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Abstract

Starting with Willem Mantel in 1907 and continuing with the work of Pál Turán and Paul
Erdős in the mid-twentieth century, the extremal properties of graphs (or hypergraphs)
avoiding a fixed subgraph (or subhypergraph) have been extensively studied, up to the
present day. This is the field of so-called ‘Turán problems’; it has had much impact on other
areas of Mathematics, such as number theory and geometry, as well as on combinatorics
and theoretical computer science.

The classical ‘Turán problem’ for a fixed r-uniform hypergraph F is the following: for
each positive integer n, what is the maximum number ex(n, F ) of edges we may take in a r-
uniform hypergraph H on n vertices that contains no copy of F? The limit of ex(n, F )/

(
n
r

)
,

as n tends to infinity, is called the Turán density of F , and is usually denoted by π(F ). In
the graph case (r = 2), all Turán densities are known (by the Erdős-Stone theorem), but
for hypergraphs (when r ≥ 3) even some of the most basic questions remain open.

In this thesis we study a natural and important class of Turán problems for hypergraphs,
posed by Bollobás, Leader and Malvenuto, and independently by Johnson and Talbot [11]
and (again independently) by Bukh. For integers r ≥ 3 and t ≥ 2, an r-uniform t-daisy Dt

r

is a family of
(
2t
t

)
r-element sets of the form

{S ∪ T : T ⊂ U, |T | = t}
for some sets S,U with |S| = r − t, |U | = 2t and S ∩ U = ∅. In this thesis we consider the
Turán problem for F = Dt

r.
The exact value of π(Dt

r) is not known for any t ≥ 2, r ≥ 3, but we are actually more
interested in the behavior of the Turán density as r → ∞. It was conjectured by Bollobás,
Leader and Malvenuto in [3] (and independently by Bukh; an equivalent conjecture was
made independently by Johnson and Talbot) that the Turán densities of t-daisies satisfy
lim
r→∞

π(Dt
r) = 0 for all t ≥ 2; this has become a well-known problem, and it is still open for

all values of t.
In this thesis, we give lower bounds for the Turán densities of r-uniform t-daisies, im-

proving the best known lower bound from exponential to polynomial in r. To do so, we
introduce (and make some progress on) the following natural problem in additive combi-
natorics: for integers m ≥ 2t ≥ 4, what is the maximum cardinality g(m, t) of a subset R
of Z/mZ such that for any x ∈ Z/mZ and any 2t-element subset X of Z/mZ, there are t
distinct elements of X whose sum is not in the translate x + R? This is a slice-analogue
of the extremal Hilbert cube problem considered in [4] and [10]. Finally we conclude the
thesis by connecting π(Dt

r) to a problem on the Boolean cube.
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1. Introduction

In this thesis, all graphs are simple (meaning, without multiple edges or loops), and finite
(meaning, their vertex-set is finite). A graph is therefore an ordered pair (V,E) where V is
a finite set and E is a set of unordered pairs of elements of V . Two graphs G1 = (V1, E1)
and G2 = (V2, E2) are said to be isomorphic if there exists a bijection f : V1 → V2 such
that f({u, v}) ∈ E2 if and only if {u, v} ∈ E1.

Given a graph F , we say that a graph G is F -free if it does not contain an isomorphic
copy of F as a subgraph. The nth Turán number of F is defined to be

ex(n, F ) := max{|E| : G = (V,E) is a F -free graph with |V | = n}.

Since the number of graphs on n vertices is finite, ex(n, F ) exists, and is an integer between
zero and

(
n
2

)
. In the case of the triangle K3, Mantel showed in [19] that ex(n,K3) =

⌊
n2/4

⌋
and that the only graphs attaining equality are the bipartite graphs with balanced vertex-
classes (here, balanced means the sizes of the vertex-classes can differ by at most one).
In 1941, Pál Turán [18] generalized this result to any complete graph Kt, showing that
ex(n,Kt) = (1− 1

t−1 +o(1))
(
n
2

)
(in fact, determining ex(n,Kt) exactly for all n and t), and

showing that the maximum is attained only by a complete (t−1)-partite graph with classes
of sizes as balanced as possible. As already suggested by our use of o(1) notation, oftentimes
we are interested only in the behavior of ex(n, F ) as n → ∞, and this is encapsulated in
the following Lemma and the definition found within.

Lemma 1.1. For any graph F , we define the Turán density of F by

π(F ) := lim
n→∞

ex(n, F )(
n
2

) ;

this limit exists and is contained in [0, 1].

Proof. To prove this lemma, it suffices to show that the sequence xn := ex(n,F )

(n2)
is non-

increasing; since xn ∈ [0, 1] for all n, we will then be done by monotone convergence.
Indeed, consider a graph G on n vertices which is F -free and contains ex(n, F ) edges.
Then any induced subgraph G′ ⊂ G on n− 1 vertices is also F -free, and therefore contains
at most ex(n − 1, F ) edges. There are n choices for G′, and summing over all such G′

counts each edge of G exactly n− 2 times, so

(n− 2)ex(n, F ) ≤ nex(n− 1, F ) =⇒ xn ≤ xn−1

as needed. □

In the language of Turán densities, Turán’s result implies that π(Kt) = 1− 1
t−1 , agreeing

with intuition that as t → ∞ this density tends to 1. This problem is monotone in F , since
for F ⊂ F ′ we have ex(n, F ) ≤ ex(n, F ′), and so far we have considered the increasing
sequence of complete graphs Kt. A foundational result comes from Erdős and Stone in [8],
who proved that if F has chromatic number χ(F ) = r ≥ 3, then π(F ) = r−2

r−1 . While this

asymptotic result cannot tell us ex(n, F ) exactly, as Turán’s Theorem does for Kt, it is
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applicable to a much greater number of graphs (since every F has a well-defined chromatic
number).

From this starting point, one can branch out into several related lines of questioning.
One problem is to consider ex(n, F ) for bipartite F , in which case the Erdős-Stone theorem
simply says that ex(n, F ) = o(n2), and therefore does not tell us the order of magnitude of

ex(n, F ). It was proved in [14] that the 4-cycle has ex(n,C4) ≤ 1
2n

3/2+ 1
2n; a construction

of Erdős-Rényi-Sós [7] and (independently) Brown [2] shows that this is asymptotically
sharp for infinitely many values of n. The order of magnitude of ex(n, F ) is known for
F = K3,3, but is unknown for F = Kt,t for all t > 3. One can also consider what happens
to G when a class of multiple graphs F = {F1, F2, . . . } are forbidden. Other researchers
have studied stability, showing that F -free graphs with a nearly-maximal number of edges
are (quantitatively) close to the special class of extremal graphs [6],[16]. In this thesis we
are interested in Turán densities for ‘higher-dimensional’ versions of graphs.

Hypergraphs are a natural generalization of the graphs we have considered thus far.
We will consider finite and simple r-uniform hypergraphs H = (V,E) on the vertex-set
V = [n] = {1, . . . , n}, where now each ‘edge’ is a subset of [n] of size r so that E ⊂

(
n
r

)
.

For a fixed r-uniform F we can extend the notation from r = 2 and again write ex(n, F )
for the largest number of edges found in any r-uniform H on n vertices which contains no
isomorphic copy of F . The Turán density is defined now as

π(F ) := lim
n→∞

ex(n, F )(
n
r

) ,

a limit which exists by essentially the same averaging argument used above in the case
r = 2.

We have much less understanding of π(F ) for r-uniform F with r ≥ 3, compared to in

the graph case. For example, let K(r)
ℓ denote the complete r-graph on ℓ vertices, so that

Turán’s Theorem gives π(K(2)
ℓ ) = 1− 1

ℓ−1 , since K(2)
ℓ = Kℓ. In contrast, the value π(K(r)

ℓ )

is unknown for any ℓ > r ≥ 3 (when ℓ = r, K(r)
r is a single edge, so trivially π(K(r)

r ) = 0).

Erdős offered a $1000 reward for showing that π(K(3)
4 ) = 5/9 [9], but this remains one of

the most notorious open problems in extremal combinatorics.
In lieu of the broadly applicable theorems we have concerning Turán densities of graphs,

some progress has been made by considering very special families of hypergraphs F . One

example is the (2r)-graph known as the expanded triangle, C
(2r)
3 . An expanded ((2r)-

uniform) triangle consists of 3 edges, {S1 ∪ S2, S1 ∪ S3, S2 ∪ S3}, for S1, S2, S3 disjoint sets
of size r. In general one can ‘expand’ any graph into a 2r-graph (without altering the
number of edges) by replacing each graph vertex with a set of r vertices. Independently

of r, it turns out that π(C
(2r)
3 ) = 1

2 . For a discussion of this problem, its generalization
to expansions of other graphs, and other Turán problems for hypergraphs, the reader is
referred for example to the survey of Keevash [13].

In this thesis we will be interested in what happens when we forbid a different kind of
hypergraph, which we introduce now. For integers r ≥ 2 and t ≥ 2, an r-uniform t-daisy
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Figure 1. A schematic of a D2

7 with S = {2, 5, 6, 12, 16} and U =

{3, 9, 11, 22}. Each of the
(
4
2

)
= 6 elements of this D2

7 are formed by com-

bining the stem S with a petal (a member of
(
U
2

)
). Here we have highlighted

in blue the stem and in green the petal {9, 11}, leaving the other petals as
edges between elements of U .

Dt
r is a collection of

(
2t
t

)
r-element sets of the form

{S ∪ T : T ⊂ U, |T | = t}

for some sets S,U with |S| = r − t, |U | = 2t and S ∩ U = ∅. This collection can be seen
visually in Figure 1.

We will typically consider this definition for fixed values of t, allowing r to grow. In
the case t = r = 2, we have π(D2

2) = 2/3 by Turán’s theorem for K4s. The first unknown
case occurs when r = 3; in this case, Bollobás, Leader and Malvenuto showed in [3] that
π(D2

3) ≥ 1
2 (by taking the complement of the Fano plane, blowing up and iterating) and

conjectured that in fact equality holds; this is still open.
For larger t ≥ 2 and r ≥ 3, even less is known concerning π(Dt

r). We observe that
the value of π(Dt

r) is clearly nondecreasing in t, since an r-uniform family that is free of
t-daisies is also free of t′-daisies for all t′ > t. Note also that if H is a Dt

r-free r-graph and
x ∈ V is an element of the ground set, then the (r−1)-graph H ′ = (V ′, E′) with vertex-set
V ′ = V \ {x} and edge-set

E′ = {e \ x : e ∈ E with x ∈ e},

(also known as the link of H at x), is Dt
r−1-free. It follows by averaging over all such links

(similarly to the reasoning used in Lemma 1.1) that π(Dt
r) is nonincreasing in r.

The following conjecture was made by Bollobás, Leader and Malvenuto in [3] (and
independently by Bukh, see [3]).

Conjecture 1.2. For all t ≥ 2, lim
r→∞

π(Dt
r) = 0.

This is still open, even for t = 2. (It is not even known whether the sequence (π(Dt
r))r

is strictly decreasing, for any value of t ≥ 2.) Johnson and Talbot independently made an
equivalent conjecture in [11], which we now describe. We will need the standard definition
of the Boolean cube, and a subcube thereof.
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Definition 1.3. For n ∈ N the n-dimensional Boolean cube is {0, 1}n. For 1 ≤ d ≤ n, a
d-dimensional subcube of {0, 1}n is a subset of {0, 1}n of the form

{x ∈ {0, 1}n : xi = ai ∀ i ∈ I}

for some set I ∈
( [n]
n−d

)
(called the set of fixed coordinates) and values ai ∈ {0, 1} ∀ i ∈ I.

Conjecture 1.4. Let d ≥ 2 and δ ∈ (0, 1]. Then for n sufficiently large depending on d
and δ, and any set A ⊂ {0, 1}n with |A| ≥ δ2n, there exists a d-dimensional subcube C with

|A ∩ C| ≥
(

d
⌊d/2⌋

)
.

It is easy to verify Conjecture 1.4 for d = 2 and d = 3, but it remains open for all d ≥ 4.
By setting

A = {x ∈ {0, 1}n :
n∑

i=1

xi ≡ 0 (mod. d+ 1)},

i.e. every (d + 1)th slice, we have limn→∞ |A|/2n = 1/(d + 1), but any d-dimensional
subcube meets exactly one of these slices, and therefore we cannot ask for more than(

d
⌊d/2⌋

)
in Conjecture 1.4. Before showing that Conjectures 1.2 and 1.4 are equivalent we

recall the classic Chernoff bound which shows that sums of independent random variables
fall within a constant fraction of their expectation with probability exponentially close to
1. We do not state the strongest known form of this statement, but instead exactly the
weaker form we require.

Lemma 1.5 (Chernoff Bound). Suppose that X1, . . . , Xn are independent random variables

with X :=
∑n

i=1Xi and µ := E[X]. Then for any 0 ≤ δ ≤ 1, P(|X − µ| ≥ δµ) ≤ 2e−δ2µ/3.

We will use this bound in the following Lemma, a detailed proof of an argument outlined
in [3].

Lemma 1.6. Conjectures 1.2 and 1.4 are equivalent for d = 2t.

Proof. First we show that Conjecture 1.2 implies Conjecture 1.4. Assume the validity of
Conjecture 1.2. Let Xi take values 0 and 1 each with probability 1/2 independently at
random, for 1 ≤ i ≤ n. By allowing these Xi to specify an element of {0, 1}n and applying
Lemma 1.5 with µ = n/2 and δ = 1/2 we have

|{x ∈ {0, 1}n :
n∑

i=1

xi /∈ [n/4, 3n/4]}| ≤ 2n+1 · e−n/24.

Let A ⊂ {0, 1}n with |A| ≥ δ2n; then

|{x ∈ A : n/4 <

n∑
i=1

xi < 3n/4}| ≥ 2n(δ − 2e−n/24) ≥ (δ/2)2n

provided n is sufficiently large depending on δ. Hence, by averaging, there exists some r
with n/4 < r < 3n/4 such that

|{x ∈ A :

n∑
i=1

xi = r}| ≥ δ

2

(
n

r

)
.
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Let F denote the corresponding family of r-element subsets of [n]; this has density at least
δ/2. Since we are assuming that π(Dt

r) → 0 as r → ∞, there exists r0 such that π(Dt
r) < δ/2

for all r ≥ r0. We would like to conclude immediately from this that F contains a copy of
Dt

r for r ≥ r0, but there is the small problem that n may be too small for us to immediately
conclude this. To get around this problem, we average over appropriate links. Observe
that, by averaging, for any u < r there exists a u-element subset U such that the link of
F at U , i.e.

{S \ U : S ∈ F , U ⊂ S} ⊂
(
[n] \ U
r − u

)
has density at least δ/2. Choose r0 such that π(Dt

r) < δ/2 for all r ≥ r0; then by definition,
for all r ≥ r0 there exists n0(r) such that ex(n,Dt

r) < (δ/2)
(
n
r

)
for all n ≥ n0(r). Now

set u0 = r − r0; the difference n − r > n/4 is unchanged when taking the link at U , so
if n/4 ≥ n0(r0) − r0 we have n − u0 ≥ n0(r0). Since there exists a u0-element subset U
such that the link of F at U has density at least δ/2, it follows that this link contains a

copy of Dt
r0 , hence so does F . Hence, A contains at least

(
2t
t

)
points of a (2t)-dimensional

subcube, as required. Next we show that Conjecture 1.4 implies Conjecture 1.2. Suppose
that 1.2 is false. Then the monotonicity in r (and in n) of ex(n, F ) discussed above implies
that there exists δ > 0 such that for any n ∈ N we may find, for each 0 ≤ r ≤ n, a Dt

r-free
r-graph Hr with V (Hr) = [n] and |E(Hr)| ≥ δ

(
n
r

)
(note that any r-graph on [n] is trivially

Dt
r-free if r < t or r > n− t). Now for each 0 ≤ j ≤ 2t consider the set

Aj = {x ∈ {0, 1}n :
n∑

i=1

xi ≡ j (mod. 2t+ 1) and x ∈ E(Hr) for r =
n∑

i=1

xi}.

That is, we have taken a dense Dt
r-free graph on every (2t + 1)th layer. (By averaging

over all j there exists j0 such that Aj0 has density at least δ/(2t+ 1).) Any d-dimensional

subcube C intersects exactly one of these layers, and |A ∩ C| <
(
2t
t

)
since otherwise Hr

would contain a copy of Dt
r. This implies that Conjecture 1.4 is false. □

As a brief reminder, upper bounds on π(Dt
r) show that an r-uniform hypergraph with

many edges must contain a daisy. Conjecture 1.2 suggests that as r → ∞ the threshold
for “many” tends toward density 0. On the other hand, lower bounds on π(Dt

r) must come
from constructions of large daisy-free hypergraphs.

In [3] a lower bound of π(D2
r) ≥ r!/rr is observed, which comes from considering the

r-partite r-uniform hypergraph on [n] with parts of sizes as equal as possible. That is,
partition [n] into disjoint sets V1, . . . , Vr each of size approximately n/r. Then take only
edges which include exactly one element from each V . This gives an edge density of r!/rr

and cannot contain any daisies. To see the edge density consider that to build an edge
one element at a time, when adding the ith element we have forbidden (i− 1)n/r choices
by the elements we have already added. To see that this construction cannot contain any
daisies, let U = {i, j, k, l} be the petal elements with stem S, for |S| = r−2 and S∩U = ∅.
Containing the daisy would require including each of S ∪ {i, j}, S ∪ {i, k}, and S ∪ {j, k}.
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The first two sets imply that j and k must belong to the same partite class, say W , in
which case the third set cannot be taken.

Unfortunately, the lower bound obtained by this short argument is exponentially small in
r. In this thesis, we obtain (by discussion of the results shown in [5]) the following improved
lower bound (which is polynomial in r), using an additive-combinatorial construction. We
also raise a question in additive combinatorics which may be of interest in its own right.

Theorem 1.7. There exists an absolute constant c > 0 such that π(D2
r) ≥ c/r for all

r ≥ 3. Furthermore, for each t ≥ 3, we have

π(Dt
r) ≥ r

− 4t−2

(2tt )−1
−O(1/

√
log r)

.

Our proof of Theorem 1.7 relies upon the existence of a subset of Zm := Z/mZ that
avoids a certain additive structure, which we define now.

Definition 1.8. For positive integers m, t ≥ 2 with m ≥ 2t, let g(m, t) denote the maximum
possible size of a subset R ⊂ Zm such that for any x0 ∈ Zm and any (2t)-element subset X
of Zm, there are t distinct elements of X whose sum is not contained in R− x0, i.e.{

x0 +
∑
x∈T

x : T ⊂ X, |T | = t

}
̸⊂ R.

For brevity, given a set X ∈
(Zm

2t

)
we write

C(X) :=

{∑
x∈T

x : T ⊂ X, |T | = t

}
for the set of sums of t distinct elements of X; g(m, t) is the maximum size of a subset of
Zm containing no translate of C(X) for any |X| = 2t.

The function g(m, t) is related to a question raised by Gunderson and Rödl in [10],
concerning Hilbert cubes.

Definition 1.9. If R is a ring, the d-dimensional Hilbert cube generated by x1, . . . , xd ∈ R
is the set {∑

i∈I
xi : I ⊂ {1, 2, . . . , d}

}
⊂ R.

Gunderson and Rödl considered large sets of integers which do not contain any translate
of a Hilbert cube (working over the integers, i.e., the R = Z case of Definition 1.9). In
particular, they prove the following (Theorem 2.3 and Theorem 2.5 of [10]).

Theorem 1.10. For each integer d ≥ 3, there exists cd > 0 such that any set of integers

A ⊂ [m] with |A| ≥ cd(
√
m+1)

2− 1

2d−2 contains a translate of a d-dimensional Hilbert cube.

Furthermore, for all m there exists a set of integers A ⊂ [m] with |A| ≥ m
1− d

2d−1
−O(1/

√
logm)

that does not contain any translate of a Hilbert cube.
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(Here, and henceforth, we write [m] := {1, 2, . . . ,m} for the standard m-element set.)
We consider the case R = Zm, but for our purposes, the structural differences between

[m] and Zm will not be particularly important. Estimating g(m, t) is a natural variant
of the Gunderson-Rödl problem, where we avoid only the middle slice of a Hilbert cube
of dimension 2t. We make a small but important change in that, in Definition 1.8, we
require that X be composed of 2t distinct elements, while a Hilbert cube may even have
x1 = x2 · · · = xd. (In this case, the Hilbert cube is a d-element arithmetic progression, but
C(X) is a singleton.)

We obtain the following bounds on g(m, t).

Theorem 1.11. For all t ≥ 3 and m ≥ 4 we have

g(m, t) ≥ m
1− 2t

(2tt )−1
−O(1/

√
logm)

,

and if furthermore m is prime, then

g(m, t) ≥ m
1− 2t−1

(2tt )−1
−O(1/

√
logm)

.

For t = 2 and m ≥ 64 we have g(m, 2) ≥
√
m/8.

Theorem 1.12. For each t ≥ 2 and all m sufficiently large depending on t, we have

g(m, t) ≤ 41−1/22t(
√
m+

√
2t)2−1/22t−1

.

(Here, we use the standard asymptotic notation: if X is a set and f, h : X → R+, we
write f = O(h) if there exists an absolute constant C > 0 such that f(x) ≤ Ch(x) for all
x ∈ X.)

It would be of interest to narrow the gap between our upper and lower bounds on g(m, t).
The proofs of Theorem 1.12 and of the first part of Theorem 1.11 (i.e. the t > 2 case)

are very similar to those used in [10] to prove Theorem 1.10 (above). Our lower bound for
t > 2 consists of a probabilistic construction very similar to that of Gunderson and Rödl in
[10]; we have to choose a random set of slightly lower density as we must avoid the middle
slice of a Hilbert cube, as opposed to an entire Hilbert cube. At first sight, it might seem
that an upper bound on g(m, t) follows from the upper bound given in Theorem 1.10, since
a set which contains a Hilbert cube contains its middle layer, but one must make small
changes to the proof in [10] so as to ensure that the generators of the Hilbert cube we find,
the xi, are distinct. We give an explicit construction for the t = 2 case in Theorem 1.11:
this construction outperforms the probabilistic one in the case t = 2.

The remainder of this thesis is structured as follows. In Section 2 we prove Theorem
1.7 using Theorem 1.11, and in Section 3 we prove Theorems 1.11 and 1.12 (note that we
do not require the latter in our study of the Turán density of daisies, but it may be of
independent interest). Finally in Section 4 we describe the relationship between π(Dt

r) and
a Ramsey-theoretic variant.
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2. The Proof of Theorem 1.7

Proof. In proving Theorem 1.7, by an appropriate choice of c (and of the absolute constant
implicit in the big-Oh notation), we may clearly assume that r ≥ 8. For r, t ∈ N with
r ≥ 8 and n sufficiently large depending on r and t, we proceed to construct a Dt

r-free
family of r-element subsets of [n]. We use a ‘partite’ construction, partitioning [n] into L
blocks, and then taking only r-sets containing at most one element from each block. We
may assume that n ≥ 2r2. Let L be a prime number such that r2 ≤ L ≤ 2r2 (such exists,
by Bertrand’s postulate), and for each i ∈ [n], set xi =

⌊
L i−1

n

⌋
; note that 0 ≤ xi < L for

each i ∈ [n]. Thus in our ‘partite’ construction the kth block are those i ∈ [n] with xi = k.
By Theorem 1.11, there exists a set R ⊂ ZL of size |R| = g(L, t) with the property that
for any X ⊂ ZL with |X| = 2t and for any x0 ∈ ZL, we have x0 + C(X) ̸⊂ R. Define a

family FR ⊂
(
[n]
r

)
by

FR =

{
S ∈

(
[n]

r

)
:
∑
i∈S

xi ∈ R, (∀i, j ∈ S)(xi = xj ⇒ i = j)

}
.

First we check that FR is Dt
r-free. Indeed, consider the daisy D = {S0∪T : T ⊂ U, |T | =

t}, where S0, U ⊂ [n] with |S0| = r − t, |U | = 2t and S0 ∩ U = ∅. Let x0 :=
∑
i∈S0

xi. Then

the (2t)-element set

X = {xi : i ∈ U} ⊂ ZL

must satisfy x0+C(X) ̸⊂ R, and therefore there is a t-sum (indexed by T = {i1, i2, . . . , it} ⊂
U , say) such that

x0 + xi1 + xi2 + · · ·+ xit = x0 +
∑
i∈T

xi ̸∈ R.

It follows that S := S0 ∪ T /∈ FR and therefore D ̸⊂ FR, as required.
Now to finish the proof of Theorem 1.7 we bound |FR| from below. First note that

there are at least 1
2

(
n
r

)
sets S ∈

(
[n]
r

)
with xi ̸= xj for all i ̸= j, i, j ∈ S. Indeed, choose

a set S uniformly at random from
(
[n]
r

)
. Since the probability that a uniformly random

two-element subset {i, j} of [n] has xi = xj is at most 1/L, we have

P(xi = xj for some i ̸= j, i, j ∈ S) ≤ (1/L)

(
n

2

)(
n− 2

r − 2

)
/

(
n

r

)
= r(r − 1)/(2L)

≤ 1/2.

The family F = FR, defined above, is Dt
r-free even if the set R is replaced by a translate

Ra := R+ a for some a ∈ ZL. We may sum over all such a to find∑
a∈ZL

|FRa | ≥
1

2

(
n

r

)
|R|
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since any S ∈
(
[n]
r

)
has

∑
i∈S xi ∈ Ra for exactly |R| values of a. Therefore by averaging

over all such translates there must be some translate Ra of R such that |FRa | ≥ 1
2

(
n
r

) |R|
L ,

and therefore

π(Dt
r) ≥

g(L, t)

2L
.

Now we may apply Theorem 1.11 (recalling that r2 ≤ L ≤ 2r2 is prime): when t = 2 and
L = m ≥ 64 (which follows from r ≥ 8), we have

π(D2
r) ≥

g(L, 2)

2L
≥

√
L

16L
≥

√
r2

32r2
=

1

32r

and when t > 2 we have

π(Dt
r) ≥

L
1− 2t−1

(2tt )−1
−O(1/

√
logL)

L
≥ (r2)

1− 2t−1

(2tt )−1
−O(1/

√
log r)

2r2
= r

− 4t−2

(2tt )−1
−O(1/

√
log r)

,

as required. □

3. Bounds on g(m, t)

The focus of this section is the analysis of g(m, t).

3.1. Proof of Theorem 1.11. Before we begin a formal proof we briefly and informally
describe some potential methods for finding a large subset of Zm which contains no trans-
lates of any C(X). Suppose that we include every element of Zm with probability p; then
we will typically obtain a set R of size pm, and we will look to choose p in a way so that
the number of translates of C(X) present in R is at most, say, pm/10 (it would also be
possible to ask for 0 translations to be present but allowing pm/10 yields slightly better
bounds). Then we could delete from R one element of each such C(X), which gives the
property we need without reducing by too much the size of R.

Then our primary consideration is the number of translates of C(X) present in our
randomly selected R. Given a specific translate x0 + C(X), it is present with probability

p|C(X)|. For a rough intuition consider two cases:

(1) IfX is an arithmetic progression then |C(X)| = t2+1, and the number of arithmetic

progressions in Zm is roughly m2. Then we would require m2pt
2+1 ≤ pm/10.

(2) If |C(X)| =
(
2t
t

)
then we would have to consider all m2t+1 choices for x0 and X.

Then we would require m2t+1p(
2t
t ) ≤ pm/10.

Of course our aim is to choose p as large as possible, and (especially as t grows), the first
of these two scenarios is more limiting on p. Furthermore, this analysis does not cover
any of the intermediary cases, where |C(X)| is strictly smaller than

(
2t
t

)
but X is not an

arithmetic progression.
Here we use the idea that Gunderson and Rödl employed in [10]. Instead of including

elements of Zm uniformly at random, we first pass to a fairly dense subset of Zm which
is free of 3-term arithmetic progressions; this ‘destroys’ a lot of the additive structure we
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want to avoid. In fact there is so little arithmetic structure that we are always in the ideal
second case above, where |C(X)| =

(
2t
t

)
.

Proof. First assume t ≥ 3. By the well-known construction1 of Behrend in [1], there exists

a set R0 ⊂ [⌊m/5⌋] with |R0| = m1−γ(m) (where γ(m) := 4√
log (m/5)

, log denoting the

natural logarithm) that contains no 3-term arithmetic progression. Let R1 ⊂ Zm be the
natural embedding of R0 into Zm (here the factor 1

5 ensures that no 3-term arithmetic
progressions appear in Zm which were not present in Z). Then R1 also contains no 3-term
arithmetic progression. Set

p =


1
8m

− 2t−1+γ(m)

(2tt )−1 if m is prime,

1
8m

− 2t+γ(m)

(2tt )−1 otherwise,

and choose a set R2 ⊂ R1 by including each element of R1 independently at random with
probability p. A standard Chernoff bound (for example Theorem 3.5 in [15]) yields

(1) P(|R2| ≤ |R1|p/2) ≤ e−|R1|p/8.

Define the random variable

Y = |{x0 + C(X) : x0 ∈ Zm, X ⊂ Zm, |X| = 2t, x0 + C(X) ⊂ R2}|.

Since R2 does not contain any 3-term arithmetic progressions, for any set of the form
x0+C(X) lying within R2, we must have |x0+C(X)| = |C(X)| =

(
2t
t

)
. Indeed, suppose for

a contradiction that X = {x1, . . . , x2t} is a (2t)-element subset of Zm with x0+C(X) ⊂ R2,

where x0 ∈ Zm and |C(X)| <
(
2t
t

)
. Then there exist two distinct t-element subsets of X,

{xi1 , . . . , xit} = S1 and {xi′1 , . . . , xi′t} = S2 say, such that

xi1 + · · ·+ xit = xi′1 + · · ·+ xi′t ;

we may assume without loss of generality that xi1 ∈ S1 \ S2 and xi′1 ∈ S2 \ S1, so that
xi1 ̸= xi′j for all j and xi′1 ̸= xij for all j. Then

{xi′1 + xi2 + · · ·+ xit , xi1 + xi2 + · · ·+ xit , xi1 + xi′2 + · · ·+ xi′t} ⊂ R2

is a (nontrivial) 3-term arithmetic progression (with common difference xi1 − xi′1) in R2, a
contradiction.

We now proceed to bound EY from above. In the case that m is not prime we may
crudely bound the number of possible sets of the form x0 + C(X) from above by m2t+1

(which is the number of choices for x0, x1, . . . , x2t ∈ Zm). If m is prime then we may
assume each such set has x0 = 0, by translating each of x1, . . . , x2t by t−1x0, leaving only

1This short and elegant construction considers numbers whose digits, written in an appropriately chosen
base, have a fixed Euclidean norm when considered as a vector. Norm inequalities prevent additive collisions
and elementary estimates show the set obtained is quite large.
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m2t choices. The probability that each fixed set of the form x0 + C(X) lies in R2 is of

course p(
2t
t ). It follows that

EY ≤

{
m2tp(

2t
t ) if m is prime

m2t+1p(
2t
t ) otherwise

}
≤ m1−γ(m) p

8 .

It follows from Markov’s inequality that

(2) P(Y ≥ m1−γ(m)p/4) ≤ 1/2.

Combining (1) and (2), we obtain

(3) P
(
|R2| > m1−γ(m)p/2 and Y < m1−γ(m)p/4

)
≥ 1− e−m1−γ(m)p/8 − 1

2 .

Clearly, for any t ≥ 2 and m sufficiently large depending on t, we have 1−γ(m)− γ(m)+2t

(2tt )−1
>

0, so for large enough m, the probability in (3) is positive, and therefore there exists a set

R2 ⊂ Zm with |R2| > m1−γ(m)p/2 and Y < m1−γ(m)p/4. Now for each set of the form
x0 + C(X) ⊂ R2 for (x0, X) = (x0, {x1, . . . , x2t}) we remove a single element from R2,
chosen arbitrarily from x0 + C(X). The total number of elements deleted from R2 is at

most Y < m1−γ(m)p/4 and we are still left with

|R2| − Y ≥ m1−γ(m) p
4 =


1
32m

1−γ(m)− 2t−1+γ(m)

(2tt )−1 if m is prime

1
32m

1−γ(m)− 2t+γ(m)

(2tt )−1 otherwise

elements, finishing the proof of the first statement of Theorem 1.11.
Finally, in the case t = 2, we give an algebraic construction that improves upon the

random one. First we recall the definition of a Sidon set.

Definition 3.1. A Sidon set in a group G is a subset S ⊂ G such that the only solutions
to the equation a + b = c + d with a, b, c, d ∈ S, are the trivial ones (meaning, those with
{a, b} = {c, d}).

It follows from the classical construction of Singer [17] that for any prime p there is a
Sidon set of size p + 1 inside Zp2+p+1. Assume that m ≥ 64 and let p be a prime with√
m/8 ≤ p ≤

√
m/4 (such exists, by Bertrand’s postulate). Let R0 be a Sidon set of size

at least
√
m/8 inside Zp2+p+1. The image R of R0 under the natural inclusion map from

Zp2+p+1 to Zm is a Sidon set in Zm (here we use p2+p+1 ≤ m/16+
√
m/4+1 < m/2). Now

we will show that for any x0 and X = {x1, x2, x3, x4} ∈
(Zm

4

)
we have x0 + {x1 + x2, x1 +

x3, x1+x4, x2+x3, x2+x4, x3+x4} ̸⊂ R. Suppose for a contradiction that x0+C(X) ⊂ R;
then

(4) (x0 + x1 + x2) + (x0 + x3 + x4) = (x0 + x1 + x3) + (x0 + x2 + x4)

and each term in brackets is an element of R. Since R is a Sidon set, this implies x2 = x3
or x1 = x4, contradicting the fact that the xi are distinct. We have |R| ≥

√
m/8 and

therefore we are done in the case t = 2. □
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3.2. Proof of Theorem 1.12.

Proof. We begin with a quick calculation.

Lemma 3.2. If m ≥ d+ 1 and b ≥ max{
√
m+

√
d

2
√
d

, 4d+ 1}, then (b2)−db

m−d ≥ b2

4(
√
m+

√
d)2

.

Proof. Since

1

b
≤ 2

√
d

√
m+

√
d
,

we have
b− 1

b
≥

√
m−

√
d

√
m+

√
d
.

Since b ≥ 4d+ 1 we have
(
b
2

)
− db ≥ b(b−1)

4 , and therefore(
b

2

)
− db ≥ b2

4

√
m−

√
d

√
m+

√
d
.

Dividing by m− d yields the result. □

We may now obtain our upper bound on g(m, t). Let A ⊂ Zm such that

(5) |A| ≥ 41−1/22t(
√
m+

√
2t)2−1/22t−1

.

We will show that x0 + C(X) ⊂ A for some x0 ∈ Zm and X ∈
(Zm

t

)
. For x1, . . . , xd ∈ Zm

and A ⊂ Zm we define Ax1 := A∩ (A−x1), Ax1,x2 := Ax1 ∩ (Ax1 −x2), and more generally,

Ax1,...,xd−1,xd
:= Ax1,...,xd−1

∩ (Ax1,...,xd−1
− xd).

Then Ax1,...,xd
= {x ∈ Zm : x +

∑
i∈I xi ∈ A ∀ I ⊂ [d]} and so A will contain a translate

of C(X) if we can find 2t distinct elements x1, . . . , x2t ∈ Zm with |Ax1,...,x2t | ≥ 1. We will
find such elements inductively, using the following claim.

Claim 3.3. Provided m is sufficiently large depending on d, for each 0 ≤ d ≤ 2t there exist
d distinct elements x1, . . . , xd ∈ Zm such that

|Ax1,...,xd
| ≥ |A|2d

42d−1(
√
m+

√
2t)2d+1−2

(Here, when d = 0 the left-hand side is |A|.)

Proof of Claim. The proof is by induction on d (with base case d = 0, for which the claim
holds trivially). Suppose the claim holds for d for elements x1, . . . , xd. Every pair of
elements of Ax1,...,xd

has a unique difference y, so∑
y∈Zm

|Ax1,...,xd,y| =
(
|Ax1,...,xd

|
2

)
.
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However, we will need to exclude y from those xi we have already chosen, and therefore
crudely we have ∑

y∈Zm\{x1,...,xd}

|Ax1,...,xd,y| ≥
(
|Ax1,...,xd

|
2

)
− d|Ax1,...,xd

|.

By averaging over y ∈ Zm \ {x1, . . . , xd}, there exists y′ ∈ Zm \ {x1, . . . , xd} such that

|Ax1,...,xd,y′ | ≥
(|Ax1,...,xd

|
2

)
− d|Ax1,...,xd

|
m− d

.

We now wish to apply Lemma 3.2 with b = |Ax1,...,xd
|. The hypotheses that m ≥ d+1 and

b ≥ 4d + 1 are satisfied for m large enough (depending on t), so to apply Lemma 3.2 it

remains only to check that b ≥
√
m+

√
d

2
√
d

, which follows from our inductive hypothesis and

our lower bound (5) on |A|:
b = |Ax1,...,xd

|

≥ |A|2d

42d−1(
√
m+

√
2t)2d+1−2

≥ 42
d−2d−2t

(
√
m+

√
2t)2

d+1−2d−2t+1

42d−1(
√
m+

√
2t)2d+1−2

≥ 41−2d−2t
(
√
m+

√
2t)2−2d−2t+1

≥
√
m+

√
d

2
√
d

.

Hence, applying Lemma 3.2 we have

|Ax1,...,xd,y′ | ≥
(|Ax1,...,xd

|
2

)
− d|Ax1,...,xd

|
m− d

≥ |Ax1,...,xd
|2

4(
√
m+

√
d)2

≥ |A|2d+1

42d+1−2+1(
√
m+

√
d)2d+2−4+2

,

as required, so we set xd+1 = y′. □

Applying Claim 3.3 with d = 2t, and using our lower bound (5) on |A|, we obtain distinct
x1, . . . , x2t ∈ Zm such that |Ax1,...,x2t | ≥ 1, completing the proof of Theorem 1.12. □

4. Connections to Other Problems

To conclude this thesis we place our study of π(Dt
r) in the context of two closely related

problems. Results in extremal combinatorics that guarantee the existence of ‘nice’ sub-
structures (under some condition), come in two varieties, a ‘Ramsey’ (or ‘coloring’) version
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or a (stronger) ‘density’ version. To see an example (and non-example) in action we state
and discuss four classical results.

Theorem 4.1 (Van der Waerden’s Theorem). For all r, k ∈ N there exists N = W (r, k) ∈
N such that for any k-coloring c : [N ] → [k], there is a nontrivial monochromatic arithmetic
progression in [N ] of length r.

Theorem 4.2 (Szemerédi’s Theorem). For all r ∈ N and δ ∈ (0, 1] there exists N =
S(r, δ) ∈ N such that every subset A ⊂ [N ] with |A| ≥ δN contains a nontrivial arithmetic
progression of length r.

Theorem 4.3 (Finitary Ramsey’s Theorem for Hypergraphs). For all t, k, r ∈ N with

t ≥ r, there exists an N = R(t, k, r) ∈ N such that for any k-coloring c :
(
[N ]
r

)
→ [k] there

exists A ⊂ [N ] with |A| = t such that c is constant on
(
A
r

)
.

Example 4.4. Let t = 3, r = 2, δ < 1/2, N even, and G = (V,E) be the complete bipartite

graph between two vertex sets of size N/2. Then |E| > 1
2

(
N
2

)
> δ

(
N
2

)
, but G is triangle

free, i.e. for any T ⊂ [N ] with |T | = 3, we have
(
T
2

)
̸⊂ E.

Theorem 4.2 implies Theorem 4.1, if we do not worry about optimizingW (r, k) (although
doing so is an interesting pursuit in itself with a rich mathematical theory). Any k-coloring
of [N ] must include a monochromatic subset of size at least N/k, and we can deduce
Theorem 4.1 by applying Theorem 4.2 with δ = 1/k. While Van der Waerden showed that
some color class will contain arithmetic progressions, Szemerédi showed (using much more
powerful techniques, introducing the celebrated and widely useful Regularity Lemma for
the purpose) that in fact those arithmetic progressions can be found in any color class of
positive density. One might hope for the same density strengthening of Theorem 4.3, but
Example 4.4 shows that we cannot do so (even in the special case r = 2).

Returning to the daisy problem, we see that Conjecture 1.2 could be equivalently written
as follows.

Conjecture 4.5. For all t ≥ 2 and δ ∈ (0, 1], provided r is sufficiently large depending

on t and δ and N is sufficiently large depending on r, t and δ, any subset A ⊂
(
[N ]
r

)
with

|A| ≥ δ
(
N
r

)
contains an isomorphic copy of Dt

r.

In the same manner discussed above, this conjecture would immediately imply a ‘color-

ing’ version, since a k-coloring of
(
[n]
r

)
will contain at least one color class with density at

least 1/k. In fact, we could go further and find many daisies in this color class by removing
daisies as we find them (we remove a daisy simply by recolouring one of the daisy’s r-sets).
For r large enough so that 1/k − π(Dt

r) > 1/2k (guaranteed by Conjecture 4.5), find a Dt
r

and remove one edge from it, until the number of edges remaining in the large color class
drops below π(Dt

r)
(
n
r

)
. The number of Dt

r this algorithm discovers is at least 1
2k

(
n
r

)
.

This argument relies critically on Conjecture 4.5, but in fact a coloring version can be
immediately deduced from Ramsey’s Theorem (Theorem 4.3).
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Theorem 4.6 (Coloring version of Conjecture 4.5). Let t ≥ 2, r ≥ t and k ≥ 2. Provided

N is sufficiently large depending on k, t and r, for any k-coloring c :
(
[N ]
r

)
→ [k], there

exists a monochromatic copy of Dt
r.

Proof. By Theorem 4.3 there exists an integer m = R(2t, k, t) such that every k-coloring

of the complete t-graph on m vertices induces a monochromatic K(t)
2t (a complete t-graph

on 2t vertices). Provided N ≥ r − t + m we may choose disjoint sets S, S′ ⊂ [N ] with
|S| = r− t and |S′| = m. We k-color the t-element subsets of S′ by the colouring c′ defined

by c′(A) = c(S ∪ A), for A ∈
(
S′

t

)
. Since |S′| = m there exists U ⊂ S′ with |U | = 2t such

that c is constant on {S ∪A : A ∈
(
U
t

)
}, and this hypergraph is exactly a t-daisy. □

We remark that an easy variant of the above argument shows that there are many
monochromatic copies of Dt

r.
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