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Abstract

Starting with Willem Mantel in 1907 and continuing with the work of P4l Turédn and Paul
Erd6s in the mid-twentieth century, the extremal properties of graphs (or hypergraphs)
avoiding a fixed subgraph (or subhypergraph) have been extensively studied, up to the
present day. This is the field of so-called ‘Turdn problems’; it has had much impact on other
areas of Mathematics, such as number theory and geometry, as well as on combinatorics
and theoretical computer science.

The classical ‘Turdan problem’ for a fixed r-uniform hypergraph F' is the following: for
each positive integer n, what is the maximum number ex(n, F') of edges we may take in a 7-
uniform hypergraph H on n vertices that contains no copy of F'? The limit of ex(n, F)/ ("),
as n tends to infinity, is called the Turdn density of F', and is usually denoted by 7(F). In
the graph case (r = 2), all Turdn densities are known (by the Erdds-Stone theorem), but
for hypergraphs (when r > 3) even some of the most basic questions remain open.

In this thesis we study a natural and important class of Turan problems for hypergraphs,
posed by Bollobas, Leader and Malvenuto, and independently by Johnson and Talbot [11]
and (again independently) by Bukh. For integers r > 3 and ¢ > 2, an r-uniform ¢-daisy D!
is a family of (2tt) r-element sets of the form

(SUT :TCU, |T| =t}

for some sets S,U with |S| =7 —t, |[U| =2t and SNU = (. In this thesis we consider the
Turdn problem for F = DE.

The exact value of w(D%) is not known for any ¢ > 2,7 > 3, but we are actually more
interested in the behavior of the Turan density as r — oco. It was conjectured by Bollobés,
Leader and Malvenuto in [3] (and independently by Bukh; an equivalent conjecture was
made independently by Johnson and Talbot) that the Turdn densities of t-daisies satisfy

lim 7(DL) = 0 for all ¢ > 2; this has become a well-known problem, and it is still open for
7—00

all values of ¢.

In this thesis, we give lower bounds for the Turan densities of r-uniform t-daisies, im-
proving the best known lower bound from exponential to polynomial in 7. To do so, we
introduce (and make some progress on) the following natural problem in additive combi-
natorics: for integers m > 2t > 4, what is the maximum cardinality g(m,t) of a subset R
of Z/mZ such that for any x € Z/mZ and any 2t-element subset X of Z/mZ, there are t
distinct elements of X whose sum is not in the translate x + R? This is a slice-analogue
of the extremal Hilbert cube problem considered in [4] and [10]. Finally we conclude the
thesis by connecting 7(D!) to a problem on the Boolean cube.
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1. INTRODUCTION

In this thesis, all graphs are simple (meaning, without multiple edges or loops), and finite
(meaning, their vertex-set is finite). A graph is therefore an ordered pair (V, E) where V' is
a finite set and F is a set of unordered pairs of elements of V. Two graphs G; = (V1, E1)
and Gy = (Va, E9) are said to be isomorphic if there exists a bijection f : V3 — V5 such
that f({u,v}) € Es if and only if {u,v} € Ej.

Given a graph F', we say that a graph G is F-free if it does not contain an isomorphic
copy of F' as a subgraph. The nth Turdn number of F' is defined to be

ex(n,F) :=max{|E|: G = (V, E) is a F-free graph with |V | = n}.

Since the number of graphs on n vertices is finite, ex(n, F') exists, and is an integer between
zero and (5). In the case of the triangle K3, Mantel showed in [19] that ex(n, K3) = [n?/4]
and that the only graphs attaining equality are the bipartite graphs with balanced vertex-
classes (here, balanced means the sizes of the vertex-classes can differ by at most one).
In 1941, Pal Turdn [I8] generalized this result to any complete graph K;, showing that
ex(n,Ky) = (1— 25 +0(1))(5) (in fact, determining ex(n, K;) exactly for all n and t), and
showing that the maximum is attained only by a complete (t— 1)-partite graph with classes
of sizes as balanced as possible. As already suggested by our use of o(1) notation, oftentimes
we are interested only in the behavior of ex(n, F') as n — oo, and this is encapsulated in
the following Lemma and the definition found within.

Lemma 1.1. For any graph F', we define the Turdn density of F' by

ex(n, F
m(F) = lim ((n));
n—oo
2
this limit exists and is contained in [0, 1].
Proof. To prove this lemma, it suffices to show that the sequence z, := <) ig non-

increasing; since z, € [0,1] for all n, we will then be done by monotone (ci))nvergence.
Indeed, consider a graph G on n vertices which is F-free and contains ex(n, F') edges.
Then any induced subgraph G’ C G on n — 1 vertices is also F-free, and therefore contains
at most ex(n — 1, F) edges. There are n choices for G, and summing over all such G’
counts each edge of G exactly n — 2 times, so

(n—2)ex(n,F) <nex(n—1,F) = z, <xp_1
as needed. O

In the language of Turdn densities, Turdn’s result implies that w(K;) = 1— ﬁ, agreeing

with intuition that as ¢ — oo this density tends to 1. This problem is monotone in F', since
for F C F' we have ex(n,F) < ex(n,F’), and so far we have considered the increasing
sequence of complete graphs K;. A foundational result comes from Erdés and Stone in [§],
who proved that if F has chromatic number y(F) = r > 3, then 7(F) = Z=2. While this
asymptotic result cannot tell us ex(n, F') exactly, as Turdan’s Theorem does for Ky, it is
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applicable to a much greater number of graphs (since every F' has a well-defined chromatic
number).

From this starting point, one can branch out into several related lines of questioning.
One problem is to consider ex(n, F') for bipartite F', in which case the Erdés-Stone theorem
simply says that ex(n, F') = o(n?), and therefore does not tell us the order of magnitude of
ex(n, F). It was proved in [I4] that the 4-cycle has ex(n, C4) < $n3/2 + In; a construction
of Erdés-Rényi-Sés [7] and (independently) Brown [2] shows that this is asymptotically
sharp for infinitely many values of n. The order of magnitude of ex(n, F') is known for
F = K33, but is unknown for F' = K;; for all t > 3. One can also consider what happens
to G when a class of multiple graphs F = {F1, Fy, ...} are forbidden. Other researchers
have studied stability, showing that F'-free graphs with a nearly-maximal number of edges
are (quantitatively) close to the special class of extremal graphs [6],[16]. In this thesis we
are interested in Turan densities for ‘higher-dimensional’ versions of graphs.

Hypergraphs are a natural generalization of the graphs we have considered thus far.
We will consider finite and simple r-uniform hypergraphs H = (V, E) on the vertex-set
V = [n] = {1,...,n}, where now each ‘edge’ is a subset of [n] of size r so that E C (7).
For a fixed r-uniform F' we can extend the notation from r = 2 and again write ex(n, F')
for the largest number of edges found in any r-uniform H on n vertices which contains no
isomorphic copy of F. The Turan density is defined now as

. ex(n,F)
a limit which exists by essentially the same averaging argument used above in the case
r=2.
We have much less understanding of 7(F") for r-uniform F with » > 3, compared to in

)

the graph case. For example, let ICET denote the complete r-graph on ¢ vertices, so that

Turan’s Theorem gives W(ICEZ)) =1— 7, since ICEQ) = K. In contrast, the value Tr(lCér))

is unknown for any ¢ > r > 3 (when ¢ =r, K" is a single edge, so trivially W(IC,(,T)) =0).

Erdés offered a $1000 reward for showing that W(Kf)) = 5/9 [9], but this remains one of
the most notorious open problems in extremal combinatorics.

In lieu of the broadly applicable theorems we have concerning Turdan densities of graphs,
some progress has been made by considering very special families of hypergraphs F. One
example is the (2r)-graph known as the expanded triangle, 03()27"). An expanded ((2r)-
uniform) triangle consists of 3 edges, {S1 U S, S1 U Ss, S2U Ss}, for Sy, So, S5 disjoint sets
of size r. In general one can ‘expand’ any graph into a 2r-graph (without altering the
number of edges) by replacing each graph vertex with a set of r vertices. Independently

of r, it turns out that 7r(C§2T)) = % For a discussion of this problem, its generalization
to expansions of other graphs, and other Turan problems for hypergraphs, the reader is
referred for example to the survey of Keevash [13].

In this thesis we will be interested in what happens when we forbid a different kind of

hypergraph, which we introduce now. For integers » > 2 and ¢ > 2, an r-uniform t-daisy
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Stem S Petals (g)

FIGURE 1. A schematic of a D? with S = {2,5,6,12,16} and U =

3,9,11,22}. Each of the %) = 6 elements of this D2 are formed by com-
2 7

bining the stem S with a petal (a member of ([2])) Here we have highlighted

in blue the stem and in green the petal {9, 11}, leaving the other petals as
edges between elements of U.

D! is a collection of (2tt) r-element sets of the form
{SuT :TCU, |T|=t}

for some sets S,U with |S| =r —t, |U| =2t and SN U = . This collection can be seen
visually in Figure

We will typically consider this definition for fixed values of ¢, allowing r to grow. In
the case t = 7 = 2, we have 7(D3) = 2/3 by Turan’s theorem for Kys. The first unknown
case occurs when r = 3; in this case, Bollobds, Leader and Malvenuto showed in [3] that
7(D3) > % (by taking the complement of the Fano plane, blowing up and iterating) and
conjectured that in fact equality holds; this is still open.

For larger t > 2 and r > 3, even less is known concerning m(D%). We observe that
the value of m(DL) is clearly nondecreasing in ¢, since an r-uniform family that is free of
t-daisies is also free of #’-daisies for all ¢’ > t. Note also that if H is a D!-free r-graph and
x € V is an element of the ground set, then the (r —1)-graph H' = (V' E') with vertex-set
V' =V \ {z} and edge-set

E' ={e\z : e€ E with z € e},

(also known as the link of H at x), is D!_-free. It follows by averaging over all such links
(similarly to the reasoning used in Lemma that 7(D!) is nonincreasing in r.

The following conjecture was made by Bollobds, Leader and Malvenuto in [3] (and
independently by Bukh, see [3]).

Conjecture 1.2. For allt > 2, lim 7(DL) = 0.
T—00
This is still open, even for ¢t = 2. (It is not even known whether the sequence (7(DL)),
is strictly decreasing, for any value of ¢ > 2.) Johnson and Talbot independently made an
equivalent conjecture in [I1], which we now describe. We will need the standard definition
of the Boolean cube, and a subcube thereof.
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Definition 1.3. For n € N the n-dimensional Boolean cube is {0,1}". For1<d<mn, a
d-dimensional subcube of {0,1}" is a subset of {0,1}" of the form

{x€{0,1}" : zij=a; Viel}
for some set I € (n[ﬁ]d) (called the set of fixed coordinates) and values a; € {0,1} Vi € I.

Conjecture 1.4. Let d > 2 and 6 € (0,1]. Then for n sufficiently large depending on d
and 6, and any set A C {0,1}™ with |A| > 62", there exists a d-dimensional subcube C with

d
[ANCI = (|42))-
It is easy to verify Conjecture 1.4 for d = 2 and d = 3, but it remains open for all d > 4.
By setting

n
A={xe{0,1}" : z::):Z =0 (mod. d+ 1)},

i=1
ie. every (d + 1)th slice, we have lim,_,~ |A|/2" = 1/(d + 1), but any d-dimensional
subcube meets exactly one of these slices, and therefore we cannot ask for more than
(L d‘;é J) in Conjecture Before showing that Conjectures and are equivalent we
recall the classic Chernoff bound which shows that sums of independent random variables
fall within a constant fraction of their expectation with probability exponentially close to
1. We do not state the strongest known form of this statement, but instead exactly the
weaker form we require.
Lemma 1.5 (Chernoff Bound). Suppose that X1, ..., X, are independent random variables
with X :=>"1" 1 X; and p:= E[X]. Then for any 0 <46 <1, P(|X — pu| > dp) < 2e=0°1/3,

We will use this bound in the following Lemma, a detailed proof of an argument outlined

in [3].
Lemma 1.6. Conjectures and are equivalent for d = 2t.
Proof. First we show that Conjecture [1.2] implies Conjecture Assume the validity of
Conjecture Let X; take values 0 and 1 each with probability 1/2 independently at

random, for 1 < i < n. By allowing these X; to specify an element of {0,1}" and applying
Lemma 1.5 with 1 = n/2 and § = 1/2 we have

{z € {0,1}" = a ¢ [n/4,3n/4]}| < 2"t e/
=1
Let A C {0,1}" with |A| > §2™; then
{ze A n/A< i <3n/4}| > 275 — 27/ > (5/2)2"
=1

provided n is sufficiently large depending on §. Hence, by averaging, there exists some r
with n/4 < r < 3n/4 such that

freA - gxi:r}\zg(:).
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Let F denote the corresponding family of r-element subsets of [n]; this has density at least
§/2. Since we are assuming that 7(D%) — 0 as 7 — oo, there exists r such that w(DL) < §/2
for all » > rg. We would like to conclude immediately from this that F contains a copy of
DL for r > rg, but there is the small problem that n may be too small for us to immediately
conclude this. To get around this problem, we average over appropriate links. Observe
that, by averaging, for any u < r there exists a u-element subset U such that the link of
F at U, i.e.

r—u

{S\U: SeF, ch}c<[n]\U>

has density at least §/2. Choose 7 such that m(DL) < §/2 for all r > ro; then by definition,
for all r > 7y there exists ng(r) such that ex(n,DL) < (6/2)(") for all n > no(r). Now
set ug = r — rp; the difference n — r > n/4 is unchanged when taking the link at U, so
if n/4 > no(rg) — ro we have n — ug > ng(rg). Since there exists a ug-element subset U
such that the link of F at U has density at least 6/2, it follows that this link contains a
copy of Dﬁo, hence so does F. Hence, A contains at least (Ztt) points of a (2t)-dimensional
subcube, as required. Next we show that Conjecture implies Conjecture Suppose
that [1.2is false. Then the monotonicity in r (and in n) of ex(n, F') discussed above implies
that there exists § > 0 such that for any n € N we may find, for each 0 <7 < n, a D!-free
r-graph H, with V(H,) = [n] and |E(H,)| > §(") (note that any r-graph on [n] is trivially
Di-free if r < t or r > n —t). Now for each 0 < j < 2t consider the set

Aj ={ze{0,1}" : sz =j (mod. 2t +1) and x € E(H,) forr = le}
i=1 i=1

That is, we have taken a dense D!-free graph on every (2t + 1)th layer. (By averaging
over all j there exists jo such that A;, has density at least /(2t + 1).) Any d-dimensional
subcube C intersects exactly one of these layers, and |[ANC| < (Qtt) since otherwise H,
would contain a copy of DL. This implies that Conjecture is false. g

As a brief reminder, upper bounds on (D) show that an r-uniform hypergraph with
many edges must contain a daisy. Conjecture [1.2| suggests that as r — oo the threshold
for “many” tends toward density 0. On the other hand, lower bounds on 7(D!) must come
from constructions of large daisy-free hypergraphs.

In [3] a lower bound of w(D2?) > r!/r" is observed, which comes from considering the
r-partite r-uniform hypergraph on [n] with parts of sizes as equal as possible. That is,
partition [n] into disjoint sets Vi, ..., V, each of size approximately n/r. Then take only
edges which include exactly one element from each V. This gives an edge density of r!/r"
and cannot contain any daisies. To see the edge density consider that to build an edge
one element at a time, when adding the ith element we have forbidden (i — 1)n/r choices
by the elements we have already added. To see that this construction cannot contain any
daisies, let U = {i, j, k, [} be the petal elements with stem S, for |S| =r—2and SNU = {.
Containing the daisy would require including each of S U {i,j}, SU{i, k}, and SU{j, k}.
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The first two sets imply that j and k£ must belong to the same partite class, say W, in
which case the third set cannot be taken.

Unfortunately, the lower bound obtained by this short argument is exponentially small in
r. In this thesis, we obtain (by discussion of the results shown in [5]) the following improved
lower bound (which is polynomial in ), using an additive-combinatorial construction. We
also raise a question in additive combinatorics which may be of interest in its own right.

Theorem 1.7. There exists an absolute constant ¢ > 0 such that m(D?) > ¢/r for all
r > 3. Furthermore, for each t > 3, we have

— A2 _O(1/\/TogT)
(D) > r (%)~ .

Our proof of Theorem relies upon the existence of a subset of Z,, := Z/mZ that
avoids a certain additive structure, which we define now.

Definition 1.8. For positive integers m,t > 2 with m > 2t, let g(m,t) denote the mazimum
possible size of a subset R C Zy, such that for any xo € Zy, and any (2t)-element subset X
of Ly, there are t distinct elements of X whose sum is not contained in R — xq, i.e.

{oner . TCX, yT|:t}¢R.

zeT

Zm
2t

C(X) := {Zx . TCX, |Ty:t}

zeT

For brevity, given a set X € ( ) we write

for the set of sums of ¢ distinct elements of X; g(m,t) is the maximum size of a subset of
Zy, containing no translate of C(X) for any |X| = 2t.

The function g(m,t) is related to a question raised by Gunderson and Rodl in [10],
concerning Hilbert cubes.

Definition 1.9. If R is a ring, the d-dimensional Hilbert cube generated by x1,...,24 € R

is the set
{in . I C {1,2,...,d}} C R.
i€l
Gunderson and Rodl considered large sets of integers which do not contain any translate
of a Hilbert cube (working over the integers, i.e., the R = 7Z case of Definition . In
particular, they prove the following (Theorem 2.3 and Theorem 2.5 of [10]).

Theorem 1.10. For each integer d > 3, there exists cq > 0 such that any set of integers

A C [m] with |A| > cq(v/m+ 1)272‘1#*2 contains a translate of a d-dimensional Hilbert cube.

__d _ Moz m
Furthermore, for all m there ezists a set of integers A C [m] with |A| > m! 3 O/ Vicem)

that does not contain any translate of a Hilbert cube.
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(Here, and henceforth, we write [m] := {1,2,...,m} for the standard m-element set.)

We consider the case R = Z,,, but for our purposes, the structural differences between
[m] and Z,, will not be particularly important. Estimating g(m,t) is a natural variant
of the Gunderson-Rodl problem, where we avoid only the middle slice of a Hilbert cube
of dimension 2¢. We make a small but important change in that, in Definition [1.8 we
require that X be composed of 2t distinct elements, while a Hilbert cube may even have
x1 =g+ = xq. (In this case, the Hilbert cube is a d-element arithmetic progression, but
C(X) is a singleton.)

We obtain the following bounds on g(m,t).

Theorem 1.11. For allt > 3 and m > 4 we have

gm.t) > m G

and if furthermore m is prime, then

g(m t) - mlf (gtijilfO(l/\/logm)

For t =2 and m > 64 we have g(m,2) > \/m/8.

Theorem 1.12. For each t > 2 and all m sufficiently large depending on t, we have

g(m,t) < A7V2 (m + V2022

(Here, we use the standard asymptotic notation: if X is a set and f,h: X — RT, we
write f = O(h) if there exists an absolute constant C' > 0 such that f(z) < Ch(x) for all
reX.)

It would be of interest to narrow the gap between our upper and lower bounds on g(m, t).

The proofs of Theorem and of the first part of Theorem [L.11] (i.e. the ¢ > 2 case)
are very similar to those used in [I0] to prove Theorem (above). Our lower bound for
t > 2 consists of a probabilistic construction very similar to that of Gunderson and Rodl in
[10]; we have to choose a random set of slightly lower density as we must avoid the middle
slice of a Hilbert cube, as opposed to an entire Hilbert cube. At first sight, it might seem
that an upper bound on g(m, t) follows from the upper bound given in Theorem since
a set which contains a Hilbert cube contains its middle layer, but one must make small
changes to the proof in [10] so as to ensure that the generators of the Hilbert cube we find,
the z;, are distinct. We give an explicit construction for the t = 2 case in Theorem [1.11
this construction outperforms the probabilistic one in the case t = 2.

The remainder of this thesis is structured as follows. In Section [2| we prove Theorem
using Theorem and in Section |3| we prove Theorems and (note that we
do not require the latter in our study of the Turan density of daisies, but it may be of
independent interest). Finally in Section 4| we describe the relationship between 7(D!) and
a Ramsey-theoretic variant.
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2. THE PROOF OF THEOREM

Proof. In proving Theorem by an appropriate choice of ¢ (and of the absolute constant
implicit in the big-Oh notation), we may clearly assume that » > 8. For r, ¢t € N with
r > 8 and n sufficiently large depending on r and ¢, we proceed to construct a Di-free
family of r-element subsets of [n]. We use a ‘partite’ construction, partitioning [n] into L
blocks, and then taking only r-sets containing at most one element from each block. We
may assume that n > 2r2. Let L be a prime number such that 7? < L < 2r? (such exists,
by Bertrand’s postulate), and for each i € [n], set z; = |L=1|; note that 0 < z; < L for
each i € [n]. Thus in our ‘partite’ construction the kth block are those i € [n] with z; = k.
By Theorem there exists a set R C Zp, of size |R| = g(L,t) with the property that
for any X C Zp, with |X| = 2t and for any z¢ € Zr,, we have o + C(X) ¢ R. Define a

family Fr C ([:]) by

fR:{SE (@) Yz R, (Vi,jGS)(fcz':ﬂ?jji:j)}‘

€S

First we check that Fg is Di-free. Indeed, consider the daisy D = {SoUT : T C U, |T| =

t}, where Sy, U C [n] with |So| =r — ¢, [U| =2t and Sy NU = (. Let ¢ := > z;. Then
i€Sp

the (2t)-element set

X={z; :i€U}CZ

must satisfy zo+C(X) ¢ R, and therefore there is a t-sum (indexed by T' = {i1,42,...,9:} C
U, say) such that

xo+ xiy +Tiy + -+ @y, :azo—i-in ¢ R.
€T
It follows that S := SoUT ¢ Fg and therefore D ¢ Fg, as required.
Now to finish the proof of Theorem we bound |Fg| from below. First note that

there are at least %(2) sets S € ([Z]) with z; # x; for all i # j, 4,5 € S. Indeed, choose

a set S uniformly at random from ([:f]). Since the probability that a uniformly random
two-element subset {4, j} of [n] has x; = x; is at most 1/L, we have

P(z; = x; for some i # j, 1,7 € S) < (1/L) (Z) (Z:;)/(?)
—r(r—1)/(2L)
<1/2.

The family F = Fg, defined above, is Di-free even if the set R is replaced by a translate
R, := R+ a for some a € Z;. We may sum over all such a to find

1/n
> 17l = 5 (1)

a€ly,
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since any S € ([:f]) has » ;g xi € R, for exactly |R| values of a. Therefore by averaging
over all such translates there must be some translate R, of R such that |Fg,| > 1(7) @,
and therefore
9(L,t)

2L
Now we may apply Theorem (recalling that r? < L < 272 is prime): when t = 2 and

L =m > 64 (which follows from r > 8), we have

g(L2) VL _ V2 1

m(Dy) >

D?) > -
™Dr) = =57 2 160 Z 322~ 31
and when t > 2 we have
1—-2t=1 _0O(1/\/Iog L 1—-2=1 _O(1/y/1
I/ G e ORI - i -on Ve
W(DT) > T > 9,2 =T ¢ ,
as required. ]

3. BOuNDs ON g(m,t)

The focus of this section is the analysis of g(m,t).

3.1. Proof of Theorem [1.11] Before we begin a formal proof we briefly and informally
describe some potential methods for finding a large subset of Z,, which contains no trans-
lates of any C(X). Suppose that we include every element of Z,, with probability p; then
we will typically obtain a set R of size pm, and we will look to choose p in a way so that
the number of translates of C'(X) present in R is at most, say, pm/10 (it would also be
possible to ask for 0 translations to be present but allowing pm/10 yields slightly better
bounds). Then we could delete from R one element of each such C(X), which gives the
property we need without reducing by too much the size of R.

Then our primary consideration is the number of translates of C(X) present in our
randomly selected R. Given a specific translate xg + C(X), it is present with probability
pl¢I For a rough intuition consider two cases:

(1) If X is an arithmetic progression then |C'(X)| = t>++1, and the number of arithmetic
progressions in Zy, is roughly m2. Then we would require m2pt"+* < pm/10.

(2) If |C(X)| = (2:) then we would have to consider all m?**! choices for xo and X.

Then we would require m2t+1p(2tt) < pm/10.

Of course our aim is to choose p as large as possible, and (especially as ¢t grows), the first
of these two scenarios is more limiting on p. Furthermore, this analysis does not cover
any of the intermediary cases, where |C'(X)| is strictly smaller than (Ztt) but X is not an
arithmetic progression.

Here we use the idea that Gunderson and Rodl employed in [10]. Instead of including
elements of Z,, uniformly at random, we first pass to a fairly dense subset of Z,, which
is free of 3-term arithmetic progressions; this ‘destroys’ a lot of the additive structure we
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want to avoid. In fact there is so little arithmetic structure that we are always in the ideal
second case above, where |C(X)| = (Qtt)

Proof. First assume ¢t > 3. By the well-known constructimﬂ of Behrend in [I], there exists
a set Ry C [[m/5]] with |Ro| = m' ™) (where v(m) := ——%— log denoting the

V/log (m/5)
natural logarithm) that contains no 3-term arithmetic progression. Let Ry C Z,, be the
natural embedding of Ry into Z,, (here the factor % ensures that no 3-term arithmetic

progressions appear in Z,, which were not present in Z). Then R; also contains no 3-term
arithmetic progression. Set

_ 2t—14~(m)
2t
% (¥)-1 if m is prime,
p= _ 2t+y(m)
2t
%m (¥)- otherwise,

and choose a set Ry C Ry by including each element of R; independently at random with
probability p. A standard Chernoff bound (for example Theorem 3.5 in [15]) yields

(1) P(|Ro| < |Ri|p/2) < e !Flp/8,
Define the random variable
Y =Hzo+C(X): 29 € Zmy X C Ly, |X|=2t, 29+ C(X) C Ra}|.

Since Ry does not contain any 3-term arithmetic progressions, for any set of the form
xo+C(X) lying within Ry, we must have |29+ C(X)| = |C(X)| = (Qtt) Indeed, suppose for
a contradiction that X = {x1,...,z9} is a (2t)-element subset of Z,, with zo+C(X) C Ry,
where zg € Z,, and |C(X)| < (Ztt) Then there exist two distinct t-element subsets of X,
{zi, ... @i} = S1and {zy, ..., 2y } = Sy say, such that

iy e @ =2y e @y
we may assume without loss of generality that z;; € S;\ S2 and Ty € Sy \ S1, so that
xi, # il for all j and Ty # x;; for all j. Then

{$1//1 +:'E’L'2 +"'+xital‘i1 +xi2 +"'+xit7xi1 +x2’2 ++l‘z/t} C R2

is a (nontrivial) 3-term arithmetic progression (with common difference z;, —z;) in Ry, a
contradiction.
We now proceed to bound EY from above. In the case that m is not prime we may

crudely bound the number of possible sets of the form zg + C(X) from above by m?2+!
(which is the number of choices for xg,x1,...,29¢ € Zy,). If m is prime then we may
assume each such set has zg = 0, by translating each of z1, ..., 29 by t 'z, leaving only

IThis short and elegant construction considers numbers whose digits, written in an appropriately chosen
base, have a fixed Euclidean norm when considered as a vector. Norm inequalities prevent additive collisions
and elementary estimates show the set obtained is quite large.
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m?® choices. The probability that each fixed set of the form zg + C(X) lies in Ry is of
2t
t

course p< ) It follows that

mQtp(Qtt) if m is prime 1=~ (m)
EY < 941 (2t) . <m 7 %
m2tiply otherwise
It follows from Markov’s inequality that
(2) P(Y > m!Mp/a) < 1/2.
Combining and , we obtain
(3) P (|R2| >m! 7 Mp/2 and Y < ml_'Y(m)p/ll) >1 - TMp/8 3.

Clearly, for any t > 2 and m sufficiently large depending on ¢, we have 1 —~(m)— 7((;73)) irft >
t

0, so for large enough m, the probability in is positive, and therefore there exists a set
Ry C Zy, with |Re| > m!'="™p/2 and Y < m'=7(™p/4. Now for each set of the form
xzo + C(X) C Ry for (0, X) = (zo,{x1,...,22}) we remove a single element from Ry,
chosen arbitrarily from zg + C(X). The total number of elements deleted from Ry is at
most Y < m! 7™ p/4 and we are still left with

L 1—7(m)_%)1(1m) . ‘
—_ t
1— ) 5m if m is prime
|Ra| =Y >m 7<m)§ =47 2t4(m)
1 1—W(m)—ﬁ .
55 t otherwise

elements, finishing the proof of the first statement of Theorem [1.11
Finally, in the case t = 2, we give an algebraic construction that improves upon the
random one. First we recall the definition of a Sidon set.

Definition 3.1. A Sidon set in a group G is a subset S C G such that the only solutions
to the equation a +b = ¢+ d with a,b,c,d € S, are the trivial ones (meaning, those with

{a,b} = {c,d}).

It follows from the classical construction of Singer [17] that for any prime p there is a
Sidon set of size p + 1 inside Z,2,,1. Assume that m > 64 and let p be a prime with
vVm/8 < p < /m/4 (such exists, by Bertrand’s postulate). Let Ry be a Sidon set of size
at least \/m/8 inside Z,2,,1. The image R of Ry under the natural inclusion map from
Lo i1 0 Ly is a Sidon set in Zy, (here we use p?+p+1 < m/16++/m/4+1 < m/2). Now
we will show that for any xo and X = {x1,x9,x3,24} € (ZA:”) we have xg + {1 + x2,21 +
x3, X1+ g, To+x3,xa+ x4, T3+ 24} ¢ R. Suppose for a contradiction that o+ C(X) C R;
then

(4) (SC() + 1 +$2) -+ (xo + x3 +$4) = (x() —+ 21 +w3) + (Z‘o + X9 +a;4)

and each term in brackets is an element of R. Since R is a Sidon set, this implies xo = x3
or 1 = x4, contradicting the fact that the x; are distinct. We have |R| > /m/8 and
therefore we are done in the case t = 2. O



15

3.2. Proof of Theorem [1.121

Proof. We begin with a quick calculation.

Lemma 3.2. Ifm>d+1 and b > max{‘/?\z/g,éld—i— 1}, then (%2:;”) > 4(\/%);/&)2.
Proof. Since
Y.
b~ m+Vd
we have
b—1_ vm —+/d
b T ym+Vd
Since b > 4d 4+ 1 we have (g) —db > b(b4_1), and therefore
<b> _apy BV
2 4 m+d
Dividing by m — d yields the result. O

We may now obtain our upper bound on g(m,t). Let A C Z,, such that
(5) |A] > 4712 (4 V20

We will show that z¢g + C(X) C A for some z¢ € Z,, and X € (ZZ”). For x1,...,24 € Zp,
and A C Zy, we define A,, := AN(A—x1), Az, 2o = Az, N(Az, —2), and more generally,
Agywgrwa = Az gy 0 (Aayzg_y — Td)-

Then Ay oy = {2 €Ly : 4+ ;.77 € AV I C[d]} and so A will contain a translate
of C(X) if we can find 2t distinct elements x1, ...,y € Zy, with [Ay, . z,,| > 1. We will
find such elements inductively, using the following claim.

Claim 3.3. Provided m is sufficiently large depending on d, for each 0 < d < 2t there exist
d distinct elements x1,...,xq € Ly, such that

A1
42(171(\/54_ \/27)2(”172
(Here, when d = 0 the left-hand side is |A].)

[Awr,zal 2

Proof of Claim. The proof is by induction on d (with base case d = 0, for which the claim
holds trivially). Suppose the claim holds for d for elements xi,...,z4. Every pair of
elements of A;, . ., has a unique difference y, so

A
Z ’Aml,...,zd,y| = <’ xlé"vxd>‘

YELm

-----
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However, we will need to exclude y from those x; we have already chosen, and therefore
crudely we have

A
Z ’Aml,...,rd,y| Z (’ $1727xd’> - d|A$1,...,wd’.

YELm\{z1,.., x4}

By averaging over y € Zy, \ {z1,...,2q}, there exists y € Z,, \ {z1,..., 24} such that

’A‘Zla“'»xd’y/‘ Z

We now wish to apply Lemma with b = |A;, . z,|. The hypotheses that m > d+1 and
b > 4d + 1 are satisfied for m large enough (depending on t), so to apply Lemma it
Vm+Vd

remains only to check that b > , which follows from our inductive hypothesis and

our lower bound (j5)) on |A]:
b= |Aw1,~~~7$d|
. AP
= 42d_1(\/m+ \/ﬂ)gﬂ—l_?
- 42d72d72t(\/ﬁ + \/27t)2d+172d72t+1
- 42d—1(\/m+ \/27)2(”1—2
> 41_2d—2t(\/m + \/%)2_20{—21&-9—1
L Vm+Vd
- 2\/g .

Hence, applying Lemma [3.2] we have

(|A1;12Td‘) — d|Ax1,...,xd|

|Ax17~~'7xd7yl| Z m — d
|Ax17-"7'7:(i |2
4(y/m +Vd)?
d+1
N AP
- 42d+1—2+1(\/m + \/g)zd+2—4+2’

as required, so we set zgy1 = 9/. O
Applying Claim [3.3|with d = 2¢, and using our lower bound ([5) on |A|, we obtain distinct
Z1,...,%o € Ly, such that |Ay, 4, | > 1, completing the proof of Theorem m O

4. CONNECTIONS TO OTHER PROBLEMS

To conclude this thesis we place our study of m(D%) in the context of two closely related
problems. Results in extremal combinatorics that guarantee the existence of ‘nice’ sub-
structures (under some condition), come in two varieties, a ‘Ramsey’ (or ‘coloring’) version
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or a (stronger) ‘density’ version. To see an example (and non-example) in action we state
and discuss four classical results.

Theorem 4.1 (Van der Waerden’s Theorem). For all r,k € N there exists N = W (r, k) €
N such that for any k-coloring ¢ : [N] — [k], there is a nontrivial monochromatic arithmetic
progression in [N] of length r.

Theorem 4.2 (Szemerédi’s Theorem). For all ¥ € N and § € (0,1] there exists N =
S(r,0) € N such that every subset A C [N] with |A| > 0N contains a nontrivial arithmetic
progression of length r.

Theorem 4.3 (Finitary Ramsey’s Theorem for Hypergraphs). For all t,k,r € N with
t > r, there exists an N = R(t,k,r) € N such that for any k-coloring c : ([17\]]) — k] there
exists A C [N] with |A| =t such that ¢ is constant on (f)

Example 4.4. Lett =3, r =2, < 1/2, N even, and G = (V, E) be the complete bipartite

graph between two vertex sets of size N/2. Then |E| > %(g) > (5(];[), but G is triangle

free, i.e. for any T C [N] with |T| = 3, we have (g) ¢ E.

Theoremimplies Theorem if we do not worry about optimizing W (r, k) (although
doing so is an interesting pursuit in itself with a rich mathematical theory). Any k-coloring
of [N] must include a monochromatic subset of size at least N/k, and we can deduce
Theorem by applying Theorem with 6 = 1/k. While Van der Waerden showed that
some color class will contain arithmetic progressions, Szemerédi showed (using much more
powerful techniques, introducing the celebrated and widely useful Regularity Lemma for
the purpose) that in fact those arithmetic progressions can be found in any color class of
positive density. One might hope for the same density strengthening of Theorem [£.3] but
Example shows that we cannot do so (even in the special case r = 2).

Returning to the daisy problem, we see that Conjecture[l.2]could be equivalently written
as follows.

Conjecture 4.5. For allt > 2 and 0 € (0,1], provided r is sufficiently large depending
ont and § and N is sufficiently large depending on r, t and 0, any subset A C ([N]) with

N
|A| > 5(]:7) contains an isomorphic copy of DL.

In the same manner discussed above, this conjecture would immediately imply a ‘color-
ing’ version, since a k-coloring of ([’Z]) will contain at least one color class with density at
least 1/k. In fact, we could go further and find many daisies in this color class by removing
daisies as we find them (we remove a daisy simply by recolouring one of the daisy’s r-sets).
For r large enough so that 1/k — 7(D!) > 1/2k (guaranteed by Conjecture [4.)), find a D"
and remove one edge from it, until the number of edges remaining in the large color class
drops below (D) (:f) The number of D! this algorithm discovers is at least ﬁ(ﬁ)

This argument relies critically on Conjecture but in fact a coloring version can be
immediately deduced from Ramsey’s Theorem (Theorem [4.3)).
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Theorem 4.6 (Coloring version of Conjecture . Lett>2,r >t and k > 2. Provided
N is sufficiently large depending on k, t and r, for any k-coloring c : ([JX]) — [k], there
exists a monochromatic copy of DL.

Proof. By Theorem there exists an integer m = R(2t,k,t) such that every k-coloring
(t)

of the complete t-graph on m vertices induces a monochromatic IC;, (a complete t-graph
on 2t vertices). Provided N > r —t + m we may choose disjoint sets S,S’ C [N] with
|S| = r—tand |S’| = m. We k-color the t-element subsets of S’ by the colouring ¢’ defined

by (A) = ¢(SUA), for A € (Stl) Since |S’| = m there exists U C S’ with |U| = 2t such
that ¢ is constant on {SU A : A € ((t])}, and this hypergraph is exactly a t-daisy. O

We remark that an easy variant of the above argument shows that there are many
monochromatic copies of DI.
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