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Capturing network and dynamic effects in bike sharing system

via fused Lasso

Yunjin Choi1 Haeran Cho2 Hyelim Son3

August 23, 2022

Abstract

Data collected from a bike-sharing system exhibit complex temporal and spatial fea-

tures. We analyze shared-bike usage data collected in Seoul, South Korea, at the level of

individual stations while accounting for station-specific behavior and covariate effects. We

adopt a penalized regression approach with a multilayer network fused Lasso penalty. The

proposed fusion penalties are imposed on networks which embed spatio-temporal linkages,

and capture the homogeneity in bike usage that is attributed to intricate spatio-temporal

features without arbitrarily partitioning the data. We demonstrate that the proposed

approach yields competitive predictive performance and provides a new interpretation of

the data.

Keywords: bike sharing system, fused Lasso, high dimensionality, network analysis

1 Introduction

bike-sharing systems (BSSs) have become increasingly popular in urban areas and have suc-

cessfully complemented public transportation systems in dense metropolitan cities. In addi-

tion to its utility to bike users, the installation of BSSs has been found to reduce the usage

of automobiles (Fishman et al., 2014) and thus traffic congestion and possibly green house

emissions (Hamilton and Wichman, 2018). To fully realize these benefits, efficient allocation

of docking stations and bike docks is essential, which in turn requires understanding the user

behaviour and characteristics of the system based on the abundant data collected on the BSS,

in addition to other urban and environmental factors that are known to influence bike usage.

In line with the increasing popularity of BSSs, there exists a vast literature on the analysis of

bike usage patterns (for and overview, see Shaheen et al. (2010); and Fishman (2016)) Below

we provide a brief summary of the literature on quantitative or statistical analysis of BSS
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usage data which is categorized into two, following Etienne and Latifa (2014). The first branch

addresses the problem of clustering stations in a system based on usage patterns according

to some measure of similarity (Froehlich et al., 2009; Vogel et al., 2011; Etienne and Latifa,

2014). Regarding the BSS as a network, community detection algorithms have also been

adopted for this purpose (Austwick et al., 2013; Borgnat et al., 2013; Zhou, 2015). Gervini

and Khanal (2019) model the demand for bikes as a multivariate temporal point process and

cluster stations based on functional canonical correlations of log-intensity functions.

The second line of research concerns the problem of predicting the station occupancy or

the state of the system at a given time. Faghih-Imani and Eluru (2016) model incoming

and outgoing traffic at multiple stations as a panel with variables accounting for spatial and

temporal autoregressive structures. Liu et al. (2016) model inter-station bike transitioning

for improving the effectiveness of rebalancing operations by predicting the station drop-off

demand. Torti et al. (2021) adopt functional linear regression to model the directed flow

between pairs of administrative divisions that aggregate multiple stations.

In all above, it is well-documented that BSS data show temporal and spatial patterns. To

address such patterns, some previous works pre-process the datasets by, for example, aggre-

gating stations into administrative regions (Torti et al., 2021), partitioning the data using

subject-specific knowledge (Faghih-Imani and Eluru, 2016), or separately analyzing the data

collected on weekdays and at weekends (Liu et al., 2016). In complex urban environments,

however, it may be difficult to find a single clustering of the data that comprehensively ac-

counts for the patterns in the usage of the BSS, since there exist multiple approaches to

produce geographical or temporal divisions according to socioeconomic characteristics, land

zones, traffic infrastructure or population composition. Then, two data points that can be-

long to the same division for one aspect (for example, according to administrative division)

may belong to different divisions in another aspect (for example, business district versus

tourist area). Besides, collecting in-depth information about the multifaceted nature of a

large metropolitan city is typically costly or even impossible.

In this paper, we analyze the hourly bike rental data collected from a BSS in Seoul, South

Korea, by adopting a penalized regression modelling approach. The proposed method utilizes

the whole dataset without partitioning that still addresses the complex features inherent in

the temporal and spatial properties of the data. We model the BSS at the granularity of

individual stations by including station-specific parameters as well as trends and variables

related to air quality and precipitation. Such a model enjoys considerable flexibility and

captures time-dependent usage patterns at individual stations, but it potentially suffers from

the risk of overfitting as the number of parameters (> 4 × 104) increases linearly with the

number of stations.

To address these issues, we propose a multilayer network fused Lasso penalty which extends

the fused Lasso penalty (Tibshirani et al., 2005). In the absence of a natural ordering among
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the stations, the proposed penalty imposes the penalization using a multilayer network and

promotes fusion of the parameters linked by edges in the network. In doing so, we view the

BSS as a multilayer network with the stations serving as its nodes. In the network, the layers

correspond to different hours of a day and within each layer, a pair of stations are connected

based on their geographical distance as a proxy for shared nodal features. The cross-layer

edges come from that the usage patterns tend to vary over the course of a day.

The model fitted from the penalized regression method adaptively captures spatial and tem-

poral homogeneity in bike usage, without (arbitrarily) partitioning the data which potentially

leads to information loss. The degree of homogeneity is determined by the data-driven choice

of the penalty parameter which does not involve the researcher’s subjective decision. Our data

analysis shows the superior predictive performance of the proposed multilayer fused Lasso

penalty over alternative penalization approaches. Also, we propose a new network-based

model complexity measure which reveals that while similarities exist, the stations exhibit

fair amount of heterogeneity. This conclusion supports that partitioning the stations into a

handful of clusters may be inappropriate for such large-scale urban transportation systems.

The proposed idea of treating the underlying structure as a multilayer network, can be useful

in problems beyond that of BSS modelling whenever the data exhibits network-like features.

The remainder of this paper is organised as follows. In Section 2, we describe the notable

properties of BSSs such as station-specific temporal patterns, spatial homogeneity, and co-

variate effects, through an exploratory analysis of bike rental data collected in Seoul, South

Korea. Section 3 introduces our proposed Poisson regression model and the accompanying

penalization strategy that uses of fusion penalties, and provides a network-based interpreta-

tion of the latter. Section 4 demonstrates the effectiveness of our proposed approach on the

examined BSS dataset. We conclude the paper in Section 5, and describe the algorithms for

handling large-scale datasets in Appendix.

2 Exploratory analysis of BSS data

In this section, we describe data collected from “Ddareungi”, a public BSS in Seoul, South

Korea. We use the hourly rental records collected from individuals between April 1, 2019 and

May 30, 2019. 1 By selecting the temperate months of April and May, we avoid dealing with

seasonality or possibly abnormal observations due to extreme weather conditions. We also

exclude three public holidays falling in this period from our analysis. Thus, our final dataset

comprises observations from T = 57 days and S = 1, 505 stations.

Since the launch of the BSS in 2010, the numbers of subscribed users, stations, and available

bikes have steadily increased, as has the number of trips. In addition to this overall trend, the

bike usage data exhibits substantial temporal variations across localities, as well as dependence

1The dataset is available at https://data.seoul.go.kr/.
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on precipitation and air quality, which is in line with the observations of previous BSSs

literature.

Figure 1: Hourly bike rentals from four selected stations over eight weeks, adjusted by the
capacity (number of docking stations) of individual stations. Here, stations ST-767 and ST-
816 are adjacent to one another and so are ST-107 and ST-108. We note that Week 5 contains
three public holidays and show some anomalies.

Bike rental patterns exhibit substantial heterogeneity across stations. In Figure 1, we plot

the hourly bike rental frequencies from selected pairs of stations adjacent to one another over

the examined two-month period. There are clear station-specific patterns over the course of

a day and a week, and nearby stations tend to display similar usage patterns. Specifically, as

stations ST-767 and ST-816 are located in a commercial district with government agencies

and large firms, a spike in bike rental frequency is observed during weekday commuting-time.

On the other hand, stations ST-107 and ST-108 are located along a major riverside park in

Seoul, and hence, are typically used for leisure activities, as evidenced by the large number of

rentals concentrated on weekends. Additionally, although daily peaks and troughs in usage

can be observed, these temporal patterns do not undergo abrupt changes in the sense that

the number of bikes rented out between 9am and 10am is reasonably close to that between
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10am and 11am.

Figure 2: Average daily bike rentals at individual stations on weekdays (left), and weekends
(middle) and their station-wise differences (right). The differences are taken in log-scale for
better visualisation.

Figure 3: Difference in average daily bike rentals (in log-scale) at individual stations due to
precipitation (left) and air quality (right).

Figure 2 plots the daily rental frequencies averaged over weekdays and weekends as well

as their differences (in log-scale) at individual stations. The figure shows that bike usage

behavior differs between weekdays and weekends, and that the degree of variation differs

across stations. Additionally, the last panel of Figure 2 exhibits the presence of local clusters

that share similar weekday/weekend variations.

Figure 3 shows that bike usage depends on the weather condition and air quality. We record

each day as “rainy” if positive precipitation is recorded in any part of the city at any time

of the day. Comparing the average rental frequencies on days with and without precipitation

(in log-scale, see the left panel of Figure 3), precipitation reduces bike usage, as expected.

Similar observations can be made with respect to the air quality: We plot the differences in

average rental frequencies (in log-scale) on days when the air quality was “good” and “very

bad”, in the right panel of Figure 3. The qualitative categorization into “good”, “average”,

“bad,” and “very bad” follows classification system of the Korean Ministry of Environment

based on PM10 and PM2.5 dust concentrations. The relative rental frequencies across the
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BSS display a similar pattern on “good” and “very bad” days, but the volume of bike rentals

is lower on “very bad” days.

In summary, the BSS dataset exhibits the following characteristics:

(C1) There exists an overall increasing trend.

(C2) Bike rentals show station-specific temporal patterns and the transition is reasonably

smooth.

(C3) These patterns are shared across stations that are geographically adjacent to one an-

other.

(C4) Bike rentals are influenced by the weather condition and the air quality.

3 Model and estimation

Motivated by the observations made in (C1)–(C4) in Section 2, we propose a Poisson regression

model for hourly rental frequencies collected from the entire BSS (Section 3.1). Section 3.2

presents the accompanying estimation strategy and introduces the multilayer fused Lasso

penalty, which is designed to capture the characteristics (C2)–(C3). In Section 3.3, we provide

a network interpretation of the proposed penalization technique which aids in understanding

and visualizing the penalty.

3.1 Poisson regression model

Let Yi denote the ith observation representing the hourly rental frequency at station S(i) ∈
S = {1, . . . , S} and hour H(i) ∈ H = {0, . . . , 23}, on day D(i) ∈ D = {Mo, Tu, . . . , Su}
for i = 1, . . . , n, with n = 2, 058, 840 denoting the number of observations in the bike usage

dataset. We denote the time index of the ith observation by t(i) ∈ T = {0, . . . , T − 1}.
Since we consider the period of two months, as described in Section 2 (excluding three public

holidays), we have T = 57. Additionally, zrain
i ∈ {0, 1} and zair

i ∈ {0, 1}4 denote the variables

representing the precipitation and air quality statuses associated with the ith observation,

respectively. Consistent with the literature on BSSs and with the observations made in

Section 2, bike usage depends on the aforementioned variables and we collect the variables

relevant for the ith observation in xi = (S(i), t(i), D(i), H(i), zrain
i , (zair

i )>)> (for an overview,

see Table 1).

Each station in the BSS of Seoul, South Korea, has a fixed number of docks, but unlike other

BSSs, this does not determine the capacity of a station, as it is possible to leave bikes even

if the docks are fully occupied through chaining them to existing bikes. Therefore, we adopt

a Poisson distribution for modelling Yi, the hourly count of the bikes rented out at station
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Table 1: Variables in the BSS dataset.

Variable Range Description

S(i) S = {1, . . . , S} Station node for the ith observation (categorical)
H(i) H = {0, . . . , 23} Hour of a day for the ith observation (categorical)
D(i) D = {Mo, . . . , Su} Day of a week for the ith observation (categorical)
zrain
i {0, 1} Whether it rained or not for the ith observation (categorical)

zair
i {0, 1}4 Whether air quality was very bad, bad, average

or good for the ith observation (categorical)
t(i) {0, . . . , T − 1} Time point for the ith observation (numeric)

S(i), and model the relationship between Yi and xi via Poisson regression (McCullagh and

Nelder, 1989, Chapter 6) as

Yi|xi ∼iid Poisson(µi) with µi ≡ µ(xi) = E(Yi|xi).

One way to model the link between µi and xi is to use the following linear model:

log

(
µi
CS(i)

)
= θS(i) + α t(i) + βrain zrain

i + 〈βair, zair
i 〉+ θhod

H(i) + θdow
D(i) (1)

where βair = (βair
j , 0 ≤ j ≤ 3)>. Here, θhod

h and θdow
d , respectively, contain “hour of a day”

and “day of a week” effects common to all stations. An offset term Cs relates to the capacity

of station s, that is, the number of docks, so that (1) can be interpreted as modelling the

expected rental frequency per hour per station capacity. This model, referred to as the no-

interaction model, does not permit the temporal effects to be station-specific and thus is too

simple to address (C2).

Allowing for interactions between the station and temporal effects, we consider the following

full-interaction model:

log

(
µi
CS(i)

)
= θS(i) + α t(i) + βrain zrain

i + 〈βair, zair
i 〉

+ θhod
H(i) + θdow

D(i) + θhod
S(i),H(i) + θdow

S(i),D(i). (2)

The station-hour and station-day interaction terms θhod
s,h and θdow

s,d allow each station to exhibit

individual temporal patterns. For model identifiability, we set the baseline parameters to zero;

in other words, βair
0 = θhod

0 = θdow
Mo = θhod

s,0 = θdow
s,Mo = θhod

1,h = θdow
1,d = 0.

Mmodel (2) accounts for (C1), (C4), and to a certain extent, (C2) by including the param-

eters α capturing the overall trend, βrain and βair capturing the effects of precipitation and

air quality, and θhod
s,h and θdow

s,d addressing station-specific temporal patterns. In doing so, we

take a different approach from those taken in previous studies in which, after (arbitrarily)

partitioning the dataset according to temporal or spatial variables, or both, individual par-
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titions are separately modelled (e.g., Austwick et al. (2013); Liu et al. (2016)). Instead, by

including the interaction terms, we use the full dataset and avoid any information loss from

data partitioning.

While the full-interaction model enjoys considerably more flexibility than the no-interaction

model in (1), it suffers the risk of overfitting the data with the number of parameters to

be estimated amounting to p = 34 + S + (S − 1) · (23 + 6) = 45, 155. In addition, the

characteristic identified in (C3), that is, stations geographically close to one another tending

to exhibit similar usage patterns, is not adequately accounted for by the model fitted without

any constraint. Such an approach does not benefit from the temporal ordering inherent in the

parameters θhod
s,h , and thus does not fully account for (C2). In the next section, we propose

a penalized maximum likelihood estimation (MLE) methodology for model in (2) with a

multilayer network fused Lasso which explicitly sets out to address these issues.

3.2 Penalized MLE via multilayer network fused Lasso

We bridge the two models (1) and (2) at extreme ends, by adopting a penalized MLE strategy

with a Lasso penalty mposed on the interaction parameters, and the fusion penalties designed

to capture spatial and temporal homogeneity in bike usage patterns observed in the data, that

is, (C2) and (C3).

First proposed by Tibshirani et al. (2005), the fused Lasso augments the `1-penalized least

squares estimation method–or Lasso (Tibshirani, 1996)– with a penalty that takes advantage

of a meaningful ordering of the variables when such is available. This fusion penalty is im-

posed on the `1-norm of successive differences in the parameters corresponding to the ordered

variables and encourages local constancy therein. Its use has been extended beyond regression

problems such as trend estimation (Tibshirani, 2014), change point detection (Harchaoui and

Lévy-Leduc, 2010) and graphical modelling (Danaher et al., 2014) among others.

Under full-interaction model in (2), we partition the parameters into Θ = {θs, s ∈ S},
ΘH = {θhod

h , θhod
s,h , h ∈ H \ {0}, s ∈ S \ {1}}, ΘD = {θdow

d , θdow
s,d , d ∈ D \ {Mo}, s ∈ S \ {1}}

and ∆ = {α, βrain, βair
1 , βair

2 , βair
3 }. We adopt the fusion penalty to pool the information

(i) from adjacent stations for the estimation of Θ, ΘH and ΘD, and

(ii) over the course of a day for the estimation of ΘH .

We also impose a standard lasso penalty to encourage sparsity. Subsequently, our objective

is to minimize the following penalized negative log-likelihood

−`(Θ,ΘH ,ΘD,∆) + λ
∑
s∈S

(∑
h∈H
|θhod
s,h |+

∑
d∈D
|θdow
s,d |

)
+ λN · pN (Θ,ΘH ,ΘD) + λH · pH(ΘH)

(3)
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with respect to Θ, ΘH , ΘD and ∆. Here, `(Θ,ΘH ,ΘD,∆) denotes the log-likelihood

`(Θ,ΘH ,ΘD,∆) = −
n∑
i=1

µi +
n∑
i=1

yi log(µi) + constant,

and µi = µi(Θ,ΘH ,ΘD,∆) is a function of the parameter vectors under (2). The parameter

λ controls the degree of the Lasso penalization and λN and λH control that of the fusion

penalization; below we discuss the construction of the functions pN and pH to achieve the

above goals (i) and (ii).

To capture the similarities between geographically adjacent stations, we define a set of neigh-

boring stations for each station s as Nr(s) = {s′ ∈ S \ {s} : d(s, s′) < r} and its cardinality

by |Nr(s)|, where d(s, s′) denotes the distance between the two stations s and s′ measured as

the crow flies, and r denotes a pre-specified distance. We define

pN (Θ,ΘH ,ΘD) =
∑
s∈S

√√√√|Nr(s)| ∑
s′∈Nr(s)

[∑
h∈H

(φhod
s,h − φhod

s′,h)2 +
∑
d∈D

(φdow
s,d − φdow

s′,d )2

]
(4)

with φhod
s,h = θs + θhod

h + θhod
s,h and φdow

s,d = θs + θdow
d + θdow

s,d which fully encode the station-

specific hourly and daily patterns under (2). The penalty pN forces the pairs of parameters

(φhod
s,h , φ

hod
s′,h) and (φdow

s,d , φ
dow
s′,d ) to fuse neighboring stations s and s′, which encourages them to

exhibit similar hourly and daily patterns and thus addresses the behavior noted in (C3).

Through pN , the estimates of φhod
s,h and φhod

s′,h may fuse even when s′ /∈ Ns(r) as long as they

are connected via intermediate station nodes, and the same applies to the estimates of φdow
s,d

and φdow
s′,d . This may be interpreted that by adopting pN , we pool information across the BSS

to estimate the interaction parameters (for a further discussion, see Section 3.3). The penalty

in (4) is related to the spatial fusion penalties (Sun et al., 2016; Li and Sang, 2019; Sass et al.,

2021) adopted in the spatial regression literature, but is clearly distinguished as we adopt the

group Lasso (Yuan and Lin, 2006) in its formulation. Every parameter inside the square root

is considered to belong to the same group, and the weighting applied with the size of Nr(s)
follows the convention in the group Lasso literature. Then, the parameters associated with

the stations with a large number of neighbors receive more penalization.

Remark 3.1 (Re-parameterization using φhod
s,h and φdow

s,d .). We choose to decompose the station-

specific hourly and daily effects as φhod
s,h = θs+θhod

h +θhod
s,h and φdow

s,d = θs+θdow
d +θdow

s,d . Then,

the proposed method applies the Lasso penalty to the `1-norm of θhod
s,h and θdow

s,d only, which

gives it the interpretation of bridging between no-interaction and full-interaction models. We

choose not to impose the Lasso penalization on θs to avoid cancelling out station-specific

usage patterns, or θhod
h and θdow

d , which represent overall hourly and daily patterns shared

across all stations.
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Recall that, for model identifiability, we set θhod
s,0 = 0. Thus, we can write

∑
h∈H

(φhod
s,h − φhod

s′,h)2 = (θs − θs′)2 +

23∑
h=1

(θhod
s,h − θhod

s′,h)2

and similarly, since θdow
s,Mo = 0, we have∑

d∈D
(φdow
s,d − φdow

s′,d )2 = (θs − θs′)2 +
∑

d∈D\{Mo}

(θdow
s,d − θdow

s′,d )2.

From these observations, we can re-write pN as

pN (Θ,ΘH ,ΘD) =
∑
s∈S

√√√√√|Nr(s)| ∑
s′∈Nr(s)

2(θs − θs′)2 +
23∑
h=1

(θhod
s,h − θhod

s′,h)2 +
∑

d∈D\{Mo}

(θdow
s,d − θdow

s′,d )2

,
which shows that pN implicitly encourages the parameters (θs, θs′) to take similar values when

stations s and s′ are neighbors.

There is a natural temporal ordering inherent in ΘH that gives rise to the fusion penalty in

its canonical form imposed on φhod
s,h :

pH(ΘH) =
∑
s∈S

23∑
h=0

∣∣∣φhod
s,h − φhod

s,h+1

∣∣∣ =
∑
s∈S

23∑
h=0

∣∣∣(θhod
h + θhod

s,h )− (θhod
h+1 + θhod

s,h+1)
∣∣∣ (5)

with θhod
s,24 = θhod

s,0 . Imposing a penalty on pH(ΘH) encourages the consecutive station-specific

hourly effects φhod
s,h and φhod

s,h+1 at a given station s, to become close to one another and

suppress abrupt changes in usage. This reflects the fact that rental counts at each station

rarely undergo radical shifts during the course of the day.

Jointly, pN and pH comprise the proposed multilayer network fusion penalty. We devote

Section 3.3 to its interpretation with the description of the underlying multilayer network.

The impact of the fusion penalty is determined by the sizes of λN and λH , which we select

via cross-validation, as described in Section 4.1. The Alternating Direction Method of Mul-

tipliers (ADMM) algorithm (Boyd et al., 2011) is employed to solve the convex optimization

problem in (3). Efficient implementation of the algorithm requires careful re-parametrization

of model (2), which makes use of the specific structure of the data, and we discuss this in

detail in Appendix A.1.
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3.3 multilayer network interpretation of the fusion penalty

We provide a network interpretation of the proposed penalized regression method. First, we

introduce the following networks that underpin the penalty functions pN and pH :

Nsingle(r) =(S, Esingle(r)) with Esingle(r) = ∪s∈S{(s, s′), s′ ∈ Nr(s)}, (6)

Nmulti(r) =(S ×H, Emulti(r)) with

Emulti(r) =
[
∪h∈H ∪s∈S

{(
(s, h), (s′, h)

)
, s′ ∈ Nr(s)

}]⋃
[∪s∈S {((s, h), (s, h+ 1)) , h ∈ H}] .

(7)

(For an illustrative example of Nsingle and Nmulti, see Figure 4). While both Nsingle and Nmulti

as well as their edge sets depend on the choice of r, we suppress this dependency for simplicity

when it does not cause any confusion.

Figure 4: Illustration of a single-layer network Nsingle (left) and a multilayer network Nmulti

(right). Each dot represents a node (station) and a solid line represents an edge connecting
the nodes within each layer and across adjacent layers.

Network Nsingle is a single-layer, undirected network that is solely determined by the sets

of neighbors Nr(s) of the stations. In this network, a pair of “day of a week” parameters

(φdow
s,d , φ

dow
s′,d ) for each given day d, are encouraged to take values close to one another by the

penalty function pN , provided that the stations belong to the same connected component

of Nsingle. On the other hand, Nmulti is a multilayer, undirected network; we follow the

notational convention of Kivelä et al. (2014), in which the set H serves as a set of elementary

layers for the hourly aspect, and each edge connects a pair of node-layer tuples (s, h) and

(s′, h′) for some s, s′ ∈ S and h, h′ ∈ H. Each pair of the “hour of a day” parameters φhod
s,h

and φhod
s′,h′ is encouraged to fuse with one another by the penalty functions pN and pH , if the

corresponding pair of nodes are connected in Nmulti.

Next, we define networks whose edges are determined by the coefficient estimates from the

penalized MLE. Let φ̂hod
s,h and φ̂dow

s,d denote the estimates of the parameters φhod
s,h and φdow

s,d ,
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respectively; their values depend on the tuning parameters (r, λ, λN , λH); however, we omit

this dependence for simplicity. Then, the networks associated with these estimates are defined

as

N̂D,d = (S, ED,d) with ED,d =
{

(s, s′), s 6= s′ : φ̂dow
s,d = φ̂dow

s′,d

}
for each d ∈ D,

N̂H = (S ×H, EH) with EH = ∪h∈H ∪s∈S
{

((s, h), (s′, h′)), (s, h) 6= (s′, h′) : φ̂hod
s,h = φ̂hod

s′,h′

}
(8)

As with Nsingle, the networks N̂D,d are single-layer networks and an edge joins two station

nodes s and s′ when their node features (i.e. parameter estimates of φdow
s,d and φdow

s′,d for a

given d ∈ D) are identical, possibly due to the fusion penalty but not necessarily so. The

network N̂H , as with Nmulti, is a multilayer network with the hourly layer given by H, and

an edge is formed between a pair of nodes (s, h) and (s′, h′) when the estimates of φhod
s,h and

φhod
s′,h′ agree at (s, h) 6= (s′, h′). (For an illustrative example of N̂H , see Figure 5).

Figure 5: Illustration of multilayer networks. Left: Each layer of Nmulti (see (7)) embeds
the linkages between the stations determined by their geographical distances at a given hour
h, and the station at layer h is linked to itself at layers h − 1 and h + 1, which underpins
how φhod

s,h are encouraged to be fused by pN and pH . Middle: N̂H (see (8)) is determined

by the values of the estimates of φhod
s,h with an edge indicating that the connected estimates

share the identical values. Right: A multilayer network formed with its edges obtained as an
intersection of the edge sets of Nmulti and N̂H , which contains four connected components.

For two networks (either single- or multilayer) Ni = (V, Ei), i = 1, 2, sharing the same node

set V, denote by N1 ∩ N2 = (V, E1 ∩ E2) the network formed by taking the intersection of

their edge sets. Our proposed penalized regression method takes as an input the observable

networks Nsingle and Nmulti, which inform spatial and temporal proximity. Then, it outputs

the networks capturing the homogeneity between the stations nodes, namely, Nsingle ∩ N̂D,d

(on a given day of a week d) and Nmulti ∩ N̂H (along the hourly layer), which can provide

insights into BSS management and urban planning. Depending on the choice of penalty

parameters, the output networks are not necessarily sparse; in fact, this is the case in our data
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analysis reported in Section 4. This distinguishes our approach from the existing literature

on clustering or partitioning the dataset using spatial or temporal variables prior to analysis.

4 Data analysis

4.1 Tuning parameter selection

For the selection of r that determines the set of neighbors Nr(s) for each station s, we examine

the distance between each station and its 10 nearest stations, that is, ds,i, i = 1, . . . , 10, for all

s ∈ S. The median of the first quartile of ds,i over s ∈ S is 762 meters, from which we choose

to consider r ∈ {750, 1500}. The network Nsingle(r) (see (6)) with r = 750 has 34 connected

components, whereas the network with r = 1500 has two connected components. Later, we

show that our penalized regression approach is not sensitive to r on the BSS dataset through

the adaptive selection of the penalty parameters discussed below.

The parameters λ, λN , and λH control the overall complexity of the fitted model, and the

latter two, in particular control the degree of spatial and temporal homogeneity induced by

the parameter estimates of Θ, ΘH and ΘD. We propose the selection of the tuning parameters

via cross validation (CV). In the penalized regression literature, CV is typically performed by

randomly partitioning the data into five or ten folds, which, in the case of the BSS dataset,

ignores the temporal structure therein. Instead, we make use of the fact that our dataset

covers seven weekends, and adopt seven-fold CV, in which each fold is ensured to include a

balanced number of all seven days of the week.

As a CV measure, we adopt the mean squared Pearson residuals (MSPR):

CV(r, λ, λN , λH) =
1

7

7∑
j=1

1

nj

nj∑
i=1

(Y
(j)
i − µ̂(j)

i (r, λ, λN , λH))2

µ̂
(j)
i (r, λ, λN , λH)

(9)

where for the jth fold, nj denotes the total number of observations, Y
(j)
i the ith observation

and µ̂
(j)
i (r, λ, λN , λH) is the corresponding estimate of the mean from the model fitted to the

remaining data with the given tuning parameters. We evaluate CV(r, λ, λN , λH) on grids of

equispaced values on a log-scale for (λ, λN , λH) and select the combination that returns the

smallest CV.

4.2 Analysis of the BSS data

4.2.1 Effects of penalization

To assess the effect of penalization, we compare our multilayer network fused Lasso-based

penalized regression approach (referred to as “fused Lasso”) with the methods that adopt

either the fusion penalty or the Lasso penalty only, which are referred to as “fusion-only” and
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“Lasso-only”. We also consider models (1) and (2) fitted without any penalization, referred

to as “no-interaction” and “full-interaction”, respectively.

Predictive performance Due to small sample size and inherent non-exchangeability of

the data, we adopt CV measures as an indicator of the predictive performance. In Table 2

and Figure 6, we report the fold-wise MSPRs involved in the seven-fold CV in (9) as well as

the overall CV error, all evaluated at the penalty parameters selected to minimize the overall

CV error for the respective methods.

When comparing no-interaction and full-interaction methods, the flexibility afforded by allow-

ing for station-specific temporal effects proves useful in enhancing the predictive performance

as the latter model consistently attains a considerably smaller MSPR. We observe further

improvement when appropriate penalization is applied to the interaction parameters. In par-

ticular, adopting the proposed fused Lasso penalty returns the minimum CV error across

the seven folds compared to the other methods regardless of the choice of r. Between the

fusion-only and the Lasso-only methods, the former outperforms the latter, indicating that

capturing across-station homogeneity pays off by accounting for the stylized features of the

BSS data that neighboring stations exhibit similar usage patterns, (see (C3)). The MSPR

attained with r = 1500 is consistently smaller, albeit by a small margin, than that attained

with r = 750. Recalling that the choice r = 1500 reduces the number of connected compo-

nents in Nsingle(r) compared to when r = 750 (from 54 to 2), this result is indicative of the

benefit of pooling information across the wider spatial networks of BSSs.

Table 2: Mean squared Pearson residuals (MSPRs) from each fold used in the seven-fold CV
and the overall CV error as measured in (9), with the penalty parameters selected to minimize
the latter for the respective methods where relevant.

Fold-wise CV
Method 1 2 3 4 5 6 7 Average

Fused Lasso (750m) 1.558 1.423 1.424 1.497 1.449 1.831 1.683 1.552
Fused Lasso (1500m) 1.553 1.420 1.420 1.494 1.443 1.826 1.675 1.547

Fusion-only (750m) 1.572 1.443 1.445 1.512 1.473 1.861 1.701 1.569
Fusion-only (1500m) 1.568 1.440 1.438 1.511 1.463 1.847 1.700 1.567
Lasso-only 1.609 1.479 1.473 1.537 1.493 1.902 1.728 1.603
Full-interaction 1.729 1.601 1.556 1.629 1.596 2.016 1.841 1.710

No-interaction 1.991 1.857 1.791 1.918 1.838 2.264 2.118 1.969

Sparsity and model complexity We examine the reduction in complexity brought about

by the Lasso penalty and the fusion penalties pN and pH in (3). The sparsity induced by

the Lasso penalty is easily measured by the proportion of non-zero coefficient estimates (see

the last column of Table 3). The model fitted with the fused Lasso penalty is approximately

13% (resp. 20%) less complex than the full-interaction model when r = 750 (resp. r = 1500),
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Figure 6: Mean squared Pearson residuals (MSPRs) from each fold used in the seven-fold
CV and the overall CV error as measured in (9), with the penalty parameters selected to
minimize the CV error for the respective methods.

yet the former has much better predictive power than the latter as Table 2 shows. At the

same time, further sparsity induced by adopting the Lasso-only penalty does not improve the

prediction performance. The fusion-only method does not set any parameter estimate to be

exactly zero.

Table 3: Model complexity (MC) of the models fitted the penalty parameters selected to
minimize the CV error for the respective methods (where relevant). We report the overall
MC out of all parameters (∆ ∪ Θ ∪ ΘH ∪ ΘD) as well as that out of the interaction param-
eters representing hour-of-a-day (φhod

s,h ) and day-of-a-week (φdow
s,d ) effects. Additionally, the

proportion of non-zero coefficient estimates is presented.

Parameter set Proportion of
Method All ΘH \ {θhod

h , h ∈ H} ΘD \ {θdow
d , d ∈ D} non-zeros

Fused Lasso (750m) 0.828 0.790 0.977 0.867
Fused Lasso (1500m) 0.848 0.827 0.927 0.795

Fusion-only (750m) 0.903 0.885 0.974 1.000
Fusion-only (1500m) 0.853 0.836 0.916 1.000

Lasso-only – – – 0.632

We use the networks introduced in Section 3.3 to define a model complexity (MC) measure

that evaluates the effect of the fusion penalties. Simply put, the model represents the propor-

tion of coefficient estimates that are not fused by the penalties pN and pH , out of the total

number of parameters in model in (2), as

MC(r, λ, λN , λH) =
1

p

34 + C(Nmulti(r) ∩ N̂H) +
∑

d∈D\{Mo}

C(Nsingle(r) ∩ N̂D,d)

 (10)

where we suppress the dependence on (r, λ, λN , λH) for notational simplicity. Recall that 34

represents the number of parameters that are not penalized, namely α, βrain, {βair
j , 1 ≤ j ≤ 3},
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{θhod
h , h ∈ H} and {θdow

d , d ∈ D}. Denoting the number of connected components in a

network N by C(N), the number of unique parameter estimates of φhod
s,h , which are not fused

by penalization, is given by C(Nmulti(r) ∩ N̂H). Figure 5 shots that the network Nmulti ∩ N̂H

contains four connected components; consequently, C(Nmulti ∩ N̂H) = 4. Similarly, We can

find the number of unique parameter estimates for φdow
s,d . In (10), we exclude the intersection

network Nsingle(r)∩ N̂D,Mo from the numerator since, due to model identifiability constraints,

we have φdow
s,Mo = φhod

s,0 = θs. That is, the fusion among the station-specific intercept parameters

θs has already been accounted for by Nmulti(r)∩N̂H at layer h = 0. We refer to Appendix A.2

for the efficient calculation of MC which requires some care owing to the multilayered nature

of the network in (7) underlying the penalties. We analogously evaluate the complexity of

the model fitted using the fusion-only method (for the full results, see Table 3).

The MC ranges between 0 and 1, and when its value is closer to 0, it implies that most stations

exhibit homogeneous behavior with their neighboring stations. The resultant intersection

networks Nmulti(r) ∩ N̂H and Nsingle(r) ∩ N̂D,d are not highly homogeneous, as evidenced by

the MC being close to one, that is, many stations exhibit individual behavior. In other words,

station-specific parameters account for a large portion of the variation in bike usage, which

supports modelling the data at the individual station level. The high degree of heterogeneity

across the BSS can be attributed to the fact that Seoul is a large city with high population

density, so that each station is associated with multiple aspects of usages. This indicates that

partitioning stations into a handful of clusters may ignore the complex nodal features that

drive the usage of bikes at each station. Instead, our proposed multilayer fused Lasso method

imposes fusion penalties through the networks Nsingle(r) and Nmulti(r), and learns the degree

of homogeneity in bike usage patterns across the BSS in a data-driven manner.

Generally, more homogeneity is observed in the hour-of-a-day effects than in the day-of-a-

week effects. Also, since the choice of r = 1500 leads to a highly connected Nsingle(r), it leads

to a fitted model with a larger MC than the choice of r = 750. Overall, the fused Lasso

method tends to further reduce the MC compared to the fusion-only method. We attribute

this to the fact that the Lasso penalty enhances the effect of the fusion penalty by coercing

estimated values to be zeros.

4.2.2 Parameter estimates

There exist methods for performing inference in high-dimensional generalized linear models

(Belloni et al., 2016; Cai et al., 2021), but they do not easily apply to our setting because of

the presence of a fusion penalty. Instead, we examine the coefficient estimates obtained from

different folds used in the cross validation step in (9) (for the estimates of the parameters

associated with the overall trend and the effects of the precipitation and the air quality,

obtained from each fold as well as from the full data, see Table 4). We only report the results

when r = 1500 in the main text because we obtain nearly identical estimates when r = 750
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as shown in Table B.1 in Appendix B). Table 4 shows that, while the values of the estimates

vary slightly from one fold to another, their signs and overall magnitude do not change.

This confirms the observations (C1) and (C4) made in Section 2, that is, the variables have

meaningful effects on overall bike usage across the system.

Table 4: Estimated coefficients for the covariate effects by the proposed fused Lasso regression
method from each fold used in the seven-fold CV and from the full data when r = 1500. For
comparison, we also report the estimates obtained with fusion Lasso-only, full-interaction and
no-interaction methods.

Fold Full data
1 2 3 4 5 6 7 Fused Fusion-only Lasso-only Full No

α 0.057 0.052 0.051 0.050 0.050 0.054 0.050 0.052 0.052 0.052 0.052 0.052
βrain -2.301 -2.356 -2.380 -2.376 -2.238 -2.182 -2.382 -2.324 -2.325 -2.321 -2.323 -2.310
βair

1 0.098 0.141 0.100 0.177 0.124 0.169 0.168 0.140 0.141 0.138 0.138 0.137
βair

2 0.117 0.174 0.099 0.177 0.133 0.159 0.188 0.149 0.150 0.145 0.144 0.146
βair

3 0.218 0.285 0.251 0.169 0.259 0.321 0.310 0.275 0.278 0.271 0.276 0.243

Figure 7: Parameter estimates for φhod
h , h ∈ H (left) and φdow

d , d ∈ D (right) from each fold
used in the seven-fold CV and from the full data when r = 1500.

Figure 8: Estimated station-specific bike demands in log-scale (given by θ̂s + θ̂hod
h + θ̂dow

d +

θ̂hod
s,h + θ̂dow

s,d ) from the model fitted with r = 1500 at 8am on Tuesdays (left), at 8pm on
Sundays (middle) and their differences (right).

In Figure 7, we plot the estimates of θhod
h and θdow

d which are shared by all the stations

belonging to the BSS. We observe that the smooth transition over the course of a day and a

week is well captured across the seven folds, and there are peaks corresponding to the high

demand by commuters. In addition, we plot the combined effects of temporal variables on the
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mean bike demand (in log-sale), namely θ̂s+ θ̂hod
h + θ̂dow

d + θ̂hod
s,h + θ̂dow

s,d under (2), for all stations

s ∈ S when (h, d) = (8,Tu) (8am on Tuesday) and (20, Su) (8pm on Sunday) (see Figure 8).

As expected the spatial distribution of bike usage concentration is markedly different when

(h, d) = (8,Tu) and (h, d) = (20, Su), as bikes are primarily used for commuting at 8am on

Tuesdays and for leisure activities at 8pm on Sundays. In Figures 7 and 8, we report the

results obtained with r = 1500 only. (For those obtained with r = 750, indicating that the

parameter estimates are not sensitive to the choice of r, we refer to Figures B.1 and B.2 in

Appendix B.)

5 Conclusions

In this study, we examine the problem of modelling usage data collected from a BSS span-

ning a large metropolitan city. We model the data at the granularity of individual stations

by incorporating covariate effects as well as spatial and temporal characteristics commonly

observed in bike usage data. The proposed multilayer fused Lasso penalty is imposed on the

networks encoding the geographical proximity of the stations with an additional hourly layer,

and successfully captures the spatial and temporal homogeneity. Combined with the data-

driven choice of penalty parameters, our penalized regression approach strikes a good balance

between a simplistic model that does not allow for station-specific behavior, and a complex

model suffering from high dimensionality, by returning a fitted model with good predictive

performance.

We envision that the proposed method is applicable to different datasets with network-like

features, such as those collected from large transportation, communication, or logistic sys-

tems. In particular, when information about the factors driving link homophily (such as the

nodal features related to land use, slope of terrain, nearby landmarks, and other modes of

transportation in the case of BSSs) is not readily available, our penalized regression approach

enables learning of the linkages in an unobservable network from the fusion of parameters

induced by the penalties defined on an observable network (such as those determined by the

distance between pairs of stations).
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Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A. (2014).

Multilayer networks. Journal of Complex Networks, 2(3):203–271.

Li, F. and Sang, H. (2019). Spatial homogeneity pursuit of regression coefficients for large

datasets. Journal of the American Statistical Association, 114:1050–1062.

Liu, J., Sun, L., Chen, W., and Xiong, H. (2016). Rebalancing bike sharing systems: A multi-

source data smart optimization. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1005–1014.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall.

Sass, D., Li, B., and Reich, B. J. (2021). Flexible and fast spatial return level estimation via

a spatially fused penalty. Journal of Computational and Graphical Statistics, 30(4):1124–

1142.

Shaheen, S. A., Guzman, S., and Zhang, H. (2010). Bikesharing in europe, the americas, and

asia: past, present, and future. Transportation research record, 2143(1):159–167.

Sun, Y., Wang, H. J., and Fuentes, M. (2016). Fused adaptive Lasso for spatial and temporal

quantile function estimation. Technometrics, 58(1):127–137.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 58(1):267–288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and

smoothness via the fused Lasso. Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), 67:91–108.

20



Tibshirani, R. J. (2014). Adaptive piecewise polynomial estimation via trend filtering. The

Annals of Statistics, 42(1):285–323.

Torti, A., Pini, A., and Vantini, S. (2021). Modelling time-varying mobility flows using

function-on-function regression: Analysis of a bike sharing system in the city of Milan.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 70(1):226–247.

Vogel, P., Greiser, T., and Mattfeld, D. C. (2011). Understanding bike-sharing systems using

data mining: Exploring activity patterns. Procedia-Social and Behavioral Sciences, 20:514–

523.

Wahlberg, B., Boyd, S., Annergren, M., and Wang, Y. (2012). An admm algorithm for a class

of total variation regularized estimation problems. IFAC Proceedings Volumes, 45(16):83–

88.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67.

Zhou, X. (2015). Understanding spatiotemporal patterns of biking behavior by analyzing

massive bike sharing data in chicago. PloS one, 10(10):e0137922.

21



A Computational considerations

A.1 ADMM algorithm for optimization of penalized MLE

A.1.1 ADMM framework

We adopt the alternating direction method of multipliers (ADMM) algorithm for fitting (3)
based on Wahlberg et al. (2012), where the optimization of objective functions with fusion
penalties is discussed. We recall that the fused Lasso penalties lead to the objective function
of the form

min
Θ,ΘH ,ΘD,∆

n∑
i=1

µi(Θ,ΘH ,ΘD,∆)−
n∑

i=1

yi log(µi(Θ,ΘH ,ΘD,∆))

+ λ
∑
s∈S

(∑
h∈H

|θhod
s,h |+

∑
d∈D

|θdow
s,d |

)

+ λN

∑
s∈S

√√√√√|Nr(s)|
∑

s′∈Nr(s)

2(θs − θs′)2 +

23∑
h=1

(φhod
s,h − φhod

s′,h)2 +
∑

d∈D\{Mo}

(φdow
s,d − φdow

s′,d)2


+ λH

∑
s∈S

23∑
h=0

∣∣∣φhod
s,h − φhod

s,h+1

∣∣∣ . (A.1)

In this section, we treat Θ, ΘH and ΘD as row-vectors without confusion:

Θ =(θs, s ∈ S),

ΘH =
(

(θhod
s,1 , s ∈ S), . . . , (θhod

s,23, s ∈ S), (θhod
1 , . . . , θhod

23 )
)
,

ΘD =
(

(θdow
s,Mo, s ∈ S), . . . , (θdow

s,Su, s ∈ S), (θdow
Mo , . . . , θ

dow
Su )

)
.

By re-parametrizing the fused lasso penalty terms, we re-write (A.1) as,

min
Θ,ΘH ,ΘD,∆,Γ,Ψ

n∑
i=1

µi(Θ,ΘH ,ΘD,∆)−
n∑
i=1

yi log(µi(Θ,ΘH ,ΘD,∆))

+ λ
∑
s∈S

(∑
h∈H
|θhod
s,h |+

∑
d∈D
|θdow
s,d |

)
+ λN · P̃N (Γ) + P̃H(Ψ) + IC (Θ,ΘH ,ΘD,Γ,Ψ) . (A.2)

Here, the penalty functions are defines as

P̃N (Γ) =
∑
s∈S

√√√√√|Nr(s)| ∑
s′∈Nr(s)

(γs,s′)2 +

23∑
h=1

(
γhod
s,s′,h

)2
+

∑
d∈D\{Mo}

(
γdow
s,s′,d

)2

,
where Γ = (γs, s ∈ S) with γs =

(
γs,s′ , (γ

hod
s,s′,h, h ∈ H \ {0}), (γdow

s,s′,d, d ∈ D \ {Mo})), s′ ∈ Nr(s)
)
,
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and

P̃H(Ψ) =
∑
s∈S

∑
h∈{0,...,23}

|ψs,h| with Ψ = (ψs = (ψs,0, . . . , ψs,23), s ∈ S) .

In addition, IC denotes an indicator function on the constraint set C which forces the newly

defined penalty functions P̃N (Γ) (resp. P̃H(Ψ)) to be the same as PN (Θ,ΘH ,ΘD) (resp.

PH(Θ,ΘH ,ΘD)) such that

IC(z) =

0 if z ∈ C

∞ otherwise.

The constraint set C is a subset of |(Θ,ΘH ,ΘD,Γ,Ψ)|-dimensional space whose elements fulfil

γs,s′ =
√

2(θs − θs′),

γhod
s,s′,h = θs − θs′ + θhod

s,h − θhod
s′,h for h ∈ H \ {0},

γdow
s,s′,d = θs − θs′ + θdow

s,d − θdow
s′,d for d ∈ D \ {Mo} (A.3)

for all s, s′ ∈ S, and

ψs,h = θhod
h+1 − θhod

h + θhod
s,h+1 − θhod

s,h for h ∈ {1, . . . 22},

ψs,0 = θhod
1 + θhod

s,1 and ψs,23 = −θhod
23 − θhod

s,23, (A.4)

for all s ∈ S, where (A.3) and (A.4) account for that the baseline parameters are set to be

zero.

To utilize ADMM, we rewrite the objective function (A.2) as follows:

min
Θ,ΘH ,ΘD,∆,Γ,Ψ,

ZΘ,ZΘH
,ZΘD

,SΓ,SΨ

n∑
i=1

µi(Θ,ΘH ,ΘD,∆)−
n∑
i=1

yi log(µi((Θ,ΘH ,ΘD,∆)))

+ λ
∑
s∈S

(∑
h∈H
|θhod
s,h |+

∑
d∈D
|θdow
s,d |

)
+ λN · P̃N (Γ) + P̃H(Ψ) + IC (ZΘ, ZΘH

, ZΘD
, SΓ, SΨ) (A.5)

subject to (Θ,ΘH ,ΘD) = (ZΘ, ZΘH
, ZΘD

) and (Γ,Ψ) = (SΓ, SΨ).

The ADMM optimizes (A.5) in three steps as follows:

Step 1: Update the primal variables as

(Θk+1,Θk+1
H ,Θk+1

D ,∆k+1) = arg min
Θ,ΘH ,ΘD,∆

n∑
i=1

µi(Θ,ΘH ,ΘD,∆)−
n∑

i=1

yi log(µi((Θ,ΘH ,ΘD,∆)))
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+ λ
∑
s∈S

(∑
h∈H

|θhod
s,h |+

∑
d∈D

|θdow
s,d |

)
+
ρ

2

∥∥(Θ,ΘH ,ΘD)− (Zk
Θ, Z

k
ΘH

, Zk
ΘD

) + (Uk
Θ, U

k
ΘH

, Uk
ΘD

)
∥∥2
, (A.6)

Γk+1 = arg min
Γ

λN P̃N (Γ) +
ρ

2

∥∥Γ− Sk
Γ + T k

Γ

∥∥2
, (A.7)

Ψk+1 = arg min
Ψ

λH P̃N (Ψ) +
ρ

2

∥∥Ψ− Sk
Ψ + T k

Ψ

∥∥2
, (A.8)

where (UΘ, UΘH
, UΘD

), TΓ, and TΨ are dual variables associated with the constraints (Θ,ΘH ,ΘD) =

(ZΘ, ZΘH
, ZΘD

), Γ = SΓ and Ψ = SΨ, respectively.

Step 2: Update (ZΘ, ZΘH
, ZΘD

, SΓ, SΨ) by projecting (Θk+1 + UkΘ,Θ
k+1
H + UkΘH

,Θk+1
D +

UkΘD
,Γk+1 + T kΓ ,Ψ

k+1 + T kΨ) onto the constraint set C, as

(
Zk+1

Θ , Zk+1
ΘH

, Zk+1
ΘD

, Sk+1
Γ , Sk+1

Ψ

)
=
∏
C

(Θk+1 + Uk
Θ,Θ

k+1
H + Uk

ΘH
,Θk+1

D + Uk
ΘD
,Γk+1 + T k

Γ ,Ψ
k+1 + T k

Ψ), (A.9)

with
∏
C denoting the projection operator.

Step 3: Update the dual variable as

(Uk+1
Θ , Uk+1

ΘH
, Uk+1

ΘD
) = (Uk

Θ, U
k
ΘH

, Uk
ΘD

) + (Θk+1,Θk+1
H ,Θk+1

D )− (Zk+1
Θ , Zk+1

ΘH
, Zk+1

ΘD
),

(T k+1
Γ , T k+1

Ψ ) = (T k
Γ , T

k
Ψ) + (Γk+1,Ψk+1)− (Sk+1

Γ , Sk+1
Ψ ).

While Step 3 is straightforward, Steps 1 and 2 involve relatively heavy computations. The

detail of Step 1 and Step 2 are discussed in the following subsections.

A.1.2 Computational details of Step 1

Let P = (Θ,ΘH ,ΘD).

Step 1.1: We update (Θ,ΘH ,ΘD,∆) by minimizing the objective function in (A.6). It in
turn can be optimized via Iteratively Reweighted Least Square (IRLS) method with the Lasso
penalty as below, at some given fixed values for (ZkΘ, Z

k
ΘH
, ZkΘD

) and (UkΘ, U
k
ΘH
, UkΘD

). The
j + 1th iteration of IRLS is as follows:

(Θj+1,Θj+1
H ,Θj+1

D ,∆j+1) = arg min
Θ,ΘH ,ΘD,∆

X


Θ>

Θ>H

Θ>D

∆>

− zj


>

Wj

X


Θ>

Θ>H

Θ>D

∆>

− zj


+ λ

∑
s∈S

(∑
h∈H

|θhod
s,h |+

∑
d∈D

|θdow
s,d |

)
+
ρ

2

∥∥∥(Θ,ΘH ,ΘD)− (Zk
Θ, Z

k
ΘH

, Zk
ΘD

) + (Uk
Θ, U

k
ΘH

, Uk
ΘD

)
∥∥∥2

, (A.10)
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where X is a data matrix of dimension n × (|∆| + (|D| + |H| − 1) · |S|). Also, Wj is an

n × n diagonal matrix with its ith entry being µ̂i(Θ
j ,ΘH

j ,ΘD
j ,∆j), the fitted value of the

ith observation after the jth iteration, and zj is a length-n vector defined as follows:

zj = X(Θj ,Θj
H ,Θ

j
D,∆

j)> +
(
Wj

)−1
y − 1n.

Here, y denotes a length-n vector, the ith entry of which is the ith response observation,
and 1n denots an all-one vector of length n. The objective function in (A.10) can further be
written as the `1-penalized least squares estimation problem as follows:

(Θj+1,Θj+1
H ,Θj+1

D ,∆j+1) =

arg min
Θ,ΘH ,ΘD,∆

∥∥∥Xj
ext(Θ,ΘH ,ΘD,∆)> − zj

ext

∥∥∥2

+ λ
∑
s∈S

(∑
h∈H

|θhod
s,h |+

∑
d∈D

|θdow
s,d |

)
, (A.11)

where Xj
ext and zjext are a matrix of size (n+ |P|)×(|P|+ |∆|) and a vector of length (n+ |P|),

respectively, such that

Xj
ext =

( (
Wj

)1/2
X

√
ρI|P| 0|P|×|∆|

)
,

zjext =

( (
Wj

)1/2
zj

√
ρ(ZkΘ, Z

k
ΘH
, ZkΘD

)> −√ρ(UkΘ, U
k
ΘH
, UkΘD

)>

)
.

We evaluated (A.11) using the R package glmnet (Friedman et al., 2020).

Step 1.2: For (A.7)–(A.8), we obtain Γk+1 and Ψk+1 using a soft-thershold operator Sλ
that takes an input vector and outputs Sλ(v) = (1− λ/‖v‖)+ · v with Sλ(0) = 0 and c+ =

max{0, c}.

γk+1
s = S

ρ−1
√
Nr(s)λN

(
Skγs
− T kγs

)
for each s ∈ S,

ψk+1
s,h = Sρ−1λH (SkΨ,s,h − T kΨ,s,h) for s ∈ S, h ∈ H.

A.1.3 Computational details of Step 2

In Step 2, the update of (ZΘ, ZΘD
, ZΘH

, SΓ, SΨ) is achieved via projection in (A.9), where C is

the constraint set specified in (A.3) and (A.4). This step is the bottleneck of the computation

due to the large number of variables to be updated. In this section, the details of the procedure

is illustrated. Throughout, we denote by I and 0 an identity matrix and a matrix of zeros,

respectively, and their dimensions are determined by the context unless specified.

The projection (A1, A2, A3, B1, B2) =
∏
C(E1, E2, E3, F1, F2) is equivalent to the following

25



minimization problem

min
A1,A2,A3,B1,B2

‖A1 − E1‖2 + ‖A2 − E2‖2 + ‖A3 − E3‖2 + ‖B1 − F1‖2 + ‖B2 − F2‖2

subject to B1 = (A1, A2, A3)D>Θ and B2 = (A1, A2, A3)D>H,

where DΘ and DH are matrices encoding the constraints (A.3) and (A.4), respectively. Then,
the above optimization problem can be re-written as

min
A1,A2,A3

‖A1 − E1‖2 + ‖A2 − E2‖2 + ‖A3 − E3‖2 + ‖(A1, A2, A3)D>Θ − F1‖2 + ‖(A1, A2, A3)D>H − F2‖2,

and its optimizer is the solution of its normal equation

(A1, A2, A3)
(
I + D>ΘDΘ + D>HDH

)
︸ ︷︷ ︸

P

= (E1, E2, E3) + F1DΘ + F2DH. (A.12)

Once the inverse of P is available, the solution (A1, A2, A3) of (A.12) can be calculated in a

straightforward manner. Also, the inverse matrix remains the same throughout the iterations

and thus no re-computation is required. In our problem, however, as the size of the matrix

P is huge, its dimension reaching approximately 47, 000 × 47, 000, and inverting this matrix

can be very demanding with the computational complexity of O(1011). Additionally, even if

we can compute the inverse matrix, it is huge in size and occupies a large portion of memory

space which hinders efficient computation. Given the situation, we avoid direct computation

of P−1 and find the solution of (A.12) by utilizing the specific structure of the matrix P.

We start by defining an M × |S| matrix Dnet to be a matrix that represents the network

constructed from the neighborhood relations so that each row is associated with two connected

stations where M =
∑

s∈S |Nr(s)|. Defining Rind : S × S → {1, . . . ,M} to be the mapping

that returns the row index of s− s′ connection for s′ ∈ Nr(s), the Rind(s, s′)-th row of Dnet

is given by es − es′ , where ei is a standard basis vector of length |S|. That is, each row of

Dnet is composed of {−1, 0, 1} with exactly one 1 and one −1 and the rest of the entries are

all 0s. By construction, the Laplacian matrix, say Lnet, of the network can be represented by

Dnet as follows:

Lnet =
1

2
D>netDnet.

Then, we have

DnetΘ
> = (θs − θs′ , s′ ∈ Nr(s), s ∈ S)>,

Dnet(Θ
◦
H,h)> = (θhod

s,h − θhod
s′,h, s

′ ∈ Nr(s), s ∈ S)>,

Dnet(Θ
◦
D,d)

> = (θdow
s,d − θhod

s′,d , s
′ ∈ Nr(s), s ∈ S)>,
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where Θ◦H,h = (θhod
s,h , s ∈ S) and Θ◦D,d = (θdow

s,d , d ∈ D).

The matrix DΘ can be written with Dnet as

Dnet 0 0 0 −Dnet 0 0 0 0

0
. . . 0 0

... 0 0 0 0

0 0 Dnet 0 −Dnet 0 0 0 0

0 0 0 0 −Dnet Dnet 0 0 0

0 0 0 0
... 0

. . . 0 0

0 0 0 0 −Dnet 0 0 Dnet 0

0 0 0 0 −
√

2Dnet 0 0 0 0




 |S| · |D◦| {|D◦|  |S|  |S| · |H◦| {|H◦|


M · |D◦|


M · |H◦|

{
M

where D◦ = D \ {Mo} and H◦ = H \ {0} so that the baseline parameters are removed.

Denoting 1
2Lnet by L̃net, the form of D>ΘDΘ is as below:
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L̃net 0 0 0 −L̃net 0 0 0 0

0
. . . 0 0

... 0 0 0 0

0 0 L̃net 0 −L̃net 0 0 0 0

0 0 0 0 0 0 0 0 0

−L̃net · · · −L̃net 0 (|D◦|+ |H◦|)L̃net −L̃net · · · −L̃net 0

0 0 0 0 −L̃net L̃net 0 0 0

0 0 0 0
... 0

. . . 0 0

0 0 0 0 −L̃net 0 0 L̃net 0

0 0 0 0 0 0 0 0 0




 |S| · |D◦| {|D◦|  |S|  |S| · |H◦| {|H◦|

Now, we define DH, the difference matrix that addresses the association between consecutive

hours of each of the stations so that

DH(Θ,ΘD,ΘH)> =



(−(θhod
1 + θhod

s,1 ), s ∈ S)>

((θhod
1 + θhod

s,1 )− (θhod
2 + θhod

s,2 ), s ∈ S)>

...

((θhod
22 + θhod

s,22)− (θhod
23 + θhod

s,23), s ∈ S)>

((θhod
23 + θhod

s,23)>, s ∈ S)>


.

The specific form of DH is as follows:
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0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0
. . .

. . . 0

0 0 0 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 −I|S| 0 0 0 −1|S| 0 0 0

0 0 0 0 0 I|S| −I|S| 0 0 1|S| −1|S| 0 0

0 0 0 0 0 0
. . .

. . . 0 0
. . .

. . . 0

0 0 0 0 0 0 0 I|S| −I|S| 0 0 1|S| −1|S|

0 0 0 0 0 0 0 0 I|S| 0 0 0 1|S|




 |S| · |D◦| {|D◦| {|S|  |S| · |H◦|  |H◦|



|H|



|H| · |S|

.

Thus, D>HDH has the form

D>HDH =

 0 0 0

0> M1 M2

0> M>
2 M3

 , where

M1 =



2I|S| −I|S| 0 0 0

−I|S| 2I|S| −I|S| 0 0

0
. . .

. . .
. . . 0

0 0 −I|S| 2I|S| −I|S|

0 0 0 −I|S| 2I|S|


, (A.13)

M2 =



21|S| −1|S| 0 0 0

−1|S| 21|S| −1|S| 0 0

0
. . .

. . .
. . . 0

0 0 −1|S| 21|S| −1|S|
0 0 0 −1|S| 21|S|


,
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M3 =



2(|S|+ 1) −(|S|+ 1) 0 0 0

−(|S|+ 1) 2(|S|+ 1) −(|S|+ 1) 0 0

0
. . .

. . .
. . . 0

0 0 −(|S|+ 1) 2(|S|+ 1) −(|S|+ 1)

0 0 0 −(|S|+ 1) 2(|S|+ 1)


.

From these, we can illustrate the structure of P. One notable thing is that both DΘ and
DH have their columns corresponding to (θdow

Tu , . . . , θdow
Su ) set exactly to be zero. Thus, in

computing P−1, we remove their corresponding columns so that the inverse matrix is applied
only to (Θ,ΘD◦ ,ΘH). The structure of P̄, a sub-matrix of P = I + D>ΘDΘ + D>HDH without
the columns corresponding to the daily parameters, is as follows:

P̄ =

L̃net + I 0 0 −L̃net 0 0

0
. . . 0

...
... 0

0 0 L̃net + I −L̃net 0 0

−L̃net · · · −L̃net (|D|+ |H|)L̃net + I −L̃net · · · −L̃net 0

0 · · · 0 −L̃net L̃net + 3I −I 0 0 0

M2
...

. . .
...

...

−I L̃net + 3I −I 0

0
. . .

. . .
. . . 0

0 0 −I L̃net + 3I −I

0 · · · 0 −L̃net 0 0 0 −I L̃net + 3I

0 · · · 0 0 M>
2 M3 + I|H◦|


where M2 and M3 are as in (A.13). Here, the size of each block is (|S| · |D◦|), |S|, (|S| · |H◦|),

and |H◦| from left to right and top to bottom, which match that of D>ΘDΘ and D>HDH

specified above after removing corresponding columns of (θdow
Tu , . . . , θdow

Su ).

Let L̃net = EΛE> denote the eigenvalue decomposition of L̃net with Λ denoting a diagonal
matrix having the eigenvalues as its diagonal entries. Then,

W>P̄W =

Λ + I 0 0 −Λ 0 0

0
. . . 0

...
... 0

0 0 Λ + I −Λ 0 0

−Λ · · · −Λ (|D|+ |H|)Λ + I −Λ · · · −Λ 0

0 · · · 0 −Λ Λ + 3I −I 0 0 0

M̃2
...

. . .
...

...

−I Λ + 3I −I 0 0

0
. . .

. . .
. . . 0

0 0 −I Λ + 3I −I

0 · · · 0 −Λ 0 0 0 −I Λ + 3I

0 · · · 0 0 M̃>
2 M3 + I|H◦|


(A.14)
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where M̃2 is

M̃2 =



2E(r) −E(r) 0 0 0

−E(r) 2E(r) −E(r) 0 0

0
. . .

. . .
. . . 0

0 0 −E(r) 2E(r) −E(r)

0 0 0 −E(r) 2E(r)


with E(r) = E1|S|, and W =


E 0 0 0

0
. . . 0

...

0 0 E 0

0 I|H◦|

 .

Thus, the solution of P̄z = b can be achieved by solving(
W>P̄W

)
z̃ = b̃ (A.15)

with z̃ = W>z and b̃ = W>b, and then finally setting z = Wz̃. Solving (A.15) can be

achieved efficiently by taking into account the structure of W and W>P̄W. Specifically, W

is block diagonal with repeated blocks which reduces the matrix multiplication complexity.

The matrix W>P̄W is very sparse as described in (A.14) with all blocks involving Λ being

diagonal, which facilitates efficient computation. Therefore, (A.15) can be solved in an itera-

tive manner using LU decomposition. The details of this procedure is illustrated later in this

section. Having the full illustration of the structures, our suggested method for the projection

step is described in Algorithm 1.

Algorithm 1 Projection in Step 2 of ADMM

1: Inputs:(
Θk+1, Θk+1

D , Θk+1
H , Γk+1, Ψk+1

)
,
(
UkΘ, , U

k
ΘD
, UkΘH

, T kΓ , , T
k
Ψ

)
,

DΘ, DH, W

2: Compute b1 ←
(

Θk+1, Θk+1
D , Θk+1

H

)>
+
(
UkΘ, , U

k
ΘD
, UkΘH

)>
3: Compute b2 ← DΘ

(
Γk+1 + T kΓ

)>
+ DH

(
Ψk+1 + T kΨ

)>
4: Compute b̃←W> (b1 + b2)

5: Solve
(
W> (I + D>ΘDΘ + D>HDH

)
W
)−1

z̃ = b̃ for z̃
6: Compute z←Wz̃
7: Set (Zk+1

Θ , Zk+1
ΘD

, Zk+1
ΘH

)← (zΘ, zΘD
, zΘH

) where z = (zΘ, zΘD
, zΘH

)

8: Set (Sk+1
Γ , Sk+1

Ψ )← (DΘz, DHzΘH
)

9: Ouputs:
(Zk+1

Θ , Zk+1
ΘD

, Zk+1
ΘH

, Sk+1
Γ , Sk+1

Ψ )

In order to solve (A.15) in line 5 of Algorithm 1, we can utilize the LU decomposition of the

matrix in (A.14). Writing the LU decomposition of the matrix (A.14) by LL>, the matrix L
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has the banded block diagonal structure as follows:

L =


A11 0 0 0

A21 A22 0 0

0 A32 A33 0

0 0 A43 A44

 . (A.16)

The blocks match the size of their counterparts in (A.14). Here, the relatively large matri-

ces A11, A21, A22, A32, and A33 have specific repetitive sparse structures which facilitate

memory saving and efficient computation. Specifically, these contain repeated sub-matrices

of dimension |S| × |S| which are of the following forms:

A11 =


D11 0 0

0
. . . 0

0 0 D11

 , A21 = (D21 . . .D21) , A22 = D22, A32 = (D32 · · ·D32)> ,

A33 =



d1,1 0 0 0 0 0

g2,1 d2,2 0
... ...

...
f1 g3,2 d3,3 0
... f2

. . .
. . . 0

...
...

. . .
. . . 0

f1 f2 · · · f|H◦|−1 g|H◦|,|H◦|−1 d|H◦|,|H◦|


.

Using this banded diagonal structure of the LU-decomposition, solving (A.15) can be done

in two steps, (i) solving Ly = b̃, and then (ii) solving L>z̃ = y. The details are presented

below.

(i) Solve Ly = b̃ with y = (y(1), . . . ,y(4))>:

(a) Solve A11y
(1) = b̃(1):

y
(1)
i = D−1

11 b̃
(1)
i for i = 1, . . . , |D◦|.

(b) Solve A22y
(2) = b̃(2) −A21y

(1):

y(2) = D−1
22

(
b̃(2) − D21

∑|D◦|
i=1 y

(1)
i

)
.

(c) Solve A33y
(3) = b̃(3) −A32y

(2):

y
(3)
1 = d−1

1,1

(
b̃

(3)
1 − D32y

(3)
1

)
,

y
(3)
2 = d−1

2,2

((
b̃

(3)
2 − D32y

(3)
2

)
− g2,1y

(3)
1

)
,

y
(3)
i = d−1

i,i

(b̃
(3)
i − D32y

(3)
i

)
− gi,i−1y

(3)
i−1 −

i−2∑
j=1

fjy
(3)
j

 for i = 3, . . . , |H◦|.
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(d) y(4) = A−1
44

(
b̃(4) −A43y

(3)
)

.

(ii) Solve L>z̃ = y with z̃ = (z̃(1), . . . , z̃(4))>:

(a) z̃(4) =
(
A>44

)−1
y(4)

(b) Solve A>33z̃
(3) = y(3) −A>43z̃

(4):

z̃
(3)
|H◦| = d−1

|H◦|,|H◦|

(
y

(3)
|H◦| −

(
A>43

)
|H◦|

z̃(4)

)
,

z̃
(3)
|H◦|−1 = d−1

|H◦|−1,|H◦|−1

(
y

(3)
|H◦|−1 −

(
A>43

)
|H◦|−1

z̃(4) − g|H◦|,|H◦|−1z̃
(3)
|H◦|

)
,

z̃
(3)
i = d−1

i,i

y
(3)
i −

(
A>43

)
i
z̃(4) − gi+1,iz̃

(3)
i+1 − (|H◦| − i− 1)fi

|H◦|∑
j=i+2

z̃
(4)
j


for i = |H◦| − 2, . . . , 1.

(c) Solve A>22z̃
(2) = y(2) −A>32z̃

(3):

z̃(2) = D−1
22

(
y(2) − D32

(∑|H◦|
i=1 z̃

(3)
i

))
(d) Solve A>11z̃

(1) = y(1) −A>21z̃
(2):

z̃
(1)
i = D−1

11

(
y

(1)
i − D21z̃

(2)
)

for i = 1, . . . , |D◦|.

Here, (A43)i denotes its ith row. The vector arguments are partitioned as

x> =
(

(x
(1)
1 )>, . . . , (x

(1)
|D◦|)

>, (x(2))>, (x
(3)
1 )>, . . . , (x

(3)
|H◦|)

>, (x(4))>
)>

,

where x
(j)
i for j = 1, 3 and x(2) are of length |S| and x(4) is of length |H◦|.
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A.2 Computation of model complexity

The numerator of MC in (10) counts the number of connected components of the given

graphs. Typically, the number of connected components of a graph can be found by counting

the number of zero-eigenvalue of the graph’s Laplacian matrix. The Laplacian matrix of

Nsingle(r) ∩ N̂D,d has the dimension of |S| × |S| for each d, and it is feasible to compute its

eigenvalues and calculate C(Nsingle(r) ∩ N̂D,d).

However, computing C(Nmulti(r)∩N̂H) is not so straightforward since the Laplacian matrix of

the graph Nmulti(r)∩ N̂H has the dimension of |S||H| × |S||H|, it is not practical to compute

its eigendecomposition. Instead, we propose to obtain C(Nmulti(r) ∩ N̂H) by first finding the

layer-specific connected components, and then coalescing the components of two consecutive

layers if they are connected transversely over the layers.

Before describing the proposed method, we introduce some notations relevant to Nsingle(r) ∩
N̂H,h, a single-layer network for each h ∈ H:

N̂H,h = (S, EH,h) with EH,h =
{

(s, s′), s 6= s′ : φ̂hod
s,h = φ̂hod

s′,h

}
,

Gh =Nsingle(r) ∩ N̂H,h,

Nh = C(Gh),

M(0) = |H| × |S| matrix that encodes the layer-specific connected components of Gh,

Lh = the Laplacian matrix of Gh

ch,k(M) = the index vector of entries that corresponds to the elements in the kth cluster

of the hth row of a cluster label matrix M.

Specifically, for each connected component, the corresponding (h, s) elements of M(0) take a

unique value, and thus the number of unique values in M(0) agrees with the number of total

connected components
∑23

h=0Nh.

We begin by describing how to construct M(0). Recall that the number of zero eigenval-

ues of Lh corresponds to Nh. The eigenvector associated with the zero eigenvalue pro-

vides some information of the connected components. Namely, it is a linear combination

of the connected component indicator vectors ch,k(M
(0)). For an arbitrary index vector

g = (gi : gi ∈ {1, . . . , |S|}), we denote the indicator vector of g by eg: It has its gith entry to be

one for i = 1, . . . , |g|, and all the rest are zeros. Denote by v
(0)
h,i the ith eigenvector associated

with the zero eigenvalues of Lh for i = 1, . . . , Nh. Then, we have v
(0)
h,i =

∑Nh
k=1 a

(h,i)
k ech,k(M(0))

for some constants a
(h,i)
k s. Thus, we utilize the eigenvectors to identify the cluster label of each

stations and construct M(0). Precisely, we find the partition P of the index set {1, . . . , |S|}
with the smallest cardinality such that for each P belonging to the partition, all the elements

of v
(0)
h,i located at P take the same value, for all i = 1, . . . , Nh. This procedure is described in

Algorithm 2.
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Algorithm 2 Construction of M(0).

1: Inputs:
The Laplacian matrix Lh for h ∈ H

2: Initialize:
M(0) ← a |H| × |S|-matrix of zeros
cluster label← 1

3: for h ∈ H do
4: Perform eigenvalue decomposition of Lh
5: Nh ← the number of zero eigenvalues

6: V← a |S| ×Nh matrix having the eigenvector v
(0)
h,i as its ith column

7: unlabeled← {1, 2, . . . , |S|}
8: for s ∈ {1, . . . , |S|} do
9: if s /∈ unlabeled then

10: cluster← {1, . . . , |S|}
11: for i ∈ {1, . . . , Nh} do

12: value← Vs,i, the sth entry of the ith eigenvector v
(0)
h,i

13: value set← {s′ : Vs′,i = value}
14: cluster← cluster ∩ value set

15: end for
16: M

(0)
h,s′ ← cluster label for s′ ∈ cluster

17: unlabeled← unlabeled \ cluster
18: cluster label← cluster label + 1
19: end if
20: end for
21: end for
22: Ouputs:

M(0)
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Once the layer-specific cluster label matrix M(0) is provided, we link the connected compo-

nents throughout the hourly layers as described in Algorithm 3. Within the procedure, the

sub-routine given in Algorithm 4 is utilized, which sequentially links connected components

lying in two consecutive layers. In each run, Algorithm 4 links a component in evaluation to

exactly one component in another layer while there can be more than one component that

are supposed to be linked. Thus, Algorithm 3 keeps running the sub-algorithm until there

exists no more component left to be linked. One notable feature is that the sub-algorithm

is executed twice with different order vector r each time. This is to account for the circular

feature of hour-of-a-day. The function is(·) in the sub-algorithm 4 is defined to return the

Boolean of the input statement.

Algorithm 3 Counting the connected components of Nmulti(r)× N̂H .

1: Inputs:
The layer-specific cluster label matrix M(0)

The estimates φ̂hod
s,h for s ∈ S and h ∈ H

2: M←M(0)

3: changed← true

4: while changed do
5: changed← false

6: Make links across the layers in a forward manner by running Algorithm 4
7: with r = (0, 1, . . . , 23)
8: Connect the layers of h = 0 and h = 23 in a forward manner by running Algorithm 4
9: with r = (23, 0, 1, . . . , 22)

10: end while
11: Ouputs:

the number of unique values in M

36



Algorithm 4 Link across ordered layers.

1: Inputs:
The estimates φ̂hod

s,h for s ∈ S and h ∈ H
An order vector r of length |H|
An |r| × |S| cluster label matrix M
A Boolean variable changed

2: Mold ←M
3: for i ∈ {1, . . . , |r|} do
4: // link the rith and the ri+1th layers:
5: Mnew ←Mold

6: for k ∈ {1, . . . , Nri} do
7: // investigate whether each component is subject to further connection
8: ind← cri,k(M

old)
9: j ← 0

10: matched← false

11: exhausted← is(k ≥ |cri,k(Mold)|)
12: while matched = false and exhausted = false do
13: j ← j + 1
14: c1 ← φ̂hod

indj ,ri

15: c2 ← φ̂hod
indj ,ri+1

16: ind(j,ri+1) ← the index vector of the cluster to which the jth entry of ind

belongs, in the ri+1th row of Mnew i.e. cri+1,k′(M
new) for some k′ such that indj ∈

cri+1,k′(M
new)

17: m1 ← min Mold
ri,ind

18: m2 ← min Mnew
ri+1,ind(j,ri+1)

19: same estimate← is(c1 = c2)
20: same label← is(m1 = m2)
21: should connect← is(same estimate and not same label)
22: if should connect then
23: // connect the to components and update their labels
24: m = min{m1,m2}
25: Mnew

ri,ind ← m
26: Mnew

ri+1,ind(j,ri+1) ← m

27: changed← true

28: matched← true

29: exhausted← is(k ≥ |cri,k(Mold)|)
30: end if
31: end while
32: end for
33: Mold ←Mnew

34: end for
35: M←Mnew

36: Ouputs:
The updated cluster label matrix M
The updated Boolean variable changed
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B Additional data analysis results

Table B.1 presents the results obtained with r = 750, see Table 4 in the main text for the

results obtained with r = 1500.

Table B.1: Estimated coefficients for the covariate effects by the proposed fused Lasso regres-
sion method from each fold used in the 7-fold CV and from the full data when r = 750. For
comparison, we also report the estimates obtained with fusion Lasso-only, full-interaction and
no-interaction methods.

Fold Full data
1 2 3 4 5 6 7 Fused Fusion-only Lasso-only Full No

α 0.057 0.052 0.051 0.050 0.050 0.054 0.050 0.052 0.052 0.052 0.052 0.052
βrain -2.301 -2.356 -2.380 -2.377 -2.238 -2.182 -2.383 -2.324 -2.325 -2.321 -2.323 -2.310
βair

1 0.098 0.141 0.100 0.177 0.124 0.169 0.168 0.140 0.141 0.138 0.138 0.137
βair

2 0.116 0.173 0.098 0.177 0.133 0.159 0.187 0.149 0.149 0.145 0.144 0.146
βair

3 0.218 0.285 0.250 0.175 0.259 0.321 0.310 0.275 0.277 0.271 0.276 0.243

Figures B.1 and B.2 plot the results obtained with r = 750, see Figures 7 and 8 in the main

text for the results obtained with r = 1500.

Figure B.1: Parameter estimates for φhod
h , h ∈ H (left) and φdow

d , d ∈ D (right) from each
fold used in the 7-fold CV and from the full data when r = 750.
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Figure B.2: Estimated station-specific bike demands in log-scale (θ̂s + θ̂d + θ̂h + θ̂s,d + θ̂s,h)
from the model fitted with r = 750 at 8am on Tuesdays (left), at 8pm on Sundays (middle)
and their differences (right).
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