible to determine the
relative influence of host and habitat parameters on tick invasions at the local scale. By
measuring invasion rate, tick population density, geographic patterns of tick population
establishment, and genetic diversity and connectivity of tick populations, it is possible to
answer the following questions: (1) Does host density or habitat quality have the greater
influence on tick invasions and (2) How does habitat connectivity influence the genetic
connectivity and genetic diversity of invading ticks?

3. Model description

This model description follows the Overview, Design concept and Details (ODD) protocol
for describing agent-based models developed by Grimm et al. (2010) and consists of six
elements. The first three elements provide an overview, the fourth element explains general
concepts underlying the model design and the last two elements provide details. The
following description is for a set of complementary models, a general model (Model S1)
and a case study model (Model S2). Model S1 was a general model of tick population
establishment, with no tick species-specific inputs, and tick–host interactions simulated
within a homogeneous habitat. Model S1 was used to assess general model performance,
perform sensitivity analyses and address questions on the influence of host density and
habitat quality on tick invasions. Model S2 utilizes the same underlying mechanics as
Model S1 (described in detail below), but allows for the investigation of a case study using
species-specific inputs from I. affinis and A. maculatum. Model S2 incorporates multiple
habitats and species-specific survival rates in each habitat type. This allows for investigation
into the effects of habitat connectivity on tick invasion patterns and the resulting genetic
diversity of new tick populations.

(1) Purpose
The purpose of this model is to simulate the spatio-temporal dynamics and genetic
diversity of new tick populations after an initial introduction event to a novel area
in response to varying host and habitat parameters, and to better understand the
underlying mechanisms leading to the establishment and dispersal of tick popula-
tions across a landscape. The results of these simulations will help determine the
relative importance of host density, host dispersal distance and habitat suitability in
shaping the spatial patterns, invasion rate, population density and genetic diversity
and connectivity of newly establishing tick populations. The ability to reproduce the
spatial and genetic connectivity patterns observed in situ of invading tick species I.
affinis and A. maculatum is of particular interest.
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LETTERS IN BIOMATHEMATICS 7

(2) Entities, state variables, and scales
(a) Agents/individuals

This model considered the interactions among three populations of agents:
long-distance dispersing hosts (e.g. deer), short-distance dispersing hosts (e.g.
mice) and ticks. Hosts were characterized by the following state variables:
identification number, home base, home range size, mortality rate, number
of ticks currently feeding on the host and the maximum number of ticks able to
attach to the host at one time. To keep host populations constant, if a host died it
was immediately replaced by another host, which was created on a random cell.
The home base of each host was the X, Y coordinates of the cell it was created
on. Each host had a specific home range and was only able to move within a
certain subset of cells away from their home base. Host categories varied in the
distance they could travel per time step and the size of their home range. Hosts
moved ticks that were attached across the landscape, and ticks could only move
when on a host. A host could carry up to the specified maximum number of
ticks, and if a host died, all ticks on that host also died.
Ticks were characterized by the following state variables: identification number,
sex, life stage, activity, identity number of current host andmaternally inherited
genetic haplotype. Ticks were assigned a sex (male or female) at birth andmoved
through the following four life stages throughout ontogeny: egg, larva, nymph
and adult. Tick host preferences changed depending on life stage and were
reflected by probabilities of successful attachment to each host category. Ticks
moved through three activities during each life stage: resting (which includes
developing), questing and feeding. Adult female ticks completed a final activity,
laying eggs, after feeding. The tick population did not remain constant. Mating
was not explicitly included in this model, but ticks were assumed to mate on-
host, so female ticks were able to lay eggs after a successful bloodmeal. There
was a set number of haplotypes divided equally between the initial ticks at
the start of each simulation (e.g. if there were eight initial haplotypes and
32 initial ticks, there would be four ticks of each haplotype), and each new
tick ‘hatched’ throughout the course of the simulation inherited its haplotype
from its mother. Parameter values for hosts and ticks can be found in Table 1.
Parameter values were derived from the literature where available, or parameter
values were estimated for a generalized tick model (GTM) based on literature
reviews and field data.

(b) Spatial units
Environmental conditions did not change on a cell by cell basis, but cell colour
was used to indicate changes in tick occupancy patterns. Cells were either
unoccupied, occupied (between one and five ticks of any life stage present)
or populated (six or more ticks present on that cell). New tick populations
were observed through the colour variables of cells, with colour reflecting
patch occupation by ticks. A green colour variable indicated the background
environment where no ticks are present. Once a tick was hatched or moved
onto a cell, that colour variable turned to yellow to indicate that ticks were
present. If six or more adult ticks occupied a cell simultaneously, that colour
variable changed to red to indicate that a population of ticks was present
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8 R. M. NADOLNY AND H. D. GAFF

Table 1. Baseline parameter values used in model.

Entities Parameter Category or value/unit Reference or Reasoning

Environment Simulation extent (ha) 165 SA
Number of cells 2601 (25 cells in all

directions from 0,0)
SA

Hectares/patch .06 SA
Time of year (t), influencing
tick mortality

.1 in Jan, Feb, Mar, Jul, Oct,
Nov and Dec; .01 in Apr,
May, Jun, Aug, Sep

Gaff and Nadolny (2013)

Desiccation parameter (D) 1 SA
Patches Occupied (yellow) patch

(# ticks needed)
1 tick of any life stage SA

Population (red) patch
(# ticks needed)

At least 6 adults Fish and Howard (1999)

LD hosts Initial deer population 50 Nadolny (2016)
Deer rate of movement 1 patch per time step,

randomwalk
SA

Deer home range 13 patches in any direction
from home base, total of
729 patches (50 ha)

SA, Nadolny (2016)

Deer mortality .02 Gaff and Nadolny (2013)
Max ticks per deer 30 SA

SD hosts Initial mouse population 800 Nadolny (2016)
Mouse rate of movement .5 patches per time step,

randomwalk
SA

Mouse home range 1 patch in any direction
from home base, total of 9
patches (.56 ha)

SA, Nadolny (2016)

Mouse mortality .02 Gaff and Nadolny (2013)
Max ticks per mouse 30 SA

Ticks Prob. larva attachment on
deer

.01 GTM Harrison et al. (2010), Teel et al. (2010)

Prob. larva attachment on
mouse

.9 GTM Harrison et al. (2010), Teel et al. (2010)

Prob. nymphattachment on
deer

.01 GTM Harrison et al. (2010), Teel et al. (2010)

Prob. nymphattachment on
mouse

.75 GTM Harrison et al. (2010), Teel et al. (2010)

Prob. adult attachment on
deer

.75 GTM Harrison et al. (2010), Teel et al. (2010)

Prob. adult attachment on
mouse

.01 GTM Harrison et al. (2010), Teel et al. (2010)

Initial tick population 32 nymphs SA
Eggs laid per female 1500 Teel et al. (2010), Oliver et al. (1987)
Time from egg to hatching 120 days Teel et al. (2010), Oliver et al. (1987)
Molt time larva to nymph 90 days Teel et al. (2010), Oliver et al. (1987)
Molt time nymph to adult 90 days Teel et al. (2010), Oliver et al. (1987)
Maximum questing time 120 days Teel et al. (2010), Oliver et al. (1987)
Length of blood meal 6 days (for adults, nymphs,

and larvae)
Teel et al. (2010), Oliver et al. (1987)

Initial number of haplo-
types

8 SA

Notes: LD indicates long-distance dispersing hosts (e.g. deer), SD indicates short-distance dispersing hosts (e.g. mice). A
reference or a reason for the assumption is provided for each parameter. SA indicates that values were chosen based
on computational limits determined by sensitivity analyses or trial and error. GTM indicates that values were chosen to
represent a generic three-host tick model, with larvae and nymphs feeding primarily on small mammals and adults feeding
on deer, informed by lists of preferred hosts for I. affinis (Harrison et al., 2010) and A. maculatum (Teel et al., 2010).

(Fish & Howard, 1999). Once the colour variable for a cell had changed from
green to yellow or from yellow to red, it would remain changed until the first
day of the next year, when all cells were reset to green. The occupancy of that
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LETTERS IN BIOMATHEMATICS 9

cell did not change, only the colour variable; any cell that was either occupied or
populated would immediately turn back to the appropriate yellow or red colour
during the first time step of the new year. This enabled output at the end of the
simulation to reflect only the most recent years tick occupancy patterns across
the simulated landscape. We chose to reflect only the most recent years tick
occupancy patterns because when sampling a tick population in situ, only the
ticks present are able to be sampled. Cell colours were recorded at each time
step, to be used as a proxy for tracking tick population establishment. Including
multiple years worth of ticks in our final sampling output would both inflate the
number of ticks and unreasonably expand their area of occupancy.
The presence or absence of ticks of each haplotype across space was also
monitored by a cell variable. The haplotype variable recorded if there were
any ticks of each haplotype as a simple presence/absence variable for each cell.
Like the colour variable, once a haplotype had been recorded in a cell, that
record remained until the first day of the next year, when all haplotype variables
were reset to enable only the most recent years distribution of haplotypes across
the landscape to be recorded at the end of the simulation, for reasons described
above.

(c) Environment
The environment was set up as a grid of 51× 51 patches, with each cell roughly
representing .06 ha for a total simulated area of roughly 165 ha, with hard
(reflective) boundaries.Hard boundarieswere chosen becausewrapping bound-
aries would result in unrealistic jumps in tick occupancy from one end of the
simulation to the other. The highest hierarchical level in the model was the
abiotic environment and its fluctuations. Type of habitat was determined by
a desiccation parameter D that influenced tick survival at all life stages when
the ticks were off-host (questing or resting). Desiccation could be increased to
increase tickmortality (indicating habitat of poorer quality), or decreased to not
influence tick mortality (indicating good habitat where ticks were easily able to
survive off-host). The general model was run with one, homogenous habitat
(one desiccation parameter for the whole environment, Model S1), but we
incorporated multiple habitats in different parts of the environment, each with
its own desiccation parameter to investigate the effects of habitat connectivity
on tick invasions (Model S2). Regardless of whether a single habitat or multiple
habitats with different desiccation values were used, habitats were constant and
the desiccation parameters did not change during the simulation.
Time of year (t) also factored into tickmortality. Each time step represented one
day, and ticksweremore likely to die in late fall (October andNovember), winter
(December throughMarch) andmid-summer (July) than in othermonthswhen
weather conditions weremore favorable (Table 1). Each simulation ran for 1080
time steps, or 3 years, to give tick populations sufficient time to establish and
spread.

(3) Process overview and scheduling
The model proceeds in daily time steps. Within each day or time step, six modules
happen in the following order: set day of year, tick changes, host changes, calculate
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10 R. M. NADOLNY AND H. D. GAFF

new populations, calculate haplotype distributions and reset (Figure 1).Within each
module, individuals are processed in random order.

(4) Design concepts
(a) Basic principles

The underlying principle of this model is that independent agents interact with
one another and simulate the interactions that ticks would have with hosts in
the field. Ticks interacted with hosts using them as blood meals, and ticks had
a probability of attaching to each host type that changed throughout ontogeny,
with higher probabilities indicating increased preference for that host. Each tick
was assigned a genetic haplotype that was passed onto offspring. Hosts moved
across the landscape according to their type (i.e. species) and were constrained
by home ranges. Tick mortality was influenced by habitat (desiccation), time
of year and host availability. Through these interactions, ticks were transported
across the environment by hosts and established new populations with specific
genetic signatures.

(b) Emergence
The emergent property being modelled is the establishment of new populations
of ticks that then either sustain themselves or die out. Population establishment
was measured in four ways: invasion rate, tick population density, genetic
diversity and connectivity, and patterns of spatial spread.

(c) Sensing
Ticks sensed hosts only within their own cell and had a given probability of
successful attachment and feeding on that host (Table 1). After host movement
in each time step, ticks sensed hosts and either attached successfully or did not
successfully attach and continued to quest. Ticks could not attach to hosts that
were already carrying the maximum number of ticks for that host. Ticks also
interacted with the environment, as both desiccation and time of year were
factored into calculating tick mortality during each time step.
Hosts did not sense or interact with other hosts andmoved around the environ-
ment independently of one another in this simple model. Ticks did not sense
or interact with other ticks, even to mate; any adult female that had successfully
completed a bloodmeal would reproduce, as ticks mate on-host and probability
of predation on fed females was not included in this model.

(d) Interaction
Ticks sensed hosts within their cell and attached to a host to attempt to suc-
cessfully obtain a blood meal. Once a tick had successfully attached to a host, it
switched from ‘questing’ activity to ‘feeding’. A tick would feed on a host for a
specific number of days. Once the tick was engorged, it would detach from the
host and drop off on whatever cell that host had moved to during the interim
time steps. The tick would then transition to ‘resting’, while it transitioned from
one life stage to the next. After a given number of time steps, the tickwould again
begin questing and would attempt to attach to its next host. Adult female ticks
laid a set number of eggs after completing their final bloodmeal. Through the
interactions of ticks with hosts, ticks could be transported across the landscape
and seed new populations with specific genetic signatures.
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LETTERS IN BIOMATHEMATICS 11

(e) Stochasticity
Stochasticity was included in calculating host movement, host mortality, tick
mortality and successful tick attachment to hosts while questing. Probabilities
for stochastic parameters are described in Table 1. The processes were stochastic
for each run and each agent had equivalent fitness.

(f) Observation
The following metrics were monitored throughout each time step: the number
of ticks in each life stage, the number of occupied (yellow) and populated (red)
cells, the location of each occupied cell, the location of each populated cell,
the number of ticks of each haplotype and the presence or absence of ticks of
each haplotype in each cell. Cell colours were used as a proxy for tracking tick
population establishment or tick presence throughout year. Metrics were used
to determine the following four outputs: tick population density, tick invasion
distance, tick genetic diversity and the spatial pattern of the tick spread. Tick
population density was measured by two metrics, the number of cells occupied
by at least one tick (yellow cells) and the number of cells with tick populations
(six or more ticks present, red cells). Tick invasion distance was measured using
four outputs: the distance from origin to the furthest cell occupied by at least
one tick, the distance from origin to the furthest cell containing a population of
ticks, the mean distance from the origin to occupied cells and the mean distance
from the origin to cells containing a tick population. Tick genetic diversity was
measured by the number of surviving haplotypes. Finally, the spatial pattern of
tick spread was measured by the number of clusters of occupied and populated
cells. A cluster was defined as being three or more cells away from the nearest
red or yellow cell, and made of two or more red or yellow coloured cells.

(5) Initialization
Each simulation began with a landscape with a set number of randomly distributed
hosts of both species, and an initial number of ticks created in the cell at the centre
of the simulation (at X,Y coordinate 0,0). Each simulation ran for 1080 time steps,
or 3 years, to give tick populations sufficient time to establish and spread. The initial
state of the simulation used base parameters outlined in Table 1, which were derived
from values in the literature, and in previous versions of this model (Gaff, 2011; Gaff
& Nadolny, 2013).

(6) Input data
This model did not use input data to represent time-varying processes.

(7) Submodels
(a) Process passage of time

To account for passage of time, each time step represented one day. Time of year
influenced tick mortality. For simplicity, each year was divided into 360 days,
and each month (30 days) had a parameter that influenced tick mortality. Ticks
were more likely to die during summer and winter months, when heat or cold
are significant stressors (Table 1). Studies of other tick species have attributed
significant inter-stage tick mortality to variations in rainfall, temperature and
relative humidity (Mount et al., 1997; Randolph, 1994).
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(b) Process tick life cycle
Each time step, each individual tick had a given probability of dying. Tick mor-
tality (M) depended on time of year (t), habitat (represented by the desiccation
parameter D, which could change depending on the type of habitat ticks were
in, as in Model S2), total tick population size (N) and carrying capacity, or
maximum number of ticks permitted in the simulation (k), and was calculated
as

M = t ∗ D ∗ N/k
where t reflected the relevant value from Table 1; N was re-counted at the
beginning of each time step; D was a constant that could be varied from 1 (no
effect on tick mortality) to 50 (significant influence on tick mortality) and k
was set to 50,000 as a computational constraint and a reasonable environmental
limitation.Once per time step, a randomnumber between 0 and 1was generated
for each tick; if the random number was less thanM, the tick would die.
Ticks could rest (indicating time spent molting or in quiescence between life
stages), quest, feed and reproduce. After a certain amount of time in a given
activity, ticks would change to the next chronological activity (Figure 1).Ticks
quest to find hosts, take bloodmeals and progress to the next life stage. If a tick
exceeded the maximum questing time (Table 1), it would die. Each tick in a
questing life stage (larvae, nymphs and adults) began questing by identifying a
potential host, which was any host occupying the same habitat cell with fewer
than the number of maximum ticks per host already attached. If a potential
host was present, ticks would successfully attach if a random number generated
between 0 and 1 was less than the attachment probability specific to that host
and life stage (Table 1). For example, larval ticks had a higher likelihood of
successfully attaching to a mouse than a deer. After successfully attaching, lists
were updated to track the number of ticks currently feeding on each host, and
the ticks would feed for six days. After feeding, the fed tick would drop off in
whatever habitat cell the host was in at the end of the six days and would change
activity to the next activity laid out in Figure 1. Adult males would die after
feeding and presumably mating, while adult females would lay eggs and then
die. It is assumed that adult males of both species fed only once, on one host –
if they drop off, they die.

(c) Process host mortality and movement
Long-distance and short-distance host movement and mortality was processed
the same way, albeit with different numbers allocated to distance and home
range size (Table 1). When hosts were created, the centre of their home range
would be the habitat cell in which they were ‘born’. Each time step, hosts could
move a given number of cells (deer ormouse rate, Table 1) in any direction from
the centre of their home range. If the host was farther than a given number of
cells (deer or mouse home range, Table 1) away from the centre of their home
range, they would turn to move back towards that centre during the next time
step. In this way, hosts would always remain within a home range of a given
size.
Each time step, each individual host had a given probability of dying. Host
mortality was set at .02 (Table 1) for both short-distance and long-distance
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hosts to maintain some level of turnover in the simulation. Each time step, a
random number between 0 and 1 was generated; if the random number was less
than .02, that host would die. To keep host populations constant, for each host
that died another was created immediately and placed on a random habitat cell.
If a host died, all ticks on that host also died, but were not replaced.

(d) New populations
In homogenous habitat (Model S1), populations of ticks were visualized by
changing cell colour. To visualize only recent tick populations, the visualization
of populations would reset after every 360 time steps, as described above. If
there were no ticks on a habitat cell, the cell would remain its green background
colour. If there were one or more ticks on a cell, the cell would change colour
to yellow to indicate the cell was occupied. If there were six or more adult ticks
on a cell, the cell would turn red, to reflect the presence of a population, i.e. that
the cell was populated. From then on, the number of ticks on each cell would be
counted every time step, and cells would change colour to reflect tick occupancy.
Cells would stay coloured until the next reset at the beginning of the next year.
In heterogeneous habitat (Model S2), populations were not visualized, but the
number of ticks present in each cell were recorded.

(e) Determine genetic connectivity
To keep track of genetic connectivity, the number of ticks of each haplotype was
counted on each cell and updated each time step. This resulted in a running total
of the maximum number of ticks with each haplotype that had been present
on each cell. This number was reset each year, so that only the most recent
occupancy since the beginning of the year was recorded for each cell.

The model was programmed using NetLogo version 5.0. This software was written by
Uri Wilensky in 1999 and is freely available (http://ccl.northwestern.edu/netlogo/). The
model was run on the high-performance computing cluster using BehaviorSpace to run
experiments ‘headless’, from the command line. All statistical analyses on model results
were completed in R and MATLAB (MathWorks, Inc, 2015; R Core Team, 2015).

4. General model evaluation (Model S1)

4.1. General model performance

To evaluate general model performance, the model was initialized with 32 nymphal ticks
of eight haplotypes, four ticks of each haplotype, dropped at the centre of homogenous
habitat with a desiccation parameter of 1.0, which does not influence tick mortality. Tick
mortality was therefore influenced only by seasonal and stochastic effects. The simulation
was started on 01March, to begin in the springwhen nymphs of I. affinis andA.maculatum
are active. All parameter values were set at base values as indicated in Table 1. The resulting
phenologies of each tick life stage (Figure 2, based on an average of 25 runs with Table
1 inputs) show nymphs peaking in the spring, adults peaking in the summer and larvae
peaking in the winter each year. Growing annual numbers of nymphs and adults indicated
that the tick population was increasing every year, and that the model was coded properly.
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14 R. M. NADOLNY AND H. D. GAFF

Figure 1. Flow diagram for processes for each time step of agent-based model.
Notes: Boxes and solid lines indicate model processes and transitions. Inset shows sub-processes within changing tick
activities. Reset tick populations and haplotypes reverted back to initial conditions, which were updated to reflect current
occupancy at the next time step.

Table 2. Parameters varied in sensitivity analyses.

Parameter Min Max Increment

Initial ticks 1 121 30
Initial deer 10 170 40
Initial mice 200 2000 600
Deer home range size 1 16 5
Mouse home range size .25 3.25 .75
Deer rate of movement 1 11 5
Mouse rate of movement .25 1.75 .5
Max ticks/deer 30 310 70
Max ticks/mouse 5 130 25
Desiccation (D) 1 41 10
Initial # of haplotypes 2 16 2, 4, 8, 16

Notes: These parameters were chosen based on what the literature suggested could be the most important factors
in determining tick invasion patterns. Increments were chosen based on the literature and modified according to
computational constraints (Table 1).

4.2. Sensitivity analyses

To identify the factors with the greatest influence on tick invasion, sensitivity analyses
were performed on nine parameters (Table 2). Each of the parameters was varied one
at a time as shown in Table 2, while keeping all other parameters constant as shown
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in Table 1. Each variant of each parameter was run 25 times until 1080 time steps (3
years), or until the tick population was extirpated. A priori power analyses conducted
with G*Power version 3.0.10 indicated that 25 runs per parameter set would be sufficient
to provide statistical significance (Faul, Erdfelder, Lang, & Buchner, 2007). For each
parameter variation, metrics to determine the following four outputs were recorded at the
last time step of the simulation: tick population density, tick invasion distance, tick genetic
diversity and the spatial pattern of the tick spread. Cluster analysis was computed using
the DBSCAN package for MATLAB (MathWorks, Inc, 2015). Spearman rank correlation
coefficients were calculated to determine the relative influence each parameter exerted on
the measured variables (Tables 3 and 4).

Some patterns that emerged from the sensitivity analyses were striking, though not
wholly unexpected. Mouse density and mouse home range size exerted the largest influ-
ences on tick population density at the end of the third year, with more mice with larger
home ranges resulting in higher tick densities. Deer home range size had the greatest
influence on invasion rate and on the spatial patterns of tick invasions in heterogeneous
habitat. Larger home ranges of long distance dispersers resulted in faster spread and
more clustering. The maximum number of ticks attached to a deer was not significantly
correlated with any invasion metric, although increasing the number of ticks that could be
attached to amouse positively influenced thenumber of populations established. The initial
number of haplotypes had the greatest influence on the percentage of haplotypes surviving
at the end of three years. More initial haplotypes resulted in more die-off of haplotypes
through stochastic effects and a smaller percentage surviving through the end of the third
year.However, increasing the number of initial haplotypes significantly increased themean
number of haplotypes surviving at the end of year three (Spearman correlation coefficient
= .96, p < .01).

4.3. General model application: hosts density vs. habitat quality

One essential question when dealing with tick range expansion is the relative influence of
habitat and hosts in determining dispersal and establishment. Because ticks spend much
of their lives off-host, generalist ticks may establish anywhere that has suitable climatic
conditions (Cumming & VanVuuren, 2006). However, ticks depend on hosts not only for
sources of bloodmeals, but also to move them across a landscape.

To testwhether host density or habitat quality had the largest influence on tick invasions,
a set of fourmodels was run 100 times per parameter set. Themodels varied habitat quality
between good and poor, and host density between high and low (Figure 3). Changing
the number of available mice and deer varied host density, and changing the desiccation
parameter varied habitat quality. High host levels were set at 1600 mice and 120 deer, and
low host levels were set at 200 mice and 15 deer. Good quality habitat was created by a low
desiccation parameter that did not influence tick mortality (D = 1), while introducing a
high desiccation parameter (D =30) created poor quality habitat. Themagnitude difference
between high and low desiccation parameters was larger than that between high and
low host densities, because humidity can vary tremendously between adjacent habitat
fragments, but adjacent host densities exhibit lower variation because of host movements.
Each model was run on a landscape of homogenous habitat that did not change over time,
and all metrics other than host density and habitat were kept at baseline levels (Table 1).
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Table 3. Spearman rank correlation table from sensitivity analyses.

Spearman rank correlation coefficients

Initial Mouse Deer Deer home Mouse home Deer rate of Mouse rate of Max ticks/ Max ticks/ Initial no.
Output Metric ticks density density range range movement movement deer mouse D haplotypes

Tick invasion distance Distance to furthest populated patch –.13 .23 .57* .87* .28 .41* .07 –.06 .33* –.45* –.05
Tick invasion distance Distance to furthest occupied patch .14 .21 .71* .9* .54* .63* .12 –.01 –.06 –.51* .18
Tick invasion distance Mean distance to populated patches –.28 –.31 .66* .85* –.21 .34 .04 –.02 .31* –.21 .09
Tick invasion distance Mean distance to occupied patches –.23 –.35 .78* .9* .2 .53* –.09 –.03 –.14 –.2 .04
Tick population density Number of populated patches –.01 .81* –.31* .12 .53* –.18 .15 –.11 .58* –.62* –.04
Tick population density Number of occupied patches .58* .89* .88* .82* .92* .14 .38* .05 –.09 –.89* .21
Spatial pattern of tick spread Number of clusters –.02 –.32 .14 .65* –.24 .23 –.23 –.09 .03 –.05 .18
Tick genetic diversity Surviving % haplotypes .68* .16 .49* .54* .24 .06 –.03 .08 .19 –.63* –.84*

Notes: Occupied patches had one or more ticks on a cell, and populated patches had six or more ticks occupying a cell. Correlation coefficients with a strong positive correlation are close to 1, and
those with a strong inverse correlation are close to –1. Spearman rank correlation coefficients are presented here, with stars indicating a significance level of p < .01. Bolded correlation coefficients
indicate the parameter that resulted in the largest effect size for each metric. All distances were measured from the cell where initial ticks were dropped, cell {0,0}.
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Figure 2. Seasonal phenology of numbers of (A) larvae, (B) nymphs and (C) adult ticks in a generalized
model.
Notes: Trends depicted are averages from 25 runs of the general tick Model S1 using the parameters outlined in Table 1.

Invasion metrics were measured at the last time step after 3 years for each run. Partial
rank correlation coefficients (PRCC) were computed to determine the relative influence of
hosts and habitats on invasion metrics (Table 5), and boxplots were generated to display
the differences between means among the four models (Figure 4).

In homogenous habitat, host density was found to have a relatively greater influence
on almost all invasion metrics, although both host density and habitat quality showed
significant effects on all invasionmetrics (Table 5). Higher host densities resulted in higher
tick densities, faster invasion rate, more clusters and more genetic diversity of ticks at the
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18 R. M. NADOLNY AND H. D. GAFF

Figure 3.Models testing the influence of habitat quality and host density on tick invasions.
Notes: Habitat quality was modelled as either good? (D = 1) or bad? (D = 30), and host density was either high? (1600
mice, 120 deer) or low? (200 mice, 15 deer). These images represent example runs of the tick populations exposed to
these conditions across homogeneous landscapes after three years. Green cells are unoccupied habitat, red cells indicate
populated cells with >6 adult ticks, and yellow cells are occupied by at least one tick of any life stage.

end of three years.Higher desiccation, or poor habitat, resulted in lower tick density, slower
invasion rate, fewer population clusters and less genetic diversity. Interactions betweenhost
quantity and habitat quality produced different outcomes across invasion metrics (Figure
4). For example, when hosts were abundant and habitat quality was high, invasion distance,
density and genetic diversitywere all higher than in any of the othermodels. The number of
clusters, however, was highest when hosts were abundant but habitat was poor, indicating
that tick populations likely established for only short durations before winking out, but
ticks were able to feed, move and reproduce freely enough that many small populations
could remain for at least three years. The number of tick population clusters was lowest
when populations were only rarely able to persist (few hosts and poor habitat), but the
number of clusters was also low when one large population resulted in one large cluster
across the whole simulated environment.
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5. Case studymodel application: influenceofhabitat connectivityongenetics
(Model S2)

While the above results suggested that host density is more important than habitat quality,
field data can show otherwise. Since 2009, our lab has conducted an intensive tick field
surveillance effort in southeastern Virginia, during which we observed two tick species
invading across the landscape (Nadolny, 2016; Nadolny, Wright, Sonenshine, Hynes,
& Gaff, 2014; Nadolny et al., 2011; Wright et al., 2011). We found that although I.
affinis and A. maculatum were expanding their ranges simultaneously, they were doing
so in different spatial patterns and with different genetic connectivity and structure in
the resulting populations (Nadolny, 2016; Nadolny et al., 2015). We found I. affinis in
contiguous populations in thewell-connected disturbed forested habitats that are common
in the southeast, and I. affinis populations exhibited high genetic homogeneity as a result.
Conversely,A. maculatum populations were only found in grassy habitat patches and were
often only present for a period of a few years before the process of ecological succession
extirpated the local population (Nadolny, 2016).Amblyommamaculatum tick populations
found in these habitat patches showed genetic dissimilarity to other populations, with
each population being genetically distinct from its neighbours (Nadolny et al., 2015).
Despite these differences in spatial and genetic patterns, both tick species are trophic
generalists, parasitizing a diverse and overlapping assortment of birds and small mammals
as immatures, and feeding on large mammals such as white-tailed deer as adults (Harrison
et al., 2010; Heller et al., 2016; Teel et al., 2010).

To address the importance of habitat heterogeneity and test the effects of habitat con-
nectivity on tick genetic connectivity, two models, each with multiple habitat types, were
adapted from the generic tick model by varying the desiccation parameter in designated
regions of the simulation (Figure 5). Because both tick species are trophic generalists but
appear to be habitat specialists, the same life history parameters (Table 1) were used to
model each tick species. The twomodels were each run 100 times, with onemodelling ticks
moving through well-connectedmatrix of high quality habitat with patches of poor habitat
and onemodelling ticksmoving through amatrix of poor habitat to patches of high-quality
habitat. The model with well-connected high-quality habitat represented I. affinismoving
through contiguous preferred forested habitats and experiencing higher mortality in field
patches, while the other model represented the observed tendency of A. maculatum to
establish only in patchy field habitats and experience increasedmortality in well-connected
forested habitats (Figure 5). The configurations of habitat were kept consistent between the
two models, but the desiccation parameters were reversed to indicate each ticks respective
habitat preferences. The presence or absence of each haplotype was recorded in each cell,
and each habitat type was separately tracked to determine the genetic makeup of the tick
populationwithin that habitat at the end of three years. Tracking the presence of haplotypes
in each habitat also provided a proxy for tracking tick presence in each habitat. To recreate
the patterns of genetic and spatial connectivity, we observed in the field and we would
expect the I. affinismodel to result in one contiguous tick population with a similar genetic
makeup throughout the forested area of simulation, while theA. maculatummodel should
result in genetically distinct populations in each patch of field habitat (Figure 5).

To analyse the similarity between tick populations in each habitat, a binary similarity
coefficient was used. These are simple similaritymeasures based on presence–absence data,
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Spearman rank correlation P-values

Initial Mouse Deer Deer home Mouse home Deer rate of Mouse rate of Max ticks/ Max ticks/ Initial no.
Output Metric ticks density density range range movement movement deer mouse D haplotypes

Tick invasion distance Distance to furthest populated patch .14 .02 <.01 <.01 <.01 <.01 .07 .77 <.01 <.01 .61
Tick invasion distance Distance to furthest occupied patch .12 .04 <.01 <.01 <.01 <.01 .12 .86 .27 <.01 .08
Tick invasion distance Mean distance to populated patches <.01 <.01 <.01 <.01 .02 <.01 .04 .97 <.01 .02 .38
Tick invasion distance Mean distance to occupied patches .01 <.01 <.01 <.01 .03 <.01 −.09 .94 .13 .02 .69
Tick population density Number of populated patches .94 <.01 <.01 .23 <.01 .13 .15 .18 <.01 <.01 .71
Tick population density Number of occupied patches <.01 <.01 <.01 <.01 <.01 .22 .38 .35 .46 <.01 .03
Spatial pattern of tick spread Number of clusters .83 <.01 .13 <.01 .01 .05 −.23 .34 .57 .59 .07
Tick genetic diversity Surviving % haplotypes <.01 .12 <.01 <.01 .01 .63 −.03 .57 .04 <.01 <.01

Note: Occupied patches had one or more ticks on a cell, and populated patches had six or more ticks occupying a cell.
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Figure 4. Boxplots comparing means between four treatments groups testing influence of host density
(with host density designated as ‘high’ or ‘low’) and habitat quality (with habitat quality designated
as ‘bad’ or ‘good’) on invasion metrics. Metrics are (A) tick invasion distance, measured by adding
together all rate metrics, (B) tick invasion distance, measured by multiplying together all rate metrics,
(C) tick population density, measured by adding together all density metrics, (D) tick population density,
measured by multiplying together all density metrics, (E) genetic diversity and (F) number of clusters.
Notes: Rate metrics included maximum and average distances to occupied and populated patches, and density metrics
included number of populated and occupied patches. In lieu of presenting all box plots produced for rate and density
metrics, only the additive (+) and multiplicative (x) plots are shown to give an overview of the trends seen. Lines through
the middle of each box represent the median, and whiskers extend to lower and upper quartiles (25th and 75th percentile).
Outliers are represented with clear circles.

usually of species in habitats (Krebs, 2014). Here, haplotypes were used instead of species,
and Sorensens index was used to compute a similarity coefficient between tick populations
in each pair of habitat types (Krebs, 2014). Because there were three habitats (one forest
and two field patches), the results of all three pairwise comparisons were summed to create
a general similarity index that was used for statistical analysis. Because many cells did not
have haplotypes present, the data were zero inflated and non-normal, so Wilcoxon rank
sum tests with continuity corrections were used to compare means between the treatment
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Table 5. Partial rank correlation coefficients (PRCC) measuring effects of host density and habitat quality
on tick invasions.

Outputs Metrics Host PRCC Habitat PRCC

Tick population density Occupied and populated patches
(additive)

.92 −.67

Tick population density Occupied and populated patches
(multiplicative)

.78 −.64

Tick population density Number of occupied patches .92 −.65
Tick population density Number of populated patches .58 −.69
Spatial pattern of tick spread Number of clusters .63 .26
Tick genetic diversity Percentage surviving haplotypes .57 −.48
Tick invasion distance Distance to occupied and populated

patches (additive)
.74 −.41

Tick invasion distance Distance to occupied and populated
patches (multiplicative)

.63 −.37

Tick invasion distance Mean distance to populated patch .45 −.17
Tick invasion distance Mean distance to occupied patch .68 −.13∗
Tick invasion distance Max distance to populated patch .63 −.50
Tick invasion distance Max distance to occupied patch .87 −.54

Notes: PRCCs are between input parameters of the models (host density vs. habitat quality) and the output metrics
measuring tick population density, spatial pattern of tick spread, tick genetic diversity and tick invasion distance. All PRCCs
except those indicated with * were significantly different, with p < .01. Additive and multiplicative indices were generated
through adding together or multiplying together all tick density metrics (number of occupied and populated patches) or
tick rate of invasion metrics (distance to furthest occupied and populated patches, and mean distance to occupied and
populated patches).

groups. The general similarity index, mean haplotype survival overall and mean haplotype
survival in each habitat type were compared between treatment groups (Figure 6).

To determine which tick species exhibited populations that were more genetically
similar, the general similarity index was compared between the I. affinis model and the
A. maculatum model. We found that I. affinis populations were more similar among
habitats, while populations in each habitat in the A. maculatum models tended to be
more genetically distinct. Habitat connectivity also influenced the number of haplotypes
that persisted until the end of the simulation, with I. affinis models resulting in more
haplotypes surviving than A. maculatum models. In I. affinis models, there was also a
greater diversity of haplotypes in forested habitat, while A. maculatummodels resulted in
proportionally more haplotypes present in field habitats. These results correspond with
population genetics patterns described by Nadolny et al. (2015), where I. affinis across the
eastern US comprised two large, contiguous, genetically similar populations, while each
sampling site with a population of A. maculatum across the eastern US was genetically
distinct.

6. Discussion

No model is a perfect representation of the agents and environment that it represents,
and the present model has several limitations that are fully acknowledged. Because of the
stochasticity inherent in agent-based models, they generally do not provide proof of a
stable system, there is no single solution and results may not be generalizable or easy to
validate (Grimm & Railsback, 2005). However, most of these limitations can be overcome
by running sufficient numbers of simulations to avoid outliers. This model takes place
on a very small spatial scale, which, while useful for modelling local invasion patterns,
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Figure 5. Adapted model designs to investigate a case study of Ixodes affinis and Amblyomma
maculatum, and simplified tick populations depicting spatial and genetic differences in tick populations
caused by habitat preferences. (A) Models for testing the influence of habitat connectivity on genetic
connectivity, and reproducing patterns exhibited by I. affinis (left) and A. maculatum (right). In the I.
affinis model, initial ticks are dropped in the centre of the completely connected ‘forest’ habitat, which
has a desiccation parameter, D, of 1, indicating good tick habitat. The two ‘field’ patches (red and
yellow) both are poor habitat quality with D = 20 for I. affinis ticks. The A. maculatum model has the
reverse setup, with initial ticks dropped in forest habitat that poor quality, with nearby field patches
of higher quality. In both simulations, ticks were initialized at the 0,0 coordinate, in the centre of the
forest habitat, and life history parameters were identical. (B) Graphic depicting simplified populations
of I. affinis (left) and A. maculatum (right), derived from population genetics data published in Nadolny
et al. (2015). Yellow habitat patches represent field habitats, and green represents forested habitat,
as in the model depicted in 5A. Pie charts represent populations of each tick, with different colours
representing different haplotypes present in each population. Arrows represent pathways of dispersal
between populations. Tick images suggest where ticks of each species are most likely to be found.
Because I. affinis survives better in forested habitat, which is well connected in the Mid-Atlantic United
States, and in our simulation, we expect similar genetic makeups in each population, with little survival
in field habitats. In contrast, because A. maculatum is better suited to patchy field habitats, we expect
each habitat patch to contain its own population, with little genetic similarity between populations and
little survival in forested habitats.
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Figure 6. Boxplots depicting differences between means of four different invasion metrics for I. affinis
and A. maculatum models. Whiskers indicate lower and upper quartiles, and circles indicate outliers.
Results and significance levels ofWilcoxon rank sum test are indicated beloweach set of plots. Significant
differences were observed between I. affinis and A. maculatum (A) general similarity indices, (B) overall
genetic diversity (number of haplotypes remaining) at the end of three years, (C) the proportion of ticks
(haplotypes) remaining in forested habitat at the end of three years and (D) the proportion of ticks
(haplotypes) remaining in field habitats at the end of three years.

is unsuitable for broader inferences on a regional scale. The number of individual ticks
and hosts that could be included limited the scale of the model. It was decided to scale
the model down in order to maintain the individual-based nature of both ticks and hosts,
rather than inferring tick–host interactions and movements as other models have done
(Wang et al., 2012, 2015). This model used the standard threshold for an established
population of more than six ticks (Fish & Howard, 1999), which is appropriate for these
initial, small populations. Also, in this simple model, hosts do not interact with habitat or
other hosts, and the host population is kept constant, so host demography is not included.
Also, the edges of the model simulation are reflective, which would have strong influences
after more than a few years of simulated time. For that reason, simulations were kept to a
maximum time of three years, which enabled tick populations sufficient time to establish
and grow, but not ‘outgrow’ the small area of the simulation.

The general tick model yielded several interesting inferences regarding the effects of
hosts and habitats on tick range expansions. The results of sensitivity analyses indicated
that in homogeneous habitat, long-distance dispersing hosts (e.g. deer) had the greatest
influences on both invasion rate and the spatial patterns by which ticks invade, while
short-distance hosts (e.g. mice) had the greatest influence on tick densities. This supports

9 

00 

~ X ci 
Q) 
u 
.E <D 

;:- ci 

~ ·e ~ I I ui 
0 

LJ ~ I I N 
Q) ci C: 
Q) 

(.') 
0 ---ci 

I. affinis A. macu/atum 

W = 7368, p <0.01 

j§ 
ii 
"' J: 

C! 1n 
~ 
0 00 

LJ.. 6 
.!: 

• 
@j 

"' <D 
Q) ci Q. 
>, g ~ 
Q. 0 

"' J: N 

0 0 

C: 0 0 
'e ci ---
8. 
12 

I. affinis A. macu/atum 
0.. W = 3376, p <0.01 

"' Q) 
Q. 
2:-
0 
a. 
"' J: 
0) 
C: 
·;: 
·1: 
::, 

Cf) 

0 
ai 
~ 

E 
::, 
z 

'" 15 
"' 

00 

,-... 

<D 

"' ..,. 
(') 

N 

J: C! 
u 
ai 
i.t co 
.£ ci 
"' <D 
[ ci 
>, 
0 ..,. 
~ ci 

~ ci 
C: 
0 0 
t 0 
0 
Q. 

12 
0.. 

~ 

~ 
---

0 

0 

0 

0 ---
I. affinis A. macu/atum 

W = 9341, p <0.01 

• 

I. affinis A. macu/atum 
W = 6624, p <0.01 



LETTERS IN BIOMATHEMATICS 25

the results from a spatially explicit cellular automata model of I. scapularis invasion, which
indicated that ticks feeding primarily on deer increased invasion rate, while feeding on
mice reduced invasion rate (Madhav et al., 2004). However, our results also highlight
the importance of small mammal communities during the initial establishment of ticks,
and the link between abundant small mammals and the ability of an area to sustain large
numbers of ticks, which has never before been explicitly modelled.

Results from the general tick model comparing the relative influences of host density
with habitat quality suggested that both significantly influence tick invasion rate, pattern,
density and genetic diversity. Interestingly, in homogenous habitat, host density had the
largest influence on all invasion parameters measured. However, once heterogeneous
habitat was introduced in the adapted model to recreate patterns exhibited by I. affinis and
A. maculatum, connectivity between high- quality habitat patches significantly influenced
tick invasions. Habitat connectivity especially influenced the genetic connectivity between
tick populations, even at a very small spatial scale. Greater habitat connectivity resulted in
more genetic similarity between populations and more overall genetic diversity surviving
at the end of three years. Isolated habitat patches resulted in more genetically distinct
populations, with less overall genetic diversity surviving after three years.

These changes in genetic connectivity and diversitymimic the genetic patterns exhibited
by I. affinis and A. maculatum in the field, where habitat preference resulted in significant
differences between the two species (Nadolny et al., 2015). In the model, the I. affinis
simulation resulted in one genetically heterogeneous population concentrated in the
forest, and theA.maculatum simulation resulted in several genetically distinct populations
concentrated in the field patches. These results replicate the genetic patterns found in I.
affinis and A. maculatum populations across the eastern US (Nadolny et al., 2015). Simply
changing the connectivity between preferred habitat patches for each tick species simulated
these genetic and spatial differences for the parameters used in these scenarios. Knowledge
of the genetic makeup of these populations in situ provides a measure of validation for this
model, and the generation of such close patterns suggests that the agent-based model was
robust, even at such a small spatial scale. The only alteration made between the models
representing I. affinis and A. maculatum was in the spatial structure of the desiccation
parameter; therefore, that is the only condition that could have been responsible for the
changes in patterns observed. Although there are other ecological differences between the
two tick species that could inform invasion patters, many of the important parameters
including common hosts parasitized, length of time feeding and lifespan are markedly
similar.

7. Future directions

The models presented comprise an initial investigation of some parameters which may
be important to tick range expansions and serve as a proof-of-concept for the utility of
agent-basedmodels to address questions of biological invasions. As a result, there aremany
things that we did not address. Since the focus of thesemodels are on the initial invasion, we
did not track the tick population beyond three years post arrival. A tick carrying capacity
was also set to accommodate the computational limitations associated with agent-based
models tracking the actions of thousands of individual agents.
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Biologically, several important factors should be considered for future iterations of this
model. Both I. affinis and A. maculatum parasitize birds as immatures (Harrison et al.,
2010; Teel et al., 2010), but due to the computational constraints of maintaining an agent-
based model that included individual tick–host interactions; it was impossible to model
a landscape of sufficient size to include avian movement. Also, other factors modelled
as identical between the two species may actually contribute to differences in spatial and
genetic patterns, such as mortality rates, durations of feeding, development periods or
feeding behaviour of male ticks (Oliver et al., 1987; Teel et al., 2010). Inclusion of genetic
information from male ticks would allow for the use of nuclear chromosomal markers in
addition to the maternally inherited markers used in this model. While the general tick
model parameters included in Table 1 were within the average range of behaviour for both
species, differences in these parameters should be considered in future, more sophisticated
models. Biological parameters such as the number of days a tick spent in each life stage or
feeding on a host were also left static, whereas it would be more true to life to vary those
parameters stochastically.

As written, the model presented here is a useful tool for learning about the relative
influence of habitat and host parameters on tick range expansions and genetic connectivity.
For future incarnations of this model, it will be useful to measure the spatial patterns
of spread more directly, including measuring the size of clusters and distance between
clusters. Monitoring the persistence of clusters of tick populations would also provide
useful information on the stability of tick populations throughout the years immediately
following a range expansion. Including more complex host dynamics, such as herding
behaviour, territory defence and interaction of hosts with the landscape will also be
important for more realistic models of tick–host interactions.

The effects of changinghabitat over time are important for tickpopulation establishment
and persistence, so for future models it would be interesting to change the desiccation
parameter over time to model the influence of succession or deforestation on tick popu-
lations. Also, the simulations presented here were at a very small spatial scale, where edge
effects may influence invasion rate after only a few years. Increasing the size of the model,
perhaps through the creation of a mixed deterministic/stochastic model, would allow for
more realistic model of tick invasions over regional spatial scales. A larger spatial scale
could include more host categories, such as migratory birds, and allow a more detailed
investigation of the influence of different host categories on the ability of tick populations
to establish and persist outside their native range.
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