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Analysing functional implications 
of differences in left ventricular 
morphology using statistical shape 
modelling
Froso Sophocleous1, Lucy Standen1, Gemina Doolub2, Reem Laymouna2, 
Chiara Bucciarelli‑Ducci1,2,3,4, Massimo Caputo1,2, Nathan Manghat2, Mark Hamilton2, 
Stephanie Curtis2 & Giovanni Biglino1,3*

Functional implications of left ventricular (LV) morphological characterization in congenital heart 
disease are not widely explored. This study qualitatively and quantitatively assessed LV shape 
associations with a) LV function and b) thoracic aortic morphology in patients with aortic coarctation 
(CoA) with/without bicuspid aortic valve (BAV), and healthy controls. A statistical shape modelling 
framework was employed to analyse three-dimensional (3D) LV shapes from cardiac magnetic 
resonance (CMR) data in isolated CoA (n = 25), CoA + BAV (n = 30), isolated BAV (n = 30), and healthy 
controls (n = 25). Average 3D templates and deformations were computed. Correlations between 
shape data and CMR-derived morphometric parameters (i.e., sphericity, conicity) or global and apical 
strain values were assessed to elucidate possible functional implications. The relationship between 
LV shape features and arch architecture was also explored. The LV template was shorter and more 
spherical in CoA patients. Sphericity was overall associated with global and apical radial (p = 0.001, 
R2 = 0.09; p < 0.0001, R2 = 0.17) and circumferential strain (p = 0.001, R2 = 0.10; p = 0.04, R2 = 0.04), 
irrespective of the presence of aortic stenosis and/or regurgitation and controlling for age and 
hypertension status. LV strain was not associated with arch architecture. Differences in LV morphology 
were observed between CoA and BAV patients. Increasing LV sphericity was associated with reduced 
strain, independent of aortic arch architecture and functional aortic valve disease.
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SSM	� Statistical shape modelling
SV	� Stroke volume

The ability of the heart to change its shape and function in order to maintain normal cardiac output has been 
characterized as “remodelling”, which can either be adaptive or maladaptive, acute or chronic1. Left ventricular 
(LV) morphology has been proposed as an important marker of remodelling and related to clinical outcomes, 
with adverse remodelling being a strong predictor of cardiovascular disease2–4. The LV geometry plays a critical 
role in the mechanics of the heart, and as early as 1892, Woods used a spherical model to quantitatively assess this 
relationship5,6. Three-dimensional (3D) patient-specific anatomical information can be derived by non-invasive 
imaging techniques, such as cardiovascular magnetic resonance (CMR) imaging. This allows further explora-
tion of LV morphology using tools such as statistical shape modelling (SSM), which our group has previously 
applied to capture apical ballooning in Takotsubo cardiomyopathy7 and other studies used to assess aortic and LV 
remodelling in scenarios such as myocardial infarction, AAo thoracic aneurysm and aortic stenosis8–11. Here, we 
apply this methodology to congenital heart disease (CHD), particularly to aortic coarctation (CoA) and bicuspid 
aortic valve (BAV) disease, which have a prevalence of 3/10,000 and 1–2% respectively12. Patients with CoA can 
have BAV in up to 85% of cases, while both diseases can result in aortic vasculopathy, which is associated with 
morbidity and mortality in young patients with CHD12,13.

To our knowledge, only one study has described LV morphology in adults with CoA or BAV, assessing LV 
sphericity pre- and post-stent implantation in CoA patients14. Clinical observations suggest that CoA patients 
tend to have rounder LVs, but this has not been assessed quantitatively, nor have possible functional implica-
tions of this characteristic been explored. Thus, this study aims to assess LV morphology in patients with CoA 
and/or BAV, using CMR-derived sphericity and conicity indices, and by means of SSM15 thus providing novel 
observations including 3D assessment. Morphological quantification through SSM allows exploring possible 
previously unreported associations between morphological features and functional implications, such as differ-
ences in CMR-derived global and apical strain indices across different LV morphologies. In addition, previous 
work from our group suggested potentially unfavourable aortic arch configurations in patients with BAV and 
repaired CoA11 and so this study also aimed to explore possible associations between LV morphological features 
and aortic arch architecture.

Methods
Patient population.  This was a retrospective single-centre study, screening patients who underwent clini-
cal cardiovascular magnetic resonance (CMR) examination at a large tertiary centre between 2007 and 2020. 
Data were acquired at 1.5 T (Avanto, Siemens Healthineers, Erlangen, Germany). Patients for the morphological 
3D analysis were selected from databases of n = 521 BAV patients, n = 633 CoA patients and n = 435 patients 
without structural heart disease (serving as healthy controls). Primary exclusion criteria were: connective tis-
sue disorders (including Marfan, Turner and Ehlers Danlos syndromes), any concomitant either complex or 
moderate CHDs (including Shone’s complex, tetralogy of Fallot, transposition of the great arteries and Ebstein’s 
anomaly), unrepaired CoA, pseudo-CoA, Kawasaki disease, previous operation of aorta (apart from CoA repair) 
and/or valve replacement, valvotomy or aortic arch reconstruction, reduced ejection fraction (EF) < 40%, and 
pregnancy. Further exclusion criteria included sub-optimal image quality or absence of cine CMR images of 
the left ventricle required for 3D shape reconstruction. We selected patients between 19 and 75 years of age and 
created four groups: i.e., isolated CoA, CoA + BAV, isolated BAV and healthy controls. Sample of n = 25–30 was 
arbitrarily deemed as sufficiently large, based on SSM literature, to explore differences between groups. Ethical 
approval was waived by the University Hospitals Bristol & Weston. Research & Innovation (R & I) Department 
for this study. Informed consent was given by all patients for research use of images at the time and as part of the 
CMR scan consent. The study was carried out in accordance to local protocols and regulations.

Demographic variables gathered from clinical records included sex, age and body mass index. Anatomical 
variables included aortic valve morphology, classified according to the pattern of coronary leaflet non-separation. 
Functional variables included presence of functional aortic valve disease [i.e., aortic regurgitation (AR) and/
or aortic stenosis (AS), classified according to the European Association of Echocardiography16], presence and 
severity of CoA as classified in the literature17, history of hypertension, and CMR-derived EF, end-diastolic 
volume (EDV), end-systolic volume (ESV), stroke volume (SV), and LV mass in end-diastole, collected from 
clinical CMR reports. The ECG gating—CMR acquisition parameters for the LV analysis were as follows: echo 
time (TE) = 1.14 ms, effective temporal resolution = 40.05 ms, 25 phase reconstructions giving a reconstructed 
temporal resolution of 40 ms at a heart rate of 60 bpm, slice thickness = 8 mm, field of view (adapted to patient 
size) typically 350 × 284 mm, acquisition matrix 192 × 156 mm, giving a typical pixel size 1.8 mm × 1.8 mm. The 
whole of the LV was examined in the short axis with the basal slice planned on the mitral valve annulus from 
the long axis images. If a further slice was needed to show the whole of the LV outflow tract this was added. Post 
gadolinium aortic angiography (gadovist) 0.1–0.2 ml/kg as per radiographic/physician preference slice thickness 
1 mm. Acquisition matrix 448 × 294 with field of view adapted to give an ~ 1 × 1 × 1 mm voxel.

Morphological analysis.  A SSM framework was applied to assess the LV shape, as a primary aim of this 
study (the methodological workflow is summarised in Fig. 1). Fundamentally, SSM allows studying (a) the three-
dimensionality of the shape, taking into account the whole burden of information provided by the CMR scan; 
(b) the exploration of the average shape in a population along with the different shape deformations; and (c) 
the statistical association(s) between shape features and demographic/clinical/functional parameters of interest. 
More technical SSM details are reported elsewhere18. Cine images in short-axis view were collected for all cases 
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and segmented creating 3D volume meshes of LV endocardium at end-diastole using open-source software (Seg-
ment v3.0, Medviso, Lund, Sweden). The whole short axis stack was used for the LV reconstruction. A consistent 
number of image-stacks was reconstructed per ventricle to include all the anatomical features from the LV apex 
to the base. The apex was consistently reconstructed up to the point that it was visible. The 3D shapes were then 
imported into Mimics (Mimics Research v.21.0, Materialise NV, Leuven, Belgium) in stl format, where they were 
consistently cut at the apex and base, uniformly remeshed using a factor of 4 mm (3matic Research v.13.0, Mate-
rialise), and registered on top of each other based on the barycentre to reduce possible alignment bias and speed-
up the analysis. The 3D meshes were then imported into Deformetrica software (http://​www.​defor​metri​ca.​org) 
to compute the average shape of the population, or ‘template’, as well as the shape variation around it, or ‘shape 
modes’18. Key analysis parameters were a) model stiffness, set at 35 mm (λdiffeos parameter, bigger values result 
in “stiffer”, i.e., less elastic, deformations that capture more global shape features) and b) model resolution, set at 
11 mm (λsurface parameter, bigger values result in neglecting small shape features). The shape templates provide 
qualitative data, while the shape vectors provide quantitative data for dominant morphological features (or shape 
modes). Shape modes were extracted from principal component analysis in order to statistically correlate shape 
deformations with parameters of interest, i.e., sphericity and conicity indices, global and apical strains, and aor-
tic arch shape. On top of the global analysis, all groups were separately processed, using the same parameters, 
allowing for visual differences to be displayed.

Sphericity and conicity measurements were averaged from CMR cine 2- and 4-chamber imaging views. 
Sphericity was measured as short to long axis ratio, while conicity was measured as apical to short axis ratio, with 
apical axis being the diameter of the best fitting sphere to the apex as described in15, (see Fig. 2a).

In order to assess possible associations between arch architecture and LV morphology, 3D whole heart or 
angiographic sequences were used to reconstruct 3D aortic arch models (Mimics). This was carried out in a 
subset of patients (67/110: isolated CoA n = 23, CoA + BAV n = 30, isolated BAV n = 14, and healthy controls 
N/A) that had suitable 3D CMR sequences; this excluded all the healthy controls. The 3D aortic models were 
consistently cut perpendicularly at the subannular level and at the level of diaphragm. The brachiocephalic, left 
common carotid, left subclavian and coronary arteries were excluded because the study focused on examining 
the aorta alone. Earlier work showed that errors from the manual segmentation process are < 1 mm i.e., less than 
the voxel size19. The 3D aortic models were used to measure aortic gothicity (based on height/width ratio, H/W) 
and aortic tortuosity (automatically calculated using Vascular Modelling Toolkit, Orobix, Bergamo, Italy) (see 
Fig. 2b), as previously described11,20. The rationale for assessing potential associations between arch architecture 
and the underlying LV morphology is that, mechanically, a more complex (e.g., more Gothic and more tortuous) 
arch geometry could represent a less hemodynamically favourable scenario and potentially reflect on the LV. 
The LV shapes were reconstructed at end-diastole and the aortas were reconstructed in peak-systole, to capture 
the respective largest deformations.

Deformation analysis.  Regional tissue tracking features in three directions (longitudinal, radial, and cir-
cumferential) were automatically computed on a 16-segment model and averaged to provide global peak longi-
tudinal strain (GLS), global peak radial strain (GRS), global peak circumferential strain (GCS). The endocardial 
and epicardial contouring were carefully delineated from the cine images throughout the cardiac cycle. The 
feature tracking analysis was performed in CVI42 (Circle Cardiovascular Imaging, Calgary, AB, Canada). Intra/
inter-observer variability of the CMR-derived strain measurements has already been established21. Global longi-
tudinal strain was calculated from 2-, 3- and 4-chamber views and global radial and circumferential strains were 

Figure 1.   Statistical shape modelling (SSM) framework. Step 1: Cardiovascular magnetic resonance (CMR) 
cine short axis images segmentation to create 3D volume meshes of LV endocardium (in red) at end-diastole 
using Segment software; Step 2: Indication of the reconstructed shape population; Step 3: A shape mode 
showing a deformation as being correlated to LVEF%, exemplifying the feasibility of statistical analysis to 
capture parameters of interest.

http://www.deformetrica.org
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calculated from three short axis slices (basal, mid and apical). The apical/basal segments were selected as the 
most apical/basal segment in the short axis with well-defined circular contour (endocardium and epicardium). 
The mid-myocardium was selected as the slice mid-way between basal and apical with two clear papillary mus-
cles Endocardial and epicardial contours were derived to calculate all strain measurements.

Statistical analysis.  Statistical analysis was run with R Studio (Vienna, Austria). Group differences for 
continuous variables were tested using ANOVA or Kruskal–Wallis test (with Dunn’s test post hoc) depending on 
the normality of the distribution. The reproducibility of LV 3D reconstructions was assessed on 20% of the study 
population, randomly selecting cases for re-segmentation after 12 months and assessing median % difference in 
mesh surface area, intraclass correlation coefficient (ICC) for reproducibility and Bland Altman analysis for bias. 
Linear regression analysis was performed to verify the association between variables, including between SSM-
derived shape modes and demographic, anatomical and functional variables. Multiple regression analysis was 
run to assess the effect of aortic arch architecture (i.e., tortuosity and gothicity), AR, AS, hypertension, age, BMI, 
and sex on the relationship between LV morphology and strain. For the purpose of the analysis and considering 
the available sample size, AR and AS severity were treated as categorical variables (none or mild = 0, moderate 
and severe = 1). Alpha was set at 0.05.

Ethics approval and consent to participate.  In light of the nature of the study, ethical approval was not 
required by the local Research & Innovation Department.

Results
Patient demographic and clinical characteristics are reported below in Table 1 and CMR measurements are 
reported in Table 2. The isolated CoA group had higher prevalence of history of hypertension (p = 0.03). The 
majority of BAV patients had right-left leaflet non-separation. Also, CoA + BAV patients had increased CoA 
severity compared to isolated CoA (moderate or severe CoA in 37% vs 21%, p = 0.01) and, overall, very few 
patients presented with severe AR or AS. All groups had normal EF around 65%, and patients with BAV had 

Figure 2.   Morphometric measurements. (a) Calculation of LV sphericity as short (B) to long (A) axis ratio, 
with short axis set as the perpendicular intersect of the long axis mid-point (A/2) while long axis being the 
distance from the mitral valve mid-point (C) to apex, and calculation of LV conicity as apical (E) to short axis 
ratio, with apical axis being the diameter of the best fitting sphere (D) (calculations were taken directly on the 
scans). (b) Calculation of aortic gothicity as height to width ratio (H/W) [The aortic arch width was measured 
as the perpendicular distance from the centreline at the sinotubular junction level to the centreline at the 
mid-descending aorta. The height of the arch was measured as the maximum vertical distance from the width 
measurement to the highest point of the centreline in the arch], and aortic tortuosity as 1-(W/l) with l being the 
length of the aortic arch as shown by T (highlighted in blight-blue on the centreline). T shows the endpoints set 
to indicate the aortic arch defined by using the pulmonary artery as a landmark (calculation were taken using 
Mimics software).
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larger LV volumes and higher LV mass (Table 2). Interestingly, patients with CoA showed higher sphericity index 
(p = 0.02) whilst no group difference was found for arch gothicity or tortuosity (p = 0.28 and p = 1, respectively).

Three-dimensional LV models were highly reproducible, with a median difference in reconstructions per-
formed 12 months apart of 4% (range 0–9%), excellent reproducibility (ICC = 0.98) and no bias (please refer 
to Supplementary Material for Bland Altman plot and additional illustrations). Three-dimensional templates, 
calculated for the whole population and the four groups separately, are shown in Fig. 3, with atlas error ≤ 0.4 mm. 
As it can be qualitatively appreciated, the template for isolated CoA patients is the shortest and more spherical 
compared to the others, followed by BAV-CoA and then isolated BAV, compared to the more elongated healthy 
controls.

The first five principal component analysis shape modes (Fig. 4) represented 54% of the overall shape vari-
ability in the population (Table 3), and hence the corresponding shape vectors were used for statistical analyses. 
Different modes captured different morphological features, after careful visual assessment and correlation with 

Table 1.   Patient demographic and clinical characteristics. AR aortic regurgitation, AS aortic stenosis, RL 
right-left leaflet non-separation, RNC right-non coronary leaflet non-separation, LNC left-non coronary leaflet 
non-separation, BMI body mass index. None§ = patients with repaired CoA and no residual narrowing.

Isolated CoA (N = 25) CoA + BAV (N = 30) Isolated BAV (N = 30) Controls (N = 25) p values

Sex (n, % M) 12, 48% 16, 53% 16, 53% 12, 48% p = 0.96

Age (years) 37 ± 12, (19–66) 43 ± 8, (31–57) 46 ± 14, (20–75) 45 ± 11, (27–64) p = 0.03

BMI (kg/m2) 27 ± 6, (20–42) 27 ± 5, (17–38) 26 ± 5, (17–39) 26 ± 4, (21–34) p = 0.97

Presence of hypertension (n, %) 18, 72% 11, 37% 13, 48% – p = 0.03

Valve Phenotype (n, %) –
RL: 26, 87%
RNC: 3, 10%
LNC: 1, 3%

RL: 19, 63%
RNC: 11, 37%
LNC: 0, 0%

–

CoA severity, (n, %)
None§: 11, 44%
Mild: 9, 36%
Moderate: 1, 4%
Severe: 4, 16%

None§: 12, 40%
Mild: 7, 23%
Moderate: 3, 10%
Severe: 8, 27%

– –

AR severity, (n, %)
None: 22, 88%
Mild: 3, 12%
Moderate: 0, 0%
Severe: 0, 0%

None: 14, 47%
Mild: 13, 43%
Moderate: 2, 7%
Severe: 1, 3%

None: 7, 24%
Mild: 15, 50%
Moderate: 5, 17%
Severe: 3, 10%

None: 25, 100%
Mild: 0, 0%
Moderate: 0, 0%
Severe: 0, 0%

AS severity, (n, %)
None: 25, 100%
Mild: 0, 0%
Moderate: 0, 0%
Severe: 0, 0%

None: 21, 70%
Mild: 6, 21%
Moderate: 2, 7%
Severe: 1, 3%

None: 15, 50%
Mild: 3, 10%
Moderate: 8, 28%
Severe: 4, 14%

None: 25, 100%
Mild: 0, 0%
Moderate: 0, 0%
Severe: 0, 0%

Table 2.   CMR measurements. Controls lacked the sequence for 3D aortic reconstructions and therefore arch 
measurements were not available. EF ejection fraction, EDV end-diastolic volume, ESV end-systolic volume, 
SV stroke volume.

Isolated CoA (n = 25) CoA + BAV (n = 30) Isolated BAV (n = 30) Controls (n = 25) p values

Ventricular measurements

EF% 65 ± 8 64 ± 5 65 ± 8 64 ± 4 p = 0.91

EDV (ml/m2) 76 ± 19 107 ± 48 119 ± 48 75 ± 10 p < 0.0001

ESV (ml/m2) 27 ± 8 39 ± 15 42 ± 19 27 ± 5 p < 0.0001

SV (ml) 51 ± 16 68 ± 35 77 ± 32 49 ± 7 p < 0.001

LV mass (g/m2) 62 ± 26 84 ± 47 106 ± 54 55 ± 11 p < 0.001

Global Longitudinal Stain (%) − 17.1 ± 2.1 − 17.5 ± 2.0 − 16.5 ± 2.3 − 18.2 ± 2.2 p = 0.02

Global Radial Strain (%) 35.5 ± 8.2 35.7 ± 6.0 33.6 ± 8.0 37.0 ± 6.2 p = 0.16

Global Circumferential Strain 
(%) − 19.9 ± 2.7 − 20.1 ± 2.2 − 19.5 ± 2.4 − 20.4 ± 1.9 p = 0.49

Apical Radial Strain (%) 47.4 ± 14.4 38.1 ± 10.5 43.9 ± 12.2 47.4 ± 12.8 p = 0.03

Apical Circumferential Strain 
(%) − 23.2 ± 3.7 − 18.3 ± 10.7 − 21.3 ± 8.2 − 23.8 ± 3.0 p = 0.02

LV Sphericity Index 0.62 ± 0.08 0.62 ± 0.08 0.59 ± 0.06 0.57 ± 0.06 p = 0.02

LV Conicity Index 0.52 ± 0.07 0.51 ± 0.07 0.51 ± 0.06 0.47 ± 0.05 p = 0.05

Isolated CoA (n = 23) CoA + BAV (n = 30) Isolated BAV (n = 14) Controls (n = 0) p values

Aortic measurements

Arch Gothicity 1.19 ± 0.17 1.28 ± 0.23 1.32 ± 0.30 – p = 0.28

Arch Tortuosity 0.46 ± 0.07 0.46 ± 0.07 0.46 ± 0.06 – p = 1
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morphometric measurements (Fig. 5). Dominant shape features included: overall LV size (Mode 1), height (Mode 
2), sphericity (Mode 3), conicity (Mode 4), and free wall movement (Mode 5). Group differences for shape modes 
confirmed that the isolated CoA group had the shortest and more spherical LV shape (Mode 1, p = 0.02; Mode 
2, p = 0.01; Mode 3, p < 0.001).

Modes 1 and 2 correlated with ventricular volumes (Mode 1 and ESV: p = 0.05, R2 = 0.04; Mode 2 and ESV: 
p < 0.001, R2 = 0.14; Mode 2 and EDV: p < 0.001, R2 = 0.15). Interestingly, GLS correlated with both Mode 2 and 
Mode 3 (Fig. 6), both separately and in a multiple regression(p = 0.01), suggesting that there are functional impli-
cations of rounder and shorter LVs (as observed in CoA patients). Furthermore, Mode 3 was negatively correlated 
with all global strain measurements [i.e. GLS (p = 0.04, R2 = 0.04), GRS (p = 0.01, R2 = 0.06) and GCS (p = 0.01, 
R2 = 0.06)], and sphericity correlated with both global and apical radial (p = 0.001, R2 = 0.09; p < 0.0001, R2 = 0.17) 
and circumferential (p = 0.001, R2 = 0.10; p = 0.04, R2 = 0.04) strain, overall showing that the more spherical LVs 
are associated with reduced strain indices. Also, conicity was correlated with GRS (p = 0.02, R2 = 0.05) and GCS 
(p = 0.02, R2 = 0.05) (Fig. 7).

When assessing the association between sphericity and strain indices in a multiple regression model account-
ing for the presence of AR and AS, only sphericity was significantly associated with GRS (p = 0.01), GCS (p = 0.01) 
and apical radial strain (p < 0.0001). When assessing the association between sphericity and strain indices in a 
multiple regression model accounting for aortic arch gothicity and tortuosity, only sphericity was associated with 
strain (p = 0.05 for GRS; we also noted p = 0.06 for GCS). On the same line, controlling for age and hypertension 
status, the association between M3 (sphericity) and global strain indices remained significant (GRS: p = 0.03, 
R2 = 0.06, and GCS: p = 0.02, R2 = 0.1). The same was observed for CMR sphericity measurements and global 
strain indices (GRS: p = 0.03, R2 = 0.06, and GCS: p = 0.02, R2 = 0.1). Also, controlling for age and hypertension, a 
significant association was confirmed between sphericity and apical strain indices (p < 0.001, R2 = 0.17 for apical 
radial strain and p = 0.01, R2 = 0.08 for apical circumferential strain). Similarly, when assessing the association 
between sphericity and strain indices in a multiple regression model accounting for BMI and sex, only sphericity 
was significantly associated with GRS (p = 0.002), GCS (p = 0.003) and apical radial strain (p < 0.0001). Finally, 
when considering arch architecture, tortuosity and gothicity measurements as derived from 3D aortic shapes 
showed no group differences (Table 2). Whilst not all patients had 3D aortic models and hence tortuosity data, 
a weak positive correlation was found between tortuosity and sphericity (p = 0.02, R2 = 0.08).

Discussion
Left ventricular remodelling is either an adaptive response to ageing or occurs due to exposure to cardiovascular 
disease risk factors and myocardial injury22. LV sphericity index has been used in the literature, in Takotsubo 
cardiomyopathy and chronic aortic regurgitation cohorts, as a reproducible bedside echocardiographic measure 
of geometric changes and a predictor of poor LV function23,24. As LV sphericity index fails to detect regional 
apical abnormalities, a conicity index had also been introduced15. Statistical shape modelling is a novel tool to 
qualitatively and quantitatively assess geometric and functional patterns of the heart that cannot be fully cap-
tured by traditional morphometric imaging measurements. A challenge to test shape characterization in patients 
with myocardial infarction from the Cardiac Atlas Project has been previously carried out to provide additional 

Figure 3.   LV shape templates, showing the average 3D configuration of the ventricles. As labelled, the figure 
illustrates the average shapes of each group separately, both side and top views. The whole population template is 
also shown.
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information over standard clinical measures, but without in-depth interpretation of shape variations1. Also, LV 
shape in a small sample of CoA patients pre- and post-stent was compared to normal patients from the Cardiac 
Atlas Project to further describe LV remodelling through cardiac shape quantification14.

This study focused on CMR LV shape characterization for the first time in four different groups, i.e., isolated 
CoA, CoA + BAV, isolated BAV and healthy controls. A computational analysis was performed to compute LV 
average and shape deformations within the population using a methodological framework previously described 
by our team and colleagues7,18. Qualitative assessment of the group templates showed that patients with isolated 
CoA had a shorter and more spherical configuration on average, also quantitatively confirmed by a higher 
sphericity index. Importantly, it was found that such a configuration appeared to correlate with functional 

Figure 4.   Shape modes. Illustration of the five computed shape modes capturing LV variation (± 2.7 SD from 
the mean configuration, representing the shape mode extremities, or more extreme anatomic features in this 
population). For each mode, it is indicated what the mode overall captures, e.g., Mode 1 = size. SD = standard 
deviation.

Table 3.   Shape modes (M) with individual and cumulative contribution in LV variation (“Inertia %”). This 
represents the % shape variability captured by each shape mode individually and cumulatively.

Mode Inertia% Cumulative inertia%

M1 14.37 14.37

M2 13.64 28.01

M3 9.83 37.84

M4 8.37 46.21

M5 7.33 53.54
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implications, as revealed by significant associations between increasing sphericity and reduced strain indices 
(both global and apical).

The sphericity index has been previously found to be associated with LV diastolic dimensions and able to 
predict systolic dysfunction better than echocardiographic measurements alone in an experimental AR model25. 
In a follow-up study of chronic AR patients to assess LV remodelling and progression, LV volumes and sphericity 
index were increased whereas GLS, GRS, apical rotation and twist were decreased, independent of drug therapy24. 
Of note, in our study, we observed that the relationship between sphericity and reduced strain continued to 
remain significant when accounting for the presence of moderate or severe AR and/or AS in a multivariable 
regression model. Also, in a follow-up study of clinical correlations and prognostic significance of change in 
LV geometric patterns, higher blood pressure, greater BMI, advancing age and male sex have been found to be 
key factors for developing abnormal LV geometry, whereas in our study LV geometry was independent of the 
above factors26.

Another factor that could potentially be associated with the morphology and remodelling of the LV is the 
concurrent variant architecture of the aortic arch. Intuitively a more gothic and tortuous arch would represent 
higher impedance for the underlying LV, and previous observations in patients with repaired CoA suggested an 
association between aortic arch gothicity and tortuosity and parameters of LV function (i.e. ejection fraction, 
volumes and mass)11,27. However, in this population comprising patients with CoA and/or BAV, tortuosity and 
gothicity measurements as derived from 3D aortic shapes showed no group differences. Furthermore, multiple 
regression revealed that sphericity measures remained significantly associated with LV strain whilst tortuosity 

Figure 5.   Correlations for shape modes 3 and 4 and corresponding morphometric LV measurements 
(sphericity and conicity). Sphericity is significantly positively correlated with Mode 3. SD = standard deviation.
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and gothicity did not. It should be noted that in this study all patients had a normal EF (~ 65%), whilst in previous 
studies exploring the functional implications of arch morphology, patients with lower EFs were also included. 
The functional implications of aortic arch shape remain an interesting point to explore in patients with CHD 
(including conotruncal anomalies), and previous work has suggested that, from a functional standpoint, it is 
not associated with a hypertensive response to exercise in patients with repaired CHD28. In relation to LV shape 
changes, it is also interesting to consider that the association between sphericity and radial/circumferential strain 
components remained significant also when accounting for age and hypertension status. This may be reflecting 
of our study population. Previous work observed that LV volumes and mass rise in adolescence and decline with 
age29 and LV shape is the same among the age groups, except for young subjects (< 20 years) in which the highest 
sphericity and lowest conicity were observed30.

Strain difference correlated to shape changes might be partially explained by myocardial fiber re-orientation 
and shortening, although this study lacks this information and future research with diffusion tensor imaging 
could be very interesting in further investigating the architecture of the LV in these patients. There is a growing 
body of evidence showing that LV strain is not only a more sophisticated and thus more useful measure of LV 
systolic function, but that it is also more reproducible and relates to prognosis in a variety of clinical scenarios31. 
Our analysis revealed a functional implication for the observed morphological differences and therefore it may 
be possible to use these techniques to identify patients at higher risk of adverse remodelling, which could allow 
for earlier medical intervention and improved outcomes. Thus, by using this methodological framework on big-
ger cohort and applying clustering (i.e. patient grouping/categorization) we could then unpack the relationship 
between morphological and functional element and risk-stratify the groups. Also, future studies can take advan-
tage of such a powerful tool as the atlas-based disease assessment to reveal haemodynamic insights32. Changes 
in myocardial thickness were beyond the scope of this study but could be included in future investigations.

Figure 6.   GLS was associated with Modes 2 and 3, showing that increased height and sphericity correlate with 
worse LV function.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19163  | https://doi.org/10.1038/s41598-022-15888-y

www.nature.com/scientificreports/

Limitations This study has the disadvantages of being a retrospective design with a relatively small number 
of patients per subgroup. Nevertheless, the overall population (n = 110) is one of the largest described using 
SSM, with previous studies modelling smaller populations7,27,33. Blood pressure data (cuff pressure at the time of 
CMR) were not available, thus a history of hypertension, as found in clinical notes, was reported instead. Finally, 
gothicity and tortuosity measurements were not available in a substantial portion of cases, limiting the assessment 
of the relationship between LV morphology and arch architecture. The observed positive correlation between 
arch tortuosity and ventricle sphericity is intriguing but it should be noted that this was observed in a subset of 
cases that mostly had CoA (53/67). These observations could be expanded in the future but a 3D sequence is a 
necessary requirement for this analysis and this is not necessarily part of the routine clinical imaging protocol.

Conclusions
This study illustrates computationally-derived LV templates, characterizing LV shape in both CoA and BAV 
patients for the first time. The analysis revealed an association between increasing LV sphericity and reduced 
LV strain indices, suggesting a functional implication for the observed morphological differences as well as a 
possible role for computational techniques to identify patients at higher risk of adverse remodelling.

Figure 7.   LV shape correlation with function. This figure illustrates the association between GRS and GCS with 
Mode 3, sphericity and conicity.
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