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Abstract

Monte Carlo methods have played a central role in computational statistics for many years.
While it has become a powerful tool for solving scientific problems over years of development,
Monte Carlo algorithms also suffer from several limitations, making them inefficient when
solving more challenging problems. This thesis is mainly concerned with improving the ex-
isting Monte Carlo algorithms as well as developing novel ideas that could potentially trigger
extensive future works in the field of Monte Carlo methods.

In Chapter 1, we gave a review of the existing Monte Carlo methods and algorithms that
are related to the work presented in this thesis. In Chapter 2, we focused on developing an
improved algorithm for making inferences on the Piecewise-Deterministic Markov Processes
(PDMP). We combined the idea of block sampling Doucet et al. (2006) with the existing
particle filter for PDMP (Godsill and Vermaak, 2005) to obtain an improved algorithm. Simu-
lations showed that the new algorithm is more capable of locating the jumps that are likely to
be missed by the existing particle filter. A particle Gibbs sampler based on the new algorithm
is also developed in the chapter. In Chapter 3 and 4, we developed an ABC-SMC algorithm
based on Del Moral et al. (2012). Inspired by the fact that many problems solved by ABC-
type algorithms involve a generator in which the generation process relies on the simulations
of some latent random variables, we developed a modified ABC-SMC algorithm that, instead
of generating these latent random variables from scratch every time, targets a specific joint
distribution of the latent random variables instead. Under the same computational budget, we
have numerically shown that the new algorithm achieves large improvement and can obtain
more accurate approximations of the true posteriors compared to the standard ABC-SMC
algorithms. Simulations also show that the new algorithm scales well in high dimensions. In
Chapter 5, we turned to look at novel Monte Carlo approaches in light of Dau and Chopin
(2020). We developed a novel SMC algorithm that samples Markov process snippets whose
states, with proper weights, can be used to approximate expectations with respect to the
target. Numerical examples indicate that this novel algorithm has significant performance
improvement compared to its competitor. Lastly, the possible directions of future works based
on the thesis are discussed in Chapter 5.6.
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Chapter 1

Review of Monte Carlo Methods

1.1 The Monte Carlo Methods

The Monte Carlo (MC) is a well-known numerical method offering an approximation to any

quantity that can be written in the form of the following integral

I = Eπ[ϕ(X)] =

∫
X
ϕ(x)π(dx), (1.1)

where π(dx) is a probability density with respect to a probability measure. The approximation

is obtained by simulating N independent random variables X1, X2, .., XN ∼ π and set

ÎN :=
1

N

N∑
n=1

ϕ(Xn) (1.2)

More specifically, the Monte Carlo method also provides an particle approximation of π through

the empirical measure

π̂N (dx) :=
1

N

N∑
n=1

δXi(dx), (1.3)

where δx represents the Dirac delta mass located at x. This means that any other quantities

related to π can also be estimated by replacing π with π̂. One would easily find that ÎN =

Eπ̂N (ϕ(X)). One can also easily check that ÎN is an unbiased estimator of I and V(ÎN ) =

1
NVπ(ϕ) where Vπ(ϕ) :=

∫
X ϕ

2(x)π(dx) −
[∫
X ϕ(x)π(dx)

]2
. Clearly, the Monte Carlo

methods rely on the ability to sample from π. Hence, sampling methods are indeed at the

1
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centre of the works related to Monte Carlo methods. In the next section, two basic sampling

methods will be introduced.

1.2 Rejection Sampling

Rejection sampling method dates back to Von Neumann (1963) and it is a fairly simple

sampling mechanism that has been widely used in the literature. In principle, one can obtain

samples from any probability distribution defined on any dimension with a density function

given up to a normalising constant by Rejection Sampling method. Suppose that we are

interested in sampling from a probability distribution π defined on Rd with density function

π(x) =
1

Zπ
π̃(x)

We also assume that we can only evaluate the unnormalised density function, π̃(x), pointwise.

This means that the normalising constant Zπ is unknown. Moreover, suppose that we are

able to directly sample from another distribution g and pointwise evaluate g̃(x) = Zgg(x),

the unnormalised density function of g. In addition, assume that the distribution g satisfies

the following two conditions:

Condition 1. The support of g encompasses that of π, i.e. f(x) > 0 =⇒ g(x) > 0.

Condition 2. There exist M > 0, such that

sup
x∈Rd

π̃(x)

g̃(x)
= M <∞

We will denote M the envelope constant of the Rejection Sampling algorithm thereafter. In

practice, M does not need to be the exact supremum of the density ratio. One only needs to

make sure that M is not smaller than this supremum. Based on the sampling distribution g,

Rejection Sampling algorithm proceeds as follows:

Step 1. Generate a sample x from the distribution g

Step 2. Compute the ratio

α(x) =
π̃(x)

Mg̃(x)
∈ [0, 1]
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Step 3. Accept the sample x with probability α(x). Otherwise, GOTO Step 1.

The validity of the algorithm follows from the following theorem.

Theorem 1.2.1. Let X be the random variable following distribution g. Then the accepted

X in the foregoing procedure follows that target distribution π.

Proof. Assuming that X is a continuous random variable. From the description of the rejection

sampling procedure, for any A ⊂ Rd, we have

Pr(X ∈ A|X is accepted) =
Pr(X ∈ A

⋂
X is accepted)

Pr(X is accepted)

=

∫
Rd
I(x ∈ A)α(x)g(x) dx∫
Rd
α(x)g(x) dx

=

∫
A
Zππ(x)
MZgg(x)g(x) dx∫

Rd
Zππ(x)
MZgg(x)g(x) dx

=
Zπ/Zg

∫
A π(x) dx

Zπ/Zg
=

∫
A
π(x) dx

Therefore, one can see that the accepted X is distributed according to π. If X is a discrete

random variable, the argument follows similarly by replacing the integration with a summation.

Hence, it has been proved that Rejection Sampling algorithm does produce samples that are

distributed according to the target distribution. More specifically, one may note that the

probability of accepting a sample from g is given by

p =

∫
Rd

α(x)g(x) dx =

∫
Rd

Zππ(x)

MZgg(x)
g(x) dx =

Zπ
MZg

(1.4)

Let T be the random variable representing the number of samples from g required to produce

one accepted sample, it is then easy to see that T ∼ Geo(p). Hence,

E [T ] =
1

p
=
MZg
Zπ

which is the expected number of samples required to produce one accepted sample. Therefore,
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the key to an efficient implementation of the Rejection Sampling algorithm is to find a ’good’

sampling distribution g such that E [T ] is small. In the case when Zπ and Z|g are known,

one would aim to find a sampling distribution g such that M is small. Roughly speaking, this

means that we want to find a sampling distribution g that has a similar shape to the target

distribution π.

Rejection Sampling method is a generic sampling method that is exact and conceptually easy.

Moreover, the samples obtained from it are independent. However, one may find it difficult

to search for good sampling distributions that have similar shapes to the target distributions

in practice. As a result, this may result in a large value of M , which means an inefficient

implementation of the algorithm. Another main drawback for Rejection Sampling method is

its reduced efficiency as the dimension of the sampling problem gets larger. Hence, for high-

dimensional problems, one may prefer using other techniques such as Markov chain Monte

Carlo and sequential Monte Carlo methods. The details of these methods will be reviewed in

later sections of this chapter.

1.3 Importance Sampling

As we have seen before, standard Monte Carlo methods require one to be able to sample

from some target density π. However, this is in most scenarios difficult or even impossible

to achieve. In this case, one may consider using the technique called Importance Sampling

(IS), which approximates the expectations with respect to π by simulations from a different

distribution q, which is easy to sample from. Given that the support of π is contained in that

of q, i.e. q(x) > 0 whenever π(x) > 0, the IS technique relies on the following identity

I = Eπ[ϕ(X)] =

∫
X
ϕ(x)π(x)dx =

∫
X
ϕ(x)

π(x)

q(x)
q(x)dx =

∫
X
ϕ(x)w(x)q(x)dx, (1.5)

where w(x) = π(x)/q(x) is often referred as the importance weight, π(x) the target density

and q(x) the proposal density. Since it is assumed that we can sample from q easily, given a

sample X1, .., XN from q, an estimator for I can then obtained by

Î =
1

N

N∑
n=1

ϕ(Xn)
π(Xn)

q(Xn)
=

1

N

N∑
n=1

w(Xn)ϕ(Xn) (1.6)
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The estimator in (1.6) assumes that one could evaluate both π and q pointwise. In the

situation when π and/or q can only be evaluated up to proportionality, i.e. we only know

π(x) = π̃(x)/Lπ and q(x) = q̃/Lq, where Lπ and Lq are the normalising constants for π and

q and are both intractable. In this case, we should have that

∫
X

π̃(x)

q̃(x)
ϕ(x)q(x)dx =

Lπ
Lq
I. (1.7)

Hence, one can see that the estimator in (1.6) no longer works. In this case, one could use

the identity ∫
X

π̃(x)

q̃(x)
q(x)dx =

Lπ
Lq
.

As a result, an estimator for I can then be obtained by

Î =

∑N
n=1w(Xn)ϕ(Xn)∑N

n=1w(Xn)
, (1.8)

given that X1, ..., XN ∼ q. Importance Sampling provides an alternative way of estimating

the expectation of interest even when the target distribution is intractable. However, the

performance of IS relies heavily on the choice of the proposal distribution q. A good choice

of q should satisfy two conditions: (1) It’s a tractable distribution that is easy to sample from

(2) It should result in an estimator Î with as small MSE as possible. Practically, one should

look for tractable distributions that are as close to π as possible in order to obtain good IS

estimators.

To measure the efficiency of an IS estimator, a common choice is to use the Effective Sample

Size (ESS), which is defined as

ESS =
(
∑N

n=1w(Xn))2∑N
n=1w(Xn)2

. (1.9)

An interpretation for ESS is the equivalent sample size required to achieve the same level of

precision if that sample came from π. It can be seen that in the optimal scenario, we should

have w(Xn) := 1 for all n = 1, .., N . In this case, ESS = N , which is the maximum.

Although Importance Sampling solves the problem when we cannot sample directly from the
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target, it is well-known that IS suffers from the curse of dimensionality. As the dimension of

X increases, the variances of the importance weight w(X) will also increase. This makes it

extremely difficult to implement efficient Importance Sampling at high dimensions.

1.4 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a class of methods that are designed to solve

statistical inference problems recursively. It can be seen as a special class of Importance

Sampling (IS) methods which are Monte Carlo methods that construct an approximation

using samples from a proposal distribution and the corresponding importance weights. The

SMC methods provide a way to solve the dimensionality problems of the standard IS methods.

Suppose that we have a sequence of distributions, (πθn)n∈N, which are defined on spaces

of increasing dimension,
(
E(n)

)
n∈N. Furthermore, we define each distribution πθn as a joint

distribution of variables x1:n := (x1, x2, .., xn), where n = 1, 2, .., P .

We can also assume, from now on, that only unnormalised versions of (πθn)n∈N can be evalu-

ated, i.e.

πθn := γθn/Z
θ
n,

where Zθn > 0 are normalising constants, and only γθn can be evaluated.

For each distribution πn, suppose that samples of x1:n can be obtained from a proposal

distribution qt(dx1:n), the Importance Sampling method creates an approximation of πn(dx1:n)

by a collection of samples
{
Xj

1:n, j = 1, 2, ..., N
}

and their corresponding normalised weights{
W j
n, j = 1, 2, ..., N

}
. The samples from qn(dx1:n) are also called particles in many situations

and we will refer to these samples as particles in later parts. For each particle Xj
1:n, the

corresponding unnormalised weight wjn can be calculated by

wjn =
γn

(
xj1:n

)
qn

(
xj1:n

) , (1.10)

which can be normalised by W j
n := wjn/

∑N
i=1w

i
n. Based on the particles and the correspond-
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ing weights, πn(dx1:n) can then be approximated by

π̂n(dx1:n) :=
N∑
j=1

W j
nδxj1:n

(dx1:n). (1.11)

However, such a direct implementation of the Importance Sampling method is in fact far

beyond practical. To obtain a good approximation of πn from Importance Sampling, we

should carefully design a proposal qn that has a heavier tail than the target and concentrates

on regions of high density of the target. A poorly designed target will make the importance

weights have infinite variance and make the method computationally inefficient. However,

it is often very hard to design such a good proposal, especially when the target becomes

high dimensional as n increases. To get around such difficulties, we can instead employ the

Importance Sampling sequentially and use a kind of divide-and-conquer idea to tackle the

problem. This results in the Sequential Importance Sampling (SIS) method, which can be

treated as a special case of Importance Sampling. In SIS, we design a proposal density with a

Markovian structure. Instead of designing qn(dx1:n) for each n, the proposal density qn can

be seen as a propagation from qn−1 such that

qn(dx1:n) := qn−1(dx1:n−1)qn(dxn|x1:n−1).

By choosing such a type of proposal, we divide the proposal problem into several conditional

distributions. Therefore, one does not need to sample x1:n−1 again when obtaining particles

for approximating πn. Instead, the particles xj1:n−1 obtained from the previous step can be

reused to form xj1:n by sampling xn ∼ qn

(
·|xj1:n−1

)
and appending it to xj1:n−1. In this
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situation, the unnormalized importance weight can be calculated by

wjn :=
γn

(
xj1:n

)
qn

(
xj1:n

) =
γn

(
xj1:n

)
qn−1

(
xj1:n−1

)
qn

(
xjn|xj1:n−1

)

=
γn−1

(
xj1:n−1

)
qn−1

(
xj1:n−1

) γn

(
xj1:n

)
γn−1

(
xj1:n−1

)
qn

(
xjn|xj1:n−1

)

= wjn−1

γn

(
xj1:n

)
γn−1

(
xj1:n−1

)
qn

(
xjn|xj1:n−1

) .

(1.12)

We summarise the Sequential Importance Sampling method in Algorithm 1.1. Note that

at each step, the importance weights are obtained by multiplying by an increment to the

importance weights obtained from the previous step. To make the representations simpler, we

define

Gn(x1:n) :=
γn(x1:n)

γn−1(x1:n−1)qθn(xn|x1:n−1)

to be the incremental weight at step n. However, Sequential Importance Sampling also

suffers from the problem that the estimation variance scales exponentially with the dimension

of the problem. As n increases, the variances generally increase exponentially. If we look

at the normalised weight at each step, we can see that the maximum unnormalized weight,

maxj=1,..,N W
j
n, will quickly become almost 1, making other weights approach zero as n

increases. As a consequence, the target distributions at each stage will be approximated by

only one effective particle, resulting in a large variance in the estimation. This is known as

weight degeneracy

Such a drawback can be alleviated by cleverly choosing a proposal distribution that incorpo-

rates the information in π̂n−1(dx1:n−1) obtained from the previous Monte Carlo estimation

step. This results in the Sequential Monte Carlo methods. In the first step, Sequential Monte

Carlo obtains samples X1:N
1 ∼ q1(dx1) just like the Sequential Importance Sampling does.
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Algorithm 1.1: Sequential Importance Sampling (SIS)

1 for n = 1,2,3,...,P do
2 for j = 1,2,...,N do

3 Sample Xj
1:n ∼ qn

(
·|xj1:n−1

)
;

4 Set Xj
1:n :=

(
Xj

1:n−1, X
j
n

)
;

5 Calculate the unnormalized weight by ;
6

wjn := wjn−1

γn

(
xj1:n

)
γn−1

(
xj1:n−1

)
qn

(
xjn|xj1:n−1

)
7 Set the normalized weight by

W j
n := wjn/

N∑
i=1

win

8 Approximate πn (dx1:n) by

π̂n(dx1:n) :=

N∑
j=1

W j
nδxj1:n

(dx1:n)

The importance weight at this iteration will then be given by

wj1 :=
γ1

(
xj1

)
q1

(
xj1

) , (1.13)

and normalised to W j
1 := wj1/

∑N
i=1w

i
1. Approximation of π1(dx1) can then be obtained by

π̂1 (dx1) :=
N∑
j=1

W j
1 δXj

1
(dx1) . (1.14)

At later iterations of the SMC, we sample X1:N
1:n from different proposals as with the SIS

method. Instead of using qn−1(dx1:n−1)qn(dxn|x1:n−1) as the proposal, particles are obtained

from π̂n−1(dx1:n−1)qn(dxn|x1:n−1). Simulation from π̂n−1(dx1:n−1)qn(dxn|x1:n−1) can be

broken into two steps: sampling X̃j
1:n−1 ∼ π̂1:n−1 and Xj

n ∼ qn
(
·|X̃j

1:n−1

)
and concatenating

them to form Xj
1:n. Sampling from π̂n−1 is often referred to as a resampling since we are

sampling from a distribution that itself is obtained from sampling. It can be seen as a random

sampling from X1:N
1:n−1 with replacement according to the weights W 1:N

n−1. This means that
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the probability of choosing the j-th particle is just W j
n−1. As a result, we will have that the

expected number of times the j-th particle is resampled is E
{
N j
n

}
, will be given by

E
(
N j
n

)
= NW j

n

Since the particles are sampled from π̂n−1(dx1:n−1)qn(dxn|x1:n−1), they are approximately

distributed according to πn−1(dx1:n−1)qn(dxn|x1:n−1). As a result, the corresponding impor-

tance weight will be obtained by

wjn :=
γn

(
x̃j1:n−1, x

j
n

)
γn−1

(
x̃j1:n−1

)
qn

(
xjn|x̃j1:n−1

) (1.15)

which is normalised to W j
n := wjn/

∑N
i=1w

i
n. For the resampling step, we can treat Xj

n as

an offspring of particle Ajn−1 at iteration n− 1. This interpretation was proposed in Andrieu

et al. (2010). As a result, resampling particles can be viewed as sampling indices An−1 :=(
A1
n−1, ..., A

N
n−1

)
∼ r (·|Wn−1) with r (·|Wn−1) being any kernel such that r (j|Wn−1) =

W j
n−1 and Xj

n ∼ qn

(
·|XAjn−1

1:n−1

)
. One can also keep track of the ancestor lineage of the

particles at time n by defining Bi
n|n := i and

Bi
t|n = A

Bi
t+1|n

t

for t = n − 1, ..., 1. Then each particle lineage at step n can be expressed in an alternative

way,

Xi
1:n =

(
X
Ain−1

1:n−1, X
i
n

)
=

(
X
Bi

1|n
1 , ..., X

Bi
n|n

n

)
SMC method is sometimes also referred to as Sequential Importance Resampling method.

Since resampling will introduce extra variance to the estimation of πn(dx1:n) as shown by

Chopin (2004), it is generally preferable to use (1.11) to approximate πn(dx1:n) instead of

using the equally weighted resampled particles. However, by inserting a resampling step, we

can get rid of the particles of pretty low weights and focus our computation on regions with

high probability density.
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Algorithm 1.2: Sequential Importance Resampling (SIR)

1 for n=1 do

2 Sample Xj
1 ∼ q1(dx1) for j = 1, ..., N ;

3 Compute the unnormalized weight by

wj1 :=
γ1

(
xj1

)
q1

(
xj1

)
Set W j

1 = wj1/
∑N

i=1w
i
1;

4 Approximate π1(dx1) by

π̂1(dx1) :=
N∑
j=1

W j
1 δXj

1
(dx1)

5 for n = 1,2,3,...,P do
6 for j = 1,2,...,N do

7 Sample Ajn−1 ∼ r(·|Wn−1) with Pr(Ajn−1 = k|Wn−1) = W k
n−1;

8 Sample Xj
1:n ∼ qn

(
·|xA

j
n−1

1:n−1

)
;

9 Set Xj
1:n :=

(
X
Ajn−1

1:n−1, X
j
n

)
;

10 Calculate the unnormalized weight by

wjn :=
γn

(
xj1:n

)
γn−1

(
x
Ajn−1

1:n−1

)
qn

(
xjn|x

Ajn−1

1:n−1

)
11 Set the normalised weight by

W j
n := wjn/

N∑
i=1

win

12 Approximate πn (dx1:n) by

π̂n(dx1:n) :=

N∑
j=1

W j
nδxj1:n

(dx1:n)

1.5 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are a broad class of methods that can be used

to sample from a density π that is defined on a measurable space (X ,B(X )), where one only
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needs to evaluate π pointwise up to proportionality. The MCMC then tries to sample from a

specially designed Markov chain whose stationary distribution is π. Within the MCMC field,

the most famous algorithm is the Metropolis-Hastings (MH) algorithm. In the MH algorithm

and suppose that the Markov chain is currently at state x, a new state y is then proposed

according to a proposal distribution q(x, y). Then, with probability

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
, (1.16)

the next state is set to be y. Otherwise, the Markov chain stays at x. The above procedure

implicitly defines a Markov kernel of the form

K(x, y) = q(x, y)α(x, y) + (1− α(x))δx(y), (1.17)

where α(x) =
∫
q(x, y)(1 − α(x, y))dy. The Markov kernel defined here is reversible since

the detailed balance property is satisfied here:

π(x)q(x, y)α(x, y) = π(x)q(x, y) min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
= min {π(x)q(x, y), π(y)q(y, x)}

= π(y)q(y, x) min

{
1,
π(x)q(x, y)

π(y)q(y, x)

}
= π(y)q(y, x)α(y, x).

(1.18)

Therefore, it is to check that K will leave π invariant. The MH is a very powerful algorithm

such that most MCMC algorithms can be viewed as the MH algorithm with specially designed

proposal distribution or an extension to it. One of the common choice for q would be a Normal

distribution centred at x with covariances chosen by the user, i.e. q(x, y) = N (y;x,Σ). If

such a proposal is used, we often refer to the specific algorithm as the random-walk Metropolis-

Hastings algorithm. We will use the same name to refer to this type of MH algorithm in later

parts of the thesis.

1.6 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (Duane et al., 1987, Neal, 2011) is a class of Monte Carlo methods

that promises better scalability compared to general-purpose MCMC algorithms such as the
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random-walk Metropolis-Hastings algorithm. Suppose that we are interested in sampling from

the distribution π(x) where x ∈ Rd. HMC introduces an auxiliary momentum variable p and

defines the joint distribution π̄(x,p) ∝ π(x)$(p) on the extended space Rd×Rd. Moreover,

$ is often chosen to be a multivariate Gaussian distribution with mean 0 and variance Id, i.e.

$(p) := N (p; 0, Id). Also, we can write π(x) = exp(−U(x)) and define the corresponding

Hamiltonian to be

H(x,p) := U(x) + 1/2pTp,

where U(x) is often viewed as the potential energy of a system at position x and 1/2pTp

can be viewed as the corresponding kinetic energy at that position. Assuming that U(x)

is differentiable, the evolution of the system can be described by the following Hamiltonian

dynamics

dx

dt
= p

dp

dt
= −∇U(x).

(1.19)

Contrary to the random-walk Metropolis-Hastings algorithm, which only generates proposals

in a small neighbour of the current state, using the Hamiltonian dynamics can produce pro-

posals that are far away from the current state. In addition, the Hamiltonian dynamics is

also reversible, conservative and volume preserving (Neal, 2011). This means that proposals

obtained from exact Hamiltonian dynamics will always be accepted. Hence, the mixing of the

resulting Markov chain will be significantly improved.

In practice, however, the analytical solution to (1.19) is rarely available and an approximation

to the solution for t ∈ [0, τ ] is obtained by discretising the time with small stepsize ε for

L = τ/ε steps. A commonly chosen discretising scheme is the leap-frog method, which works

as follows:

p(t+ ε/2) = p(t)− ε

2
∇U(x(t))

x(t+ ε) = x(t) + εp(t+ ε/2)

p(t+ ε) = p(t+ ε/2)− ε

2
∇U(x(t+ ε))

(1.20)

to produce one-step update starting from (x(t),p(t)). We use ψε : Rd ×Rd → R
d ×Rd to
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denote the one-step leap-frog update with stepsize ε, i.e. (x(t+ ε),p(t+ ε)) = ψε(x(t),p(t)).

Given the current state (x,p), the HMC algorithm completes one iteration by performing the

following:

Step 1. A new momentum pnew is sampled from $(·).

Step 2. Obtain the proposal by setting (x′,p′) := σ ◦ ψLε (x,pnew) with σ(x,p) := (x,−p).

Step 3. Accept (x′,p′) to be the next state with probability

min
{

1, exp
(
−H(x′,p′) +H(x,pnew)

)}
.

Otherwise, stay at the current state.

Step 1 of the above scheme samples a new momentum from ρ and due to its independence

to π(x), such a sampling step will leave π̄ invariant. Moreover, φ = σ ◦ ψLε is an involution.

With the acceptance probability given by min(1, π̄ ◦φ(x,p)/π̄(p)), the Markov kernel defined

in Step 2 and 3 will also leave π̄ invariant (Andrieu et al., 2020).

1.6.1 HMC with boundary reflections

In this section, we introduce the HMC samplers with boundary reflections, which can be

viewed as a modification on the standard HMC methods. Suppose that we are interested in

sampling from π(x) with the constraint C(x) ≥ 0 where C : Rd → R is a piecewise smooth

function. This can also be viewed as sampling from

π̃(x) ∝


π(x), C(x) ≥ 0

0, otherwise.

(1.21)

Such sampling problem has been discussed in several places in the literature (e.g. Betancourt

(2011), Pakman and Paninski (2013, 2014), Mohasel Afshar and Domke (2015), Chevallier

et al. (2018)). Although different in details of implementations, the methods proposed in the

literature all make reflections against the boundary defined by C(x) = 0 when x reaches or

steps outside the boundary. From the Hamiltonian point of view, such a constraint imposes

an infinite potential energy barrier in Rd (Betancourt, 2011). Hence, it’s reasonable to make
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bounces when the Hamiltonian equation integrates outside the boundary from the physical

intuition.

Consider the one-step leap-frog update starting from (x(t),p(t)), if x(t+ ε) := x(t) + εp(t+

ε/2) is outside the boundary, i.e. C(x(t + ε)) < 0, we follow Algorithm 1.3 to perform the

leap-frog update with reflections. Note that when the set {t > 0|C(x+ tp1/2) = 0} = ∅, its

infimum is set to be ∞. In fact, the leap-frog discretisation with reflections splits the straight

line motion from x to x+εp1/2 into several line segments that all lie within the region bounded

by C(x) = 0. We use ψrε : Rd × Rd → R
d × Rd to represent the map implicitly defined

by Algorithm 1.3 and one can easily check that ψrε is also time-reversal. Hence, the proposal

defined by φrε,L := σ ◦ ψr,Lε is still an involution, which implies that with the same form of

acceptance probability, the HMC with reflections still leaves π̃(x) invariant.

Algorithm 1.3: Reflective Leap-frog, ψrε (x,p)

Input :
• The starting point (x,p).
• The discretisation length, ε.
• The potential energy function U(x) and its gradient function ∇U(x).
• The piecewise smooth function C defining the boundary.

1 Set tr := ε;
2 Set p1/2 = p− ε

2∇U(x);

3 Set tb := Find First Bounce Time(x,p1/2, C) := inf{t > 0|C(x+ tp1/2) = 0};
4 while tb < tr do
5 Set x := x+ tbp1/2;

6 Calculate n := ∇C(x)/||∇C(x)|| ;
7 Set p1/2 := p1/2 − 〈p1/2,n〉n;

8 Set tr = tr − tb;
9 Set tb := Find First Bounce Time(x,p1/2, C);

10 Set x′ := x+ trp1/2 ;

11 Set p′ := x′ − ε
2∇U(x′)

The HMC with reflections discussed above can also be viewed as a generalisation of the billiard-

walk sampler (Gryazina and Polyak (2014), Polyak and Gryazina (2014)) with fixed stepsize.

Instead, one could also simulate a random stepsize from e.g. an Exponential distribution

at each time. To avoid too many reflections at some point, one could also perform early

rejections if the number of reflections exceeds a certain threshold (Chevallier et al. (2018)).



Chapter 2

Static Parameter Estimations of

Piecewise Deterministic Markov

Models using Particle Gibbs samplers

2.1 Introduction

Piecewise deterministic processes (PDPs) are stochastic processes that jump randomly at a

countable number of time points but otherwise evolve deterministically in continuous time.

Practically, we may only be able to observe such processes in discrete time. Most of the time,

such discrete time observations also come with noise or one cannot even observe the process

directly. This often makes it much more difficult to perform inferences on PDPs.

To make inferences on the PDPs, several particle filtering algorithms have been proposed

in the literature. Godsill and Vermaak (2005) proposed algorithms termed as variable rate

particle filters (VRPFs), that are based around the bootstrap approach and split the time

into disjoint time blocks and sample the jumps in each time block sequential by a particle

filter. A corresponding smoothing algorithm was later proposed in Bunch and Godsill (2013).

However, if the time is discretised in a way such that there are jumps near the endpoints of

the time blocks, the VRPF algorithm may likely miss these jumps and the missing jumps will

not be recovered through smoothing either. This will make the estimation of the PDPs by

16
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VRPF algorithms unreliable, especially for the times that are near the endpoints of the time

blocks.

A more sophisticated particle filtering algorithm that is based on the sequential Monte Carlo

samplers of Del Moral et al. (2006) was introduced by Whiteley et al. (2011), in which the

sampled jumps are modified in light of new observations and the auxiliary backward kernels

are included to make sure that the particle filter still has the actual target distribution as

marginals. However, this algorithm is not suitable for smoothing techniques as most jumps

contained in Xn−1 would coincide with the jumps contained in Xn, making the backward

transition kernel almost degenerate. Moreover, the way the algorithm is designed in Whiteley

et al. (2011) introduces an approximation to the actual distribution of the PDPs and such an

approximation becomes more obvious when it is likely to have more than one jump within a

time block. Finke et al. (2014) reformulated the algorithm in Whiteley et al. (2011), making

it more suitable for variance reduction techniques such as backward simulation. However, the

approximating problem was not solved, and it was shown numerically in Finke et al. (2014)

that this can bring bias to the static parameter estimations in certain cases.

For the estimation of the static parameters in PDPs, several attempts have also been made

previously in the literature. Centanni and Minozzo (2006a) and Centanni and Minozzo (2006b)

introduced a sampler that is based around the reversible-jump MCMC of Green (1995). An

SMC approach was proposed by Del Moral et al. (2007) and was improved by Martin et al.

(2013). Rao and Teg (2013) designed a Gibbs sampler that is suitable for the classes of PDPs

in which the state space is discrete. Finke et al. (2014) proposed to apply the particle Gibbs

sampler with the reformulated particle filter to make inferences on the static parameters of

the PDPs.

In this chapter, we propose a modified particle filter that combines the VRPF sampler and the

block sampling algorithm introduced in Doucet et al. (2006) to make inferences on the PDPs.

This new algorithm is termed as BlockVRPF. We also apply the particle Gibbs sampler with

the BlockVRPF algorithm to estimate the posterior distributions of the static parameters in

the PDPs. Our main contributions are as follows.

1. We implement a new particle filter to estimate the PDPs of interest given discretely and
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particle observed noisy observations, termed as the BlockVRPF sampler, that addresses

the limitations faced by the original VRPF algorithm while at the same time does not

introduce any approximations like the algorithms in Whiteley et al. (2011) and Finke

et al. (2014) does. Moreover, the BlockVRPF sampler is still suitable for backward

samplings.

2. We provide explanations of the importance of the rejuvenation step proposed in Finke

et al. (2014) from a different perspective and discuss the importance of appropriately

choosing the auxiliary backward kernels to ensure that the rejuvenation step does bring

improvement on the mixing of the particle Gibbs sampler.

We show the improvements on the VRPF sampler brought by the BlockVRPF algorithm in a

toy filtering problem. Moreover, we demonstrate that using BlockVRPF will not bring biases

to the parameter estimations through two numerical examples.

2.2 Piecewise Deterministic Processes

In this section, we follow the descriptions in Whiteley et al. (2011) and Finke et al. (2014) to

give an introduction of discretely observed piecewise deterministic processes (PDPs). These

are stochastic processes that jump randomly at an almost surely countable number of random

times but otherwise evolve deterministically in continuous time. We also provide examples

considered throughout this work.

Let (τj , φj)j∈N be a stochastic process that represents the random jump times and the

corresponding jump values. Moreover, all the τ ’s will take values such that τ0 = 0 and

τ0 < τ1 < τ2 < .... We also define Φ to be the support for all the jump values (φj)j∈N. A

Piecewise Deterministic Process (PDP) is a continuous time stochastic process (ζt)t≥0 such

that ζ0 := φ0 and

ζt := F θ(t|τvt , φvt)

where vt := sup{j ∈ N|τj ≤ t} represents the latest jump time before time t ∈ R+. Hence,

a piecewise deterministic process will evolve deterministically according to F θ after time τj

until it reaches the next jump time τj+1. Here, we use θ to represent all the static parameters

used in the model. Suppose that we are interested in such a process up to time T and define
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k := vT to be the number of jumps before time T and ζ(a,b] := {ζt|t ∈ (a, b]} be the PDP

in the time interval (a, b]. It is clear that the process ζ(0,T ] can be completely determined by

(k, τ1:k, φ1:k, φ0) and the deterministic function F θ. For simplicity, we follow Whiteley et al.

(2011) to propose a Markovian prior on the jump times and values in the interval (0, T ], i.e.

pθ(k, τ1:k, φ1:k, φ0) = Sθ(τk, T )qθ0(φ0)I(0 < τ1 < τ2 < .. < τk < T )

×
k∏
j=1

fθ(τj |τj−1)gθ(φj |τj , τj−1, φj−1), (2.1)

where Sθ(τk, T ) := 1−
∫ T
τk
fθ(s|τk) ds denotes the probability that no jump occurring in the

interval (τk, T ] and fθ, gθ represents the conditional probability density of the jump times

and the associated jump values. Note that we also included the density of k, the number of

jumps up to T in the density p. The reason why we included it is that p can therefore be

defined on the space

Ẽ =
∞⋃
k=0

{
{k} ×T(0,T ],k × Φk+1

}
,

where T(a,b],k :=
{

(τ1, ..., τk) ∈ (0,∞)k : a < τ1 < ... < τk ≤ b
}

. The Markovian structure

of the process implies that inter-jump times τn − τn−1 are independent with each other and

the jump value φn at τn will only depend on the previous jump value φn−1 and the latest

inter-jump time τn − τn−1.

In real situations, such a continuous time stochastic process can only be observed at discrete

times with some measurement errors. Let y(s,t] be the observations obtained in the interval

(s, t] and pθ(y(s,t]|ζ(s,t]) be the density of the observations given the PDP. We also assume

that the observations obtained in disjoint intervals are conditionally independent given the

PDP. Hence, we will have that

pθ(y(0,T ]|ζ(0,T ]) = pθ(y(τk,T ]|τk, φk)
k∏
j=1

pθ(y(τj−1,τj ]|τj−1, φj−1). (2.2)
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The posterior density of the jump times and values up to t will then be given by

πθ(ζ(0,T ]|y(0,T ]) = πθ(k, τ1:k, φ0:k|y(0,T ]) = γθ(k, τ1:k, φ0:k|y(0,T ])/Z
θ

= pθ(k, τ1:k, φ1:k, φ0)pθ(y(0,T ]|ζ(0,T ])/Z
θ,

(2.3)

where Zθ is the normalising constant, which is typically unknown. We will refer to this

posterior distribution as π in future discussions when θ is known. In practice, we are often

interested in the Bayesian inference, based on the posterior distributions of the jumps defined

in (2.3) with known static model parameters θ. It is more common to make Bayesian inference

on the static parameter θ. In this case, we assign a prior π(θ) to the parameter and try to

find the posterior distribution of θ

π(θ|y(0,T ]) =

∫
π(θ)πθ(dk, dτ1:k, dφ0:k|y(0,T ]).

Since the integral involved in the above expression is in general intractable, we will often turn

to employ Monte Carlo methods to perform such inference.

2.2.1 Elementary Change-point Model

The first example we consider is the elementary change-point model. We assume that the

interjump times are distributed according to a Gamma distribution with shape and scale

parameters equal to α and β. Moreover, the interjump times are assumed to be independent

of each other. Given the jump times, the corresponding jump values are assumed to follow

a Gaussian AR(1)-process, i.e. g(φn|φn−1, τn−1, τn) = N (φn; ρφn−1, σ
2
φ), where ρ ∈ R and

σ2
φ ∈ (0,∞) are the static parameters of the model. Having the jump times and values, the

deterministic function of the change-point model is piecewise constant, i.e. F (t|τ, φ) := φ.

Observations are then obtained at regular times k∆, k = 1, 2, ... and are obtained with a

Gaussian noise of mean 0 and variance σ2
y . Hence, the static parameters of the model are

given by θ := (ρ, σ2
φ, σ

2
y , α, β) ∈ R× (0,∞)4.

Figure 2.1 shows the artificial data simulated from the model with α = 4, β = 10 and

(ρ, σ2
φ, σ

2
y) := (0.9, 1.0, 0.5). Moreover, we take ∆ := 1 and T := 1, 0000 for the simulated

data.



CHAPTER 2. PARAMETER ESTIMATION OF PDMP USING PARTICLE GIBBS 21

Figure 2.1: Simulated data of the change-point model described in this section. The static
parameter take values (ρ, σ2

φ, σ
2
y , α, β) := (0.9, 1.0, 0.5, 4.0, 10.0). The grey points are the

noisy observations recorded at every ∆ := 1. The red lines represent the actual PDMP

2.2.2 Shot-noise Cox Model

Another model we consider is the Shot-noise Cox model which was introduced by Cox and

Isham(1980). It plays a central role in modelling claims arrivals in the insurance market, for

example. The Shot-noise Cox model can be treated as a generalised Poisson point process

with more flexibility on the intensity, allowing it to be a stochastic process as well. Let ζt be a

shot-noise intensity process which is unobservable. In the context of insurance claims, ζt can

be interpreted as follows. Catastrophic events occur at random times {τn}n=1,2,3,... resulting

in a sudden jump on the intensity of claim arrivals. The corresponding jump values φn would

then depend on the severity of the catastrophic event causing such a jump. Between τn and

τn+1, the intensity will gradually decay as more and more claims have been settled until the

advent of the next catastrophic event.

In this numerical example, the interjump times are assumed to be exponentially distributed

with rate λτ , i.e.

f(τn|τn−1) = λτ exp(−λτ exp(τn − τn−1))× I(τn > τn−1).
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Furthermore, we assume that the initial jump value, φ0, is distributed according to an expo-

nential distribution with rate λφ, i.e.

g(φ0) = λφ(−λφφ0)I(φ0 > 0).

Moreover, given τn−1, τn and the previous jump value φn−1, the conditional density of the

jump value at φn, will be given by

g(φn|φn−1, τn−1, τn) = λφ exp(−λφ(φn − φ−n ))I(φn > φ−n ).

Here, φ−n := φn−1 exp(−κ(τn − τn−1)) represents the value of the intensity just before the

jump at τn. Moreover, the intensity ζt at any time will only depend on the jump times and

jump values and is given by

ζt := φνt exp(−κ(t− τνt)),

where νt := sup{j ∈ N|τj ≤ t}.

Given the intensity process ζt, claims will arrive according to a Poisson process with intensity

ζt. In the example, we set the observations to be the claim arrival times. Hence, for any time

interval (s, t], the likelihood of the observations in the interval will be given by

p(y(s,t]|ζ(s,t]) := exp

(
−
∫ t

s
ζsds

) ∏
y∈(s,t]

ζy.

Therefore, the static parameters in the model are θ := (λτ , λφ, κ). Figure 2.2 shows an

example of the intensity process and the corresponding observations simulated from the shot-

noise Cox model with λτ = 1/40, λφ = 2/3 and κ = 1/100.

2.3 Variable rate particle filter (VRPF)

In this section, we introduce the first particle filter for PDPs named variable rate particle filter

(VRPF) proposed by Godsill and Vermaak (2005). This is actually a standard SMC algorithm

on PDPs with a reparameterised presentation of the process. More specifically, the algorithm
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Figure 2.2: Data simulated from the shot-noise Cox model. Static parameters used are
θ := (λτ , λφ, κ) = (1/40, 2/3, 1/100). Top: The intensity process ζt of the Cox model.
Bottom: histogram of the event times with bin width equal to 2.5.

splits the PDP of interest into several disjoint intervals. Let 0 = t0 < t1 < t2 < ... < tP = T ,

where tn, n > 0 are pre-specified times. Let (τn,k, φn,k) be the k-th jump time and its

associated jump value in the time interval (tn−1, tn]. Moreover, let kn ≥ 0 be the number of

jumps in the interval (tn−1, tn]. Then, we can define the ’states’ to be

X1 := (k1, τ1,1:k1 , φ1,1:k1 , φ0) (2.4a)

Xn := (kn, τn,1:kn , φn,1:kn) (2.4b)

These ’states’ takes values in

E1 :=
∞⋃
k1=0

(
{k1} × T(0,t1],k1 × Φk1+1

)
, (2.5a)

En :=

∞⋃
kn=0

(
{kn} × T(tn−1,tn],kn × Φkn

)
. (2.5b)
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Define Jn :=
(
k̂n, τ̂n,1:k̂n

, φ̂n,0:k̂n

)
to be the collection of all the jump times and their asso-

ciated jump values we sample to define the PDP in the interval (0, tn]. Then we will have

k̂n =
∑n

j=1 kj . Moreover,
(
τ̂n,1:k̂n

, φ̂n,1:k̂n

)
will be given by

τ̂n,1:k̂n
:=

n⋃
j=1

{
τj,1:kj

}
, (2.6a)

φ̂n,0:k̂n
:= {φ0}

⋃ n⋃
j=1

{
φj,1:kj

} . (2.6b)

with the conventions that
{
τj,1:kj

}
:= ∅ and

{
φj,1:kj

}
:= ∅ if kj = 0. Moreover, we know

that the piecewise deterministic process, ζ(0,tn], is completely determined by Jn. Therefore,

we can define a sequence of distributions {πn}n=1,2,..,P with πn(x1:n) := γn(x1:n)/Zn, on the

space En :=
∏n
j=1Ej that is given by

γn(x1:n) := S
(
τ̂n,k̂n , tn

)
×q
(
φ̂n,0

)
× g(y(0,tn]|Jn)

×
k̂n∏
j=1

{
f (τ̂n,j |τ̂n,j−1) q

(
φ̂n,j |φ̂n,j−1, τ̂n,j , ˆτn,j−1

)}
,

(2.7)

where we assume that τ̂n,0 := 0. One can easily see that πP (x1:P ) is actually the target

distribution of interested defined in (2.3) and a standard SMC algorithm can be applied to

{πn}n=1,2,...,P . At the n-th SMC step, Xn is sampled conditional on X1:n−1 according to a

proposal kernel Kn (dxn|X1:n−1), where

Kn (xn|x1:n−1) = Kn,1 (kn|x1:n−1)Kn,2 (τn,1:kn , φn,1:kn |kn, x1:n−1) (2.8)

and the corresponding incremental weight is given by

Gn (x1:n) :=
γn (x1:n)

γn−1 (x1:n−1)Kn(xn|x1:n−1)
.
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If kn = 0, no jump times and values are sampled in the interval (tn−1, tn]. Therefore,

k̂n = k̂n−1 and Jn := Jn−1 and

Gn(x1:n) :=
S
(
τ̂n,k̂n , tn

)
S
(
τ̂n,k̂n , tn−1

) × g
(
y(tn−1,tn]|Jn

)
Kn,1(0|x1:n−1)

. (2.9)

If kn ≥ 1, jump times τn,1:kn and their corresponding jump values φn,1:kn will be sampled in

the interval (tn−1, tn]. In this scenario, k̂n = k̂n−1 + kn and

Jn :=
(
k̂n,Jn−1\{k̂n−1}, τn,1:kn , φn,1:kn

)
.

The corresponding incremental weight is given by

Gn (x1:n) :=
S
(
τ̂n,k̂n , tn

)
S
(
τ̂n−1,k̂n−1

, tn−1

) × h (τn,1:kn , φn,1:kn |Jn−1) g
(
y(tn−1,tn]|ζ(0,tn]

)
Kn,1(kn|x1:n−1)Kn,2(τn,1:kn , φn,1:kn |kn, x1:n−1)

(2.10)

where for n ≥ 1,

h (τn,1:kn , φn,1:kn |Jn−1) :=f
(
τn,1|τ̂n−1,k̂n−1

)
q
(
φn,1|φ̂n−1,k̂n−1, τ̂n−1,k̂n−1, τn,1

)
×

kn∏
j=2

{f(τn,j |τn,j−1)q(φn,j |φn,j−1, τn,j , τn,j−1)} .

We also use the convention that h(τn,1:kn , φn,1:kn |Jn−1) := 1 if kn = 0 and h(τ1,1:k1 , φ1,1:k1 |J0) :=

p(k1, τ1,1:k1 , φ1,1:k1). The VRPF method is detailed in Algorithm 2.1. The VRPF method has

a potential problem due to the discretisation of the continuous time PDMP. If a jump occurs

close to the end of a time block, say (tn−1, tn], the VRPF method is likely to miss it since

the observations in the block (tn−1, tn] provide little information about such a jump. Even

when such a jump is sampled, the corresponding sampled jump value is likely to be inaccurate

as well since the information available up to that time is minimal. Moreover, the inaccuracy

caused by this problem cannot be corrected by any of the smoothing methods either. Realis-

ing this problem we propose modifications to the VRPF method, which is based on the block

sampling techniques introduced by Doucet et al. (2006). In the next section, we will give an

introduction to the block sampling technique as well as the modifications we made on top of

the VRPF method.
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Algorithm 2.1: Variable Rate Particle Filter (VRPF)

1 for n=1 do
2 for i = 1, 2, ..., N do

3 Sample Xi
1 :=

(
ki1, τ

i
1,1:ki1

, φi
1,1:ki1

, φi0

)
∼ K1(·);

4 Set J i1 :=
(
τ i

1,1:ki1
, φi

1,1:ki1

)
;

5 Calculate the un-normalised weight

G1

(
Xi

1

)
:=

γ1

(
Xi

1

)
K1

(
Xi

1

)
6 for i = 1, 2, ..., N do
7 Calculate the normalised weight W i

1 such that

W i
1 ∝ G1(Xi

1),
N∑
i=1

W i
1 = 1

8 for n = 2,3,...,P do
9 for i = 1,2,...,N do

10 Sample Ain−1 ∼ r (·|Wn−1);

11 Sample Xi
n :=

(
kin, τ

i
n,1:kin

, φi
n,1:kin

)
∼ Kn

(
·|XAin−1

1:n−1

)
and set

Xi
1:n :=

(
X
Ain−1

1:n−1, X
i
n

)
;

12 if kin = 0 then

13 Set J in := J A
i
n−1

n−1 ;
14 Calculate the un-normalised weight, Gn(Xi

1:n), using Equation (2.9);

15 if kin ≥ 1 then

16 Set J in :=

(
k̂
Ain−1

n−1 + kin,J
Ain−1

n−1 \
{
k̂
Ain−1

n−1

}
, τ i
n,1:kin

, φi
n,1:kin

)
;

17 Calculate the un-normalised weight, Gn(Xi
1:n), using Equation (2.10);

18 for i = 1, 2, ..., N do
19 Calculate the normalised weight W i

n such that

W i
n ∝ Gn(Xi

1:n),

N∑
i=1

W i
n = 1
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2.4 Block Sampling Strategies and BlockVRPF Sampler

As discussed at the end of the previous section, the VRPF sampler may suffer from several

problems, making estimations of jumps near the time interval breakpoints inaccurate. How-

ever, these problems can be alleviated by looking back at the previously sampled jumps as

we collect more information and make modifications in light of the new observations. This

inspires us to incorporate the block sampling strategy to perform such modifications. In this

section, we first introduce the block sampling strategy of Doucet et al. (2006). We then

describe the modification we make to the VRPF to tackle the aforementioned limitations.

2.4.1 Block SMC samplers

Suppose that we have already obtained
{
W i
n−1, X

i
1:n−1

}
i=1,...,N

at step n − 1. Under the

standard SMC scheme, only
{
Xi
n

}
i=1,..,N

are sampled at step n and the paths Xi
1:n are

constructed by concatenating Xi
n with Xi

1:n−1 to approximate πn(x1:n). However, πn(x1:n)

and πn−1(x1:n−1) may have a large discrepancy. As a consequence, the sampled paths Xi
1:n−1

may not be in the region of high density under πn(x1:n). The block sampling strategy, on

the other hand, potentially provides a way of alleviating this limitation of the standard SMC

scheme. Instead of only sampling the Xi
n’s at step n, part of the previous paths are also

resampled in light of πn(x1:n). Suppose that X
′,i
n−L:n for some L > 1 are sampled at step n

according to a proposal density Kn(dx
′
n−L:n|x1:n−1), the paths at step n will then be obtained

by discarding Xn−L:n−1 from X1:n−1 and adding X
′
n−L:n to it. As a result, this new path

at step n will be (X1:n−L−1, X
′
n−L:n). If we define Qn(x1:n−L−1, x

′
n−L:n) to be the proposed

density of the path at step n, then Qn(x1:n−L−1, x
′
n−L:n) is given by

Qn(x1:n−L−1, x
′
n−L:n) =

∫
Qn(x1:n−1, x

′
n−L:n)dxn−L:n−1

=

∫
Qn−1(x1:n−1)Kn(x′n−L:n|x1:n−1)dxn−L:n−1

Therefore, when the path is propagated from X1:n−1 to (X1:n−L−1, X
′
n−L:n), importance

weight will become

W i
n ∝

γn(x1:n−L−1, x
′
n−L:n)

Qn(x1:n−L−1, x
′
n−L:n)

=
γn(x1:n−L−1, x

′
n−L:n)∫

Qn−1(x1:n−1)Kn(x′n−L:n|x1:n−1)dxn−L:n−1
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X1 X2 X3 X4 X5 X6 X7 X8 ...

Z1 X1(1)

Z2 X1(2) X2(1)

Z3 X1(3) X2(2) X3(1)

Z4 X1(4) X2(3) X3(2) X4(1)

Z5 X2(4) X3(3) X4(2) X5(1)

Z6 X3(4) X4(3) X5(2) X6(1)

Z7 X4(4) X5(3) X6(2) X7(1)

Z8 X5(4) X6(3) X7(2) X8(1)

... ... ... ... ...

Table 2.1: Illustrative example showing the components in zn for n = 1, 2, 3, .., 6 and L = 3.

We can see that the calculation of the importance weights at step n involves an integral, which

is, in most cases, impossible to be evaluated pointwise. As Doucet et al. (2006) pointed out,

even if it is possible to calculate the integral exactly, the form of the importance weights will

be no longer as simple as what we have in Algorithm 1 and Algorithm 2.

To deal with this problem, we can instead target a density defined on an extended space by

using the auxiliary trick. Define Xn(j) to be the jth time Xn is sampled. To simplify notation

at a later stage, we also define Zn to be the variable(s) sampled at step n. Hence,

Zn :=


(X1(n), X2(n− 1), ..., Xn−1(2), Xn(1)) , for 1 ≤ n ≤ L

(Xn−L(L+ 1), Xn−L+1(L), ..., Xn−1(2), Xn(1)) , for n ≥ L+ 1

This allows us to transform between the X’s and Z’s by Equation (2.11)

Zn,k := Xn−k+1(k) Xn(j) := Zn+j−1,j , (2.11)

where Zn,k represents the kth element in Zn. For the ease of understanding, Table 2.1 shows

the details of the components contained in the variable Zn for n = 1, 2, .., 8 and L = 3.

Hence, one can see that Z1:n will include all the random variables sampled up to step n.

Based on the previous discussion, the proposal distribution of all these variables will be

Qn(z1:n) = K1(z1)
n∏
t=2

Kt(zt|z1:t−1)

= K1(x1(1))
L∏
t=2

Kt(x1(t), ..., xt(1)|z1:t−1)
n∏

t=L+1

Kt(xt−L(L+ 1), ..., xt(1)|z1:t−1).



CHAPTER 2. PARAMETER ESTIMATION OF PDMP USING PARTICLE GIBBS 29

To be compatible with the importance density, the extended target should also include all the

variables up to step n. Hence, when n > L, we have that

π̃n(z1:n) ∝ γ̃n(z1:n) := γn(x1(L+ 1), ..., xn−L(L+ 1), xn−L+1(L), ..., xn(1))×
L∏
t=2

λt(x1(t−1), x2(t−2), ..., xt−1(1)|z1:t)

n∏
t=L+1

λt(xt−L(L), xt−L+1(L−1), ..., xt−1(1)|z1:t),

(2.12)

where the λl’s are auxiliary conditional densities of the rejuvenated variables at step l. When

n ≤ L, the corresponding extended target has a similar definition and is given by

π̃n(z1:n) ∝ γ̃n(z1:n) := γn(x1(n), x2(n− 1), ..., xn−1(2), xn(1))×
n∏
t=2

λt(x1(t− 1), x2(t− 2), ..., xt−1(1)|x1:t). (2.13)

Importantly, the extended target density incorporates the actual target of interest as a marginal.

One can see that by targeting the extended density defined in (2.12) and (2.13), we can avoid

the need for the integral appearing in the previous set-up and the importance weight will

become

Wn ∝
γ̃n(z1:n)

Qn(z1:n)
=
γ̃n(z1:n)Qn−1(z1:n−1)

γ̃n−1(z1:n−1)Qn(z1:n)
× γ̃n−1(z1:n−1)

Qn−1(z1:n−1)
= wn−1

γ̃n(z1:n)Qn−1(z1:n−1)

γ̃n−1(z1:n−1)Qn(z1:n)
.

Note that Qn(z1:n) = Qn−1(z1:n−1)Kn(zn|z1:n−1). Hence, the incremental weight for the

SMC with the block sampling strategy is then given by

Gn(z1:n) :=
γ̃n(z1:n)Qn−1(z1:n−1)

γ̃n−1(z1:n−1)Qn(z1:n)
=

γ̃n(z1:n)

γ̃n−1(z1:n−1)Kn(zn|z1:n−1)
. (2.14)

When n > L, the incremental weight will be given by

Gn(z1:n) =
γn(x1:n−L(L+ 1), xn−L+1(L), .., xn−1(2), xn(1))

γn−1(x1:n−L−1(L+ 1), xn−L(L), .., xn−2(2), xn−1(1))

× λn(xn−1(1), ..., xn−L(L)|x1:n−L(L+ 1), xn−L+1(L), .., xn−1(2), xn(1))

Kn(xn(1), .., xn−L(L+ 1)|x1:n−L−1(L+ 1), xn−L(L), .., xn−2(2), xn−1(1))
. (2.15)
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When n ≤ L, the corresponding incremental weight will be given by

Gn(z1:n) :=
γn(x1(n), x2(n− 1), .., xn−1(2), xn(1))

γn−1(x1(n− 1), x2(n− 2), ..xn−1(1))
×

λn(x1(n− 1), .., xn−1(1)|x1(n), x2(n− 1), .., xn−1(2), xn(1))

Kn(xn(1), ..., x1(n)|x1(n− 1), x2(n− 2), ..xn−1(1))
. (2.16)

If the resampling steps are also included in this scheme, the weights at step n will then be equal

Algorithm 2.2: SMC with Block Sampling

1 for n = 1 do
2 for i = 1, 2, .., N do
3 Sample Xi

1(1) ∼ K1(dx1);
4 Set Zi1 := Xi

1(1);
5 Calculate and normalise the weights

W i
1 ∝

γ1(xi1(1))

K1(xi1(1))

6 for n = 2, .., L do
7 Sample An−1 ∼ rn−1(Wn−1);
8 for i = 1, .., N do

9 Sample Zin := (Xi
n(1), .., Xi

1(n)) ∼ Kn(dzn|Z
Ain−1

1:n−1);

10 Set Zi1:n := (Z
Ain−1

1:n−1, Z
i
n);

11 Calculate and normalise the weights W i
n according to (2.16);

12 for n = L+ 1, .., P do
13 Sample An−1 ∼ rn−1(Wn−1);
14 for i = 1, ..N do

15 Sample Zin := (Xi
n(1), ..Xi

n−L(L+ 1)) ∼ Kn(dzn|Z
Ain−1

1:n−1);

16 Set Zi1:n := (Z
Ain−1

1:n−1, Z
i
n);

17 Calculate and normalise the weights W i
n according to (2.15);

to the incremental weights only. Details of the Block SMC method are given in Algorithm 2.2.

It is also clear that the performance of the Block SMC method will depend on the choices

of the artificial conditional densities {λn} and the proposal densities {Kn}. To have optimal

performance, these should be chosen to minimise the variance of the incremental weights

defined in (2.15) and (2.16). Doucet et al. (2006) derived the following two propositions

which provide us with guidance on how to choose these densities.
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Proposition 1. When n > L, the optimal conditional distribution

λn(xn−1(1), ..., xn−L(L)|x1:n−L(L+ 1), xn−L+1(L), .., xn−1(2), xn(1))

that minimizes the variance of the incremental weight defined in (2.15) is given by

λoptn (xn−L:n−1|x1:n−L−1, x
′
n−L:n) =

γn−1(x1:n−1)Kn(x
′
n−L:n|x1:n−1)∫

γn−1(x1:n−1)Kn(x
′
n−L:n|x1:n−1) dxn−L:n−1

(2.17)

where we use define x1:n−1 := (x1:n−L−1(L+1), xn−L(L), .., xn−2(2), xn−1(1))) and x
′
n−L:n :=

(xn(1), xn−1(2), ..., xn−L(L + 1)) for the ease of presentation. The optimal conditional dis-

tribution that minimizes the incremental weight of (2.16) will be given in a similar form.

Proposition 2. Given that the optimal artificial conditional distribution {λoptn } is chosen. The

corresponding optimal proposal distribution is given by

Kopt
n (x′n−L:n|x1:n−1) = πn(x′n−L:n|x1:n−L−1) (2.18)

where x1:n−1 and x′n−L:n have the same definition as in proposition 1

One can see that an integral is involved in the optimal choice {λoptn } and it is generally not

tractable. Hence, one needs to choose λn that approximates (2.17). Moreover, the optimal

proposal distribution defined in (2.18) also suggests that xn−L:n−1 should be resampled in

light of πn. In fact, as Doucet et al. (2006) pointed out, the choice of {λn} and {Kn} is quite

crucial to the performance of the block sampling strategy. If they are not chosen appropriately,

block sampling strategy may not always outperform the standard SMC sampler.

2.4.2 Block Variable Rate Particle Filter (Block-VRPF)

As discussed before, we want to make modifications on the jumps sampled in the previous time

blocks before the jumps in the current time block are sampled. The block sampling strategy

is therefore a suitable choice of doing this. Instead of resampling all the jumps in the previous

block, however, we propose to only modify some of the earlier jumps. Hence, at the n-th SMC

step, in addition to sampling jump times and values in the interval (tn−1, tn], represented by

xn(1), jumps already sampled in the interval (tn−2, tn−1], represented by xn−1(1), will also be
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modified. We follow Whiteley et al. (2011) to propose two types of modifications on xn−1(1)

- a birth move and an adjustment move:

Modification 1. If a birth is proposed, a new jump time will be sampled in the interval

(τn−1,kn−1 ∨ tn−2, tn−1] together with its jump value. Here, a ∨ b represents

the maximum of a and b.

Modification 2. If an adjustment is proposed, the last jump time in xn−1(1) and its associated

jump value,
(
τn−1,kn−1 , φn−1,kn−1

)
, will be discarded and a new jump time

and its jump value will be proposed in the interval (τn−1,kn−1−1∨ tn−2, tn−1].

In addition, if xn−1(1) contains zero jump, the adjustment will keep xn−1(1)

unchanged.

Note that the modifications are not constrained to those proposed above. Other modification

proposals and even modifications on more jumps are also possible. One can even modify more

than one previous block, as discussed in the previous section. For ease of presentation, we

will focus on the birth and adjustment moves only for the moment. Moreover, when the time

block is large enough to be likely to contain at least one jump, it is enough to only modify

the jumps in the last block since modifying the last jump is what we are interested in.

Let un−1 :=
(
τ̊n−1, φ̊n−1

)
be the modified jump time and associated value of the last jump

in the interval (tn−2, tn−1] with the convention that Un−1 := ∅ if kn−1 = 0. Also, let Mn−1 ∈

{0, 1} be the indicator of the type of modification made on Xn−1(1) with 0 representing an

adjustment and 1 representing a birth. Following the notation of block sampling strategies,

we use Xn−1(2) to denote Xn−1(1) after modification and from the description above, we

should have:

Xn−1(2) :=
(
kn−1 + 1, τn−1,1:kn−1 , τ̊n−1, φn−1,1:kn−1 , φ̊n−1

)
(2.19a)

when Mn−1 = 1. When Mn = 0, i.e. an adjustment is proposed, the modified Xn(1) will be

given by

Xn−1(2) :=
(
kn−1, τn−1,1:kn−1−1, τ̊n−1, φn−1,1:kn−1−1, φ̊n−1

)
. (2.19b)
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If the number of jump times in Xn−1(1) is 0, Xn−1(2) = Xn−1(1). We treat this as a special

case of Equation (2.19b). After the state Xn−1(1) is modified, the jump times and jump

values in the interval (tn−1, tn] will be sampled conditional on the modified PDP. Hence, the

Block-VRPF actually samples (Mn−1, Un−1, Xn(1)) at the n-th SMC step for n > 1, and

they should be the actual ’states’ we are considering. To ease notation, we re-define

Z1 := X1(1) (2.20a)

Zn := (Mn−1, Un−1, Xn(1)) (2.20b)

to be the ’states’ at the n-th SMC step. These ’states’ will take values in the subsets of

E1 :=
∞⋃
k1=0

(
{k1} × T(0,t1],k × Φk1+1

)
(2.21a)

and

En :=
[(
{0} × TM(τn−1,kn−1−1∨tn−2,tn−1] × Φ

)⋃(
{1} × TM(τn−1,kn−1

∨tn−2,tn−1] × Φ
)]

×
∞⋃

kn=0

(
{kn} × T(0,tn],kn × Φkn

)
,

(2.21b)

where TM(s,t] := {τ |τ ∈ (s, t]}. Moreover, denote Ūn−1 the jump time and value in the in-

terval (tn−2, tn−1] that are modified in the n-th SMC step. According to the modifications

we defined above, Ūn−1 :=
(
τn−1,kn−1 , φn−1,kn−1

)
when Mn−1 = 0 with the convention that

(τn−1,0, φn−1,0) := ∅ when kn−1 = 0. In addition, Ūn−1 := ∅ when Mn−1 = 1. Then,(
Xn−1(2),Mn−1, Ūn−1

)
and (Xn−1(1),Mn−1, Un−1) actually represent the same set of ran-

dom variables. Therefore, if we look at all the ’states’ we have sampled up to the n-th SMC

step, we can see that

Z1:n := (X1(1),M1, U1, ..., Xn−1(1),Mn−1, Un−1, Xn(1))

:=
(
X1(2),M1, Ū1, ..., Xn−1(2),Mn−1, Ūn−1, Xn(1)

) (2.22)

i.e. there is a one-to-one transformation between the two parameterizations.
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Target Density

In the following, we are going to present the extended target distribution of the Block-VRPF

algorithm. Since we have the one-to-one correspondence in (2.22), it is the same to express

the joint distribution of Z1:n in terms of (X1(2),M1, U1, ..., Xn−1(2),Mn−1, Un−1, Xn(1)) as

to express it in terms of
(
X1(2),M1, Ū1, ..., Xn−1(2),Mn−1, Ūn−1, Xn(1)

)
. The reason why

we care about this is that the distribution of the PDP given the observations at the n-th SMC

step, ζ(0,tn], is completely determined by (X1(2), X2(2), ..., Xn−1(2), Xn(1)). Hence, the

target density should incorporate γn(x1(2), x2(2), .., xn−1(2), xn(1)) as marginal. Therefore,

we define the extended target distribution of the algorithm, π̄n(Z1:n) := γ̄n(Z1:n)/Z̄n, to be

γ̄n (Z1:n) := γn(x1:n−1(2), xn(1))µn (m1:n−1|x1:n−1(2), xn(1))

×
n−1∏
j=1

λj (ūj |m1:j , x1:n−1(2), xn(1)) , (2.23)

where {µn} and {λn} are artificial conditional densities. These densities are included to

define a target distribution on an extended space to avoid the need to evaluate an integral,

as discussed in the previous section. Similarly, denote Jn :=
(
k̂n, τ̂n,1:k̂n

, φ̂n,1:k̂n

)
to be the

jump times and values that define the PDP, ζ(0,tn] at the n-th SMC step. Then, Jn can be

completely defined by (x1(2), .., xn−1(2), xn(1)) and we will have that

γn (x1(2), ..., xn−1(2), xn(1)) = γn (Jn)

= S
(
τ̂n,k̂n , tn

)
q
(
φ̂0

)
g
(
y(0,tn]|Jn

)
×

k̂n∏
j=1

{
f (τ̂j |τ̂j−1) q

(
φ̂j |φ̂j−1, τ̂j , τ̂j−1

)}
.

Based on the modifications we proposed, Jn can also be determined recursively, i.e. we can

set J1 := (k1, τ1,1:k1 , φ1,k1 , φ0) and Jn can be derived from Jn−1 by

Jn :=
(
k̂n−1 + 1 + kn,Jn−1\

{
k̂n−1

}
, τ̊n−1, φ̊n−1, τn,1:kn , φn,1:kn

)
(2.24a)
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when Mn−1 = 1. If Mn−1 = 0 and kn−1 ≥ 1, then

Jn :=
(
k̂n−1 + kn,Jn−1\

{
k̂n−1, τ̂n−1,k̂n−1

, φ̂n−1,k̂n−1

}
, τ̊n−1, φ̊n−1, τn,1:kn , φn,1:kn

)
.

(2.24b)

If Mn−1 = 0 and kn−1 = 0, then

Jn :=
(
k̂n−1 + kn,Jn−1\

{
k̂n−1

}
, τn,1:kn , φn,1:kn

)
. (2.24c)

Here, we use the convention that if kn = 0, then Equation (2.24a), (2.24b) and (2.24c) will be

simplified to
(
k̂n−1 + 1 + kn,Jn−1\

{
k̂n−1

}
, τ̊n−1, φ̊n−1

)
,
(
k̂n−1,Jn−1\

{
k̂n−1, τ̂n−1,k̂n−1

, φ̂n−1,k̂n−1

}
,

τ̊mn−1, φ̊n−1

)
and Jn−1 respectively.

Proposal Kernel

As for the proposed kernel, we useKn (zn|z1:n−1) := Kn,1 (mn−1|z1:n−1)Kn,2 (un−1|mn−1, z1:n−1)

×Kn,3 (xn|z1:n−1,mn−1, un−1), in which Kn,1 (mn−1|z1:n−1) := Kn,1 (mn−1|Jn−1) propose

a modification type based on the PDP in the interval (0, tn−1]. We follow the kernel proposed

in Whiteley et al. (2011), i.e. Kn,1 (0|Jn−1) := S
(
τ̂n−1,,k̂n−1

, tn−1

)
. This is to say that the

probability that an ’adjust’ is proposed equals the prior density that no jump occurs after the

last jump in Jn−1 and before the end of last epoch, tn−1. If a ’birth’ is proposed, then Un−1

will be proposed according to

Kn,2 (un−1|mn−1 = 1, z1:n−1) :=1
(
τ̂n−1,k̂n−1

∨ tn−2 < τ̊n−1 ≤ tn−1

)
× αn−1,1 (̊τn−1|Jn−1)βn−1,1

(
φ̊n−1|Jn−1

) (2.25a)

If an ’adjust’ is proposed, then Un−1 will be sampled according to

Kn,2 (un−1|a, z1:n−1) :=1 (kn−1 ≥ 1)1
(
τ̂n−1,k̂n−1−1 ∨ tn−2 < τ̊n−1 ≤ tn−1

)
× αn−1,0 (̊τn−1|Jn−1)βn−1,0

(
φ̊n−1|Jn−1

)
+ 1(kn−1 = 0)× δ∅(un−1)

(2.25b)

i.e. if Xn−1(1) contains no jumps at all and an ’adjust’ is proposed, then Un−1 will be an

empty set. Here, αn−1,1 and αn−1,0 are the proposal densities for the modified jump time
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on Xn−1(1) for a birth and an adjustment move respectively and βn−1,1 and βn−1,0 are the

proposal densities for the corresponding jump values. To sample the jump times and values

in the interval (tn−1, tn] according to Kn,3, we use similar proposals in VRPF method, i.e.

Kn,3 (xn|mn−1, un−1, z1:n−1) :=K1
n,3 (kn|mn−1, un−1, z1:n−1)

×K2
n,3 (τn,1:kn , φn,1:kn |kn,mn−1, un−1, z1:n−1)

(2.26)

Auxiliary Densities

As discussed before, the auxiliary densities are included to ensure that the importance weight

will have the correct form and incorporate γn as marginals. However, when choosing these

auxiliary densities, we need to ensure that their support is included in the support of the

proposal kernels. Hence, for the density µn (m1:n−1|x1:n−1(2), xn(1)) in (2.23), we propose a

factorisable density for simplicity, i.e.

µn
(
m1:n−1|x1:n−1(2),xn(1)

)
:=

n−1∏
j=1

µjn (mj |x1:j(2)) .

Furthermore, we propose a uniform distribution over ’adjust’ and ’birth’ on mj if xj(2) contains

at least one jump, i.e.

µjn(mj |x1:j(2)) :=
1

2
× 1

(
k̄j > 0

)
+ 1(k̄j = 0)δ0(mj).

Other forms of densities are also possible as long as the densities have the correct support.

The density for the modified jump time and jump value, λj (ūj |m1:j , x1:j(2)), must be chosen

by the users. Note that if Mj = 1 or Mj = 0 with kj = 0, there is actually nothing to be

modified. In this case, ūj := ∅ and λj (ūj |m1:j , x1:j(2)) can be replaced with 1. When Mj = 0

and kj ≥ 1, λj (ūj |m1:j , x1:j(2)) := λj

(
τ̂j,k̂j , φ̂j,k̂j |m1:j , x1:j(2)

)
should have support

(
τ̂j,k̂j−1 ∨ tn−2, tn−1

]
× Φ.

One easy choice is to assign τ̂j,k̂j a uniform distribution over its support. For φ̂j,k̂j , we can

set it to follow its prior.
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Incremental Weight

The incremental weight, Gn (z1:n) := γ̂n (z1:n) / [γ̂n−1 (z1:n−1)Kn (zn|z1:n−1)] is calculated

as follows. In this section, we set

h (τn,1:kn , φn,1:kn |τ, φ) :=f (τn,1|τ) q (φn,1|φ, τ, τn,1)

×
kn∏
j=2

{f(τn,j |τn,j−1)q(φn,j |φn,j−1, τn,j , τn,j−1)}

for any value of n. We will use this notation throughout this section. When mn−1 = 0, i.e.

an adjustment is proposed,

1. If kn−1 = 0

Gn (z1:n) :=
S
(
τ̂n,k̂n , tn

)
S
(
τ̂n−1,k̂n−1

, tn−1

) × µn−1(mn−1|x̄n−1)λn−1(ūn−1|m1:n−1, x̄1:n−1)

Kn,1 (0|Jn−1)

× g
(
y(tn−1,tn]|Jn

)
×

h
(
τn,1:kn , φn,1:kn |τ̂n−1,k̂n−1

, φ̂n−1,k̂n−1

)
K1
n,3 (kn|0, ∅, z1:n−1)K2

n,3 (τn,1:kn , φn,1:kn |kn, 0, ∅, z1:n−1)

(2.27a)
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2. If kn−1 ≥ 1,

Gn (z1:n) :=
S
(
τ̂n,k̂n , tn

)
S
(
τ̂n−1,k̂n−1

, tn−1

)×µn−1(mn−1|x̄n−1)

Kn,1 (0|Jn−1)
×

g

(
y(
τ̂n−1,k̂n−1

∧τ̊n−1,tn
]|Jn

)
g

(
y(
τ̂n−1,k̂n−1

∧τ̊n−1,tn−1

]|Jn−1

)

× λn−1 (ūn−1|m1:n−1, x̄1:n−1)

1

(
τ̂n−1,k̂n−1−1 ∨ tn−2 < τ̊n−1 ≤ tn−1

)
αn−1,0 (̊τn−1|Jn−1)βn−1,0

(
φ̊n−1 |̊τn−1,Jn−1

)

×
f
(
τ̊n−1|τ̂n−1,k̂n−1−1

)
q
(
φ̊n−1|φ̂n−1,k̂n−1−1, τ̊n−1, τ̂n−1,k̂n−1−1

)
f
(
τ̂n−1,k̂n−1

|τ̂n−1,k̂n−1−1

)
q
(
φ̂n−1,k̂n−1

|φ̂n−1,k̂n−1−1, τn−1,k̂n−1
, τ̂n−1,k̂n−1−1

)

×
h
(
τn,1:kn , φn,1:kn |̊τn−1, φ̊n−1

)
K1
n,3(kn|0, un−1, z1:n−1)K2

n,3 (τn,1:kn , φn,1:kn |kn, 0, un−1, z1:n−1)
(2.27b)

When mn−1 = 1, i.e. a birth is proposed,

Gn (z1:n) :=
S
(
τ̂n,k̂n , tn

)
S
(
τ̂n−1,k̂n−1

, tn−1

) × µn−1(mn−1|x̄n−1)

Kn,1 (mn−1|Jn−1)
×

g
(
y(̊τn−1,tn]|Jn

)
g
(
y(̊τn−1,tn−1]|Jn−1

)

×
f
(
τ̊n−1|τ̂n−1,k̂n−1

)
q
(
φ̊n−1|φ̂n−1,k̂n−1

, τ̊n, τ̂n−1,k̂n−1

)
λn−1(ūn−1|m1:n−1, x̄1:n−1)

1

(
τ̂n−1,k̂n−1

∨ tn−2 < τ̊n−1 ≤ tn−1

)
αn−1,1 (̊τn−1|Jn−1)βn−1,1

(
φ̊n−1|Jn−1

)

×
h
(
τn,1:kn , φn,1:kn |̊τn−1, φ̊n−1

)
K1
n,3(kn|mn−1 = 1, un−1, z1:n−1)K2

n,3 (τn,1:kn , φn,1:kn |kn,mn−1 = 1, un−1, z1:n−1)

(2.28)

The BlockVRPF method is outlined in Algorithm 2.3. Note that U in−1 in line 12 of Algorithm

2.3 will become ∅ when M i
n−1 = 0 and k

Ain−1

n−1 = 0 while K2
n,3 and h should be replaced

with 1 when kin = 0. Moreover, λn−1 will also be replaced by 1 when a birth is proposed

or when an adjustment is proposed but kn−1 = 0. Also the BlockVRPF sampler we propose
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Algorithm 2.3: Block Variable Rate Particle Filter (BlockVRPF)

1 for n=1 do
2 for i = 1, 2, ..., N do

3 Sample Xi
1 :=

(
ki1, τ

i
1,1:ki1

, φi
1,1:ki1

, φi0

)
∼ K1(·);

4 Set Zi1 := Xi
1 and J i1 :=

(
τ i

1,1:ki1
, φi

1,1:ki1

)
;

5 Calculate the un-normalised weight

G1

(
Zi1
)

:=
γ1

(
Zi1
)

K1

(
Zi1
)

6 for i = 1, 2, ..., N do
7 Calculate the normalised weight W i

1 such that

W i
1 ∝ G1(Zi1),

N∑
i=1

W i
1 = 1

8 for n = 2,3,...,P do
9 for i = 1,2,...,N do

10 Sample Ain−1 ∼ r (·|Wn−1);

11 Sample M i
n−1 ∼ Kn,1

(
·|J A

i
n−1

n−1

)
;

12 Sample U in−1 :=
(
τ̊ in−1, φ̊

i
n−1

)
∼ Kn,2

(
·|mi

n−1, z
Ain−1

1:n−1

)
;

13 Sample Xi
n :=

(
kin, τ

i
n,1:kin

, φi
n,1:kin

)
∼

K1
n,3

(
·|mi

n−1, u
i
n−1, z

AiN−1

1:n−1

)
K2
n,3

(
·|kin,mi

n−1, u
i
n−1, z

AiN−1

1:n−1

)
;

14 Set Zin :=
(
M i
n−1, U

i
n−1, X

i
n−1

)
and Zi1:n :=

(
Z
Ain−1

1:n−1, Z
i
n

)
;

15 Define J in according to (2.24a), (2.24b) or (2.24c) based on J A
i
n−1

n−1 ;
16 Calculate the incremental weight Gn

(
zi1:n

)
according to (2.27a), (2.27b) or

(2.28);

17 for n = 1, ..., N do
18 Calculate the normalised weight W i

n such that

W i
n ∝ Gn(Zi1:n),

N∑
i=1

W i
n = 1
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in this section provides us with an opportunity to correct the jumps in the last time block.

Such a correction is more obvious when a jump appears near the end of a block in the actual

process. This is illustrated in Figure 2.3. One can see that with the same number of samples,

the VRPF sampler missed the jump occurring at the end of the first time block in the actual

PDMP completely. On the contrary, due to the modification step in the BlockVRPF sampler,

there is a chance to recover this missed jump (as shown in the graph).

Figure 2.3: Illustration of the correcting power of BlockVRPF sampler. The black line repre-
sents the actual PDMP we are interested in. Given the same sampled jumps in the first block
(time blocks are split by the yellow dashed line), both VRPF and BlockVPRF samplers were
used to sample the jumps in the second block. These sampled processes are represented by
red lines (VRPF) and green lines (BlockVRPF)

2.4.3 Comparison between VRPF and BlockVRPF Samplers

To compare the performance of the VRPF and BlockVRPF samplers, we apply both samplers

to simulated data of the elementary change-point model shown in Figure 2.4, which are

the first 500 observations shown in Figure 2.1. In addition, we deliberately discretise the

time so that there are jumps near the end of each time block. The time discretisations are

also shown in Figure 2.4. For both algorithms, the number of jumps in each time block is



CHAPTER 2. PARAMETER ESTIMATION OF PDMP USING PARTICLE GIBBS 41

Figure 2.4: Data used in the simulations discussed in section 2.5.1. Grey dotted lines represent
the time discretisations used in the simulations.

sampled from a Poisson distribution with mean equal to the length of the block divided by

the mean interjump time. Given the number of jumps, we sample the corresponding jump

times from the uniform distribution and order them. The jump values are then sampled from

their full conditional distributions. For the BlockVRPF algorithm, a birth move is proposed

with probability 1 − S(τ̂n−1,k̂n−1
, tn−1). Otherwise, an adjustment is proposed instead. For

a birth move, the new jump times is proposed uniformly between τ̂n−1,k̂n−1
and tn−1. For

an adjustment, a modified jump time is proposed from a Gaussian distribution centred at

τ̂n−1,k̂n−1
with variance 0.12. Conditional on the modified jump times, the corresponding

jump values are also sampled from their full conditional distributions. When an adjustment

is proposed and kn−1 6= 0, we use a Gaussian distribution centred at φ̊n−1 with standard

deviation 0.1 and a truncated Gaussian distribution in the interval (τ̂n−1,k̂n−1−1 ∨ tn−2, tn−1]

with mean τ̊n−1 and standard deviation 0.2. Resampling is also performed whenever the

effective sample size (ESS) drops below half the total number of particles.

For each sampler, we run the algorithm with 500 particles and the true parameter values for

1, 000 times. We also perform backward simulations at the end of each simulation to obtain

one sample of the jumps conditional on the observations. From these samples, we find the last

jump as well as the first jump in each time block. For each of the actual jumps, we also find

the nearest sampled jump times for both VRPF and BlockVRPF methods. Figure 2.5 shows
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the sampled jump times obtained from both methods just before and after t = 350, which

is one of the time discretisation points. We can see that the VRPF method tends to ignore

the last jump point before t = 350 and place high weights around the previous jump time. It

also fails to detect this jump at a later stage, as shown in (b) of Figure 2.5. On the contrary,

BlockVRPF successfully detects the jump near t = 350 and places a higher probability in the

region around that jump as well. Figure 2.6 shows the histograms of the nearest sampled

jump times to the actual one obtained from both methods. It is clear from the plots that

the histogram for the BlockVRPF methods is more concentrated around the actual jump time

near t = 350. However, a non-negligible proportion of the sample from the VRPF method is

in a region centred at t = 400. This suggests that BlockVRPF are more robust in finding and

recovering the jumps that are near the time discretisation points. On the contrary, using the

VRPF method is more likely to miss these jumps or only find them at times later than the

actual ones. Figure 2.7 shows the histograms of the sampled nearest jump times to the actual

one near t = 97. It is clear that the BlockVRPF method is still robust in finding the jump at

the correct position. The VRPF method also manages to find the jump this time. However,

it only finds it at a slightly later time than the actual one. As a result, it may bring biases to

the estimation when the VRPF method is used.

For the jump times that are further away from the time discretisation points, both VRPF

and BlockVRPF sampler will produce similar estimations. For presentation simplicity, we will

not include all the plots here and the details of all the simulation results will be included

in Appendix. The simulation results discussed in this section indicate that the BlockVRPF

method is more robust compared to the VRPF method. However, one may also notice that

the calculation of incremental weights for the BlockVRPF sampler involves a likelihood ratio

of the part of the observations in the previous block conditional on the new and old jump

time and values. This suggests that if a modification significantly improves the estimation

of the PDMP, the corresponding incremental weight will be significantly large, making it a

dominating particle. This will introduce a larger variance to the incremental weights, resulting

in the BlockVRPF potentially having smaller ESSs. The incremental weight also depends on

the sampled jumps in the new block at each SMC step. Hence, having proposal kernels that

are close approximations to the optimal ones described in Proposition 2 is also crucial to the
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performance of the BlockVRPF sampler. Search for optimal proposal kernels or approximations

of these kernels will therefore be possible directions of future work.

Figure 2.5: Histograms showing the sampled jump times just before and after a time discreti-
sation point (represented by the grey dashed line). Left: last sampled jump times before the
discretisation. Right: first sampled jump times after the discretisation. Results obtained using
the VRPF and BlockVRPF samplers are in orange and green colour respectively. Red vertical
lines are the two most recent actual jump times before and after the time discretisation point.

The BlockVRPF method is also suitable to be used within the particle Gibbs sampler to

make inferences on the static parameter in the PDMP models. In this next section, we are

going to give an introduction to the particle Gibbs sampler and apply it with both VRPF

and BlockVRPF methods to obtain estimations of the posterior distributions of the static

parameters for the two models considered in this work.

2.5 Static Parameter Estimation using Particle Gibbs

In the previous section, we proposed a novel method that combines block sampling and VRPF

to perform filtering on the piecewise deterministic Markov models, given the values of the

static parameters in the model are known. In this section, we are trying to infer these static

parameters.

There have been many Bayesian methods based on the SMC sampler proposed by various

authors to estimate the static parameter of Markov models, such as Neal (2001) and Chopin
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Figure 2.6: Histograms of the sampled nearest jump times to the jump just before t = 350
obtained with both methods. Left: results obtained using the VRPF sampler. Right: results
obtained using the BlockVRPF sampler. The red line represents the actual jump times and
the red star represents the time discretisation point.

Figure 2.7: Histograms of the sampled nearest jump times to the jump just before t = 97
obtained from both methods. Left: results obtained using the VRPF sampler. Right: results
obtained using the BlockVRPF sampler. The red line represents the actual jump times and
the red star represents the time discretisation point.
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(2002). More recently, Andrieu et al. (2010) and Chopin et al. (2013) showed that SMC

methods could be combined with Markov Chain Monte Carlo (MCMC) methods to estimate

the static parameters in state-space models.

2.5.1 Particle Markov Chain Monte Carlo (PMCMC) Methods

The Particle Markov Chain Monte Carlo (PMCMC) is a class of Bayesian inference methods

that combines SMC with MCMC to approximately generate samples from the posterior dis-

tribution of the parameters for models whose likelihood is intractable due to the presence of

latent variables. Suppose the parameter θ ∈ Θ of the model of interest has a prior density π(θ).

Given observations y1:T , we are interested in the posterior density πP (θ|y1:P ) ∝ π(θ)p(y1:P |θ).

When there are latent variables present in the model, the likelihood p(y1:P |θ) will be given by

p(y1:P |θ) =

∫
p(x1:P , y1:P |θ)dx1:P =

∫
p(x1:P |θ)p(y1:P |x1:P , θ)dx1:P , (2.29)

which is intractable in most scenarios. This prevents us from designing standard MCMC

samplers targeting p(θ|y1:P ). To alleviate this problem, one could include x1:P as auxiliary

variables and target the extended density πP (θ, x1:P |y1:P ) using the MCMC sampler. By

targeting the extended density, we have an opportunity to implement a Gibbs sampler to

sample from πP (θ, x1:P |y1:P ) by the following scheme:

Step 1. Sample θ′ ∼ πP (θ|x1:P , y1:P )

Step 2. Sample x1:P ∼ πP (x1:P |θ′, y1:P )

Performing the sampling task in Step 1 is in general easy. If conjugate priors are used for θ, one

can sample exactly from the posterior density. As the unnomarlised density πP (θ, x1:P , y1:P )

can be evaluated point-wise, one can also replace Step 1 with a Metropolis-Hastings step

when direct sampling is not possible. On the other hand, sampling from the density in Step

2 is in general intractable except for some specific scenarios such as linear Gaussian models

and finite state hidden Markov models (Andrieu et al., 2010). Hence, practically one should

replace Step 2 with a Metropolis-Hastings update. In order to ensure good performance of the

MH update in Step 2, one should normally search for a ’good’ proposal distribution q(x1:P )

that is similar to πP (x1:P |θ′, y1:P ). As a result, a natural idea would be to use the empirical
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distribution obtained by running an SMC algorithm targeting πP (x1:P |θ′, y1:P ) with N particle

as the proposal distribution for the MH update. From the previous chapter, we know that the

SMC algorithm produces an approximation of its target density by

π̂P (dx1:P |θ′, y1:P ) :=
N∑
n=1

Wn
P δxn1:P (dx1:P ), (2.30)

This gives us a way of designing a proposal distribution that is in fact an approximation of

the actual density πP (x1:P |θ′, y1:P ). In fact, one can use the approximation defined in (2.30)

as the proposal distribution and this is the key idea behind the PMCMC methods. Sampling

from π̂P (dx1:P |θ′, y1:P ) is simple as one only needs the outputs from a single run of the

corresponding SMC algorithm. However, the calculation of the acceptance probability of the

MH update requires one to compute the proposal density q(dx1:P ) that is in this case given

by

q(x1:P ) := EW 1:N
1:P ,x

1:N
1:P

[
π̂P (dx1:P |θ′, y1:P )

]
(2.31)

where the expectation is taken with respect to all the random variables generated by the SMC

algorithm (Andrieu et al., 2010). This is in general intractable, making the MH update in Step

2 impractical. One natural way to solve this problem would be using the ’auxiliary trick’ again

- to include all the random variables produced during the SMC algorithm as auxiliary variables

and interpret the SMC algorithm as a proposal kernel that generates a ’single sample’ at each

time. More specifically, let Xn :=
(
X1
n, X

2
n, ..., X

N
n

)
and An−1 :=

(
A1
n−1, A

2
n−1, ..., A

N
n−1

)
be the particles and ancestor indices generated at step n of the SMC algorithm. Then, all the

random variables generated during an SMC algorithm will be (X1, ...,XP ,A1, ...,AP−1) and

the joint density of these random variables will be given by

ψN,θP (x1, ..., xP , a1, ..., aP−1) :=


N∏
j=1

Kθ
1

(
xj1

)
P∏
n=2

rθ (an−1|Wn−1)
N∏
j=1

Kθ
n

(
xjn|x

ajn−1

1:n−1

) .

(2.32)

Such an SMC sampler will produce N distinct paths, i.e. X1
1:P , X

2
1:P , ..., X

N
1:P . For a specific
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path, Xk
1:P , we can denote it as

Xk
1:P := X

Bk1:P
1:P =

(
X
Bk1
1 , X

Bk2
2 , ..., X

BkP
P

)
.

with Bk
P = k and Bk

n = A
Bkn+1
n . To sample a single path from the proposal, one just

need to sample the lineage index k with probability W k
P and set x

′
1:P := xk1:P := xb1:P1:P with

bP = k. Since all the random variables from an SMC algorithm are now included in the

proposal distribution, we should also define a corresponding extended target distribution that

includes θ and (X1, ...,XP ,A1, ...,AP−1). The design of the target distribution should fulfil

the following two conditions:

Condition 1. The target distribution should still admit πP (θ, x1:P |y1:P ) as a marginal.

Condition 2. The target distribution should be as close as possible to the proposal distribution

in a certain sense.

The first condition needs to be fulfilled to ensure that we are still able to target the correct

distribution as a marginal. We try to achieve the second condition in order to make sure that

the MH update targeting this extended distribution is as efficient as possible. Inspired by this,

we should consider factorising the extended target density in the form

π̃P (θ, b1:P ,x1:P ,a1:P−1) =
πP (θ, xb1:P1:P , b1:P )

NP
ψN,θP (x−b1:P1:P ,a−b2:P1:P−1|θ, x

b1:P
1:P , b1:P ), (2.33)

where we define x−b1:P1:P := x1:P \xb1:P1:P and similarly a−b2:P1:P−1 := a1:P−1\ab2:P1:P−1. The first

part of (2.33) is included to meet the first condition. Practically, one could simply sample

a lineage index k with probability W k
P and set bP := k and this would implicitly define the

values of bP−1, ..., b1 through the relationship bn = a
bn+1
n . If the support of the proposal

distributions used in the SMC algorithm, K1(dx1)
∏P
j=2Kj(dxj |x1:j−1), encompasses that of

πP , the marginal density πP (θ, xb1:P1:P , b1:P )/NP would be the same as πP , which is the actual

density of our interest. The second part of (2.33) is designed to meet the second requirement.

As we need to define the distribution of the rest of the particles and ancestor indices and hope

to design a distribution that is close to ψN,θP . One way to do this is to define a conditional

distribution of the rest of the particles and ancestor indices. Hence, we can define the joint
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distribution of X−k1:P and A−k1:P−1 to be

ψN,θP

(
x−b1:P1:P ,a−b2:P1:P−1|x

b1:P
1:P , b1:P

)
:=

ψN,θP (x1:P ,a1:P )

K1

(
xb11

)∏P
n=2

{
r (bn−1|Wn−1)Kn

(
xbnn |xb1:n−1

1:n−1

)}
=

 ∏
1≤j≤N,j 6=b1

K1

(
xj1

)
P∏
n=2

r
(
a−bnn−1|Wn−1, a

bn
n−1

)
×

∏
1≤j≤N,j 6=bn

K

(
xjn|x

ajn−1

1:n−1

)
.

(2.34)

Since Equation (2.34) is the conditional distribution of
(

X−b1:P1:P ,A−b2:P1:P−1

)
given the path(

xb1:P1:P , b1:P

)
in π̃NP . This actually inspires the idea of the particle Gibbs sampler described in

Andrieu et al. (2010). At each iteration, given we have obtained
(
θ, b1:P , x

b1:P
1:P , x

−b1:P
1:P , a−b2:P1:P−1

)
,

we can do the following to obtain a new set of random variables

Step 1. Sample θ∗ ∼ π̃NP
(
θ|b1:P , x

b1:P
1:P , x

−b1:P
1:P , a−b2:P1:P−1

)
Step 2. Sample X∗,−b1:P1:P ,A∗,−b2:P1:P−1 ∼ ψ

N,θ∗

P

(
x∗,−b1:P1:P , a∗,−b2:P1:P−1 |b1:P , x

b1:P
1:P

)
Step 3. Sample b∗1:P , x

b∗1:P
1:P ∼ π̃NP

(
b∗1:P , x

b∗1:P
1:P |θ∗, x

∗,−b1:P
1:P , a∗,−b2:P1:P−1 , b1:P , x

b1:P
1:P

)
As described in Andrieu et al. (2010), Step 1 of the above sampling scheme can be simplified

to sampling θ∗ ∼ πP (θ∗|xb1:P1:P ) and this still leaves the target density π̃NP invariant. This is

a special type of Gibbs sampler known as the ’collapsed’ Gibbs sampler which was discussed

in Liu (2001) and Van Dyk and Park (2008). For complex models, directly sampling from

πP (θ∗|xb1:P1:P ) may not be possible either. In this case, one can insert a Metropolis-Hastings

update to Step 1. Given a transition kernel q( dθ′|θ), one can sample a candidate θ′ and set

θ∗ := θ′ with probability

α(θ, θ′) := 1 ∧
πP (θ′|xb1:P1:P )q(θ|θ′)
πP (θ|xb1:P1:P )q(θ′|θ)

Such a technique is termed as Metropolis-Hastings within Partially Collapsed Gibbs (MHw-

PCG) and its correctness was described in Van Dyk and Park (2008). Step 2 of the scheme in-

volves sampling from the conditional distribution defined by ψN,θ
∗

P

(
x−b1:P1:P ,a−b2:P1:P−1|x

b1:P
1:P , b1:P

)
.

One can see that this conditional distribution only depends on the transition kernels K1:P and

the resampling scheme r used in the SMC algorithm. Hence, to sample from the conditional,
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one can employ an algorithm similar to the standard SMC algorithm, except for keeping a

particular particle trajectory xb1:P1:P fixed. Such an SMC sampler is termed as the conditional

SMC (cSMC) sampler and was first introduced in Andrieu et al. (2010). The details of the

sampler are listed in Algorithm 2.4.

Algorithm 2.4: Conditional SMC Sampler (cSMC)

1 Given a path (X∗1:P , B1:P );
2 for n=1 do
3 for j = 1, 2, 3, ..., N do
4 if j 6= B1 then

5 Sample Xj
1 ∼ K1(·);

6 if j = B1 then

7 Set Xj
1 = X∗1 ;

8 Calculate the weight wj1 and normalise the weights W j
1 ∝ w

j
1;

9 for n = 2, 3, .., P do
10 for j = 1, 2, .., N do
11 if j 6= Bn then

12 Sample Ajn−1 ∼ r (·|Wn−1);

13 Sample Xj
n ∼ Kn

(
·|XAjn−1

1:n−1

)
;

14 if j = Bn then

15 Set Ajn−1 = Bn−1;

16 Set Xj
n = X∗n;

17 Calculate the weights wjn and normalise them W j
n ∝ wjn;

Note that one could permute the indices of the particles in an SMC sampler while keeping

the SMC sampler invariant. Hence, one could practically fix b1:P to some convenient values

(e.g bi = 1, i = 1, 2, .., P ) to simplify the implementation of the cSMC sampler.

Step 3 samples the ancestor indices b1:P and the corresponding trajectory defined by the

indices xb1:P1:P . Following (Lindsten and Schön, 2013, Chapter 5), the marginal is given by

πP (θ, x1:p) ∝ π(θ)πθP (x1:P ) and we can rewrite πθP (x1:P ) as

πθP (x1:P ) := πθ1(x1)

P∏
n=2

πθn(x1:n)

πθn−1(x1:n−1)
.
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Moreover, in an SMC sampler, the unnormalised weight wn is given by

wn :=
πθn(x1:n)

πθn−1(x1:n−1)Kθ
n(xn|x1:n−1)

.

Hence, we have that

πθP (x1:P ) := w1K1(x1)
P∏
n=2

wnK
θ
n(xn|x1:n−1).

Hence, if we plugin xb1:P1:P , we would obtain

πθP (xb1:P1:P ) := wb11 K1(xb11 )
P∏
n=2

wbnn K
θ
n(xbnn |x

b1:n−1

1:n−1 )

=

{
wb11∑N
i=1w

i
1

K1(xb11 )
P∏
n=2

wbnn∑N
i=1w

i
n

Kθ
n(xbnn |x

b1:n−1

1:n−1 )

}{
P∏
n=1

N∑
i=1

win

}

= W bP
P

{
K1(xb11 )

P∏
n=2

W
bn−1

n−1 Kn(xbnn |x
b1:n−1

1:n−1 )

}{
P∏
n=1

N∑
i=1

win

}

= W bP
P

{
K1(xb11 )

P∏
n=2

r(bn−1|Wn−1)Kn(xbnn |x
b1:n−1

1:n−1 )

}{
P∏
n=1

N∑
i=1

win

}
.

(2.35)

If we substitute this into (2.33), we will obtain, after simplification

π̃P (θ, b1:P ,x1:P ,a1:P−1) =
π(θ)W bP

P

NP
ψN,θP (x1:P ,a1:P−1)

{
P∏
n=1

N∑
i=1

win

}
∝W bP

P .

Hence, we can see that to perform Step 3, one simply choose bP = k with probability W k
P

and set bn := a
bn+1
n for n = P − 1, P − 2, ..., 2, 1. The corresponding trajectory will then

be obtained deterministically. These three steps complete one sweep of the particle Gibbs

sampler, and its full implementation is listed in Algorithm 2.5.

2.5.2 Particle Gibbs with Backward Sampling

We discussed the particle Gibbs sampler in the previous section. One of the major advantages

of such type of sampler is that it does not rely on the asymptotics of N to be a valid MCMC

sampler. However, the particle Gibbs sampler we discussed in the previous section is likely to
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Algorithm 2.5: particle Gibbs sampler

1 Initialise at any X
(0)
1:P ,k(0) and B

(0)
1:P ;

2 for n = 1, 2, .. do

3 Sample θ(n) ∼ πP
(
·|x(n−1)

1:P

)
;

4 Sample X
(n),−k(n−1)

1:P ,A
(n),−k(n−1)

1:P−1 by running a cSMC sampler conditional on

X
(n−1)
1:P and B

(n−1)
1:P , outlined in Algorithm 2.4;

5 Sample k(n) = j with probability W j
P . Set B

(n)
P = j and B

(n)
m = A

B
(n)
m+1,k

(n)

m for
m = P − 1, .., 2, 1;

6 Set X
(n)
1:P =

(
X

(n),B
(n)
1

1 , ..., X
(n),B

(n)
P

P

)
;

have mixing issues. In the particle Gibbs sampler we discussed before, we only sample the

ancestor index at P according to the importance weight WP , and trace the ancestral lineage

back of the particles to get a full path X1:P at each step. This may result in the particle

Gibbs sampler having poor mixing when there is significant degeneracy in the cSMC sampler.

Such a problem is especially obvious when P is large and N is small since a longer time and

a small number of particles often come with degeneracy. As the particle trajectory sampled

in the previous iteration must be kept fixed in the cSMC algorithm, the next sampled particle

trajectory would be therefore very similar to the previous one, resulting in poor mixing of the

Gibbs sampler. One way to solve this problem was proposed by Whiteley (2010) and further

explored later in Lindsten and Schön (2012). The idea is to insert a backward simulation

step to the particle Gibbs sampler to mitigate path degeneracy issues. In the context of

particle Gibbs sampler, one can interpret this changing Step 3 of the particle Gibbs sweep to

simulations of bP , bP−1, .., b1. Hence, instead of performing the original Step 3, we do the

following

• Sample b∗P ∼ π̃NP (b∗P |θ∗, x
∗,−b1:P
1:P , a∗,−b2:P1:P−1 , b1:P , x

b1:P
1:P )

• Sample b∗P−1 ∼ π̃NP (b∗P−1|θ∗, x
∗,−b1:P
1:P , a∗,−b2:P1:P−1 , b1:P−1, x

b1:P−1

1:P−1 , x
b∗P
P , b

∗
P )

• ......

• Sample b∗t ∼ π̃NP (b∗t |θ∗, x
∗,−b1:P
1:P , a∗,−b2:P1:P−1 , b1:t, x

b1:t
1:t , x

b∗t+1:P

t+1:P , b
∗
t+1:P )

• ......

• Sample b∗1 ∼ π̃NP (b∗1|θ∗, x
∗,−b1:P
1:P , a∗,−b2:P1:P−1 , b1, x

b1
1 , x

b∗2:P
2:P , b

∗
2:P )
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Now, we are going to derive the conditional distribution of b∗t listed above. One can see that

the conditional distributions of b∗t is independent of x
−b∗t+1:P

t+1:P and a
−b∗t+1:P

t:P−1 . Therefore, by

marginalising ψN,θP over x
−bt+1:P

t+1:P and a
−bt+1:P

t:P−1 , we obtain

ψN,θP (x−b1:t1:t ,a−b2:t1:t−1|x
b1:P
1:P , b1:P ) :=

N∏
j=1
j 6=b1

K1

(
xj1

) t∏
n=2

r
(
a−bnn−1|Wn−1, a

bn
n−1

) N∏
j=1
j 6=bn

Kn(xjn|x
ajn−1

1:n−1)

 .

(2.36)

Hence, the conditional distribution of b∗t will then be given by

π̃NP (b∗t |θ∗, x
∗,−b1:t
1:t , a∗,−b2:t1:t−1 , b1:t, x

b1:t
1:t , x

b∗t+1:P

t+1:P , b
∗
t+1:P )

=
πP (θ∗, b1:t, b

∗
t+1:P , x

b1:t
1:t , x

b∗t+1:P

t+1:P )

NP
ψN,θP (x−b1:t1:t ,a−b2:t1:t−1|b1:t, b

∗
t+1:P , x

b1:t
1:t , x

b∗t+1:P

t+1:P )

=
πθ
∗
P (xb1:t1:t , x

b∗t+1:P

t+1:P )

πθ
∗
t (xb1:t1:t )

πθ
∗
t (xb1:t1:t )π(θ∗)

NP

N∏
j=1
j 6=b1

K1

(
xj1

) t∏
n=2

r
(
a−bnn−1|Wn−1, a

bn
n−1

) N∏
j=1
j 6=bn

Kn(xjn|x
ajn−1

1:n−1)



=
πθ
∗
P (xb1:t1:t , x

b∗t+1:P

t+1:P )

πθ
∗
t (xb1:t1:t )

π(θ∗)W bt
t

NP
ψN,θ

∗

t (x1:t,a1:t−1)

{
t∏

n=1

N∑
i=1

win

}
∝W bt

t

πθ
∗
P (xb1:t1:t , x

b∗t+1:P

t+1:P )

πθ
∗
t (xb1:t1:t )

,

(2.37)

where the last line is derived in a similar way to what we did in (2.35). In fact, the backward

sampling step inserted in the particle Gibbs corresponds to the backward smoothing schedule

of a standard SMC algorithm. We summarise the corresponding particle Gibbs with backward

sampling (PGBS) sampler in Algorithm 2.6

The PGBS sampler generally has much better convergence properties than the standard parti-

cle Gibbs sampler. Due to the addition of the backward sampling step, we are able to explore

all the possible trajectories created by the combinations of particles obtained from the cSMC

algorithm. As a result, the new sampled trajectory is highly likely to be significantly different

from the previous one. This brings a big improvement in the mixing in the state space, hence
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Algorithm 2.6: particle Gibbs with Backward Simulation

1 Start at θ(0), X
(0)
1:P and B

(0)
1:P arbitrarily;

2 for n=1,2,... do

3 Sample θ(n) ∼ πP
(
·|X(n−1)

1:P

)
using e.g. a MH kernel;

4 Run a cSMC algorithm conditional on x
(n−1)
1:P , b

(n−1)
1:P and θ(n), outlined in

Algorithm 2.4, to get X
(n)
1:P and A

(n)
1:P−1 and W

(n)
1:P ;

5 for t = P, P − 1, ..., 2, 1 do

6 Set b
(n)
t = k with probability

W
(n),k
t

πθ
(n)

P (x
(n),k
1:t , x

(n),b∗t+1:P

t+1:P )

πθ
∗
t (x

(n),k
1:t )

where bt = k and bj = a
(n),bj+1

j

7 Set x
(n)
1:P := x

(n),b
(n)
1:P

1:P

the particle Gibbs sampler overall.

For the VRPF method, let J̌n := (ǩn, τ̌n,1:ǩn
, φ̌n,1:ǩn

) be the collection of jump times and

values that define the PDP in the interval (tn−1, tP ), we then have that

ǩn :=
P∑
j=n

kj τ̌n,1:ǩn
:=

P⋃
j=n

{
τj,1:kj

}
φ̌n,1:ǩn

:=
P⋃
j=n

{
φj,1:kj

}
.

Suppose the ancestor indices b∗n+1, .., b
∗
P have already been sampled and the corresponding

particles x
b∗n
n , ..., x

b∗P
P form J̌ ∗n+1. If ǩ∗n+1 > 0, the unnormalised backward sampling incremen-

tal weight will be given by

Gn|P (xb1:n1:n ) :=
f(τ̌∗n+1,1|τ̂n,k̂n)g(φ̌∗n+1,1|φ̂n,k̂n , τ̂n,k̂n , τ̌

∗
n+1,1)p(y(tn,τ̌∗n+1,1]|φ̂n,k̂n)

S(τ̂n,k̂n , tn)
. (2.38)

If ǩ∗n+1 = 0, the corresponding backward sampling incremental weight is given by

Gn|P (xb1:n1:n ) =
S(τ̂n,k̂n , tP )p(y(tn,tP ]|φ̂n,k̂n)

S(τ̂n,k̂n , tn)
. (2.39)

For the BlockVRPF sampler, we use the same notation J̌n to denote the collection of jump

times and values defined by Zn, .., Zp. Given Z
b∗n+1

n+1 , .., Z
b∗P
P and the corresponding J̌ ∗n , if
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M∗n = 1, the corresponding backward sampling incremental weight would be given by

Gn|P (zb1:n1:n ) :=
I(̊τ∗n > τ̂n,k̂n)f (̊τ∗n|τ̂n,k̂n)g(φ̊Pn ∗|φ̂n,k̂n , τ̊

∗
n, τ̂n,k̂n)µ(M∗n|z1:n, z

b∗n+1:P

n+1:P )

S(τ̂n,k̂n , tn)p(y(̊τ∗n,tn]|φ̂n,k̂n)
. (2.40)

When M∗n = 0 and U∗n = ∅, if ǩn = 0, we have

Gn|P (zb1:n1:n ) :=
I(τ̂n,k̂n < tn−1)S(τ̂n,k̂n , tP )µ(M∗n|z1:n, z

b∗n+1:P

n+1:P )p(y(tn,tP ]|φ̂n,k̂n)

S(τ̂n,k̂n , tn)
. (2.41)

If ǩ∗n > 0, we then have

Gn|P (zb1:n1:n ) :=
f(τ̌∗n+1,1|τ̂n,k̂n)g(φ̌∗n+1,1|φ̂n,k̂n , τ̂n,k̂n , τ̌

∗
n+1,1)p(y(tn,τ̌∗n+1,1]|φ̂n,k̂n)

S(τ̂n,k̂n , tn)

× I(τ̂n,k̂n < tn−1)µ(M∗n|z1:n, z
b∗n+1:P

n+1:P ). (2.42)

In the case U∗n 6= ∅, we should have

Gn|P (zb1:n1:n ) :=
f (̊τ∗n|τ̂n,k̂n−1)g(φ̊∗n|φ̂n,k̂n−1, τ̂n,k̂n−1, τ̊

∗
n)

f(τ̂n,k̂n |τ̂n,k̂n−1)g(φ̂n,k̂n |φ̂n,k̂n−1, τ̂n,k̂n−1, τ̊
∗
n)
×

p(y(τ̂n,k̂n∧τ̊
∗
n ,̊τ
∗
n)|φ̂n,k̂n−1)

p(y(τ̂n,k̂n∧τ̊
∗
n,tn)|φ̂n,k̂n−1, φ̂n,k̂n)

×
µ(M∗n|z1:n, z

b∗n+1:P

n+1:P )λ(τ̂n,k̂n , φ̂n,k̂n |z1:n, z
b∗n+1:P

n+1:P )

S(τ̂n,k̂n , tn)
× I(τ̂n,k̂n > tn−1, τ̊

∗
n > τ̂n,k̂n−1). (2.43)

2.5.3 Auxiliary Variable Rejuvenation

In this section, we describe the auxiliary rejuvenation step proposed by Finke et al. (2014) that

is crucial to ensure the correctness of particles Gibbs with BlockVRPF sampler. Recall that

when using the BlockVRPF sampler, the target distributions of the particle filter are given by

γ̄θt (Z1:t) := γθt (x1:t−1(2), xt(1))µθt (m1:t−1|x1:t−1(2), xt(1))

×
t−1∏
j=1

λθj (ūj |m1:j , x1:j(2), xj+1(1)) (2.44)
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for t = 1, 2, .., P . Note that in the context of the PGS, the static parameter θ of the

model is explicitly stated in the target density to remind us that they need to be sampled

from the sampler as well. Hence, at the n-th sweep of the particle Gibbs sampler, a new

parameter set θ(n) should be sampled conditional on Z
(n−1)
1:P according to (2.44). How-

ever, due to the presence of the auxiliary variables m
(n−1)
1:n−1 and ū

(n−1)
1:P−1, sampling from the

full distribution would be computationally expensive. Moreover, since what we are actually

interested in is the marginal distribution γθP (x1:P−1(2), xP (1)), sampling from the full distri-

bution would also potentially bring extra complexity. Hence, one could alternatively sample

θ(n) from the target distribution p(θ|x(n−1)
1:P−1(2), x

(n−1)
P (1)) ∝ π(θ)γθP (x

(n−1)
1:P−1(2), x

(n−1)
P (1))

only, where π(θ) is the prior distribution of θ. To ensure that the particle Gibbs sampler

still targets the correct distribution, the auxiliary variables m1:P−1, ū1:p−1 should be sampled

given θ(n) according to µθ
(n)

P and {λθ(n)j }j=1,..,P−1. This is the auxiliary variable rejuvena-

tion step and it can be viewed as being a partially collapsed Gibbs sampler (Liu et al., 1994,

Van Dyk and Park, 2008). For notational simplicity, we use JP to represent the collec-

tion (x1:P−1(2), xP (1)). Also, we denote MP to represent the collection (m1:P−1, ū1:P−1)

and ΓθP (MP |JP ) := µθt (m1:t−1|JP )
∏t−1
j=1 λ

θ
j (ūj |m1:j ,JP ). Hence, once we have obtained

(θ(n−1), b
(n−1)
1:P ,J (n−1)

P ,M(n−1)
P ,Z

(n−1),−b(n−1)
1:P

1:P ,A
(n−1),−b(n−1)

2:P
1:P−1 ) at step n − 1, the particle

Gibbs sampler with auxiliary variable rejuvenation could perform the following steps at sweep

n:

S1. Sample θ(n), b∗1:P ,M∗P ,Z
∗,−b∗1:P
1:P ,A

∗,−b∗2:P
1:P−1 ∼ p(·|J

(n−1)
P )

S2. Sample M∗∗P , b∗∗1:P ,Z
∗∗,−b∗∗1:P
1:P ,A

∗∗,−b∗∗2:P
1:P−1 ∼ p(·|θ(n),J (n−1)

P )

S3. Obtain the conditional path Z∗1:P from M∗∗P and J (n−1)
P and sample

b∗∗∗1:P ,Z
(n),−∗
1:P ,A

(n),−∗
1:P−1 ∼ p(·|θ

(n), Z∗1:P )

where Z
(n),−∗
1:P ,A

(n),−∗
1:P−1 represent the new particles and ancestor indices obtained by run-

ning cSMC algorithm conditional on Z∗1:P and θ(n).

S4. Sample b
(n)
1:P ∼ p(·|θ(n), Z∗1:P ,Z

(n),−∗
1:P ,A

(n),−∗
1:P−1 ) and obtain J (n)

P accordingly.

One can see that S1 can be collapsed by removing b∗1:P ,M∗P ,Z
∗,−b∗1:P
1:P ,A

∗,−b∗2:P
1:P−1 without af-
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fecting the validity of the Gibbs sampler. As a result, p(·|J (n−1)
P ) will be a density proportional

to π(θ)γθP (x
(n−1)
1:P−1(2), x

(n−1)
P (1)). S1 is important to make sure that the resulting Gibbs sam-

pler converges to the correct stationary distribution hence it must be kept. However, one can

see that b∗∗1:P ,Z
∗∗,−b∗∗1:P
1:P ,A

∗∗,−b∗∗2:P
1:P−1 will not affect later simulations hence can be omitted as

well. By trimming these variables, S2 becomes

S2’. Sample M∗∗P ∼ p(·|θ(n),J (n−1)
P ) := Γθ

(n)

P (MP |J (n−1)
P )

This is exactly the rejuvenation step we discussed before. In S3, b∗∗∗1:P can also be trimmed

for the same reason and then this can be done by running a cSMC algorithm conditional on

the lineage Z∗1:P obtained from J (n−1)
P and M∗∗P from the rejuvenation step. S4 is finally

performed to obtain the new sampled PDMP J (n)
P and this step can also be replaced by

backward simulation outlined in Algorithm 2.6.

We can now see that the rejuvenation step is crucial to ensure the validity of the particle

Gibbs sampler when the BlockVRPF method is used. The resulting algorithm is given in

Algorithm 2.7. In addition to ensuring the correctness of the sampler, the rejuvenation step

also has the potential to improve the mixing of particle Gibbs sampler when the BlockVRPF

method is used. Looking at the incremental weight at step n given in (2.27a), (2.27b) and

(2.28), one notices that when a birth or an adjustment is proposed, the likelihood ratio of

part of the observations in the interval (tn−2, tn−1] given the modified and original PDMP

is included in the incremental weights. Hence, when a modification moves the PDMP closer

to the true process, this likelihood ratio is going to be large, resulting in the particle filter

having a few dominant particle(s) at certain SMC step(s). Consequently, the cSMC sampler

with backward simulation will be likely to produce the same sampled path for many iterations,

making the sampling of the hidden PDMP stuck at a local mode. Rejuvenating the auxiliary

variables potentially solves this problem. By resampling the modifications and ’old’ jumps, the

modifications contained in x1:P−1(2) may become less significant. As a result, the incremental

weights will decrease, making the sampler more likely to escape from a local mode.

Although the rejuvenation step has the potential to improve mixing, the actual effect will

heavily depend on the choice of the backward kernels {µn} and {λn} appearing in the target

distribution. Ideally, we want to sample {ūj} that are not far from the modifications {uj} to
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Algorithm 2.7: particle Gibbs with rejuvenation

1 Initialise the chain at θ(0), b
(0)
1:P ,J

(0)
P ,M(0)

P ,Z
(0),−b(0)1:P
1:P ,A

(0),−b(0)2:P
1:P−1 ;

2 for n=1,2,..,N do

3 Sample θ(n) ∼ π(θ)γθP (x
(n−1)
1:P (2), x

(n−1)
P (1)). If directly sampling is not possible,

θ(n) can be obtained by e.g. applying Metropolis-Hastings kernel;

4 Perform the rejuvenation step, i.e. Sample M∗P ∼ Γθ
(n)

P (MP |J (n−1)
P );

5 Obtain the conditional path Z∗1:P from J (n−1)
P and M∗P through a deterministic

transformation;

6 Run cSMC algorithm given Z∗1:P and θ(n) to obtain Z
(n),−∗
1:P ,A

(n),−∗
1:P−1 ;

7 Through backward simulation, obtain b
(n)
1:P hence obtain J (n)

P

make sure that the incremental weights after rejuvenation are not too large. In the numerical

studies of this chapter, we propose to use a Gaussian kernel centred at the modified jump times

and values with a small variance. However, using Gaussian kernels creates a new problem -

if the variance is set to be too small, a large change in the last jump proposed by uj (which

often indicates a correction to a wrong jump value/time) would have tiny or even 0 weight.

Hence, one should carefully design the backward kernels to ensure that the rejuvenation steps

indeed bring improvements to the mixings.

2.5.4 Numerical Examples

In this section, we apply the particle Gibbs sampler with both the VRPF and BlockVRPF

method to perform Bayesian inference on two challenging examples discussed in section 2.2 -

the Elementary Change-point Model and the Short-noise Cox Model. We follow what we have

done in section 2.4.3 to perform the SMC and cSMC algorithms. In addition, we split the time

horizon into 10 equal intervals when performing the (c)SMC algorithm. Moreover, we apply

the random-walk Metropolis-Hastings algorithm with 500 iterations to obtain new parameter

sets at every Gibbs sweep. The proposal covariance matrices used in the random-walk MH

algorithm are obtained through pilot runs of the particle Gibbs sampler. For both models, we

run the particle Gibbs for 60, 000 iterations with the first 10, 000 iterations discarded as the

burning period.
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Shot-noise Cox Model

In this section, we represent the simulation results for the shot-noise Cox model. To avoid re-

sampling births during rejuvenation, the backward kernel µn will be set to be a Bernoulli(0.1).

When mn = 0, the corresponding backward kernel for the jump times and values will be Gaus-

sian kernels centred at the modified jump time and value with standard deviation equal to

2 and 1 respectively. For the parameters θ := (λτ , λφ, κ), we assign Gaussian priors with

zero mean and covariance Diag(10, 102, 10), constrained to (0,∞)3. We ran both VRPF-

PG and BlockVRPF-PG samplers with 10, 50 and 100 particles. Figure 2.8 shows the es-

timated marginal posterior distributions obtained by both algorithms. One can see that the

BlockVRPF-PG can produce comparable estimations of these posterior distributions even when

only 10 particles are used. One should note that although different ways of discretising the

time horizon may result in different mixing speeds of the PGS, the BlockVRPF-PG sampler will

always yield unbiased estimation. This can be viewed as an advantage of the BlockVRPF-PG

sampler compared to the algorithm proposed by Finke et al. (2014), for which discretisation

does affect the results. This is due to the fact that the algorithm proposed in Finke et al.

(2014) in fact yields an approximation of the actual posterior distributions and the accuracy of

such approximation depends on the time discretisations. This was illustrated through results

in Finke et al. (2014) on the same model. For the BlockVRPF-PG sampler, on the contrary,

one can choose any way to discretise the time horizon without worrying about the estimation

accuracies. Hence, choosing hyperparameters for the BlockVRPF-PG sampler is easier.

Figure 2.8: Kernel density estimation of the posteriors of the static parameters in short-noise
Cox model. Results obtained from VRPF-PG are in red and those obtained from BlockVRPF-
PG are in green. Results obtained using 10, 50 and 100 particles are represented by dot,
dashed and solid lines, respectively. Grey vertical dashed lines represent the true parameter
values.
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Figure 2.9 shows the autocorrelations of the two algorithms. One can see that using the same

number of particles, VRPF-PG has smaller auto correlations compared to the BlockVRPF-PG

sampler. This is possibly due to the sub-optimal choice of backward kernels in the BlockVRPF

sampler, as discussed in section 2.5.3. The choice of backward kernel variances may make the

incremental weights even larger after rejuvenation. Consequently, the sampled PDMPs may

become more correlated, resulting in higher correlations as shown in the figure. This suggests

that one may need to choose the backward kernels carefully to yield optimal performance.

Figure 2.9: Autocorrelations obtained with both algorithms. Results obtained with the VRPF-
PG and BlockVRPF-PG samplers are in red and green colour respectively. Dot, dashed and
solid lines represent the results obtained when using 10, 50 and 100 particles.

Elementary Change-point Model

In this section, we represent the simulation results for the elementary change-point model.

We use the same form of backward kernels as we did in the shot-noise Cox model. However,

the standard deviations for the modified jump time and value are set to be 0.1 and 0.05

respectively. Moreover, the parameters θ := (ρ, σφ, σy, α, β) are assigned to have Gaussian

priors with zero mean and covariance Diag(102, 102, 10, 103, 102), truncated in the region

R × (0,∞)4. Figure 2.10 shows the posterior estimations of the parameters obtained using

both VRPF-PG and BlockVRPF-PG algorithms. One can see that both algorithms yield

comparable estimations, regardless of the number of particles used in the SMC algorithm.

We notice that BlockVRPF-PG produces results that are more concentrated at the mode for

parameter β and this becomes more obvious when less number of particles are used. This is

potentially due to the extra variance introduced to the BlockVRPF method because of the

modification move at each SMC step, which results in the sampled PDMP becoming more
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Figure 2.10: Kernel density estimators of the posterior distributions of parameters in the ele-
mentary change-point model. The results obtained by using VRPF and BlockVRPF methods
are represented in red and green colour respectively. Results obtained by using 25, 50 and 100
particles are represented in dot, dashed and solid lines respectively.

likely to get stuck at local modes if the backward kernels are badly chosen. In fact, the choices

of the backward kernels are crucial to the performance of the BlockVRPF-PG sampler. We also

run the BlockVRPF-PG with 25 particles and different values for the standard deviations of the

backward Gaussian kernels for the modified jump time and value (0.1 and 0.05). Figure 2.11

shows the autocorrelations obtained from the two runs. One can see that only changing the

standard deviation used in the backward kernel will result in significantly different performances

of the BlockVRPF-PG sampler. Hence, one should try to find or approximate the optimal

choices of the backward kernels to achieve the best performance for the BlockVRPF sampler

and searching for such optimal kernels is potentially a direction of future work as well.

2.6 Conclusion

In this chapter, we have implemented a particle filter that addresses the limitations faced by

the VRPF sampler and still yields unbiased estimations of the PDPs of interest. Numerical
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Figure 2.11: Autocorrelations obtained by running BlockVRPF-PG with 25 particles and dif-
ferent choices of backward kernels. Grey lines represent the results obtained using standard
deviations 0.1 and 0.05 while green lines represent results obtained using standard deviations
0.1 and 0.2.
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studies provide a comprehensive illustration of the improvement brought by this new algorithm

as well as the unbiasedness of the estimations obtained by applying particle Gibbs with this

particle filter. We also realise the potential implementation issues that affect its performance.

Potential directions of future studies could be the following.

1. We follow Whiteley et al. (2011) and Finke et al. (2014) to propose two type of mod-

ifications on the jumps. More sophisticated modifications could also be included. For

example, it would be reasonable to also include a deletion move, i.e. delete an inap-

propriate jump proposed in the previous block. Moreover, the proposal distributions for

the type of modification as well as the position the modification should be placed can

be designed in a more sophisticated way.

2. The performance of the particle filter heavily depends on the quality of the proposal

distributions used. So far, we used a bootstrap-like way to design the proposals, which

is far from ideal for this type of problem. One may consider using flow-based models to

define the proposals to improve the performance of the particle filter.

3. In the simulation studies, we showed that the choice of the auxiliary backward kernels

does have a significant impact on the performance of the algorithms. Hence, the search

for the optimal backward kernel or approximations of these kernels would also be an

interesting future direction.

4. In this chapter, we only consider going back one block. It is easy to extend the scheme

to multiple blocks. Hence, it’s going to be interesting to investigate the effect of the

block numbers on the performance. Moreover, it would also be interesting to try to

design an algorithm that chooses the block number adaptively within the particle filter.



Chapter 3

Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) refers to a class of methods and algorithms that

are designed to perform Bayesian analysis using an approximation to the true posterior distri-

bution of a model, in which the likelihood function implied by the data generating process is

computationally intractable. Since its early introduction in the literature of population genet-

ics (Tavaré et al., 1997, Pritchard et al., 1999), it has been extensively and rapidly developed

in the past two decades. The underlying mechanism for ABC is simple - generating data from

the model of interest and comparing them to the observed data to search for regions of poten-

tially high posterior density in the parameter space. Due to the simplicity of this mechanism,

ABC methods have become popular in many research areas and they are now viewed as a

standard Bayesian tool. We can now see applications and developments of ABC methods in

various scientific areas, e.g. population genetics (Beaumont et al., 2002), coalescence models

(Tavaré et al., 1997), system biology (Liepe and Stumpf, 2018), climate (Holden et al., 2018)

and ecology (Fasiolo and Wood, 2018), to name a few.

In this chapter, we give an overview of the idea behind ABC methods and introduced some

of the main ABC methods in the literature.

3.1 The ABC Posteriors

ABC methods are trying to solve the same Bayesian inferential problem where we are given a

Bayesian model whose parameter θ ∈ Θ has a prior density of π(θ) with respect to a probability

63
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measure dθ. Moreover, for data generated from the model, y ∈ Rny := Y, we define l(y|θ)

to be the corresponding likelihood function for θ ∈ Θ. Suppose that observations y∗ are

obtained, we are then interested in the posterior distribution of the parameter θ, π(θ|y∗),

which is given by

π(θ|y∗) =
1

Z
π(θ)l(y∗|θ) (3.1)

where

Z =

∫
Θ
π(θ)l(y∗|θ) dθ

represents the normalising constant of the posterior density. However, if the likelihood function

l(y|θ) is expensive or impossible to evaluate, it is going to be difficult to use standard Monte

Carlo methods to sample from π(θ|y∗). ABC methods then provide us with an alternative

way of tackling this problem that could bypass the evaluation of the likelihood function and

it only requires the ability to easily generate pseudo-data from the underlying model. Let ‖·‖

be a suitable distance metric (e.g. Euclidean distance metric) and ε > 0 be a positive real

number. In the ABC context, we often call ε the tolerance of the ABC posterior. Then, given

θ ∈ Θ, we define

LABCε (y∗|θ) =

∫
Y
l(y|θ)I (‖y − y∗‖ < ε) dy

=

∫
Bε
l(y|θ) dy

(3.2)

where Bε := {y ∈ Y : ‖y − y∗‖ < ε} ⊂ Y is the ε-ball centred at y∗ in the data space Y.

Loosely speaking, (3.2) describes the idea of estimating the true likelihood l(y∗|θ) by the

pseudo-data generated from the model given θ that are similar to the observations and this

similarity is measure by the distance metric ‖·‖ (Fearnhead and Prangle, 2012). Hence, one

can view (3.2) as an approximation of the actual likelihood function. Hence, if we replace

the actual likelihood function with LABCε (y∗|θ) in (3.1), we obtain an approximation to the

actual posterior distribution, which is given by

πABCε (θ|y∗) =
1

ZABC
π(θ)LABCε (y∗|θ) (3.3)
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where

ZABC =

∫
Θ
π(θ)LABCε (y∗|θ) dθ =

∫
Θ

∫
Bε
π(θ)l(y|θ) dy dθ

We will refer to πABCε (θ|y∗) as the ABC posterior with tolerance ε in the latter part of the

thesis. To see the limit of the ABC posterior as ε→ 0, we need the Lebesgue differentiation

theorem (Stein and Shakarchi, 2009).

Theorem 3.1.1 (Lebesgue Differentiation Theorem). If f is integrable on Rd, then for almost

every x ∈ Rd,

lim
m(B)→0
x∈B

1

m(B)

∫
B
f(y) dy = f(x) (3.4)

where m(B) denotes the Lebesgue measure of a ball B in Rd.

We omit the proof here and refer the readers to Stein and Shakarchi (2009) for the detailed

proof of the theorem. With the aim of the Lebesgue differentiation theorem, we can then

obtain the following theorem.

Theorem 3.1.2. Let θ ∈ Θ ⊂ R
nθ and y ∈ R

ny be random variables having density

π(θ)l(y|θ) with respect to a probability measure. Moreover, assume that p(y∗) :=
∫

Θ π(θ)l(y|θ) dθ >

0. Then, we have

lim
ε→0

πABCε (θ|y∗) = π(θ|y∗)

for almost every y∗ ∈ Y.

Proof. The main idea of the proof is adopted from Prangle (2017). Clearly, since

Bε := {y ∈ Y : ‖y − y∗‖ < ε}

Hence, y∗ ∈ Bε for all ε > 0 and m(Bε)→ 0 as ε→ 0. Therefore, for almost every y∗ ∈ Y,
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we have

lim
ε→0

πABCε (θ|y∗) = lim
ε→0

π(θ)LABCε (y∗|θ)
ZABC

= lim
ε→0

π(θ) 1
m(Bε)

∫
Bε l(y|θ) dy

1
m(Bε)

∫
Θ

∫
Bε π(θ)l(y|θ) dy dθ

= lim
m(Bε)→0
x∈Bε

π(θ) 1
m(Bε)

∫
Bε l(y|θ) dy

1
m(Bε)

∫
Θ

∫
Bε π(θ)l(y|θ) dy dθ

=
π(θ)l(y∗|θ)∫

Θ π(θ)l(y∗|θ) dθ
= π(θ|y∗)

where the third equality in the above equation directly follows the Lebesgue differentiation

theorem.

Theorem 3.1.2 implies that the ABC posterior distribution will converge to the actual posterior

as the tolerance goes to 0. Hence, for small values of ε, the corresponding ABC-posterior

distribution provides a good approximation of π(θ|y∗). In reality, the pseudo-data y and the

observations y∗ may be in high dimension and this will make it very inefficient to use (3.3) for

inference. Hence, we typically replace y and y∗ with appropriate lower dimensional summary

statistics of them. Define s := S(y) and s∗ := S(y∗) where S : Y → S := R
ns denotes some

summary statistics function. We can define an approximation to the actual posterior

π(θ|s∗) :=
1

Zs
π(θ)l(s∗|θ) (3.5)

where Zs denotes the normalising constant and l(s|θ) denotes the likelihood function of the

summary statistics implied by l(y|θ). The corresponding ABC posterior density would then

be given by

πABCε (θ|s∗) =
1

ZABCs

π(θ)LABCε (s∗|θ) (3.6)

with

LABCε (s∗|θ) =

∫
S
l(s|θ)I (‖s− s∗‖ < ε) ds =

∫
Bsε
l(s|θ) ds (3.7)

where Bsε := {s ∈ S : ‖s− s∗‖ < ε}. The limiting distribution of πABCε (θ|s∗) was discussed

in Prangle (2017) and we will obtain a similar limiting result if the following conditions are

satisfied.
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1. The set Bsε := {s ∈ S : ‖s− s∗‖ < ε} is Lebesgue measurable

2. limε→0m(Bsε ) = 0

3. For ε > 0, Bsε shrink regularly or have bounded eccentricity at s∗, i.e. there is a constant

c > 0 such that for every ε > 0, there is a ball Bε such that

s∗ ∈ Bε, Bsε ⊂ Bε, and m(Bsε ) ≥ m(Bε)

If the above three conditions are satisfied, we would have that

lim
ε→0

πABCε (θ|s∗) = π(θ|s∗)

Compared to (3.3), (3.6) has been adopted more frequently in the ABC literature. In fact, one

can view (3.3) and a special case of (3.6) when we define S(y) = y as the identity function.

Moreover, the level of approximation depends on the choice of the summary statistics function.

If s is a sufficient summary statistics for θ, we will have π(θ|s∗) = π(θ|y∗) so there is no loss

of information when the summary statistics is used. If s is not a sufficient summary statistics,

then there will be some loss of information and π(θ|s∗) would only be an approximation of

the actual posterior. In this case, the use of summary statistics would add another layer of

approximation on the ABC posterior.

The ABC posterior distribution can be further generalised by using an appropriate kernel

Kε(u) that satisfies the following condition

1.
∫
Rd
Kε(u) du = 1

2. |Kε(u)| ≤ Aε−d for all ε > 0

3. |Kε(u)| ≤ Aε/|u|d+1 for all ε > 0 and u ∈ Rd.

We refer to the class of kernels satisfying the above three conditions as approximations to the

identity (Stein and Shakarchi, 2009). Informally, we have that

Kε → D as ε→ 0
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where D(u) denotes the Dirac delta function centred at 0. Then, the following theorem would

be useful in the generalisation of the ABC posteriors.

Theorem 3.1.3. Let {Kε}ε>0 be an approximation to the identity and f is integrable on Rd,

the for almost every u ∈ Rd,

(f ∗Kε)(u) :=

∫
Rd

f(y)Kε(u− y) dy→ f(u) as ε→ 0 (3.8)

If we replace the function f in Theorem 3.1.3 with the likelihood function l(s∗|θ), we can

define a generalised ABC likelihood as

LABCε (s∗|θ) = (l ∗Kε)(s
∗) :=

∫
S
l(s|θ)Kε(s

∗ − s) ds (3.9)

According to Theorem 3.1.3, LABCε (s∗|θ)→ l(s∗|θ) as ε→ 0. Note that the ABC likelihood

function defined in (3.7) is in fact special cases of (3.9) when the kernel is chosen to be

Kε(s− s∗) =
1

m(Bsε )
I(‖s− s∗‖ < ε) (3.10)

This is known as the uniform kernel in the literature. Therefore, the generalised ABC posterior

will then be given by

πABCε (θ|s∗) =
1

ZABCs

π(θ)

∫
S
l(s|θ)Kε(s

∗ − s) ds (3.11)

This is the general ABC posterior and it is central in all ABC methods and algorithms. There

have been different interpretations of the ABC posterior in the literature. Following the

derivations in (3.9), one can view the ABC likelihood as a kernel density estimation of the

actual likelihood function and then the ABC can be treated as a standard Bayesian inference

with an approximated likelihood function. While ABC is usually considered as an approximate

Bayesian method, Wilkinson (2013) considered ABC as an exact Bayesian method under the

assumption that there is an error in the observations, i.e. e = s∗ − s. In this case, the kernel

Kε can then be treated as the density function of this error term.

Despite the different interpretations of ABC, our main purpose is then to sample from (3.11)
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and utilise the samples from the ABC posterior to perform Bayesian analysis. However, we

may notice that there is still an integral in the ABC posterior defined in (3.11) and this integral

is intractable in almost all scenarios. One may also notice that the ABC posterior of (3.11)

can be viewed as a marginal density of the joint distribution

πε(θ, s|s∗) ∝ π(θ)l(s|θ)Kε(s
∗ − s) (3.12)

This lends us to a broad range of Monte Carlo methods that can be used to instead sample

from the joint density πε(θ, s|s∗) which is free of integrals and the ABC posterior can then

be obtained as a marginal. This is also where the possibility to sample pseudo-data from the

underlying statistical model comes into play.

Alternatively, it is also useful to notice that the ABC likelihood defined in (3.9) can be

viewed as the expectation of Kε(s
∗ − s), which is a function of the summary statistics s.

Let s1, s2, ..., sn be n independent samples of the summary statistics s from the model l(s|θ)

given θ, a common unbiased estimator of the expectation would then be given by

Ê [Kε(s
∗ − s)] :=

1

n

n∑
i=1

Kε(s
∗ − si) (3.13)

This is also an unbiased estimator of the ABC likelihood of (3.9). Replacing the ABC likelihood

in (3.11) with (3.13), we then obtain an estimator for the ABC posterior that is given by

π̂ABCε (θ|s∗) ∝ π(θ)

{
1

n

n∑
i=1

Kε(s
∗ − s)

}
(3.14)

and it is in fact an unbiased estimator for the ABC posterior up to proportionality. One may

therefore consider directly targeting πABCε (θ|s∗) by making use of the unbiased estimator

of it given in (3.14). Another interpretation of the estimator is through the joint posterior

distribution given by

πABCε (θ, s1, ...sn|s∗) ∝ π(θ)

{
n∏
i=1

l(si|θ)

}{
1

n

n∑
i=1

Kε(s
∗ − si)

}
(3.15)

which is the joint distribution of the parameter θ and all n summary statistics s1, ..., sn. One
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of the important results is that

∫ ∫
· · ·
∫
πABCε (θ, s1s2, ..., sn|s∗) ds1 ds2... dsn

∝
∫ ∫

· · ·
∫
π(θ)

{
n∏
i=1

l(si|θ)

}{
1

n

n∑
i=1

Kε(s
∗ − si)

}
ds1 ds2... dsn

=
1

n

n∑
j=1

∫ ∫
· · ·
∫
π(θ)

{
n∏
i=1

l(si|θ)

}
Kε(s

∗ − si) ds1 ds2... dsn

=
1

n

n∑
j=1

π(θ)LABCε (s∗|θ) = π(θ)LABCε (s∗|θ)

Hence, this extended joint distribution still incorporates the original ABC posterior as marginal.

In practice, most of the standard ABC methods are designed to target either (3.12) or (3.15).

As a result, the ABC methods can be viewed as standard Monte Carlo methods targeting a

specially designed distribution whose limiting distribution coincides with the actual Bayesian

posterior distribution of interest. In the remaining of the chapter, we will review some of the

classical ABC algorithms that frequently appear in the ABC literature and their limitations

will also be discussed.

3.2 Rejection ABC Samplers

The earliest ABC samplers (Tavaré et al., 1997, Pritchard et al., 1999) are in fact rejection

sampling algorithms targeting πABCε (θ, s|s∗) defined in (3.12) where

ZABCθ,s :=

∫
Θ

∫
S
π(θ)l(s|θ)Kε(s

∗ − s) ds dθ

denotes the corresponding unknown normalising constant. Accordingly, the proposal sampling

distribution of (θ, s), g(θ, s) will be in the form

g(θ, s) = q(θ)l(s|θ) (3.16)

where q is a distribution of θ defined on Θ′ ⊃ Θ. In practice, one can sample a candidate

parameter vector θ from q and then generate a pseudo-dataset from the model followed by the

calculation of the corresponding summary statistics to obtain a (θ, s) tuple that is distributed



CHAPTER 3. APPROXIMATE BAYESIAN COMPUTATION 71

according to g. As a result, we have

M := sup
θ,s

π(θ)l(s|θ)Kε(s
∗ − s)

q(θ)l(s|θ)
= sup

s
Kε(s

∗ − s) sup
θ

π(θ)

q(θ)
= Kmax

ε sup
θ

π(θ)

q(θ)

where Kmax
ε is the of the chosen kernel function. Then, the probability of accepting a (θ, s)

tuple from g is given by

α(θ, s) =
π(θ)l(s|θ)Kε(s

∗ − s)

Mg(θ, s)
=
π(θ)Kε(s

∗ − s)

Mq(θ)

It is clear to see that under the specific construction of the proposal sampling distribution

given in (3.16), the calculation of the acceptance probability does not require us to be able

to evaluate the intractable likelihood function l(s|θ). Algorithm 3.1 outlines the detailed

implementation of the rejection ABC sampler.

Algorithm 3.1: Rejection ABC Sampler

Target: πABCε (θ, s|s∗) ∝ π(θ)l(s|θ)Kε(s
∗ − s)

Input :
• An integer N > 0.
• A proposal sampling distribution, q(θ).

• The envelope constant M := Kmax
ε supθ

π(θ)
q(θ) .

1 for n = 1, 2, ..., N do
2 Step 1. Sample θ ∼ q(θ) ;
3 Step 2. Generate pseudo-dataset y from the model l(y|θ) ;
4 Step 3. Calculate the summary statistics s := S(y) ;
5 Step 4. With probability

π(θ)Kε(s
∗ − s)

Mq(θ)

Set θn := θ. Otherwise, GOTO Stpe 1.

Output: A sample θ1, ..., θN ∼ πABCε (θ|s∗)

In the original development of rejection ABC sampler (Pritchard et al., 1999), the proposal

sampling distribution is set to be the prior, i.e. q(θ) := π(θ) and the uniform kernel is

employed, one should have

Kmax
ε := sup

s
I(‖s∗ − s‖ < ε) = 1
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Consequently, the acceptance probability simplifies to

α(θ, s) = Kε(s
∗ − s) = I(‖s∗ − s‖ < ε)

Therefore, a proposed tuple (θ, s) would be either directly accepted or rejected, depending on

whether the summary statistics calculated from a generated pseudo-dataset are ’close’ enough

to the summary statistics of the observations. Correspondingly, Step 4 of Algorithm 3.1 will

change to

Step 4. If ‖s∗ − s‖ < ε, set θn := θ. Otherwise, GOTO Step 1.

One can also apply the same rejection scheme on the target defined in (3.15) using the

proposal sampling distribution

g(θ, s1, ..., sn) = q(θ)
n∏
i=1

l(si|θ) (3.17)

Similarly, the corresponding envelope constant is then given by

M := sup
θ,s1,..,sn

π(θ)
{∏n

i=1 l(s
i|θ)
}{

1
n

∑n
i=1Kε(s

∗ − si)
}

q(θ)
∏n
i=1 l(s

i|θ)
= Kmax

ε sup
θ

π(θ)

q(θ)

which is the same as that for the target distribution of (3.12). Also, the acceptance probability

is then given by

α(θ, s1, .., sn) =
π(θ)

∑n
i=1Kε(s

∗ − s)

nMq(θ)

Again, if q(θ) := π(θ) and Kε(s
∗ − s) := I(‖s∗ − s‖ < ε), the acceptance probability can

then simplify to

α(θ, s1, .., sn) =
1

n

n∑
i=1

Kε(s
∗ − s)

In this case, one can view α(θ, s1, ..sn) as an unbiased estimator of the probability of generating

pseudo-datasets with summary statistics lying within an ε-ball around s∗ given parameter θ.

This is called the marginal ABC sampler and is widely explored in the literature (e.g. Marjoram

et al. (2003), Reeves and Pettitt (2005), Sisson et al. (2007), Del Moral et al. (2012)).



Chapter 4

ABC Methods with Latent Variables

In the previous chapter, we reviewed some of the classical ABC methods in the literature and

discussed their limitations. While ABC methods benefit from the ability to easily generate

data from the model to replace the evaluation of the likelihood function, it also leads to the

major bottleneck of classical ABC methods. Relying on the re-generations of pseudo-data to

accept or reject a proposal for the parameters, classical ABC methods will have extremely low

acceptance probabilities, especially when the observations are of high dimension. This is due

to the fact that generating pseudo-data that are close to the observations, even under the

perfect parameter choice, will become harder when the dimension of observations increases.

This is known as the curse of dimensionality, and it happens since there are increasing numbers

of random components to be matched to generate close pseudo-data to the observations as

the dimension increases.

However, we notice that for most problems considered in the ABC context, the underlying data

generation process can be fully characterised by a sequence of latent random variables, u ∈ Ud,

which come from a known distribution, e.g. standard Gaussian or Uniform distribution. More

specifically, given parameter values θ, we assume that there exist a deterministic function

φθ : Ud → Y, such that a set of pseudo-data, y, can be obtained by the deterministic

transformation of u through φθ, i.e.

y := φθ(u) (4.1)

73
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In other words, we are considering models in which the randomness of the data generation

process can be solely determined by the latent random variables u through the function φθ.

Define f(u) to be the joint probability density function of the latent random variables u.

One can now see that given θ, sθ(u) := S(φθ(u)) would be the summary statistics of the

pseudo-data generated by the latent random variables u. Hence, the likelihood function of a

specific summary statistics s given θ, l(s|θ), is then given by

l(s|θ) =

∫
Ud
f(u)δs(sθ(u)) du (4.2)

The ABC likelihood can therefore be defined by the latent random variables, which is of the

form

LABCε (s∗|θ) =

∫
S
l(s|θ)Kε(s

∗ − s) ds

=

∫
S

{∫
Ud
f(u)δs(sθ(u)) du

}
Kε(s

∗ − s) ds

=

∫
Ud
f(u)

∫
S
Kε(s

∗ − s)δs(sθ(u)) ds du

=

∫
Ud
f(u)Kε(s

∗ − sθ(u)) du

(4.3)

Then, the ABC posterior can be correspondingly written as

πABCε (θ|s∗) ∝ π(θ)LABCε (s∗|θ)

=

∫
Ud
π(θ)f(u)Kε(s

∗ − sθ(u)) du
(4.4)

Hence, instead of targeting the joint density of (θ, s), it is also possible to target the joint

density of the parameters and the latent random variables, (θ,u), and this still admits the

ABC posterior as marginal. Enlightened by (4.4), we aim to design an algorithm that tries to

solve the same Bayesian problem as those standard ABC methods but targets a different joint

distribution. This is the main idea developed in this chapter.

There have been several methods proposed in the literature that considered using the latent

random variables in the ABC context. Neal (2012) proposed two types of coupled-ABC

algorithms to solve the household epidemic problem. The couple-ABC algorithms search one
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or more parameter vectors given a random seeds vector sampled from the prior that leads to

close matches to the observations. These form an approximation of the posterior by certain

post-processing steps. A similar idea was also explored in Meeds and Welling (2015), where

they used optimisation techniques to search for parameters that minimise the distance between

pseudo-observations and the data. Similar optimisation ideas were also explored in Forneron

and Ng (2016). Graham and Storkey (2017) proposed an alternative method that targets

density in the joint space (θ,u) conditional on the exact match to the data using Hamiltonian

Monte Carlo. This lies in the same class of sampling methods with a target defined on a

manifold. Similar to what we proposed in this chapter, Prangle et al. (2018) proposed a

rare event approach that uses the SMC sampler to explore that latent variable space and

construct an estimate of the likelihood function defined in (4.3) with the uniform kernel. This

is then used within a Pseudo-marginal Metropolis-Hastings algorithm to sample from the ABC

posterior density.

The rest of the chapter is organised as follows. In Section 4.1, we give an introduction of the

rare-event approach developed in Prangle et al. (2018). We then describe the algorithm we

developed in Section 4.2. The algorithm we developed is based on the ABC-SMC sampler of

Del Moral et al. (2012) but targets a different joint distribution from the standard ABC-SMC

sampler does. Informally, we can think of the algorithm we developed as a relaxation of the

method in Graham and Storkey (2017). When the uniform kernel is used, our algorithm can

be treated as sampling within a ”tube” around the manifold defined by S(φθ(u)) = s∗ instead

of sampling on the manifold, as what Graham and Storkey (2017) did. The performance of

the algorithm developed in this chapter will be illustrated through three numerical examples

that are widely used in the ABC literature in Section 4.4. We also compare its performance

with the standard ABC-SMC sampler and the rare-event approach of Prangle et al. (2018).

4.1 The Rare Event Approach

As discussed in the previous chapter, most of the standard ABC methods rely on replacing

the evaluation of the ABC likelihood, which is generally intractable, with the evaluation of a

kernel function Kε(s
∗ − s). One can view the kernel as an unbiased estimator of the actual

ABC likelihood. Hence, most of the standard ABC methods can be viewed as pseudo-marginal
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methods targeting the actual ABC posterior. However, when the dimension of summary statis-

tics becomes large, it is hard to simulate pseudo-data with close-match summary statistics. As

a result, when the tolerance is chosen to be small and the uniform kernel is used, we may get

many rejections since the ABC likelihood, in this case, is estimated to be 0 for the majority of

the time, making these standard ABC methods highly inefficient when the high-dimensional

scenario is considered.

The rare-event approach of Prangle et al. (2018) tried to solve this problem by forming more

accurate estimations of the ABC likelihood. If the kernel is chosen to be uniform, i.e.

Kε(s
∗ − s) =

1

m(Bs∗ε )
I (‖s∗ − s‖ < ε) ∝ I (‖s∗ − s‖ < ε)

the ABC likelihood function the becomes

LABCε (s∗|θ) ∝
∫
S
l(s|θ)I (‖s∗ − s‖ < ε) ds = Pr(‖s∗ − s‖ < ε|θ)

Hence, the ABC likelihood can be viewed as, up to proportionality, the probability of generating

pseudo-data with summary statistics that is within a distance of ε from s∗, given the parameters

θ. Standard ABC methods estimate this probability by generating the datasets from the prior

and calculating a crude Monte Carlo estimator. When this probability is small, as is the case

when ε is small or dim(s) is high, the relative error of the crude Monte Carlo estimator has a

high variance. Hence, Prangle et al. (2018) instead considered using the rare-event technique

to form a new estimator of the probability whose relative error has a smaller variance compared

to the crude Monte Carlo estimator. The main idea of the rare event technique is as follows.

Consider a sequence of events A1 ⊃ A2 ⊃ ... ⊃ AP and we are interested in the probability

of event AP , which is very small. Instead of directly calculating the probability of AP , we

instead write

Pr(AP ) = Pr

(
P⋂
n=1

An

)
= Pr(A1) Pr(A2|A1)...Pr(AP |AP−1)

One can then form Monte Carlo estimators of each of the probabilities in the product and

multiply them together to get an estimate of Pr(AP ). If these probabilities are relatively
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large, the relative error of the estimation formed in this way would have a smaller variance

compared to that formed by directly estimating Pr(AP ). Going back to the ABC problem,

suppose there is a sequence of decreasing tolerances ε0 > ε1 > ε2 > ... > εP := ε, where the

last tolerance is the one used in the ABC posterior. We can write the ABC likelihood, which

is proportional to Pr(‖s∗ − s‖ < ε), by

LABCε (s∗|θ) ∝ Pr(‖s∗ − s‖ < ε)

= Pr(‖s∗ − s‖ < ε1|θ)
P∏
n=2

Pr(‖s∗ − s‖ < εn|θ, ‖s∗ − s‖ < εn−1)

= Pr(‖s∗ − s‖ < ε1|θ)
P∏
n=2

Pr(‖s∗ − s‖ < εn|θ)
Pr(‖s∗ − s‖ < εn−1|θ)

= Pr(‖s∗ − s‖ < ε1|θ)
P∏
n=2

LABCεn (s∗|θ)
LABCεn−1

(s∗|θ)

Hence, if ε1 is chosen to be large and the tolerance decreases at a slow rate, each part in the

above product should have a relatively large value and we can then consider estimating them

separately and multiplying them together to create an estimator of the ABC likelihood up to

proportionality.

From (4.3), one could see that the ABC likelihood, LABCεn (s∗|θ), can also be interpreted as

the normalising constant of the distribution πεn(u|θ) ∝ f(u)I(‖s∗− s‖ < εn). Denote Zn to

be the normalising constant of πεn(u|θ), one can then easily find out that the ABC likelihood

can therefore be written as

LABCε (s∗|θ) = Z1

P∏
n=2

Zn
Zn−1

Hence, one could see that this can be estimated within an SMC sampler targeting the sequence

of distributions {πεn(u|θ)}n=0,1,2,...,P . In Prangle et al. (2018), they used the two algorithms

described in Cérou et al. (2012) for estimating this rare event probability with an SMC ap-

proach. One of the algorithms requires an input of the sequences of tolerances described

above whereas these tolerances can be adaptively determined in the other algorithm. We

followed Prangle et al. (2018) to name the FIXED-RE-SMC and ADAPT-RE-SMC algorithms

in this section. Both algorithms use the same mechanism as the SMC sampler of Del Moral

et al. (2006). Given the sequence of decreasing tolerances, {εn}n=0,1,2,..,P , an SMC sampler
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is designed to target a sequence of joint distributions which are defined in increasing spaces

and have the form

π̃εn(u1:n|θ) = πεn(un|θ)
n−1∏
j=0

Lj(uj |uj+1)

Since the uniform kernel is used, the corresponding incremental weight is then given in the

form

G(un) = I (‖s∗ − sθ(un)‖ < εn)

Hence, the RE-SMC algorithm generally proceeds as follows. N sets of latent random variables

(called particles) are sampled from their prior distribution at the beginning. At the n-th SMC

iteration, a new tolerance εn is set such that Nacc of the particles are still ”alive”. A set of N

particles are then sampled uniformly from these alive particles and applied through a Markov

kernel that targets the density πεn(un|θ). An estimation of the ratio Zn/Zn−1 can then be

obtained as a byproduct of the SMC sampler and is given by

R̂n :=
Ẑn
Zn−1

=
Nacc

N

Algorithm 4.1 outlines the details of the ADAPT-RE-SMC algorithm described in Prangle

et al. (2018). We did not include the details of the FIXED-RE-SMC algorithm in this section

as it’s only a slight modification of the ADAPT-RE-SMC algorithm. In fact, one could just

replace line 6 of Algorithm 4.1 with predefined tolerance values. With a fixed sequence of

tolerance values, it is possible that in a certain SMC step we obtain |In| = 0, resulting in

R̂n = 0. In this case, one could terminate the SMC sampler early and return R̂ = 0. It was

proved in Cérou et al. (2012) that the FIXED-RE-SMC algorithm would produce an unbiased

estimator of the rare-event probability whereas the ADAPT-RE-SMC algorithm would instead

give an estimator with O(N−1) bias. The asymptotic variance for the relative error of the

FIXED-RE-SMC algorithm is also smaller than that of the ADAPT-RE-SMC algorithm.

For the Markov kernel used within the RE-SMC algorithms, Prangle et al. (2018) chose to use

the Pseudo-marginal slice sampling of Murray and Graham (2016) and focused on the case

where the latent random variables have a joint uniform distribution over [0, 1]d. One of the

main advantages of using slice sampling is that particles obtained from it are unique, resulting
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Algorithm 4.1: ADAPT-RE-SMC algorithm

Input :
• The parameter of the model, θ
• The number of particles, N
• The terminal tolerance, ε
• Number of active particles kept at each SMC step, Nacc

1 for i = 1, .., N do
2 Sample ui0 ∼ f(u0);
3 Calculate Di

0 := ‖s∗ − sθ(u
i
0)‖;

4 Set ε0 :=∞ ;

5 for n = 1, 2, ... do

6 Set εn := max
{
ε,D

(Nacc)
n−1

}
, where D

(Nacc)
n−1 is the Nacc-th value of D1:N

n−1 when

ordered increasingly. ;

7 Obtain the set In =
{
i : Di

n−1 ≤ εn
}

and R̂n := |In|/N ;
8 for i = 1, ..., N do

9 Sample index Ain−1 uniformly from In, and apply a Markov kernel to u
Ain−1

n−1

with invariant density πεn(un|θ) to obtain uin ;
10 Set Di

n := ‖s∗ − sθ(u
i
n)‖ ;

11 if εn = ε then
12 Break the loop and set P := n

13 return R̂ =
∏P
n=1 R̂n

in a more stable Monte Carlo estimate of the probability compared to the Metropolis-Hastings

kernel, where particles obtained may contain duplicates. Algorithm 4.2 lists the details of the

slice sample used in Prangle et al. (2018). Note that if the latent random variables do not

have a joint uniform distribution over [0, 1]d the slice sampling will proceed in a bit different

but similar way. We will not go into details of the algorithm and refer the readers to Murray

and Graham (2016) for more details of the algorithm. By default, the initial search width

is set to 1. However, when ε is small, the number of loops required for the slice sampling

will increase accordingly. To ensure that the numbers of loops are fairly constant within the

RE-SMC algorithm, one could adaptively adjust the initial search width at the beginning of

each SMC step.

The estimation of the likelihood obtained from RE-SMC algorithm can then be used within the

Metropolis-Hastings algorithm targeting the ABC-posterior πABCε (θ|s∗) ∝ π(θ)LABCε (s∗|θ).

Hence, we can replace the likelihood function with the estimation obtained in the RE-SMC

algorithm. As the estimator is unbiased, the algorithm is still valid, and it is known as the
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Algorithm 4.2: Slice sampling kernel within RE-SMC

Input:
• The current state of the latent random variables, u ∈ Ud
• Initial search width, w
• Summary statistics of the observations, s∗ and the transformation function, sθ
• The tolerance value, ε

1 Define m ≡ y mod 2 and the function

r(x) :=

{
m, m < 1

2−m, m ≥ 1

2 Sample v ∼ N (0, Id) ;
3 Sample u ∼ Uniform(0, w). Let a = −u, b = w − u. ;
4 Sample z ∼ Uniform(a, b) and set u′ := r(u + zv);
5 while ‖s∗ − sθ(u

′)‖ ≥ ε do
6 if z < 0 then
7 Set a = z;

8 else
9 Set b = z;

10 Sample z ∼ Uniform(a, b);
11 Set u′ := r(u + zv);

pseudo-marginal Markov chain Monte Carlo method (Andrieu and Roberts, 2009). Given the

current state θn−1, a proposed state θ′ is generated from the proposal density q(θ′|θn−1).

Then, with probability

α(θ, θ′) := min

{
1,
L̂ABCε (s∗|θ′)π(θ′)q(θ|θ′)
L̂ABCε (s∗|θ)π(θ)q(θ′|θ)

}
(4.5)

The resulting pseudo-marginal Metropolis-Hastings algorithm was described in Prangle et al.

(2018) and listed in Algorithm 4.3. In this paper, we refer to this algorithm as the PMMH-

RESMC algorithm.

The computational cost of RE-SMC can be further saved by having an early rejection step

within the PMMH-RESMC algorithm. As described in Algorithm 4.3, a proposal is rejected

when

u >
π(θ′)L̂′q(θn−1|θ′)

π(θn−1)L̂n−1q(θ′|θn−1)
(4.6)
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Algorithm 4.3: PMMH-RESMC algorithm

Input :
• The initial state, θ1

• The number of iterations, M
• The terminal tolerance, ε

1 for n = 1 do

2 Calculate and set L̂1 := L̂ABCε (s∗|θ1) using ADAPT-RE-SMC algorithm
described in Algorithm 4.2. ;

3 for n = 2, ...,M do
4 Propose θ′ ∼ q(θ′|θn−1) ;

5 Calculate L̂′ := L̂ABCε (s∗|θ′) using ADAPT-RE-SMC algorithm. ;
6 Generate u ∼ Uniform(0, 1) ;

7 if u > π(θ′)L̂′q(θn−1|θ′)
π(θn−1)L̂n−1q(θ′|θn−1)

then

8 Reject the proposal and set θn = θn−1 and L̂n := L̂n−1;

9 else

10 Set θn = θ′ and L̂n := L̂′

Output: θ1, ..., θM

Rearranging the above formula, we obtained that a proposal will be rejected when

L̂′ <
uπ(θn−1)L̂n−1q(θ

′|θn−1)

π(θ′)q(θn−1|θ′)
(4.7)

Therefore, we don’t need to wait for the RE-SMC algorithm to finish and obtain an estimation

L̂′. In fact, one can terminate the RE-ABC algorithm at the t-th step as long as
∏t
j=1 R̂j

becomes smaller than the fraction in (4.7). This will ensure that the final estimation L̂′ would

definitely lead to a rejection since all the estimation R̂n’s are less than 1. Hence, the final

estimation L̂′ will always be less than a partial product of it. Prangle et al. (2018) argued

that adding the early rejection step will also solve the problem that the ADAPT-RE-SMC

algorithm might be stuck and never terminate.

4.2 The Latent ABC-SMC (L-ABC-SMC) Sampler

In this section, we described the algorithm we developed in this chapter. We note that

(4.4) indicates that one can view the ABC posterior as the marginal distribution of the joint

distribution of the parameters θ and the latent random variables u. One can instead design

an algorithm targeting πε(θ,u|s∗) ∝ π(θ)f(u)Kε(s
∗ − sθ(u)). For the ease of notation, we
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define ζ := (θ,u) ∈ Θ×Ud and write sθ(u) := Ψ(ζ). Then the joint density we are targeting

can be written as

πABCε (ζ|s∗) ∝ ρ(ζ)Kε(s
∗ −Ψ(ζ)) (4.8)

where ρ(ζ) := π(θ)f(u) denotes the joint prior distribution of θ and u. The proposed method

follows the ABC-SMC algorithm of Del Moral et al. (2012) but targets the distribution πε(ζ|s∗)

instead. In fact, the algorithm only modified the Metropolis-Hastings kernel used within the

ABC-SMC sampler. Instead of proposing θ′ ∼ q(θ′|θ) and generating pseudo-data sets y

based on θ′, our method treats the parameters and the latent random variables as a whole

random vector whose posterior distribution given s∗ is of our interest. Given the current state

ζ, a proposal ζ ′ is proposed from the proposal distribution q(ζ ′|ζ). Hence, the data generation

process has been done implicitly through the generation of ζ ′ from the proposal distribution

followed by transforming it through the function Ψ. The proposal ζ ′ can then be accepted

with probability

min

{
1,
πABCε (ζ ′|s∗)q(ζ|ζ ′)
πABCε (ζ|s∗)q(ζ ′|ζ)

}

When the uniform kernel is applied, the acceptance probability can be simplified to

min

{
1,
ρ(ζ ′)I (‖s∗ −Ψ(ζ ′)‖ < ε))q(ζ|ζ ′)
ρ(ζ)I (‖s∗ −Ψ(ζ)‖ < ε))q(ζ ′|ζ)

}
= min

{
1,
ρ(ζ ′)q(ζ|ζ ′)
ρ(ζ)q(ζ ′|ζ)

I
(
‖s∗ −Ψ(ζ ′)‖ < ε

)
)

}

The above acceptance probability can be interpreted as follow. Given the current state ζ, we

sample a new realisation ζ ′ that is close to the current state through a proposal distribution

q(ζ ′|ζ). If the summary statistics of the pseudo-data transformed from ζ ′ is ”close enough”

to the observed summary statistics s∗ (measured by the distance metric ‖·‖), the proposal

ζ ′ is then kept in the sample to approximate the posterior distribution. This is exactly the

potential gain of our algorithm compared to the standard ABC methods. When we obtain ζ

with Ψ(ζ) close enough to s∗, we spend some time exploring a small neighbourhood around

ζ. If the transformation Ψ is smooth enough, we may expect that Ψ(ζ ′) would not change

too much if ζ ′ is near to ζ. This would increase the probability of finding a new combination

of θ and u with ‖s∗ − sθ(u)‖ < ε significantly, thus improving the efficiency of the algorithm
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and allowing the new algorithm to reach even smaller tolerances with the same computational

budget.

Figure 4.1: A 2-D example illustrating the advantages of the proposed algorithm. In the
example the parameter θ has a prior distribution of N (0, 52) and given θ, the observations
is assumed to generated from N (θ, 102). Red horizontal lines represent the observations we
want to match. Grey points in the graph are generated from the joint prior of θ and y.

Figure 4.1 illustrates the idea we discussed in the previous paragraph using a simple 2-D

Gaussian example. Given an observation, y∗, which is represented by the red horizontal line

on the graph, standard ABC algorithms either try to look for close matches to y∗ from the

joint prior distribution (i.e. try to obtain one of the red points on the graph) or try to find

close matches to y∗ given specific parameter value θ (i.e. try to find a red point on the blue

line). On the contrary, our proposed method tried to explore the region around an accepted

point (the yellow point). As illustrated by the graph, one of the pink points would be obtained

by using the proposed methods. We can see that there is a much higher chance to obtain a

new point that’s still within a distance of ε from y∗.

Algorithm 4.4 outlines the modified ABC-MCMC sampler applied within our proposed algo-

rithm. One can see that the data generation step in the original ABC-MCMC sampler has
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Algorithm 4.4: Modified ABC-MCMC Samplers:MABCMCMC(ζ0,M, s∗, ε, λ,Σ)

Input :
• A distance metric, d.
• The tolerance for the ABC posterior, ε
• Number of MCMC loops, N
• The observed data y∗

• An initial state, ζ0 satisfying ‖s∗ −Ψ(ζ0)‖ < ε
• The scale factor for the proposal, λ
• The variance for the proposal distribution, Σ

1 Initialise the chain at ξ0 ;
2 Initialise an indicator, I = 0 ;
3 for n = 1, 2, ..., N do
4 Sample ζ ′ ∼ N (ζn−1, λ

2Σ);
5 Sample u ∼ U(0, 1) ;
6 if u > min {1, [ρ(ζ ′)q(ζn−1|ζ ′)] / [ρ(ζn−1)q(ζ ′|ζn−1)]} then
7 Set ζn := ζn−1;

8 else
9 Set y := Ψ(ζ ′) ;

10 if ‖s∗ −Ψ(ζ ′)‖ < ε then
11 Set ζn := ζ ′ ;
12 Set I = I + 1;

13 else
14 Set ζn := ζn−1;

Output: The last state ζN ; the indicator I

been replaced by the evaluation of the transformation function Ψ. Following Del Moral et al.

(2012), we can similarly define a sequence of extended densities {π̃n(ζ1:n|s∗)}n=0,1,2,... that

are defined by

π̃n(ζ0:n|s∗) =
1

Z̃n
ρ(ζn)Kεn(s∗ −Ψ(ζn))

n−1∏
j=0

Lj(ζj |ζj+1) (4.9)

where Z̃n :=
∫
ρ(ζn)Kεn(s∗ −Ψ(ζn)) dζn denotes the normalising constant of π̃n(ζ0:n|s∗). If

the forward kernel is defined through the Modified ABC-MCMC sampler described in Algorithm

4.4 and the backward kernels are of the same form as Del Moral et al. (2012), the incremental

weight for the proposed algorithm is still given by

Gn(ζ0:n) =
I(‖s∗ −Ψ(ζn−1)‖ < εn)

I(‖s∗ −Ψ(ζn−1)‖ < εn−1)
= I(‖s∗ −Ψ(ζn−1)‖ < εn) (4.10)

We will denote the algorithm we developed in this chapter by the L-ABC-SMC sampler in the
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later parts of this chapter.

Implementation Details

In this part, we discussed the tuning strategies to ensure a successful and stable performance

of the L-ABC-SMC algorithm. Since the L-ABC-SMC algorithm is also based on the SMC

sampler, there are several tuning choices we can adopt and these typically can be automated.

The first thing we considered is the choice of proposal distributions for the variable ζ. In

this chapter, we focused on using a random-walk Metropolis-Hastings algorithm to move

the particles. Hence, at time n of the L-ABC-SMC algorithm, a move from ζn−1 to ζn is

proposed by sampling ζn from a multivariate gaussian distribution centred at ζn−1. To make

the algorithm more efficient, it would be ideal if the variance of the proposal density is the

same or similar to that of the target density, πABCεn (ζn|s∗). In the setting of L-ABC-SMC

algorithm, we would expect that εn and εn−1 are close, implying that the associated densities

πABCεn−1
(ζn−1|s∗) and πABCεn (ζn|s∗) would be similar to each other as well. Hence, it would be

reasonable to use the approximation of the variance of πABCεn−1
(ζn−1|s∗) as the variance of the

proposal density for ζn. An estimation of this variance would be easily obtained through the

particles and their weights obtained at the n − 1-th SMC step. As discussed previously, if a

uniform kernel is used, the weights of the particles would be either 1 or 0 up to proportionality.

Hence, one would only need to calculate the empirical variance of all the particles with non-zero

weights to at n− 1-th step to obtain an estimation of the variance of πABCεn−1
(ζn−1|s∗)

In the L-ABC-SMC algorithm, particles are moved according to an MCMC kernel. Hence, it

is possible that some particles in the previous iteration would not be moved due to rejections

of proposals. Since a resampling step is always performed at the beginning of each SMC

iteration, πABCεn (ζn|s∗) would end up being represented by many duplicates of a few distinct

particles, resulting in high Monte Carlo variances. Such a problem would become more severe

when the tolerance becomes small and moving a particle becomes more difficult or when the

SMC step n becomes larger. One way to alleviate this problem is to apply the MCMC kernel

with multiple iterations. Instead of applying the MCMC algorithm with only 1 iteration at

time n, we could apply the algorithm for Mn iterations. The value Mn can be chosen to

ensure that a proportion of at least µ of the particles is expected to be moved under the



CHAPTER 4. ABC METHODS WITH LATENT VARIABLES 86

Mn-step MCMC kernel. Given the average acceptance, probability is αn, the value of Mn

would then be chosen such that

(1− αn)Mn < 1− µ⇒Mn >
log(1− µ)

log(1− αn)
(4.11)

The value of αn is typically not known analytically, but we can find an approximation of

it from the output in the previous iteration. More specifically, one can record the total

number of acceptance in the previous iteration, An−1, and an estimation of αn−1 can then

be obtained by α̂n−1 := An−1/(NMn−1). Again, as the πABCn (ζn|s∗) and πABCn−1 (ζn−1|s∗)

are close, α̂n−1 can also be used as an estimate of αn. Hence, we will choose Mn such that

Mn > log(1− µ)/ log(1− αn−1) in practice.

One last implementation strategy we considered is the scale of proposal distributions. Having

obtained the estimation of the variance of Σ̂n, a proposal of ζn will then be obtained from the

distribution N (ζn−1, λ
2
nΣ̂n) where λn can be viewed as the step size of the proposals. If the

step size is chosen to be too large, the acceptance probability will become small, resulting in a

larger value of Mn which implies a longer simulation run-time. However, if λn is chosen to be

small, the proposals will then not depart far from the current state. As a result, the particles

are close to each other, resulting in an underestimation of the variance of the target. In our

implementation, we adaptively change the value of λn such that a certain average acceptance

probability is maintained at each SMC step while keeping the value of λ above a certain

minimum value λmin at the same time. Hence, if α∗ is the average acceptance probability we

want to achieve, and the average acceptance probability at step n−1 is estimated to be α̂n−1

when the scale factor is λn−1, the scale factor λn at step n can then be chosen adaptively to

be

λn := max {exp(log(λn−1) + s(α̂n−1 − α∗)), λmin} (4.12)

Such a tuning strategy is reminiscent of the adaptive MCMC algorithm of Andrieu and Thoms

(2008). The difference here is that nothing is needed to guarantee the correctness of the

algorithm since the choice of λn is only part of the importance distribution used in the SMC

algorithm. Algorithm 4.5 lists the details of the implementation of the L-ABC-SMC algorithm.
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Algorithm 4.5: Chap RESMC - Alg: L-ABC-SMC Algorithm

Input :
• The number of particles at each SMC step, N
• A terminal tolerance level, ε
• The observed data, y∗

• A distance metric, ‖·‖
• Parameter controlling the choice of the tolerance sequence, η
• The initial scale factor λ1

• The mimum scale factor λmin
• Initial number of MCMC steps, M1

• The minimum proportion of particles to be moved, µ
1 for n = 0 do
2 Set ε0 :=∞;
3 for i = 1 to N do
4 Sample ζi0 ∼ ρ(dζ);
5 Set W i

0 := 1/N ;
6 Calculate Di

0 = ‖s∗ −Ψ(ζi0)‖;

7 for n = 1, 2, ... do

8 Estimate the covariance matrix of πABCn (ζn|s∗), Σ̂n, based on the particles with

non-zero weights obtained in time n− 1,
{
ξAn−1
n−1

}
;

9 Resample the particles according to their weights W 1:N
n−1 and set

An−1 :=
(
A1
n−1, .., A

N
n−1

)
to be the indices of the resampled particles;

10 Determine the next tolerance level by εn = max
{
ε,D

An−1,(bηNc)
n−1

}
, where bηNc

is the largest integer that is not bigger than ηN and D
An−1,(bηNc)
n−1 represents

the bηNc-th smallest value of D
An−1

n−1 ;
11 for i=1 to N do

12 Set ζin, I
i
n := MABCMCMC

(
ζ
Ain−1

n−1 ,Mn, s
∗, εn, λn, Σ̂n

)
;

13 Obtain the unnormalised weights by

win := I

(∥∥∥∥s∗ − Φ

(
ζ
Ain−1

n−1

)∥∥∥∥ < εn

)
and normalise to get W i

n = win/
∑N

j=1w
j
n ;

14 Set An :=
∑N

i=1 I
i
n and α̂n := An/(NMn);

15 Set Mn+1 such that Mn+1 >
log(1−µ)

log(1−α̂n) ;

16 Set λn+1 := max {exp(log(λn) + s(α̂n − α∗)), λmin};
17 if εn = ε then
18 break;
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4.3 Computational Cost Comparison

In this section, we are going to compare the asymptotic computational cost needed for the

L-SMC-ABC algorithm and the rare-events approach of Prangle et al. (2018) to generate 1

sample to approximate the target πABCε (θ|s∗). For the justification to be correct, we need to

make the following assumptions about the algorithms:

A1. The distance metric used in the algorithms is the Euclidean distance.

A2. Running the ABC-MCMC kernel once within the L-ABC-SMC algorithm requires O(1)

functional evaluations and running the slice sampling algorithm once within the RE-SMC

algorithm also requires O(1) functional evaluations.

A3. The numbers of loops of ABC-MCMC kernel at different SMC iterations are roughly

constant, i.e. Mn’s stays roughly the same across different SMC steps. Also, the number

of slice sampling loops within the RE-SMC algorithm also stays roughly constant at

different SMC steps.

A4. The time required for the simulator to sample one set of pseudo-observations is bounded

above and below by non-zero constants that do not depend on the inputs of the simulator.

A5. The uniform ABC kernels are used in both algorithms, i.e. Kε(s
∗− s) ∝ I(‖s∗− s‖ < ε)

A6. The joint prior density, ρ(ζ), and the likelihood function l(s∗|θ), are bounded above by

Mζ and Mθ,s∗ for all values of ζ, θ and s∗.

In the L-ABC-SMC algorithm, an estimate of the normalising constant Z̃ :=
∫
ρ(ζP )KεP (s∗−

Ψ(ζP )) dζP , with εP := ε denotes the final tolerance achieved by the algorithm, can by

obtained by

ˆ̃ZP =

P∏
n=1

N∑
i=1

Wn−1Gn(ζi0:n)

When the uniform kernel is used in the algorithm, we should have

Z̃P =

∫
ρ(ζP )I(‖s∗ −Ψ(ζP )‖ < ε) dζP =

∫
Bs∗ε

ρ(ζP ) dζP ≤Mζm(Bs∗ε )

where Bs∗ε := {ζ : ‖s∗ −Ψ(ζ)‖ < ε}. Denote V(ε) := m(Bs∗ε ) for simplicity. We can see that
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when ε � 1, Z̃P ≈ V(ε). In L-ABC-SMC algorithm, particles are resampled at every SMC

step, hence W i
n := 1/N for all n := 0, 1, 2, ..., P and i = 1, 2, .., N . Moreover, since the

uniform kernels were used in the L-ABC-SMC algorithm, we would have that Gn(ζi0:n) should

be either 0 or 1, depending on the choice of εn and ζn−1, as shown in (4.10). According

to line 10 Algorithm 4.5, we can see that εn are adaptively chosen such that approximately

ηN of the N particles obtained at n− 1-th SMC step will produce summary statistics with a

distance of smaller than εn from s∗. As a result, one could see that
∑N

i=1 Gn(ζi0:n) ≈ ηN for

all n = 1, 2, .., P . Hence, we have

ˆ̃ZP =
P∏
n=1

N∑
i=1

Wn−1Gn(ζi0:n)

=

P∏
n=1

N∑
i=1

1

N
Gn(ζi0:n)

=

P∏
n=1

1

N

N∑
i=1

Gn(ζi0:n)

≈
P∏
n=1

1

N
ηN = ηP

Hence, when a small terminal tolerance ε is used, we can obtain an estimation of the P , the

number of SMC steps required for the L-ABC-SMC algorithm to reach ε, by

P ≈ log(Z̃P )/ log(η) ≈ log(V(ε))/ log(η)

If A3 is satisfied (it is possible to achieve this when the scale factor is chosen adaptively), the

computational cost for one SMC step will then be O(ηN) as only approximately ηN particles

needed to be moved at each SMC step. Therefore, the total computational cost would be

O(ηN log(V(ε))/ log(η)). At the end of the L-ABC-SMC algorithm, we would expect to obtain

ηN alive particles that can be used to approximate πABCε (θ|s∗). Therefore, the computational

cost for obtaining 1 sample approximating πABCε (θ|s∗) would then be O(log(V(ε))/ log(η)).

Similar to the L-ABC-SMC sampler, the rare-event approach of Prangle et al. (2018) relies

on the implementation of the RE-SMC algorithm to obtain estimations of the likelihood of

different parameter values. As outlined in Algorithm 4.1, we can see that the estimation of
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the rare-event probability is obtained by taking the product of R̂n obtained at each SMC

step within RE-SMC algorithm. Also, we can see that the value of εn is chosen such that

R̂n ≈ η = Nacc/N for all n = 1, 2, .., P . Hence, we will have that an estimation of the

normalising constant, which is also Pr(‖s∗ − s‖ < ε|θ), is given by

Pr(‖s∗ − s‖ < ε|θ) ≈ ηP

On the other hand, by the Lebesgue differentiation theorem, we should have that

lim
ε→0

1

m(Bs∗ε )

∫
l(s|θ)I(‖s∗ − s‖ < ε) ds = l(s∗|θ) (4.13)

Hence, for ε� 1, we should have that

∫
l(s|θ)I(‖s∗ − s‖ < ε) ds = Pr(‖s∗ − s‖ < ε|θ) ≈ l(s∗|θ)m(Bs∗ε ) ∼ m(Bs∗ε )

Hence, for small values of ε, we could obtain a similar estimate for the rare-event probability,

which is P ≈ log(V(ε))/ log(η). Hence, the computational cost for running the RE-SMC

algorithm once will be O(N log(V(ε))/ log(η)) and this is also the computational cost for

obtaining a sample approximating πABCε (θ|s∗) from the PMMH-RESMC algorihtm.

4.4 Numerical Examples

4.4.1 The g-and-k distributions

The first example we considered is the g-and-k distribution, which is defined as

x := a+ b

(
1 + 0.8

1− exp(−gz)
1 + exp(−gz)

)
(1− z)kz (4.14)

where z represents the realisations from the standard Normal distribution and θ = (a, b, g, k)

the parameters. We will denote gθ(z) as the transformation defined in (4.14). The g-and-k

distribution is one of the commonly used numerical examples in the ABC literature. Given a

specific parameter vector, it is easy to generate samples from the g-and-k distribution - one

could do this by generating samples from the standard Normal distribution and then trans-
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forming them according to gθ(z) to obtain samples from the g-and-k distribution. However,

the probability density function of the g-and-k distribution is intractable to calculate. To see

this, let X be the random variable following the g-and-k distribution, and then one can see

that

X := gθ(Z)

where Z is a random variable following the standard Normal distribution. Therefore, it is easy

to see that

fX(x) = φ(g−1
θ (x))

∣∣∣∣∣ dg−1
θ (x)

dx

∣∣∣∣∣
which is intractable since we are not able to find an analytical form of the inverse function

g−1
θ . However, there is a way of calculating the density function with high precision, making

it still possible to devise an MCMC sampler to target the posterior distribution. The details of

the implementation of the MCMC sampler are described in Appendix A. We can then use the

outputs from the MCMC sampler as ground truth to investigate the correctness and accuracy

of the various ABC samplers.

To compare the performance and efficiency among various ABC algorithms, we generated

20 data from the g-and-k distribution with parameter θ = (3.0, 1.0, 2.0, 0.5) and applied the

standard ABC-SMC algorithm, the rare-event approach (RE-SMC) designed by Prangle et al.

(2018) and the L-ABC-SMC algorithm we developed in this chapter to produce estimations

of the posterior distribution of the parameters θ := (a, b, g, k). We assigned the parameters a

uniform prior on [0, 10]4. For both ABC-SMC and L-ABC-SMC samplers, we chose to use the

uniform kernel and use the full dataset, i.e. S(y) := y. The distance metric was chosen to be

the Euclidean distance for both SMC samplers. We also followed the same tunning strategies

- the empirical variance of ’alive’ particles at each SMC step was calculated and used as

the proposal variance in the next SMC step. Tolerances were also chosen adaptively so that

the effective sample size at each SMC step would remain above 0.8N , where N represents

the number of particles. Both ABC-SMC and L-ABC-SMC algorithms used random-walk

ABC-MCMC sampler for explorations and proposals of new particles and the stepsize and the

number of iterations of the ABC-MCMC sampler were also tuned adaptively within the SMC

algorithm. More specifically, acceptance probabilities were estimated at each SMC step and
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used to tune the scale factor and MCMC steps for the next SMC step. Scale factors were

tuned to ensure that the acceptance probability remains above 0.2 and the MCMC steps were

chosen so that 99% of the particles are expected to be moved. Moreover, the scale factor was

kept above 0.1 to prevent the particles from collapsing into a narrow region. Early stopping

rules were also adopted hence both ABC-SMC and L-ABC-SMC samplers will be terminated

early if the acceptance probability drops below 0.1%.

For the RE-SMC algorithm, we followed Prangle et al. (2018) to tune the algorithm. More

specifically, we used the adaptive RE-SMC algorithm in which the tolerance sequence is chosen

adaptively in the same way as the standard ABC-SMC algorithm. Also, we chose Nacc to be

half of the total number of particles, i.e. Nacc := 0.5N . Slice sampling with adaptive search

width was used within RE-SMC to move the particles around. For the corresponding PMMH

algorithm, we started the chain at the true parameter values to reduce the burn-in period and

used the random-walk kernel as the proposal distribution. To ensure efficient proposals, we ran

L-ABC-SMC sampler with the same terminal tolerance to estimate the variance of the parame-

ters and used it as the proposal variance. We ran the PMMH algorithm for 2, 000 iterations and

all the SMC algorithms were run with 5, 000 particles. With the same simulated observations,

we ran the three algorithms with terminal tolerances ε = 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0

We first compare the computational cost required by each algorithm to obtain one sample

from the approximate posterior distribution with different terminal tolerance values. Table

4.1 shows the results. As expected, when the terminal tolerance is set to be large, both SMC

algorithms have comparable computational costs but the rare event approach of Prangle et al.

(2018) has a significantly higher computational cost. However, the ABC-SMC sampler was

not able to reach smaller terminal tolerances and the algorithm was terminated early due to

the low acceptance probability of the ABC-MCMC sampler within the ABC-SMC algorithm.

On the contrary, both the L-ABC-SMC algorithm and the RE-SMC method were able to

produce samples with terminal tolerances as low as 0.2. This suggests that one can target

ABC posteriors that are closer to the actual posterior distribution by using L-ABC-SMC and

RE-ABC methods, hence reducing the level of approximations. One should also notice that

the computational cost for the L-ABC-SMC algorithm is consistently lower than that of the

RE-SMC method, which justifies the asymptotic arguments in the previous section.
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Terminal Tolerance L-ABC-SMC ABC-SMC RE-ABC

25.0 2.37 2.34 4.02
20.0 2.45 2.44 4.03
15.0 2.54 2.51 3.98
10.0 2.69 2.70 4.24
5.0 3.10 4.80 5.20
2.0 3.35 - 5.70
1.0 3.49 - 5.93
0.5 3.60 - 6.02
0.2 3.78 - 5.96

Table 4.1: The computational cost for obtaining one sample from the approximate posterior
distribution with different terminal tolerances. The computational cost was measured by the
number of pseudo-data generations required to produce one sample. Numbers in the table
were given in the log10-scale.

Figure 4.2 further illustrates the performance of the algorithms we considered. The left panel

shows the kernel density estimation of the parameters’ posterior distributions obtained by

L-ABC-SMC, ABC-SMC and the MCMC sampler. With 20 observations, the L-ABC-SMC

sampler could reach a terminal tolerance of 0.2 while the ABC-SMC sampler was terminated

early with the final tolerance equal to 5.44. Hence, one can obtain nearly the true posteriors

through the L-ABC-SMC sampler, as shown in the figure. Compared to the L-ABC-SMC

sampler, the ABC-SMC sampler was not able to produce accurate estimations, due to the

fact that it was terminated earlier and hence could not reach small tolerances. The RE-

SMC method was also able to produce samples from an ABC-posterior with small tolerances.

However, with small tolerances (e.g. ε = 0.2, 0.5) the chain obtained from the PMMH

algorithm was stuck in a certain state for a long time, resulting in very high variances in the

posterior estimations. This is illustrated by the trace plots in the left panel of Figure 4.2. One

can see that the RE-SMC method could only produce reliable estimations when the tolerance

was 2.0 (top row of the left panel). When tolerance 0.2 was used (bottom row of the left

panel), the chain was stuck at one state for a long time, making the results not suitable for

posterior estimations.

The L-ABC-SMC sampler also scales fairly well and can produce accurate estimations when the

dimension of the latent variables gets higher. Figure 4.3 shows the kernel density estimations

when 50 and 100 data were observed. One could still obtain samples from ABC posterior of

tolerance 0.5 using the L-ABC-SMC sampler, creating estimations that are almost identical to
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Figure 4.3: Kernel density estimation of the g-and-k distribution with 50 (top) and 100
(bottom) observations. Estimations were obtained by L-ABC-SMC(green), ABC-SMC(red)
and MCMC(grey) samplers. The final tolerances for the L-ABC-SMC sampler are both 0.5
and the final tolerances for the ABC-SMC sampler are 12.93 for 50 observations and 22.62
for 100 observations.

the true posteriors. Compared to L-ABC-SMC, the final tolerances reached by the ABC-SMC

sampler are much higher, resulting in inaccurate estimations.

4.4.2 The Lotka-Volterra Model

In this section, we are inferring the static parameters in the SDE variant of the Lotka-Volterra

predator-prey model (Wilkinson, 2018) that is commonly considered in the ABC literature

(e.g. Meeds and Welling (2015); Papamakarios and Murray (2016)). In particular, the Lotka-

Volterra model is a stochastic process describing the time evolution of the population of

predators interacting with a population of prey. Given the synthetic observed predator-prey

population data, we are trying to infer the parameters of the following SDEs

dX = (θ1X − θ2XY ) dt+ σX dnX (4.15a)

dY = (θ4XY − θ3Y ) dt+ σY dnY (4.15b)

where X represents the prey population and Y represents the predator population, θ :=

(θ1, θ2, θ3, θ4) are the parameters to be inferred and nX and nY are two zero mean white

noise processes with variance σ2
X and σ2

Y . In this example, we used Euler–Maruyuma scheme
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Nsengiyumva et al. (2013) to generate realisations of the process at discrete times. Sup-

pose that the initial value of the process is (x0, y0) and the time step δt and process is at

(xn−1, yn−1) at step n− 1, the values at step n, (xn, yn) can then be simulated by

xn = (θ1xn−1 − θ2xn−1yn−1)δt+ σX
√
δtun,1

yn = (θ4xn−1yn−1 − θ3yn−1)δt+ σY
√
δtun,2

(4.16)

where un,1, un,2 are random variables simulated from a standard Normal distribution. Hence,

we can see that pseudo-data at d discrete time steps can be then generated by the parameters

θ := (θ1, θ2, θ3, θ4) and 2d random variables from the standard Normal distributions. There-

fore, we can treat all these standard Normal random variables as the random seeds u ∈ R2d

and the observations (x1:d, y1:d) can then be interpreted as outputs from a deterministic

function φθ(u). Algorithm 4.6 outlines the definition of the function φθ(u).

Algorithm 4.6: Simulator φθ(u)

Input :
• The static parameter, θ
• The random seeds u
• The initial values (x0, y0)
• The standard deviations, σX and σY

1 Set N := dim(u)/2 ;
2 for n = 1, 2, .., N do

3 Set xn = (θ1xn−1 − θ2xn−1yn−1)δt+ σX
√
δtu2n−1 ;

4 Set yn = (θ4xn−1yn−1 − θ3yn−1)δt+ σY
√
δtu2n ;

Output: The pseudo-data (x1, y1, .., xN , yN )

For the experiment, we simulated 100 artificial observed data, (x1, y1, .., x50, y50), with σX =

σY = 1 and x0 = y0 = 100. For the discrete time step, we chose δt = 1 and the parameters

were set to be θ1 = 0.4, θ2 = 0.005, θ3 = 0.05, θ4 = 0.001. Figure 4.4 shows the data we will

be using for the experiment.

Given the observations shown in figure 4.4, we tried to make inferences on the model parameter

θ := (θ1, θ2, θ3, θ4), assuming that x0, y0, σX , σY and δt is known. For the static parameters θ,

we assign a Log-Normal prior with location µ = −2 and scale σ = 1. Hence, log θi ∼ N (−2, 1)

for i = 1, 2, 3, 4. In the Lotka-Volterra model, we chose the priors informatively to minimise

the prior probability of generating infeasible parameter settings. The Lotka-Volterra model
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Figure 4.4: Observations of the Lotka-Volterra model used in the numerical example. The
data were simulated with x0 = y0 = 100, σX = σY = 1.0 and δt = 1. The green line
represents the predator population and the red line represents the prey population.

appears to be unstable for many parameter settings, with the prey population blowing up

exponentially if the predator population becomes zero. Such a blow-up is both biologically

implausible and likely to cause numerical issues. Hence, we chose to bias the prior towards

smaller values to make it more likely to produce parameter settings with stable dynamics.

We used the same implementation details as that in the g-and-k distribution example. The

terminal tolerance was set to be 5.0 for the L-ABC-SMC algorithm. As observations of the

Lotka-Volterra model are quite sensitive to the parameter settings, the rare-event approach of

Prangle et al. (2018) was likely to get stuck when an initial value was chosen from the prior

density of θ - the RE-SMC sampler within the PMMH-RESMC algorithm failed to decrease to

5.0 effectively, making the algorithm fail to estimate the ABC-likelihood with ε = 5.0. Such

a problem was illustrated in Figure 4.5. When the initial parameters are sampled from the

prior, it is almost impossible for the RE-SMC algorithm to reach the terminal tolerance with

the parameter settings. Hence, we will be unable to obtain estimates of the ABC-likelihoods

from the RE-SMC algorithm, making the PMMH-RESMC algorithm impossible to proceed
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with. Such a problem will persist even when parameters that are very close to the true values

are used (as shown by the grey lines in Figure 4.5). An estimate of the ABC-likelihood with

ε = 5.0 can only be obtained when the actual parameters are used in the RE-SMC algorithm.

However, we will not be able to know these actual values in reality, making the rare-event

approach of Prangle et al. (2018) impractical to use.

Figure 4.5: Evolution of the ε values of ADAPT-RE-SMC algorithm for Lotka-Volterra model.
Red dashed lines: the log-terminal tolerance to be achieved, which is log 5.0. Green lines:
the evolution of the tolerances with parameters sampled from the prior. Grey lines: evolution
of the tolerances with parameters sampled from N (log θi, 0.1

2) for i = 1, 2, 3, 4. Blue line:
evolution of the tolerances with parameters chosen to be the true parameters. Each ADAPT-
RE-SMC algorithm will be stopped if the percentage change in ε is smaller than 0.1%

Figure 4.6 showed the results when the informative prior is used. One could see that when

applying the L-ABC-SMC algorithm to data sets with highly dependent structures, it is also

able to produce accurate estimations of the posterior by reaching much smaller final tolerance

values with given computational constraints. We also tried to apply the algorithms when the

priors of the parameters are not chosen appropriately and investigated the effect of the prior

choices on the algorithms. We considered two cases under the Lotka-Volterra model. The

first is when diffuse priors are assigned to the parameters. In this case, we assign a prior of

LogNormal(0.0, 5.02) to each of the parameters. Hence, there is a higher chance for the
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parameters sampled from the prior to have very large or very small values with this prior. In

the second case, we considered using a prior of LogNormal(0, 12) for each of the parameters.

By using this prior, we are unlikely to get values close to the true parameters from the prior.

In other words, we put the prior mass in a ”wrong” region in the parameter space.

Figure 4.6: Posterior estimations with priors is chosen to be LogNormal(−2, 12) for all
the parameters. Green lines are the ABC posterior estimations obtained by the L-ABC-SMC
algorithm with terminal tolerance equal to 5.0. Red lines are the ABC posterior estimations
obtained by the ABC-SMC algorithm with final tolerance equal to 27.5. Grey dashed lines are
the true parameter values.

Figure 4.7 shows the results obtained using the two inappropriate priors. We can see that

the L-ABC-SMC algorithm is quite robust to inappropriate choice of priors and continues

producing accurate estimations of the posterior densities. ABC-SMC algorithm is also robust

to inappropriate priors, but it can only produce less accurate estimations due to the early
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Figure 4.7: Poster estimations with diffuse and misspecified prior. Top row: Parameter
estimations with diffuse prior. Bottom row: Parameter estimations with misspecified prior.
Green lines are estimations obtained by the L-ABC-SMC algorithm and red lines are estimations
obtained by the ABC-SMC algorithm. Grey dashed lines are the true parameter values. The
final tolerances for L-ABC-SMC for both cases are 5.0.

termination of the algorithm caused by a low acceptance rate. However, we were not able to

successfully obtain estimations of the ABC likelihood using the RE-SMC algorithm when the

prior are chosen inappropriately. This is due to the same reason as we discussed before and

when the priors are chosen inappropriately, such a problem would be even worse. Consequently,

the PMMH-RESMC algorithm failed to produce any results in this case.

4.4.3 Conclusions

In this chapter, we proposed a new method, named the L-ABC-SMC algorithm, that uses

the same posterior approximation as standard ABC algorithms (e.g. Rejection ABC, ABC-

MCMC or ABC-SMC samplers). Our proposed method utilised the latent random variables

that are purely responsible for the randomness in the simulated data and hence can be used to

generate pseudo-data through a deterministic function. Compared to the standard ABC-SMC

algorithm of Del Moral et al. (2012), the L-ABC-SMC algorithm could reach much smaller

tolerance values given the same computational constraints, hence producing more accurate

estimations of the posterior densities. Such superiority has been shown by two numerical

examples - the g-and-k distribution and the Lotka-Volterra model. A rare-event approach
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has also been developed by Prangle et al. (2018) recently which also uses SMC samplers to

explore the latent variable space. Unlike the L-ABC-SMC algorithm, the SMC algorithm in

Prangle et al. (2018), which is termed as RE-SMC algorithm is used to find an estimation of

the ABC likelihood given a specific parameter setting. Such estimation is then used within a

pseudo-marginal MCMC scheme to produce samples from the corresponding ABC posterior.

In this chapter, we refer to this rare-event approach as the PMMH-RESMC algorithm. As

shown in the numerical example, the PMMH-RESMC algorithm is likely to produce chains

that are stuck at a certain state for a long time when the tolerance is chosen to be as small

as that used by the L-ABC-SMC algorithm. As a result, it will produce estimations with

very high variances, which is not acceptable in practice. Even worse, when the observations

are sensitive to the parameter settings (like those in the Lotka-Volterra model), the RE-

SMC algorithm may fail to produce an estimation of the ABC likelihood for inappropriate

choice of parameter values, making the PMMH-RESMC algorithm implausible in practice.

Moreover, the successful implementation of the PMMH-RESMC algorithm relies on several

tuning choices. As discussed in Prangle et al. (2018), a pilot run of the algorithm is suggested

to find an estimation of the target variance that can be used as the proposal variance. It is

also recommended that for each parameter setting, an ADAPT-RE-SMC algorithm is run to

find the appropriate tolerance schedule followed by one run of the FIXED-RE-SMC algorithm

with the chosen tolerance schedule to estimate the corresponding likelihood. Compared to

the RE-ABC algorithm, the tuning of the L-ABC-SMC algorithm is fairly automatic and all

the tuning steps can be done within the algorithm without any pilot runs. This makes our

algorithm easier to implement and more available to the general community.

There are several possible extensions that can be considered as future work:

1. We noticed that a good estimation of the variances is quite crucial to the good per-

formance of our method. In this paper, we used the empirical variances of the alive

particles at each SMC step as the estimation of the variances. Other methods may be

considered to improve the accuracy of the variance estimation.

2. We considered using the random-walk Metropolis-Hastings algorithm to explore the

ABC-posteriors at each SMC step. Although it was successful in both of the numerical

experiments, it has been shown many times in the literature that gradient-based and
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non-reversible algorithms would have better performance compared to the random-walk

algorithm. We tried to adopt Metropolis Adjusted Langevin Algorithm (MALA) and

Bouncy Particle Samplers (BPS) within the ABC-SMC framework to explore the ABC-

posteriors. However, it was not very successful and did not produce an improvement

in performance with increased cost. It would be interesting to explore further in this

direction for the possibilities of improving the proposed method with advanced MCMC

algorithms.

3. We considered the model where the number of random seeds is fixed in this paper.

There are models that rely on a variable number of random seeds (e.g. genealogy tree

in population genetics) and the method we proposed here will no longer be suitable for

those models. Hence, an interesting extension to the current method would be allowing

the number of random seeds to be variable. This would be similar to the Reversible-jump

MCMC algorithm.



Chapter 5

Markov Snippet SMC (Monte Carlo

in general)

5.1 Introduction

The work presented in this chapter is mainly inspired by the waste-free SMC algorithm pro-

posed by Dau and Chopin (2020). As discussed in previous chapters, SMC samplers are a class

of stochastic algorithms targeting an arbitrary sequence of distributions πt(dx), t = 1, 2, .., P ,

where πP may be the actual density of our interest. Within an SMC sampler, importance

sampling, resampling and Markov steps are often involved. The waste-free SMC algorithm

makes improvements to the Markov steps, at which particles are moved by a k-fold MCMC

kernel that leaves πt invariant at each SMC iteration. In certain scenarios, a large value of k is

needed in order to ensure good performances at the Markov steps. However, in the standard

SMC samplers, only the last state obtained from the k-fold MCMC kernel will be used as the

offspring of the current particle. Hence, the intermediate outputs of the k MCMC steps are

seemingly wasted.

The waste-free SMC algorithm of Dau and Chopin (2020) focuses on deriving a way of using

all the MCMC outputs within the SMC sampler, making the MCMC steps of the algorithm

waste-free. By doing this, only N out of the NT particles from the previous SMC iteration

are resampled. Then, each resampled particle will be moved T − 1 times through a chosen

103
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MCMC kernel. These resampled particles together with all their intermediates outputs from

the MCMC kernel are then gathered together to form a form sample of NT particles. Al-

gorithm 5.1 shows the detail of the waste-free SMC algorithm proposed in Dau and Chopin

(2020). The correctness of the algorithm was established in Dau and Chopin (2020) and

numerical experiments have also shown its superior performance compared to the standard

SMC samplers.

We saw the possibility of further improving the waste-free SMC algorithm based on two

observations. First, the Markov kernel Mt involves an accept-reject step. This means that

some of the proposed states may not be visited under the current scheme. Moreover, when

an HMC kernel is applied, the intermediate states of the leapfrog integrators are still not used

directly, incurring another form of ‘waste’. In this chapter, we proposed a novel approach that,

instead of only using the last state of the HMC trajectory, makes use of all the intermediate

states of the HMC trajectory without any rejections. By properly weighting these ‘particles’,

we are still able to approximate expectations with respect to the distribution of interest. This

novel algorithm can be viewed as a standard SMC algorithm targeting the distributions of the

HMC trajectories, hence treating the HMC trajectories as the particle. We will show later

that our new algorithm represents a generalisation of the waste-free SMC sampler of Dau and

Chopin (2020).

5.1.1 Overview and motivation

Assume interest is in sampling from a probability distribution µ on (Z,Z ). In this chapter,

we explore a framework where this problem is solved by embedding sampling from µ into

that of sampling of Markov process snippets such that, properly weighted, the states of these

snippets can be used to approximate expectations with respect to µ. We focus here primarily

on Sequential Monte Carlo (SMC) algorithms, but the approach can be used in the context

of Markov chain Monte Carlo algorithms as briefly explained in Corollary 5.6.1.2. As we shall

see this presents several advantages and through numerical simulation, we establish the very

good performance of the algorithms. This work has links with related recent attempts in the

literature Rotskoff and Vanden-Eijnden (2019), Dau and Chopin (2020), Thin et al. (2021);

these links and motivations are further discussed in Subsection 5.2.4. The chapter is organised
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Algorithm 5.1: Waste-free SMC Algorithm

1 for t=1,2,...,P do
2 if t=1 then
3 for n = 1, ..NT do
4 Sample Xn

t ∼ πt(dx) ;
5 Set Wn

t = 1
NT ;

6 else
7 Sample the ancestor indices A1:N

t ∼Multinomial(N,Wt−1);
8 for n = 1, .., N do

9 Set X̃m,1
t ∼ XAmt

t−1 ;
10 for p = 2, 3, .., T do

11 Get X̃m,p
t ∼Mt(X̃

m,p−1
t , dxt) where Mt is a Markov kernel of user’s

choice, e.g a random-walk Metropolis-Hastings kernel, that leaves
πt−1 invariant ;

12 Set wm,pt :=
πt(x

m,p
t )

πt−1(xm,pt )

13 Gather X̃m,p
t for m = 1, .., N and p = 1, .., T to get X1:NT

t ;

14 Set Wn
t :=

wnt∑NT
j=1 w

j
t

as follows. In Section 5.2 we provide a high-level description of the class of algorithms we

propose. In Sections 5.4-5.5 we provide a theoretical background to show how Markov snippets

can be used as intended above. Section 5.6 specialises our results to the scenario considered

in Section 5.2.

5.1.2 Notation

We will write N = {1, 2, . . . } for the set of natural numbers, N0 := N∪{0}, and R+ = (0,∞)

for positive real numbers. Throughout we will be working on a general measurable space,

generically denoted (E,E ) in this subsection.

• For a set A ∈ E , its complement in E is denoted by A{. We denote the corresponding

indicator function by 1A : E→ {0, 1}.

• For a µ a probability measure on (E,E ) and a measurable function f : E→ R and , we

let µ(f) :=
∫
f(x)µ(dx).

• For two probability measures µ and ν on (E,E ) we let µ ⊗ ν (A×B) = µ (A) ν (B)

for A,B ∈ E . For a Markov kernel P (x,dy) on E × E , we write for Ā ∈ E ⊗ E , the

minimal product σ-algebra, µ⊗ P
(
Ā
)

=
∫
Ā µ (dx)P (x,dy).
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• A point mass distribution at x will be denoted by δx (dy).

5.2 A simple example

Assume interest is in sampling from a probability distribution π on (X,X ) and that to achieve

this we use an SMC (Sequential Monte Carlo) sampler Del Moral et al. (2006) relying on HMC

(Hybrid Monte Carlo), that is Metropolis-Hastings (MH) updates using a discretisation of

Hamilton’s equations Duane et al. (1987). More specifically define µn(dz) := πn(dx)$n(dv)

for n ∈ J0, P K a sequence of distributions on (Z,Z ) = (X × V,X ⊗ V ) with πP = π and

$n on
(
V,V

)
, and consider mappings ψn : Z→ Z with the property that ψ−1

n = σn ◦ψn ◦σn

for some mapping σn : Z → Z such that σ2
n = Id and µσnn = µn, where for a probability

distribution ν on
(
E,E

)
and a suitable mapping φ : E → E, νφ(A) = ν

(
φ−1(A)

)
for any

A ∈ E , that is νφ is the push-forward of ν under φ. We assume the existence of a density for

µn with respect to some measure υ, denoted µn(z) =:= dµn/dυ(z) for z ∈ Z.

Example 5.2.1. The Stormer–Verlet integrator of Hamilton’s equations, ẋt = vt, vt =

−∇Un(xt) for the potential Hn(x, v) = Un(x) + 1
2 |v|

2 where Un : X → R, is given by

ψn(x, v) = ψBn ◦ ψAn ◦ ψBn (x, v) where for ε > 0, ψAn (x, v) := (x + ε/2v, v) and ψB(x, v) =

(x, v − ε∇Un(x)) satisfies the conditions set above for a spherically symmetric distribution

$n, with σn ◦ f(x, v) = f(x,−v) for any f : Z→ Z. When Un(x) is taken to be constant we

have ψn(x, v) = (x+ εv, v), corresponding to the guided Random walk of Gustafson (1998).

One could as well use the leapfrog integrator for Hamilton’s equations.

5.2.1 Algorithm outline: unfolded perspective

For n ∈ J0, P K, k ∈ N and z ∈ Z let

wn,k(z) :=
µn ◦ ψkn(z)

µn(z)
,

with the understanding that ψ0
n = Id and hence w0(z) := w0,0(z) = 1, which we recognise to

be the acceptance ratio of the HMC update for k integration steps. The primary interest in

this paper is in SMC sampler algorithms as given in Algorithm 5.2. Let N,T ∈ N \ {0} and

assume that sampling from µ0 is possible.



CHAPTER 5. MARKOV SNIPPET SMC (MONTE CARLO IN GENERAL) 107

Algorithm 5.2: Unfolded Hamiltonian Snippet SMC algorithm

1 Sample z
(i)
0

iid∼ µ0 for i ∈ JNK ;
2 for n = 1, . . . , P do
3 for (i, k) ∈ JNK× J0, T K do

4 Compute
(
z

(i)
n−1,k = (x

(i)
n−1,k, v

(i)
n−1,k) := ψkn−1(z

(i)
n−1), wn−1,k

(
z

(i)
n−1

))
;

5 for i ∈ JNK do
6 From the N × (T + 1) weighted sample{

z
(i)
n−1,k, wn−1,k

(
z

(i)
n−1

)
, (i, k) ∈ JNK× J0, T K

}
, resample N particles,{

z̄
(i)
n := (x̄

(i)
n−1, v̄

(i)
n−1), i ∈ JNK

}
, using the weights

µn
(
z

(i)
n−1,k

)
µn−1

(
z

(i)
n−1,k

)wn−1,k

(
z

(i)
n−1

)
, (i, k) ∈ JNK× J0, T K ,

7 Rejuvenate the velocities z
(i)
n = (x̄

(i)
n−1, v

(i)
n ) with v

(i)
n ∼ $n.

The SMC sampler in Algorithm 5.2 therefore consists of N “seed” particles, the mutation

mechanism used consists of generating N process snippets started at every seed particle

z ∈ Z, z := (z, ψn−1(z), ψ2
n−1(z), . . . , ψTn−1(z)), resulting in N × (T + 1) particles which are

then whittled down to a set of N seed particles using a standard resampling scheme; this

yields the next generation of seed particles. This SMC sampler should be contrasted with

standard implementations of SMC samplers where, after resampling, a seed particle normally

gives rise to a unique particle in the mutation step. This procedure shares some similarities

with Dau and Chopin (2020) but differs in that we here sample and use the full trajectory of

length T + 1 whereas direct use of their idea using a standard HMC (Metropolis-Hastings),

assuming no velocity refreshment along the trajectory, would lead to the exploration of a

random number of states of this trajectory due to the accept/reject mechanism involved.

Simulations demonstrating the interest of this approach are given in subsection 5.2.5.

5.2.2 Outline of the justification of the algorithm

We now outline the main ideas underpinning the theoretical justification of this algorithm and

present variations and extensions of these ideas derived from the general results of Sections

5.4, 5.5 and 5.6. Key to this is establishing that Algorithm 5.2 is a standard SMC sampler

targeting a sequence of probability distributions
{
µ̄n, n ∈ J0, P J

}
from which samples can be

processed to approximate expectations with respect to
{
µn, n ∈ J0, P J

}
. This is touched on
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in Dau and Chopin (2020), but we here provide full details and show how these ideas can be

pushed much further, in interesting directions.

First define the probability distributions on
(
J0, T K× Z,P(J0, T K)⊗Z

)
µ̄n(k, dz) =

1

T + 1
wn,k(z)µn(dz) ,

for n ∈ J0, P K. We will show that Algorithm 5.2 can be interpreted as an SMC sampler

targeting the sequence of marginal distributions on
(
Z,Z

)

µ̄n(dz) = µn(dz)wn(z) withwn(z) :=
1

T + 1

T∑
k=0

wn,k(z) ,

which we may refer as a mixture, for n ∈ J0, P K. It may appear at first sight that sampling

from µ̄n is unsuitable to estimate expectations with respect µn. However the mixture structure

of µ̄n can be exploited, using standard arguments. More precisely, from Lemma 5.4.1, one

has for f : Z→ Z

T∑
k=0

1

T + 1

∫
f ◦ ψkn(z)wn,k(z)µ̄n(dz) = µn(f) , (5.1)

which implies that samples from the mixture µ̄n can be used to unbiasedly estimate µn(f),

thanks to a weighted average.

We now turn to the description of an SMC algorithm targeting
{
µ̄n, n ∈ J0, P J

}
, Algorithm

5.3, and then establish that it is probabilistically equivalent to Algorithm5.2 in a sense made

precise below. Let z = (z0, z1, . . . , zT ) :=
(
z0, ψn(z0), . . . , ψTn (z0)

)
∈ Z(T+1), zk = (xx, vk)

for k ∈ J0, T K, then for n ∈ JP K we introduce the following mutation kernel

M̄n(z,dz′) :=

T∑
k=0

µ̄n−1(k | z)(δxk ⊗$n−1)(dz′0)M̄⊗Tn
(
z′0,dz

′
−0

)
,

where we let z−0 := (z1, . . . , zT ) and

M̄⊗Tn
(
z0,dz−0

)
:=

T∏
k=1

Mn(zk−1, dzk) .
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We note that µ̄n−1(k | z) ∝ wn−1,k(z). It can be shown (Lemma 5.4.3) that for the near-

optimal backward kernel

L̄n(z′dz) =
µ̄n ⊗ M̄n

(
d(z, z′)

)
µ̄nM̄n(dz′)

,

the step n importance weights are of the form

w̄n(z) =
µ̄n ⊗ L̄n

(
d(z′, z)

)
µ̄n−1 ⊗ M̄n

(
d(z, dz′)

) =
µn(z)

µn−1(z)

1

T + 1

T∑
k=0

wn−1,k(z) =
µn(z)

µn−1(z)
wn−1(z) .

(5.2)

Note the slight abuse of notation above, since L̄n is not to Ln what M̄n is to Mn. The

standard SMC sampler corresponding to these choices is given in Algorithm 5.2; note that

the weights wn,k appear as computed twice, for the only reason that it facilitates here the

explanation of some of our arguments.

Algorithm 5.3: Folded Hamiltonian Snippet SMC algorithm

1 Sample ž
(i)
0

iid∼ µ̄0 = µ0 for i ∈ JNK ;
2 for n = 1, . . . , P do
3 for i ∈ JNK do
4 for k ∈ J0, T K do

5 Compute
(
ž

(i)
n−1,k = (x̌

(i)
n−1,k, v̌

(i)
n−1,k) := ψkn−1(ž

(i)
n−1), wn−1,k

(
ž

(i)
n−1

))
;

6 Draw ai ∼ Cat
(

1, wn−1,1

(
ž

(i)
n−1

)
, wn−1,2

(
ž

(i)
n−1

)
, . . . , wn−1,T

(
ž

(i)
n−1

))
;

7 Set z̃
(i)
n = (x̌

(i)
n−1,ai

, ṽ
(i)
n ) with ṽ

(i)
n ∼ $n;

8 Resample N particles from
{
z̃

(i)
n , i ∈ JNK

}
, using a multinomial distribution of

parameter

w̄n+1

(
z̃(i)
n

)
=
µn+1

(
z̃

(i)
n

)
µn
(
z̃

(i)
n

) wn
(
z̃(i)
n

)
, i ∈ JNK ,

and obtain ž
(i)
n for i ∈ JNK;

We now provide the simple probabilistic argument justifying the alternative presentation

in Algorithm 5.2. We show that for n ∈ JP K the distribution of
{
z̃

(i)
n , i ∈ JNK

}
given{

z̃
(i)
n−1, i ∈ JNK

}
in Algorithm 5.2 is probabilistically equivalent to that of

{
z

(i)
n , i ∈ JNK

}
given

{
z

(i)
n−1, i ∈ JNK

}
in Algorithm 5.3. Using conditional independence we focus on the

probability, in Algorithm 5.3, that for j ∈ JNK, x̃
(j)
n is obtained as the first component of

ψkn−1

(
z̃

(i)
n−1

)
for some (i, k) ∈ JNK× J0, T K, that is it has z̃

(i)
n−1 as the ancestor and is obtained
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after k iterations of ψn−1, given
{
z̃

(m)
n−1,m ∈ JNK

}
. Ignoring the distribution of ṽ

(j)
n we have

P
(
x̃(j)
n = x̌

(j)
n−1,k, ž

(j)
n−1 = z̃

(i)
n−1 | z̃

(m)
n−1,m ∈ JNK

)
=

µn
(
z̃

(i)
n−1

)
µn−1

(
z̃

(i)
n−1

)wn−1

(
z̃

(i)
n−1

)
×
wn−1,k

(
ž

(j)
n−1

)
wn−1

(
ž

(j)
n−1

)
=

µn
(
z̃

(i)
n−1

)
µn−1

(
z̃

(i)
n−1

)wn−1

(
z̃

(i)
n−1

)
×
wn−1,k

(
z̃

(i)
n−1

)
wn−1

(
z̃

(i)
n−1

)
=

µn
(
z̃

(i)
n−1

)
µn−1

(
z̃

(i)
n−1

)wn−1,k

(
z̃

(i)
n−1

)
.

Now observe that this expression coincides with that of the conditional (including v
(j)
n ) distri-

bution of z
(j)
n = ψkn−1(z

(i)
n−1) in Algorithm 5.2. In other words for n ∈ JP K,

{
z̃

(i)
n , i ∈ JNK

}
and

{
z

(i)
n , i ∈ JNK

}
are distributionally equivalent for n ∈ JP K given particles at n = 0,

particles which share the same initial distribution. Since the justification of the latter interpre-

tation of the algorithm is straightforward, as a standard SMC sampler targeting instrumental

distributions
{
µ̄n, n ∈ J0, P J

}
, we will adopt this perspective in the remainder of the chapter

for simplicity. We remind the reader that (5.1) provides us with a way of using all the values

of zk,n to estimate expectations w.r.t. µn.

5.2.3 Straightforward generalisations

It should be clear that the algorithm we have described lends itself to numerous generalisations,

which we briefly list here.

• each seed particle can give rise to multiple Markov chain snippets, which may be of

interest to parallel machines,

• for n ∈ J0, P K the mappings {ψkn, k ∈ J0, T K} for a given ψn : Z → R can be replaced

with a family of invertible mappings {ψn,k : Z → R, k ∈ J0, T K} where the ψn,ks are

now not required to be measure preserving, in which case the expression for wn,k may

involve some form of “Jacobian”, that is

wn,k(z) :=
µn ◦ ψn,k(z)

µn(z)

dυψ
−1
n,k

dυ
(z) .
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This is because, for f : Z→ R bounded and measurable, on the one hand

∫
f ◦ ψ(z)

dµψ
−1

dµ
(z)µ(dz) =

∫
f ◦ ψ(z)µψ

−1
(dz)

=

∫
f(z)µ(dz) ,

and on the other hand

∫
f(z)

µ ◦ ψ(z)

µ(z)
(z)

dυψ
−1

dυ
(z)µ(z)υ(dz) =

∫
f(z)µ ◦ ψ(z)

dυψ
−1

dυ
(z)υ(dz)

=

∫
f(z)µ ◦ ψ(z)υψ

−1
(dz)

=

∫
f ◦ ψ−1(z)

dµ

dυ
(z)υ(dz)

=

∫
f ◦ ψ−1(z)µ(dz)

=

∫
f(z)µψ

−1
(dz)

=

∫
f(z)

dµψ
−1

dµ
(z)µ(dz) .

• it is possible to generalise the definition of µ̄n and give different weights to the seed

particles

µ̄n(k, dz) = µn(dz)

T∑
k=0

ωn,k wn,k(z) ,

with
∑T

k=0 ωn,k = 1 and ωn,k ≥ 0 for k ∈ J0, T K.

• one could use continuous time processes snippets. For example piecewise deterministic

Markov processes such as the Zig-Zag process Bierkens and Roberts (2017) or the

Bouncy Particle Sampler Bouchard-Côté et al. (2018) could be used since finite time

horizon trajectories can be parametrized in terms of a finite number of parameters.

We leave the exploration of such generalisations for future work, although we think that the

choice of the leapfrog integrator is particularly natural and attractive here.

5.2.4 Computational considerations, motivations and theoretical support

• It is worth pointing out that the computation of wn,k and zn,k will most often involve

common quantities, leading to negligible computational overhead stemming from the
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use of a leapfrog integrator when such a trajectory-based strategy is used within SMC.

This was exploited and observed in our numerical examples.

• The motivation for using an integrator of Hamilton’s equations is similar to that of

HMC. Let d ∈ N and let X = Rd. We know that in certain scenarios Beskos et al.

(2013), Calvo et al. (2021), the distributions {µn,d, d ∈ N, n ∈ JT (d)K} as such that

for n ∈ N, log
µn,d◦ψkn,d(z)

µn,d(z) →d→∞ N (µn, σ
2
n), that is the weights do not degenerate

to zero or one: in the context of SMC this means that the part of the importance

weight (5.2) arising from the mutation mechanism does not degenerate. Further, an

appropriate choice of schedule, i.e. sequence {µn,d, n ∈ JT (d)K} for d ∈ N, ensures that

the contribution
µn,d(z)
µn−1,d(z) to the importance weights (5.2) is also stable as d→∞. As

shown in Beskos et al. (2013), Calvo et al. (2021), while direct importance sampling

an exponential number of samples as d grows, the use of such a schedule reduces this

complexity to a polynomial order.

• The scheme we propose differs from an approach which would use a standard HMC up-

date with the waste-free algorithm of Dau and Chopin (2020). Indeed such an approach

is not guaranteed to explore all the states {zn,k, k ∈ JT K}, but a random number of

states, based on the accept-reject mechanism of the Metropolis-Hastings mechanism.

In contrast, our scheme explores all the states, and as can be seen below can be easily

extended to accommodate, for example, constraints.

• Averaging can be advantageous in two respects. We know that withHn(z) := − logµn(z),

then for z ∈ Z the mapping k 7→ Hn ◦ ψkn(z) is typically oscillatory, motivating for ex-

ample the x-tra chance algorithm of Campos and Sanz-Serna (2015). We also note that

in the limit as ε→ 0 while ε× T is kept constant, the average in (5.2) corresponds to

the numerical integration of the contour of Hn(z), effectively leading to some form of

Rao-Blackwellization of this contour.

• Our work is at first sight linked to Rotskoff and Vanden-Eijnden (2019), Thin et al.

(2021), but differs in the details. Indeed, in the discrete-time setup considered in

Rotskoff and Vanden-Eijnden (2019) the mixture introduced is, for a sequence {ωk ≥
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0, k ∈ Z} such that #{ωk 6= 0, k ∈ Z} <∞ and ω :=
∑

l∈Z ωk = 1,

µ̄(dz) = µ(dz)
∑
k∈Z

wk(z) ,

with (assuming volume preservation)

wk(z) = ωk
µ ◦ ψk(z)∑

l∈Z ωk+l µ ◦ ψl(z)
,

which is used as an importance sampling proposal in order to estimate expectations with

respect to µ. However, the way this mixture is used is completely different since NEO

relies on samples from µ, typically exact samples, which then undergo a transformation

and are subsequently properly weighted, while we aim to sample from µ̄, typically using

an iterative method. One could naturally apply the ideas developed throughout this

paper to this particular choice of instrumental target distributions.

• We are currently considering adaptation schemes to tune the parameters ε and T of the

Hamiltonian integrator, taking advantage of the population of samples, in the spirit of

Hoffman et al. (2021), Hoffman and Sountsov (2022).

5.2.5 Numerical illustration: logistic regression

In this section, we consider sampling from the posterior distribution of a logistic regression

model, focusing on the computation of the normalising constant. We follow Dau and Chopin

(2020) and consider the sonar dataset, previously used in Chopin and Ridgway (2017). With

intercept terms, the dataset has responses yi ∈ {−1, 1} and covariates zi ∈ Rp, where p = 61.

The likelihood of the parameters x ∈ X := Rp is then given by

L(x) =

n∏
i

F (z>i x · yi), (5.3)

where F (x) := 1/(1+exp(−x)). We ascribe x a product of independent normal distributions

of zero mean as a prior, with standard deviation equal to 20 for the intercept and 5 for the other

parameters. Denote p(dx) the prior distribution of x, we define a sequence of tempered dis-

tributions of the form πn(x) ∝ p(dx)L(x)λn for λn : J0, P K→ [0, 1] non-decreasing and such
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that λ0 = 0 and λP = 1. We apply both Hamiltonian Snippet-SMC and the implementation

of waste-free SMC of Dau and Chopin (2020) and compare their performance.

For both algorithms, we set the total number of particles at each SMC step to be N(T +1) =

10, 000. For the waste-free SMC, the Markov kernel is chosen to be a random-walk Metropolis-

Hastings kernel with covariances adaptively computed as 2.382/d Σ̂, where Σ̂ is the empirical

covariance matrix obtained from the particles in the previous SMC step. For the Hamiltonian

Snippet-SMC algorithm, we set ψn to be the one-step leap-frog integrator with stepsize ε,

Un(x) = − log(πn(x)) and $ a N (0, Id). To investigate the stability of our algorithm, we

ran Hamiltonian Snippet SMC with ε = 0.05, 0.1, 0.2 and 0.3. For both algorithms, the

temperatures λn are adaptively chosen so that the effective sample size (ESS) of the current

SMC step will be αESSmax, where ESSmax is the maximum ESS achievable at the current

step. In our experiments, we have chosen α = 0.3, 0.5 and 0.7 for both algorithms.

Performance comparison

Figure 5.1 shows the boxplots of estimates of the logarithm of the normalising constant

obtained from both algorithms, for different choices of N and ε for the Hamiltonian Snippet

SMC algorithm. The boxplots are obtained by running both algorithms 100 times for different

of algorithm parameters, with α = 0.5 in all setups. Several points are worth observing.

For a suitably choice of ε, the Hamiltonian Snippet SMC algorithm can produce stable and

consistent estimates of the normalising constant with 10, 000 particles at each iteration. On

the other hand, however, the waste-free SMC algorithm fails to produce accurate results for

the same computational budget. It is also clear that with larger values of N (meaning the

smaller value of T and hence shorter snippets), the waste-free SMC algorithm produces results

with larger biases and variability. For the Hamiltonian Snippet SMC algorithm, the results

are stable both for short and long snippets when ε is equal to 0.1 or 0.2. Another point is

that when ε = 0.05 or 0.3, the Hamiltonian Snippet SMC algorithm becomes unstable with

short (i.e. ε = 0.05) and long (i.e. ε = 0.3). Possible reasons are for too small a stepsize

the algorithm is not able to explore the target distribution efficiently, resulting in unstable

performances. On the other hand, when the stepsize is too large, the leapfrog integrator

becomes unstable, therefore affecting the variability of the weights; this is a common problem
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of HMC algorithms. Hence, a long trajectory will result in deteriorate estimations. Hence,

to obtain the best performance, one should find a way of tuning the stepsize and trajectory

length along with the SMC steps.

Figure 5.1: Estimates of the normalising constant (in log scale) obtained from both Hamilto-
nian Snippet SMC and waste-free SMC algorithm. Left: Estimate obtained from Hamiltonian
Snippet SMC algorithm with different values of ε. Right: Estimates obtained from waste-free
SMC algorithm.

In Figure 5.2 we display boxplots of the estimates of the posterior expectations of the mean of

all coefficients, i.e. EπP (d−1
∑d

i=1 xi). This quantity is referred to as the mean of marginals

in Dau and Chopin (2020) and we use this terminology. One can see that the same properties

can be seen from the estimations of the mean of marginals, with the instability problems

exacerbated with small and large stepsizes.

Computational Cost

In this section, we compare the running time of both algorithms. Since the calculations of

the potential energy and its gradient often share common intermediate steps, we can recycle

these to save computational costs. As the waste-free SMC also requires density evaluations,

the Hamiltonian Snippet SMC algorithm will not require significant additional computations.

Figure 5.3 shows boxplots of the simulation time of both algorithms from 100 runs. The

simulations were run on an Apple M1-Pro CPU with 16G of memory. One can see that in

comparison to the waste-free SMC the additional computational time is only marginal for the
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Figure 5.2: Estimates of the mean of marginals obtained from both Hamiltonian Snippet SMC
and the waste-free SMC algorithms. Left: Estimate obtained from the Hamiltonian Snippet
SMC algorithm with different values of ε. Right: Estimates obtained from the waste-free
SMC algorithm.

Hamiltonian Snippet SMC algorithm and mostly due to the larger memory needed to store

the intermediate values.

5.3 Auxiliary process proposal and more general examples

In this section, we establish a set of general results which make finding the expression for

the importance weights or acceptance ratios given in this paper rather simple. The main

idea is that in the situation where µ is dominated by a measure υ, which together with M

and another kernel M∗form a (υ,M,M∗) triplet, the weight or acceptance ratio involved is

straightforward to obtain. While this may appear an overkill in simple scenarios, we will see

in Example 5.3.2 that it makes establishing the correctness of a more sophisticated algorithm

straightforward.

5.3.1 A general framework

Lemma 5.3.1. Let µ be a probability distribution on
(
Z,Z

)
, υ be a measure on

(
Z,Z

)
such

that υ � µ and assume that we have a pair or Markov kernels M,M∗ : Z×Z → [0, 1] such
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Figure 5.3: Simulation times for both algorithms. Left: Simulation time for Hamiltonian
Snippet SMC algorithm, with N = 100, ε = 0.2, α = 0.5. Right:Simulation times for the
waste-free SMC with N = 100

that

υ(dz)M(z,dz′) = υ(dz′)M∗(z′, dz) .

We call this property (υ,M,M∗) reversibility. Then for z, z′ ∈ Z such that µ(z) := dµ/dυ(z) >

0 we have

µ⊗M∗
(
d(z′, z)

)
µ⊗M

(
d(z, z′)

) =
dµ/dυ(z′)

dµ/dυ(z)
=
µ(z′)

µ(z)
.

Proof. For z, z′ ∈ Z such that dµ/dυ(z) > 0 we have

µ(dz′)M∗(z′, dz) =
dµ

dν
(z′)υ(dz′)M∗(z′,dz)

=
dµ

dν
(z′)υ(dz)M(z, dz′)

=
dµ/dυ(z′)

dµ/dυ(z)

dµ

dν
(z)υ(dz)M(z,dz′)

=
dµ/dυ(z′)

dµ/dυ(z)
µ(dz)M(z,dz′) .



CHAPTER 5. MARKOV SNIPPET SMC (MONTE CARLO IN GENERAL) 118

Corollary 5.3.1.1. With µ, υ,M and L := M∗ as above, for any z, z′ ∈ Z such that dµ/dυ(z) >

0 and k ∈ N

µ(dz′)Lk(z′, dz)

µ(dz)Mk(z,dz′)
=

dµ/dυ(z′)

dµ/dυ(z)
.

Example 5.3.1. Let υ � µ, so that µ(z) := dµ/dυ(z) is well defined. Let, for i ∈ {1, 2},

ψi : Z → Z be invertible and such that υψi = υ, ψ−1
i = σ ◦ ψi ◦ σ for σ : Z → Z such that

σ2 = Id and υσ = υ then consider the delayed rejection MH transition probability

M(z,dz′) = α1(z)δψ1(z)

(
dz′
)

+ ᾱ1(z)
[
α2(z)δψ2(z)(dz

′) + ᾱ2(z)δz(dz
′)
]
.

In the standard HMC scenario υ is the Lebesgue measure on X×V and ψi is of the Stormer-

Verlet type. Following Andrieu et al. (2020) notice that υ has density υ(z) = 1/2 with

respect to the measure υ + υψi = 2υ. Now define S1 :=
{
z ∈ Z : υ(z) ∧ υ ◦ ψ1(z) > 0

}
,

α1(z) = 1 ∧ r1(z) and ᾱ1(z) := 1− α1(z) with

r1(z) :=


υ◦ψ1(z)
υ(z) = 1 for z ∈ S1

0 otherwise

,

and with S2 :=
{
z ∈ Z :

[
ᾱ1(z) υ(z)

]
∧
[
ᾱ1 ◦ ψ2(z) υ ◦ ψ2(z)

]
> 0
}

r2(z) :=


ᾱ1◦ψ2(z) υ◦ψ2(z)

ᾱ1(z) υ(z) = 1 for z ∈ S2

0 otherwise

.

ψ1 can be a HMC update, while

ψ2 = ψ1 ◦ b ◦ ψ1 with b(x, v) =
(
x, v − 2

〈
v, n(x)

〉
n(x)

)
(5.4)

for some vector field n : X → X. This can therefore be used as part of Algorithm 5.5; care

must be taken when compute the weights wn,k and w̄n, see Section 5.4-5.6 provide the tools

to achieve this. For example, in the situation where υ is the Lebesgue measure on Z = Rd

and ψ2 = Id then we recover Algorithm 5.3 or equivalently Algorithm 5.2.
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Example 5.3.2. An interesting instance of Example 5.3.1 is concerned with the scenario where

interest is in sampling µ constrained to some set C ⊂ Z such that υ(C) <∞. Define µC(·) :=

µ(C ∩ ·)/µ(C) and υC(·) := υ(C ∩ ·)/υ(C). We let M be defined as above but targeting

υC . Naturally υC has a density w.r.t. υ, υC(z) = 1C(z)/υ(C) for z ∈ Z and for i ∈ {1, 2}

we have υC ◦ ψi(z) = 1ψ−1
i (C)(z) , υ ◦ ψ1 ◦ ψ2(z) = 1ψ−1

2 ◦ψ
−1
1 (C)(z). Consequently S1 :={

z ∈ Z : 1C∩ψ−1
1 (C)(z) > 0

}
and S2 =

{
z ∈ Z : 1C∩ψ−1

1 (C{)(z)1ψ−1
2 (C)∩ψ−1

2 ◦ψ
−1
1 (C{)(z) > 0

}
and as a result

α1(z) := 1A∩ψ−1
1 (C)(z)

α2(z) := 1A∩ψ−1
1 (C{)∩ψ−1

2 (C)∩ψ−1
2 ◦ψ

−1
1 (C{)(z) .

The corresponding kernel M⊗T is described algorithmically in Algorithm 5.4. In the situation

where C := {x ∈ X : c(x) = 0} for a continuously differentiable function c : X → R, the

bounces described in (5.4) can be defined in terms of the field x 7→ n(x)such that

n(x) :=


∇c(x)/|∇c(x)| for∇c(x) 6= 0

0 otherwise.

This justifies the ideas of Betancourt (2011), where a process of the type given in Algorithm

5.4 is used as a proposal within a MH update, although the possibility of a rejection after the

second stage seems to have been overlooked in that reference.

Algorithm 5.4: M⊗T for M the delayed rejection algorithm targeting the uniform
distribution on C

1 Given z0 = z ∈ C ⊂ Z
2 for k = 1, . . . , T do
3 if ψ1(zk−1) ∈ C then
4 zk = ψ1(zk−1)
5 else if ψ2(zk−1) ∈ C and ψ1 ◦ ψ2(zk−1) /∈ C then
6 zk = ψ2(zk−1)
7 else
8 zk = zk−1.

Naturally a rejection of both transformations ψ1 and ψ2 of the current state means that the

algorithm gets stuck. We note that it is also possible to replace the third update case with a
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full refreshment of the velocity, which can be interpreted as a third delayed rejection update,

of acceptance probability one.

5.3.2 Numerical illustration: orthant probabilities

In this section, we consider the problem of calculating the Gaussian orthant probabilities,

which is given by

p(a,b,Σ) := P(a ≤ X ≤ b),

where a,b ∈ Rd are known vectors of dimension d and X ∼ Nd(0,Σ) with Σ a covariance

matrix of size d× d. Consider the Cholesky decomposition of Σ which is given by Σ := LL>,

where L := (lij)1≤i,j≤d is a lower triangular matrix with positive diagonal entries. It is clear

that X can be viewed as X := Lη, where η ∼ Nd(0, Idd). Consequently, one can instead

rewrite p(a,b,Σ) as a product of d probabilities given by

p1 = P(a1 ≤ l11η1 ≤ b1) = P (a1/l11 ≤ η1 ≤ b1/l11) , (5.5)

and

pn = P

at ≤ n∑
j=1

lnjηj ≤ bt

 = P

(
at −

∑n−1
j=1 lnjηj

lnn
≤ ηt ≤

bt −
∑n−1

j=1 lnjηj

lnn

)
, (5.6)

for n = 2, . . . , d. For notational simplicity, we let Bn(η1:n−1) denote the interval

[
an −

∑n−1
j=1 lnjηj

lnn
,
bn −

∑n−1
j=1 lnjηj

lnn

]
,

with the convention B1(η1:0) := [a1/l11, b1/l11]. Then, p(a,b,Σ) can be written as the

product of pn s for n = 1, 2, . . . , d. Moreover, one can see that pn is also the normalising

constant of the conditional distribution of ηn given η1:n−1. To calculate the orthant probability,

Ridgway (2016) have proposed an SMC algorithm targeting the sequence of distributions
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πn(η1:n) := π1(ηn)
∏n
k=2 πn(ηk|η1:k−1) for n ∈ J1, dK, given by

π1(η1) ∝ φ(η1)1{η1 ∈ B1} = γ1(η1) (5.7)

πn(ηn|η1:n−1) ∝ φ(ηn)1{ηn ∈ Bn(η1:n−1)} = γn(ηn|η1:n−1). (5.8)

where φ denotes the probability density of aN (0, 1). One could also note that πn(ηn|η1:n−1) =

1/Φ(Bn(η1:n−1))φ(ηn)1{ηn ∈ Bn(η1:n−1)} and γn(η1:n) = φ(η1:n)
∏n
k=1 1{ηk ∈ Bk(η1:k−1)},

where Φ(Bn(η1:n−1)) represents the probability of a standard Normal random variable being in

the region Bn(η1:n−1). Therefore, the SMC algorithm proposed by Ridgway (2016) then pro-

ceeds as follows. (1) At time t, particles ηn1:t−1 are extended by sampling ηnn ∼ πn(dηt|η(i)
1:t−1).

(2) Particles η
(i)
1:t are then reweighted by multiplying the incremental weights Φ(Bn(η

(i)
1:n−1))

to w
(i)
n−1. (3) If the ESS is below a certain threshold, resample the particles and move them

through an MCMC kernel that leaves πt invariant for k iterations. For the MCMC kernel,

Ridgway (2016) recommended using the Gibbs sampler that leaves πt invariant to move the

particles at step (3). The orthant probability we are interested in can then be viewed as the

normalising constant of πd and this can be estimated as a by-product of the SMC algorithm.

Since we are trying to sample from the constrained Gaussian distributions, the Hamiltonian

equation can be solved exactly and wn,k is always 1. As a result, the incremental weights

for the trajectories simplify to Φ(Bn(un−1)) and each particle on the trajectory starting from

zt will have an incremental weight proportional to Φ(Bn(un−1)). To obtain a trajectory, we

follow Pakman and Paninski (2014) who perform HMC with reflections to sample. As the

dimension increases, the number of reflections performed under ψn will also increase given a

fixed integration time. We adaptively tuned the integrating time ε to ensure that the average

number of reflections at each SMC step does not exceed a given threshold. In our experiment,

we set this threshold to be 5. To show that the waste-recycling RSMC algorithm scales well in

high dimension, we set d = 150, a = (1.5, 1.5, ...) and b = (∞,∞, ...). Also, we use the same

covariance matrix in Dau and Chopin (2020) and perform variable re-ordering as suggested in

Ridgway (2016) before the simulation.

Figures 5.4 and 5.5 show the results obtained with N × (T + 1) = 50, 000 and various values

for N . With a quarter of the number of particles used in Dau and Chopin (2020), the waste-
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Figure 5.4: Orthant probability example: estimates of the normalising constant (i.e. the
orthant probability) obtained from the waste-recycling HSMC algorithm with N = 50, 000.

recycling HSMC algorithm achieves comparable performance when estimating the normalising

constant (i.e. the orthant probability). Moreover, the estimates are stable for different choices

of N values, although one observes that the algorithm achieves the best performance when

N = 500 (i.e. each trajectory contains 100 particles). This also suggests that the integrating

time should be adaptively tuned in a different way to achieve the best performance given a

fixed computational budget. Estimates of the function ϕ(x0:d) = E(1/d
∑d

i=1 xi) with respect

to the Gaussian distribution Nd(0,Σ) truncated between a and b are also stable for different

choices of N , although they are more variable than those obtained in Dau and Chopin (2020).

This indicates that the waste-recycling HSMC algorithm does scale well in high dimensions.

We note that this higher variance compared to the waste-free SMC of Dau and Chopin (2020),

is obtained in a scenario where they are able to exploit the particular structure of the problem

and implement an exact Gibbs sampler to move the particles. The waste-recycling HSMC

algorithm is however more general and applicable to scenarios where such a structure is not

present.
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Figure 5.5: Orthant probability example: estimates of the mean of marginals obtained from
the waste-recycling HSMC algorithm with N = 50, 000.

5.4 Sampling a mixture: general justification

In this section, we first establish properties of a type of mixture of probability distributions

arising from a snippet z := (z0, z1, . . . , zT ) ∈ ZT+1 of a Markov chain initialised with some

probability distribution z0 ∼ µ and of Markov kernel, M , producing in particular T+1 weighted

samples to compute expectations with respect to µ.

Lemma 5.4.1. Let µ be a probability distribution on
(
Z,Z

)
. For T ∈ N \ {0} introduce the

mixture defined on
(
ZT+1,Z ⊗(T+1)

)

µ̄(dz) =
1

T + 1

T∑
k=0

µ̄(k, dz) ,

where for (k, z) ∈ J0, T K× Z

µ̄(k, dz) :=
1

T + 1
wk(z)µ⊗M⊗T (dz) ,
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and for M : Z×Z → [0, 1] and z := (z0, z1, . . . , zT ) ∈ ZT+1,

M⊗T (z0,dz−0) : =
T∏
i=1

M(zi−1, dzi) .

Assume the existence of L : Z × Z → [0, 1] such that for z := (z0, z1, . . . , zT ) ∈ ZT+1 the

Radon-Nikodym derivative is well defined

wk(z) :=
µ⊗ Lk

(
d(zk, z0)

)
µ⊗Mk

(
d(z0, zk)

) ,
with the convention w0(z) = 1. Then, for any f : Z→ R such that µ(|f |) <∞

1. we have ∫
f(z′)

µ⊗ Lk
(
d(z′, z)

)
µ⊗Mk

(
d(z, z′)

)µ(dz)Mk(z,dz′) = µ(f) ,

2. with f̄(k, z) := f(zk) then

(a)

µ̄(f̄) = µ(f) ,

(b) ∫ T∑
k=0

f̄(k, z)
wk(z)∑T
l=0wl(z)

µ̄(dz) = µ(f) .

Proof. The first statement follows directly from the definition of the Radon-Nikodym deriva-

tive

∫
f(z′)

µ⊗ Lk
(
d(z′, z)

)
µ⊗Mk

(
d(z, z′)

)µ(dz)Mk(z,dz′) =

∫
f(z′)µ(dz′)Lk(z′,dz)

=

∫
f(z′)µ(dz′) .

The second statement follows from

1

T + 1

T∑
k=0

∫
f̄(k, z)wk(z)µ⊗M⊗T (dz) =

1

T + 1

T∑
k=0

∫
f(zk)wk(z)µ⊗Mk(dzk) ,
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and the first statement. The last statement follows from the second statement upon noticing

that for k ∈ J0, T K,

µ̄(k | z) =
wk(z)∑T
l=0wl(z)

,

and using the tower property of expectations.

Corollary 5.4.1.1. Assume that z ∼ µ̄(·), then

T∑
k=0

f(zk)
wk(z)∑T
l=0wl(z)

is an unbiased estimator of µ(f). This justifies algorithms which sample from the mixture µ̄

directly in order to estimate expectations with respect to µ.

Lemma 5.4.2. With µ and µ̄ as in Lemma 5.4.1, let M̄ : ZT+1 ×Z ⊗(T+1) → [0, 1] be the

Markov kernel

M̄(z,dz′) :=

T∑
k=0

µ̄(k | z)R(zk, dz
′
0)M⊗T

(
z′0,dz

′
−0

)
,

with R : Z×Z → [0, 1]. Then for any z, z′ ∈ ZT+1

1. we have

µ̄(dz)M̄(z, dz′) = µ(dz0)M⊗T (z0,dz−0)

{
1

T + 1

T∑
l=0

wl(z)R(zl, dz
′
0)

}
M⊗T

(
z′0,dz

′
−0

)
,

2. and

µ̄M̄(dz′) = µR(dz′0)M⊗T
(
z′0, dz

′
−0

)
.

Proof. Note that

µ̄(dz)M̄(z,dz′) = µ(dz0)M⊗T (z0, dz−0)
1

T + 1

T∑
k,l=0

wk(z)µ̄(l | z)R(zl,dz
′
0)M⊗T

(
z′0, dz

′
−0

)
= µ(dz0)M⊗T (z0, dz−0)

{
1

T + 1

T∑
l=0

wl(z)R(zl, dz
′
0)

}
M⊗T

(
z′0,dz

′
−0

)
.
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From this and using that µ̄(l | z) ∝ wl(z), which is a function of z0 and zl only, we obtain

µ̄M̄(dz′) =

∫
µ(dz0)M⊗T (z0,dz−0)

1

T + 1

T∑
k,l=0

wk(z)µ̄(l | z)R(zl,dz
′
0)M⊗T

(
z′0, dz

′
−0

)
=

1

T + 1

{
T∑
l=0

∫
µ(dzl)M

l(zl,dz0)R(zl, dz
′
0)

}
M⊗T

(
z′0,dz

′
−0

)
=

1

T + 1

{
T∑
l=0

∫
µ(dzl)R(zl, dz

′
0)

}
M⊗T

(
z′0,dz

′
−0

)
= µR(dz′0)M⊗T

(
z′0,dz

′
−0

)
.

Lemma 5.4.3. With µ and M as in Lemmas 5.4.1 and 5.4.2, then consider the backward

kernel L̄

L̄(z′, dz) :=
µ̄(dz)M̄(z, dz′)

µ̄M̄(dz′)
.

Then for ν another probability distribution
(
Z,Z

)
and assuming

∫
µ(dz)R(z,dz′0) = µ(dz′0)

then

ν̄(dz′)L̄(z′,dz)

µ̄(dz)M̄(z,dz′)
=
ν(dz′0)

µ(dz′0)

1

T + 1

T∑
k=0

wk(z′) .

Proof. From the definition of L̄ and Lemma 5.4.2

ν̄(dz′)L̄(z′, dz)

µ̄(dz)M̄(z,dz′)
=

ν̄(dz′)

µ̄M̄(dz′)

=
ν ⊗M⊗T (dz′)

µR(dz′0)M⊗T
(
z′0, dz

′
−0

) 1

T + 1

T∑
k=0

wk(z′)

=
ν(dz′0)

µR(dz′0)

1

T + 1

T∑
k=0

wk(z′) ,

and we conclude with the assumption of R.

5.5 Justification of the waste-free SMC sampler

Given a sequence
{
µn, n ∈ J0, P K

}
of probability distributions defined on a measurable

space (Z,Z ) introduce the sequence of distributions defined on
(
J0, T K×ZT+1,P(J0, T K)⊗



CHAPTER 5. MARKOV SNIPPET SMC (MONTE CARLO IN GENERAL) 127

Z ⊗(T+1)
)

such that for any(n, k, z) ∈ J0, P K× J0, T K× Z

µ̄n(k, dz) :=
1

T + 1
wn,k(z)µn ⊗M⊗Tn (dz)

yielding the marginals

µ̄n(dz) :=
1

T

T∑
k=0

µ̄n(k,dz),

where for k ∈ J0, P K

wn,k(z, z′) =
µn(dz′)Lkn(z′,dz)

µn(dz)Mk
n(z,dz′)

,

wn,0(z) = 1 for any z ∈ ZT+1. Consider M̄n : ZT+1 ×Z ⊗(T+1) → [0, 1]

M̄n(z,dz′) :=

T∑
k=0

µ̄n−1(k | z)Rn(zk, dz
′
0)M⊗Tn

(
z′0,dz

′
−0

)
,

where Mn, Rn : Z × Z → [0, 1] and µn−1Rn = µn−1. Note that Dau and Chopin (2020)

set Rn = Mn, and therefore impose that Mn is µn−1−invariant, which is not necessary here.

Considering the optimal backward kernel L̄n : ZT+1 ×Z ⊗(T+1) → [0, 1] of the form

L̄n(z,dz′) ∝ µ̄n−1(dz′)M̄n(z′,dz) ,

from Lemma 5.4.1 and Lemma 5.4.2 one obtains

w̄n(z, z′) =
µn(dz′0)

µn−1(dz′0)

1

T + 1

T∑
k=0

wn−1,k(z, z′) . (5.9)

The corresponding folded version of the algorithm is given in Algorithm 5.5.

5.6 Sampling HMC trajectories

In this scenario we have µ(dz) = π(dx)$(dv) assumed to have a density with respect to a

measure υ, and ψ is an invertible mapping ψ : Z→ Z such that υψ = υ and ψ−1 = σ ◦ ψ ◦ σ

with σ : Z→ Z such that µ ◦ σ(z) = µ(z). In this chapter, we focus primarily on the scenario

where ψ is a discretization of Hamilton’s equations for a potential U : X→ R e.g. a leapfrog or

Stormer-Verlet integrator. We now consider the scenario where, in the framework developed
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Algorithm 5.5: Hamiltonian Snippet SMC algorithm

1 sample z
(i)
0

iid∼ µ0 and set w0(z
(i)
0 ) = 1 for i ∈ JNK.

2 for n = 1, . . . , P do
3 for i ∈ JNK do

4 sample ai ∼ Cat
(

1, wn−1,1(z
(i)
n−1), wn−1,2(z

(i)
n−1), . . . , wn−1,T (z

(i)
n−1)

)
5 sample z̃

(i)
n,0 ∼ Rn(zai,n−1, ·)

6 for k ∈ J1, T K do

7 sample z̃
(i)
n,k ∼Mn(z̃

(i)
n,k−1, ·)

8 compute

wn,k
(
z

(i)
n−1, z̃

(i)
n

)
=

µn(dz̃
(i)
n,k)L

k
n(z̃n,k, dz̃

(i)
n,0)

µn(dz̃
(i)
n,0)Mk

n(z̃
(i)
n,0, dz̃

(i)
n,k)

9 resample N particles from
{

z̃
(i)
n , i ∈ JNK

}
, using a multinomial distribution of

parameter

w̄n+1

(
z

(i)
n−1, z̃

(i)
n

)
=
µn+1

(
z̃

(i)
n

)
µn
(
z̃

(i)
n

) wn
(
z

(i)
n−1, z̃

(i)
n

)
, i ∈ JNK ,

and obtain z
(i)
n for i ∈ JNK.

in Section 5.5,we let M(z,dz′) := δψ(z)

(
dz′
)

be the deterministic kernel which maps the

current state z ∈ Z to ψ(z). Define Ψ(z,dz′) = δψ(z)(dz
′) and Ψ∗(z, dz′) = δψ−1(z)(dz

′); we

exploit the ideas of (Andrieu et al., 2020, Proposition 4) to establish that Ψ∗ is the ν−adjoint

of Ψ if υ is invariant under ψ.

Lemma 5.6.1. Let µ be a probability measure and υ a measure, on (Z,Z ) such that υ � µ.

Denote µ(z) := dµ/dυ(z) for any z ∈ Z. Let ψ : Z→ Z be an invertible and volume preserving

mapping, i.e. such that υψ(A) = υ
(
ψ−1(A)

)
= υ(A) for all A ∈ Z , then

1. (υ,Ψ,Ψ∗) form a reversible triplet, that is for all z, z′ ∈ Z,

υ(dz)δψ(z)(dz
′) = υ(dz′)δψ−1(z′)(dz),

2. for all z, z′ ∈ Z such that µ(z) > 0

µ(dz′)δψ−1(z′)(dz) =
µ ◦ ψ(z)

µ(z)
µ(dz)δψ(z)(dz

′) .
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Proof. For the first statement

∫
f(z)g ◦ ψ(z)υ(dz) =

∫
f ◦ ψ−1 ◦ ψ(z)g ◦ ψ(z)υ(dz)

=

∫
f ◦ ψ−1(z)g(z)υψ(dz)

=

∫
f ◦ ψ−1(z)g(z)υ(dz).

We have

µ(dz′)δψ−1(z′)(dz) = µ(z′)υ(dz′)δψ−1(z′)(dz)

= µ(z′)υ(dz)δψ(z)(dz
′)

= µ ◦ ψ(z)υ(dz)δψ(z)(dz
′)

=
µ ◦ ψ(z)

µ(z)
µ(z)υ(dz)δψ(z)(dz

′)

=
µ ◦ ψ(z)

µ(z)
µ(dz)δψ(z)(dz

′)

Corollary 5.6.1.1. With the assumptions above for (n, k) ∈ J0, P K× J0, T K

wn,k(z, z′) =
µn(dz′)(Ψ∗)−k(z′,dz)

µn(dz)Ψk(z,dz′)
=
µn ◦ ψkn(z0)

µn(z0)
,

which justifies the simplified notation wn,k(z0) used in Section 5.2. and for a µ−invariant

Markov kernel, for example Rn(z, dz′) = δx(dx′)$n−1(dv′), from Lemma 5.4.3. From (5.9)

we have

w̄n(z, z′) =
µn(dz′0)

µn−1(dz′0)

1

T + 1

T∑
k=0

wn−1,k(z, z′)

µn(dz′0)

µn−1(dz′0)

1

T + 1

T∑
k=0

wn−1,k(z0) ,

therefore justifying the simplified notation w̄n(z) used in Section 5.2. This together with

the results of Section 5.5 finish the justification of correctness of Algorithm 5.3 and hence

Algorithm 5.2.
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Corollary 5.6.1.2. Taking L̄ = M̄ and assuming that for any z ∈ Z, υ � R(z, ·) we obtain

µ̄(dz′)M̄(z′,dz)

µ̄(dz)M̄(z, dz′)
=
µ(dz′0)

∑T
l=0wl(z′)R(z′l, dz0)

µ(dz0)
∑T

l=0wl(z)R(zl,dz
′
0)
.

=

∑T
l=0 µ ◦ ψl(z′0)R(z′l, z0)∑T
l=0 µ ◦ ψl(z0)R(zl, z

′
0)

So we could use an MH algorithm targeting µ̄ and proposal M̄ , of acceptance ratio where we

need a density for R on the last line. The acceptance ratio therefore compares the ‘densities’

of the contours. Note that when we use the kernel R(z,dz′) = δx(dx′)⊗$(dv′) then this has

yet another expression. In the limit, or assume that T and ε are properly adjusted, it seems

that we would be targeting the distribution of the energies − logµ(z) by using this approach

i.e. a particle coincides with a contour and the update is in effect a contour change.



Conclusion

In this thesis, we have introduced improvements and novelties into different areas of the realm

of Monte Carlo methods. At the same time, it also opens up several questions that are worth

considering in the future:

1. In Chapter 2, we tried to resample the jumps in the previous time block at each SMC

iteration. However, we still sample the modification type and modification positions

according to the prior. As new information has arrived, it’s worth trying to design more

efficient proposals based on the new information. Our hypothesis is that with more

efficient proposals, the new algorithm proposed in Chapter 2 would be able to produce

even better performance. As shown in the simulations, having the block sampling step

in fact introduces more variance. Since the main idea of having the block sampling is

to recover and modify the jumps that are close to the end of the time block, it is also

worth investigating the algorithm that only re-samples part of the previous block.

2. The algorithm introduced in Chapter 4 requires that the number of latents that generate

the data should be fixed. However, in some situations, the number of latents within the

generator is also random. Hence, a natural extension would be developing a Latent-

ABC-SMC algorithm that is able to have variable number of latents or only involves a

fraction of the latents.

3. The algorithm developed in Chapter 5 opens up many questions. First of all, simulations

have suggested that the stepsize and trajectory lengths do have an effect on the efficiency

of the algorithms. Hence, it is worth investigating possible ways of adaptations within the

SMC algorithm. The idea of sampling Markov process snippets can also be incorporated

with MCMC algorithms, which is another direction that is worth considering. Numerical
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results have shown great advantages of the algorithm over other methods. It is also

worth trying to explain such an advantage from a theoretical perspective.
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Appendix A

MCMC Implementations for g-and-k

Distributions

We introduced the implementation of an MCMC sampler targeting the posterior distribution

of the g-and-k distribution, which is describe in Bernton et al. (2019) and earlier in Rayner and

MacGillivray (2002). Note that the definition of the probability density function of g-and-k

distribution relies on the ability of obtaining z = g−1
θ (x) with given x. Hence, one requires the

implementation of a root finding algorithm to solve the equation gθ(z) = x. In this section, we

described the bisection algorithm that can be used to solve the aforementioned equation. The

detail of the algorithm is listed in Algorithm A.1 and we can use it to find the corresponding

z such that gθ(z) = x with given x and parameter θ.

Also, one may notice that

dg−1
θ (x)

dx
=

[
gθ(z)

dz

∣∣∣
z=g−1

θ (x)

]−1

Hence, one can obtain the numerical value of
dg−1
θ (x)

dx by calculating g′θ(g
−1
θ (x)) and taking

the reciprocal. Since it is easy to differentiate gθ(z), this derivative can be easily calculated

once we obtained the value of g−1
θ (x). The leads to a ways of calculating the probability

density function of the g-and-k distribution with high numerical precision which is outlined in

Algorithm A.2
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Algorithm A.1: Bisection Algorithm, Bisec(f, a, b, tol)

Input:
• The function whose root is solved, f(x)
• The starting values, a < b, with f(a)f(b) < 0
• The precision, tol > 0.

1 Set x = (a+ b)/2 ;
2 while |f(x)| ≥ tol do
3 if f(x)f(b) < 0 then
4 Set a = x ;
5 Set x = (a+ b)/2;

6 else if f(x)f(a) < 0 then
7 Set b = x;
8 Set x = (a+ b)/2

Output: x, the solution of f(x) = 0 with precision tol

Algorithm A.2: Calculation of l(x|θ) = fX(x|θ) with given θ and x

1 Set a = 0, b = 0;
2 Set f(z) = gθ(z)− x while f(a)f(b) > 0 do
3 Set a = a+ 1;
4 Set b = b+ 1;

5 Calculate z = Bisec(f, a, b, tol) ;
6 return φ(z)|g′θ(z)|−1 where φ denotes the density function of standard Normal

distribution
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Now we are ready to devise the implement an MCMC sampler targeting the posterior distri-

bution π(θ|x) ∝ π(θ)
∏n
i=1 l(xi|θ) = π(θ)l(x|θ). Given the current parameter state θ, one

first sample θ′ ∼ q(θ′|θ) where q represents a certain proposal distribution. We then calculate

l(x|θ′) and l(x|θ) using Algorithm A.2. With probability

α =

{
1,
l(x|θ′)q(θ|θ′)
l(x|θ)q(θ′|θ)

}

move to the state θ′. Otherwise, stay at the current state θ.
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