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this work, Value of Solar (VOS) is developed as a photovoltaic (PV) optimization measure and analysis 
tool using a northwest Iowa municipality as a representative case study. By applying a top-down load 
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structures for increasing levels of total PV energy contribution. VOS of a fixed south-southwest 
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tracking solar system. Production-data modeled VOS is up to 12% higher than Typical Meteorological Year 
(TMY) predictions, indicating significant correlation between PV generation and peak municipal demand. 
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Abstract: Wind and solar renewable energy in the United States is projected to triple by 2050 to nearly
30% of total electric energy generation. The upper Midwest region (Iowa, Minnesota, and North
and South Dakota in particular) is considered wind energy country and not historically known for
solar energy development. In this work, Value of Solar (VOS) is developed as a photovoltaic (PV)
optimization measure and analysis tool using a northwest Iowa municipality as a representative case
study. By applying a top-down load duration curve system analysis, VOS is used to optimize PV
orientation and compare electric rate structures for increasing levels of total PV energy contribution.
VOS of a fixed south-southwest orientation exceeds the levelized annual costs of installation with
a larger net benefit than a one-axis-tracking solar system. Production-data modeled VOS is up to
12% higher than Typical Meteorological Year (TMY) predictions, indicating significant correlation
between PV generation and peak municipal demand. Compared to alternative time-of-use rates, a
demand/energy rate structure better matches VOS economic value and optimal orientation. This
VOS methodology is an easy-to-use yet meaningful tool for municipalities and smaller utilities to
evaluate strategic installation of and investment in PV for their local community.

Keywords: value of solar; photovoltaic optimization; load duration curve; electric rate design

1. Introduction

In the last 30 years, wind and solar renewable energy systems (RES) have grown from
a negligible electric generation contribution to just over 9% of U.S. electric generation [1].
In the next 30 years, wind and solar combined are projected to triple in terms of total
electricity sector contribution [2], with RES expected to represent nearly 30% of generation.
From a grid stability and reliability perspective, broad studies of the Eastern [3] and West-
ern [4] electrical interconnections of the U.S. have concluded that such levels of renewable
energy penetration can be integrated without extensive infrastructure changes and would
additionally be accompanied by a 25–45% reduction in carbon emissions [5].

Beyond the technical integration details and known environmental benefits, an impor-
tant consideration for the increasing penetration of RES is the economic cost of integrating
RES into the grid. While costs that arise from different physical impacts overlap, it is
helpful for understanding to divide these integration costs into three main categories that
reflect three specific characteristics of RES: (1) balancing costs due to uncertainty and
unpredictability, (2) profile costs due to variability in generation, and (3) grid costs due to
location specificity [6].

The first of these costs, balancing costs, are mainly operating reserves, which are
typically less for solar than wind because the sun is more predictable [7]. The Western Wind
and Solar Integration Study (WWSIS) reports that in the 30% renewable energy penetration
case, the average variability reserve requirement does indeed double. However, with wind
and solar on the system, it is often more economically favorable to back down thermal units
rather than decommit them [5]. More specifically, the study noted nearly a 1:1 correlation
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between increased solar production and reduced combined cycle production [8]. This
results in increased up-reserves being available without additional capital costs.

In regards to the third type of costs, grid costs, a recent systematic review noted that
while specific data are limited, solar grid costs are typically much less than wind since solar
is often installed closer to its need [7]. Heptonstall and Gross [7] further concluded that
upgrades to transmission and distribution networks are difficult to allocate specifically to
RES variability.

Profile costs thus emerge as the largest and most significant integration costs. These
costs are linked to the temporal variability of RES with an uncontrollable output not neces-
sarily correlated to demand [6]. Factors contributing to these costs are low RES capacity
factors, and increased ramping and reduced load factors for conventional generation. While
it has been shown that the direct economic impact of cycling is small, the largest single
factor of integration costs is the resulting reduced utilization of capital embodied in thermal
plants [6]. From a mixed cost/benefit perspective, these profile costs can be regarded
as reducing the value of RES energy because they reflect diminishing avoided costs of
conventional generation [6]. A methodology used to measure this changing value of PV
added to the grid is Value of Solar (VOS) [9].

VOS follows a methodology more broadly defined for all distributed generation
renewable energy resources called Value of Resource (VOR) [10]. VOS is VOR applied
specifically to solar resources and was initially developed as a rate design mechanism
intended to measure the true value of solar-PV-generated electricity. While there are
ample data available on fuel and wholesale retail electricity costs [11,12], there is a lack of
consensus on what renewable energy is worth. Beyond the obvious benefit of fossil fuel
saved, VOS also considers avoided capacity, transmission and distribution cost deferral,
and environmental benefits [9,13]. Past VOS studies have been leveraged to define a
consumer energy rate for RES generation somewhere between the extremes of net-metering
and displaced fuel costs [9,10,14–17]. VOS has also been analyzed for utility scale PV for
10,000 U.S. locations from 2010 to 2017 using historical nodal electricity prices, capacity
market prices, marginal power system emissions, and Typical Meteorological Year (TMY)
weather data to classify the value of PV in terms of displaced energy, capacity, public
health, and climate change [18]. It is noted that this VOS data tends to be clustered in the
Northeast, West (particularly California), and Texas. There is a notable lack of data in the
upper Midwest region.

The upper Midwest (Iowa, Minnesota, and North and South Dakota in particular) is
considered wind energy country and is not historically known for solar energy develop-
ment. However, recent analysis suggests that a mix of solar and wind additions would
be more beneficial going forward [19] and that wind and PV energy can complement one
another in daily and seasonal trends [20]. Where there is a strong correlation between
PV output and summer daytime peaks, adding solar PV can help make the system more
reliable and/or reduce the cost of meeting peak demand [7], such that integration costs can
even be negative at low (<10%) RES penetration [6].

Characterizing RES integration costs as additional expenses to be added to system
generation costs has been described as a bottom-up engineering view of power system
operation [7]. This work seeks to take a top-down engineering view of power system
operation by analyzing the system load duration curve (LDC) before and after renewable
contribution (residual LDC or RLDC) to characterize RES in terms of the value it adds
to the system. A case-study is conducted for Sioux Center Municipal Utilities (SCMU)
in northwest Iowa, which services more than 2700 electric customers, including a mix of
residential, commercial, and industrial sites. In this way, this local analysis of SCMU can be
representative of the larger upper Midwest geographical area. This work seeks to leverage
the broad system considerations encompassed in VOS methodology to advance VOS as a
system design benchmark and optimization tool.

PV optimization studies have been performed before. A non-constrained nonlinear
optimization (‘fminsearch’ function in MATLAB [21]) was used to find the local maximum
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global hourly irradiation as a function of panel tilt and azimuth for locations across the
continental U.S. Mapped results indicate an approximate optimum tilt of 37◦ from hor-
izontal and azimuth 2◦ west of South (182◦) for the geography of Northwest Iowa [22].
Noting that higher summer electricity prices tend to drive azimuth west and tilt towards
the horizontal, a subsequent study compared the PV energy peak to market value peak
using TMY weather, inverter modelling, and time-of-use rates throughout the continental
U.S. as a proxy for average local grid conditions [23]. Energetically, the optimal azimuth
was consistently within 10◦ of South for 90% of 1020 locations, while the max value of
energy was found to shift more than 10◦ west of South for nearly half of the locations. The
TMY data max energy and value azimuths for northwest Iowa both remained within 10◦ of
South, meaning the analysis did not find an economic incentive to significantly reorient the
PV array.

The focus of this work is to develop VOS as an optimization measure and analysis
tool used to calculate specific VOS for the upper Midwest based on real PV production
data. By applying a top-down load duration curve (LDC) system analysis, integration costs
are defined from a value perspective that captures the changing value as PV contribution
increases on the grid. Defining VOS in this way allows for PV system design optimization,
as well as a benchmark against which different electric rate structures can be analyzed
and compared. The methodology applied is considerably simpler than a full capacity-
expansion system model [24], yet it provides key insights and trends consistent with
findings from such studies [3,4,25,26]. As presented, this VOS methodology is an easy-to-
use yet meaningful tool for municipalities and smaller utilities to evaluate investment in
and guide design of PV in their local community.

2. Materials and Methods

This work uses VOS methodology to optimize system design at varying levels of
PV energy contribution for Sioux Center Municipal Utilities (SCMU) in northwest Iowa,
USA. The PV system is optimized for orientation: azimuth angle (East = 90◦, South = 180◦,
West = 270◦) and tilt (0◦ = horizontal, 90◦ = vertical) based on VOS modeled from real pro-
duction data. PV generation is modeled from the local PV production data of a south-facing
system comprised of four different tilt angles. The production data model is calibrated
with generation data from three of the four tilt angles and validated against the fourth to
quantify model uncertainty. Model uncertainty is propagated using Monte Carlo methods
to demonstrate statistical confidence in the optimal cost savings advantage.

PV system contribution is modeled at marginal (0.1%), low (4%), medium (10%), and
high (25%) levels as measured in terms of total energy generation for a nominal south-
facing 41◦ tilt PV installation. The low value of 4% was chosen to match the current SCMU
wind energy proportion [27], as well as the baseline value of the WWSIS as given by the
Transmission Expansion Planning Policy Committee [26]. The high value of 25% was
chosen to match the high solar case of the WWSIS [25]. The medium value of 10% was
selected as a reasonable middle value and previously identified as a contribution level
above which solar generation can result in overproduction [28].

2.1. Value of Solar (VOS)

VOS is calculated as the sum of net cost benefits in five major categories [9] utilizing
several calculation methods [13] as outlined in Table 1. The result is presented as seven
separate components which sum to give the full VOS cost savings benefit: fuel, variable
operations and maintenance (VOM), capacity credit, fixed operations and maintenance
(FOM), transmission and distribution (T&D), losses, and environmental (CO2). VOS is
presented as energy-normalized ($/kWh) or capacity-normalized (annual $/kW).

Fuel and VOM savings are calculated based on the assumption of natural gas combined
cycle (CC) power plants for base and intermediate load and natural gas combustion turbine
(CT) power plants for peak power using nominal performance data from the EIA Annual
Outlook [11] and natural gas prices averaged over the five-year period of the study [2].
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This is considered a conservative calculation given that existing power plants may operate
at lower plant efficiency and different fuels (i.e., coal) compared to new CC and CT natural
gas designs. Capacity credit and FOM cost savings are calculated using the overnight build
and operating costs for new plants [11], while T&D savings are a combination of avoided
fixed transmission costs for new plants as well as variable maintenance costs on existing
infrastructure [29]. Avoided energy losses for local PV generation source versus a remote
generator are calculated as a 7% multiplier on all PV generated energy [9]. Environmental
cost savings are calculated from typical emissions for CC and CT power plants [30,31] and
a published 39 $/ton social cost of carbon value [32] corresponding to the time frame of the
PV production data.

Table 1. Value of Solar (VOS) categories characterized as the sum of net benefits in five major
categories and listed alongside the calculation method employed for seven components of net
benefits in this study.

Category Net Benefit Calculation Method

Energy Avoided fuel and variable costs LDC-RLDC (1) Fuel Costs,
(2) VOM

Generation Capacity Avoided fixed costs of
new generation

LDC-RLDC (3) Capacity Credit,
(4) FOM

T&D Capacity Avoided cost of building and
maintaining T&D infrastructure

(5) T&D Levelized cost on Capacity
plus
T&D Variable cost on Energy

T&D Losses Avoided losses from
remote generators

(6) Transmission Loss Multiplier on
PV generation

Environmental Reduced air emissions (7) CO2 social cost 39 $/ton
Acronyms: CF = Capacity Factor; FOM = Fixed Operations and Maintenance; LDC = Load Duration Curve;
RLDC = Residual LDC; T&D = Transmission and Distribution; VOM = Variable Operations and Maintenance.

2.2. Load Characterization

Municipal electric load is characterized using a Load Duration Curve (LDC), which
plots energy demand in descending order versus relative duration. An LDC plot can be
made both before and after the impact of the PV system is determined, with the after plot
being called a Residual LDC (RLDC). The LDC and RLDC plots are used to characterize
the electric load in terms of peak, intermediate, and base capacities based on a 15–60%
division of relative duration [33]. A capacity factor (CF) is calculated for each load range,
which is used in calculating levelized cost of energy (LCOE) for each type of conventional
generation using methods outlined in the 2.5 Financial Analysis section. A sample LDC and
RLDC plot is shown in Figure 1, including an overlay of the base, intermediate, and peak
load determination for the LDC. Also included on the plot are the three major changes from
the baseline LDC to a PV RLDC: (1) a peak capacity credit (peak load power is reduced),
(2) a reduction in CF most noticeable in the base load, and (3) a potential for overproduction
as the PV system capacity is increased [28]. The RLDC curves on the plot are generated
from PV production data of a south-facing 41◦ tilt system.

2.3. PV Optimization and Uncertainty

PV generation is modelled based on local production data from a PV system within the
SCMU geographical boundary. This system features south-facing panels at four different
tilts (16, 29, 41, and 65◦ from horizontal), allowing differences in production to calibrate a
beam and diffuse irradiance and system efficiency model for predicting alternative system
orientation performance. This production data model uses an anisotropic sky radiation
model [34], the same model used by NREL in PVWatts [35]. Data from three tilts (16, 41,
and 65◦) are used to calibrate and verify the model, which is validated against the 29◦ tilt
data. Calibrated irradiance and efficiency model data are used to optimize panel tilt and
azimuth for maximum VOS or annual cost savings for a particular electric rate structure.
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Figure 1. Load Duration Curve (LDC) and Residual LDC (RLDC) curves illustrating
peak/intermediate/base load determination based on 15–60% relative durations. RLDC plots with so-
lar contribution show the resulting capacity credit, reduced capacity factor (CF), and overproduction
impacts of increasing PV energy contribution.

A system model diagram of the optimization is included in Figure A1. Error associated
with the model is quantified in terms of the root mean square error (RMSE) and standard
deviation. The standard deviation is used in a Monte Carlo analysis to generate statistical
90% confidence intervals for the uncertainty of the modeled VOS and annual cost savings.
Monte Carlo simulations of 100, 200, 400, and 800 runs are conducted to demonstrate
convergence of the confidence interval uncertainty.

The PV system optimization model is also run with Typical Meteorological Year (TMY)
irradiance and system efficiency data available through PVWatts [36]. Production data
model results are compared to TMY to examine differences in VOS, annual cost savings,
and optimal fixed system orientation. PVWatts default fixed open rack mounting PV
parameters (module type, DC to AC ratio, inverter efficiency, ground coverage ratio) are
assumed for TMY data, with DC losses adjusted to equalize annual production data and
TMY as shown in Table A1.

2.4. Alternate Rate Structures

VOS-optimized results are compared to a second PV design optimization to max-
imize annual cost savings for various electric rate structures for SCMU. The existing
demand/energy (D/E) price structure is outlined in Table 2. The demand listed in the
table is a combination of demand and transmission charges, both of which are proportional
to the peak energy demand of the month. The demand rate is seasonal, being highest in
the summer, lowest in the spring and fall, and in between for winter months. The energy
charge per kWh stays the same throughout the year.
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Table 2. Existing demand/energy rate structure for Sioux Center Municipal Utilities.

Months Demand Plus Transmission
[$/kW]

Energy
[$/kWh]

DEC, JAN, FEB 22.00

0.0315
MAR, APR, MAY 16.50

JUN, JUL, AUG 27.00

SEP, OCT, NOV 16.50

By examining the seasonal, monthly, weekly, and daily trends of SCMU electrical
demand, alternate Time-of-Use (TOU) and Rate-of-Use (ROU) structures are designed for
comparing PV cost savings to the D/E rate structure and VOS benchmark. Since a switch
to TOU rates is being considered for SCMU, two TOU rate structures were designed to be
applied from May to October. A midday rate (TOUm) has a peak rate applied weekdays
from noon to 6:00 p.m. local time, and an intermediate rate from 7:00 a.m. to noon and
6:00 p.m. to 9:00 p.m. An evening rate (TOUe) has a peak rate applied from 3:00 p.m. to
9:00 p.m. The ROU structure is set by power demand, with peak and intermediate levels
determined from the municipal LDC. The intermediate and peak rates feature a multiplier
of the base rate ($/kWh), which is calculated to generate equivalent revenue for the period
of analysis.

2.5. Financial Analysis

Financial calculations and analyses are consistent with methods outlined and exempli-
fied in NREL’s Annual Technology Baseline [37]. Levelized annual cost (LAC) is used to
determine annual cost savings associated with the capacity credit of the PV system. LAC is
defined in Equations (1) through (3).

LCOE = (FCR ∗ CAPEX + FOM)/(CF ∗ 8760) + VOM + Fuel (1)

LAC = LCOE ∗ CF ∗ 8760 (2)

LAC = FCR ∗ CAPEX + FOM + CF ∗ 8760 ∗ (VOM + Fuel) (3)

LCOE is Levelized Cost of Energy, FCR is Fixed Charge Rate, CAPEX is Capital
Expenditures, FOM is Fixed Operations and Maintenance, CF is Capacity Factor, VOM
is Variable Operations and Maintenance, and LAC is Levelized annual Cost. FCR on
capital investment is calculated using the economic assumptions and parameters outlined
in Table 3.

PV installation is investigated as a financial investment for SCMU using the existing
D/E rate structure. The analysis is performed two different ways: simple payback and
zero net present value (NPV). For simple payback, the total PV system cost is divided by
the annual cost savings to yield the number of years to recoup the installation investment.
No inflation, loan terms, or other rate-of-return factors are included in simple payback. In
the zero NPV analysis, the financial parameters of Table 3 are used except for the Rate of
Return on Equity (RROE). Instead, an RROE is calculated to yield a zero NPV over the
25 years of analysis. Inflation is applied to the analysis as an increase in annual cost savings
and maintenance costs, and the cost of replacement inverters is added into year 12 of the
analysis. Based on the zero NPV RROE, nominal and real Weighted Average Cost of Capital
(WACC) are calculated.
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Table 3. Economic analysis inputs, assumptions, and calculated rates following the model of NREL’s
annual technology baseline [37]. The Weighted Average Cost of Capital (WACC) is the discount
rate used in the net present value analysis. Inflation is the difference between nominal and real
rates (nominal includes inflation). The fixed charge rate (FCR) is used in calculating the value of
PV capacity credit in the annual savings, and depreciation is calculated with a 5-year Modified
Accelerated Cost Recovery System (MACRS) model.

Parameter Value

Assumptions/
Inputs

Inflation (i) 2.5%

Debt Interest Rate (IR) 5%

Rate of Return on Equity (RROE) 10%

Debt Fraction (DF) 60%

Tax Rate, federal + state (TR) 27%

Loan Term, years 10

Period of Analysis, years (t) 25

Depreciation MACRS-5

Annual PV degradation 0.60%

Calculated

WACC, Nominal 6.2%

WACC, Real 3.6%

Fixed Charge Rate (FCR) 6.5%

3. Results and Discussion

The results are organized into three main sections. The 3.1 VOS Optimization section
shows that an optimal fixed south-southwest PV orientation generates a higher VOS than
both fixed south-facing PV and horizontal one-axis trackers. The TMY-predicted VOS is
shown to be significantly undervalued compared to the production data model. In the
3.2 Orientation Optimization section, the optimal azimuth and tilt of the D/E rate structure
best matches the optimized VOS benchmark. Finally, in the 3.3. Investment Analysis
section, the annual energy cost savings of PV systems exceed the levelized annual cost of
installation such that up to 13% RROE can be achieved.

3.1. VOS Optimization

VOS is calculated for a south-facing 41◦ tilt, horizontal one-axis tracking, and an
optimized fixed orientation (azimuth and tilt) in Figure 2. VOS is energy normalized
($/kWh) and divided into the seven component net benefits listed in Table 1. VOS decreases,
as expected, as the total energy contribution increases from marginal (0.1%) to high (25%)
PV energy contribution. The VOS decrease can be specifically noted in the capacity credit
and FOM components and is consistent for both fixed and one-axis geometries. Fuel, VOM,
and CO2 components remain relatively constant as PV energy increases, while the T&D
and losses components of VOS have an intermediate reduction, as they are proportional to
both the displaced energy and capacity credit of the PV system.

The energy-normalized VOS is highest for the optimal fixed orientation, which
achieves the highest capacity credit. The slightly higher fuel and VOM benefits of the
optimal fixed orientation indicate that more of the peak energy (i.e., displaced CT energy)
is being met by solar compared to the other orientations. What is not captured with the
energy-normalized VOS is the total annual energy produced by the optimal fixed orienta-
tion is the lowest, while the one-axis orientation produces the highest annual energy. This
is addressed by considering the capacity-normalized VOS based on annual benefits, as well
as the levelized annual costs (LAC) for PV installation [38].
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Figure 2. Value of Solar (VOS) for south-facing 41◦ tilt (41S), horizontal one-axis tracking (One-Axis),
and optimal fixed orientation (Optimal) systems. VOS is broken down into fuel, variable operation
and maintenance (VOM), capacity credit, fixed operations and maintenance (FOM), transmission and
distribution (T&D), transmission losses, and environmental carbon credit (CO2). The optimal fixed
orientation produces highest energy-normalized VOS in most cases.

Combined VOS and LAC are presented in Figure 3 as capacity-normalized annual
benefits/costs ($/kW). VOS is plotted as positive and LAC as negative, such that their sum
is the net value. The one-axis system has the highest capacity-normalized VOS, owing to
its highest annual energy production. However, the one-axis system also has the highest
LAC due to the added complexity of tracking. When VOS and LAC are combined to yield
the net value, the optimal fixed orientation remains the highest. The net value at marginal
PV contribution (0.1%) is large and negative because PV costs per capacity are higher in
small systems. The net value is also negative at high PV energy contribution (25%) due to a
decreasing capacity credit of the system VOS. The 4% PV case has the highest normalized
net benefit since VOS remains high while the PV cost per capacity is substantially less than
the marginal (0.1%) case.

Production data model VOS results are compared to TMY solar prediction from
PVWatts [36]. TMY VOS was calculated for a fixed 41◦ tilt south-facing system, one-axis
tracker, and an optimized fixed orientation. The results are presented in Figure 4 as the
difference between the production data model and TMY, where a positive result means
the production data model VOS is higher. Except for the marginal (0.1%) one-axis case,
the production data VOS consistently has a higher capacity credit than TMY, representing
the largest categorical difference. The 8% capacity credit difference and nearly 12% total
difference at low PV energy contribution (4%) stand out as particularly significant and
supporting evidence of a strong correlation between maximum PV system generation and
peak municipal energy demand. In the 4 and 10% one-axis cases, the difference is split
by component with fuel, VOM, and carbon credit as negative, while the capacity credit,
FOM, and T&D differences are positive. This results from higher total annual energy for
the one-axis TMY prediction than the production data model (see Table A1). The total VOS
difference in these cases remains positive due to higher production data capacity credit.
The total VOS difference is negative for the 25% PV contribution since the production
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data model results in more over-production than TMY, which makes energy-based cost
differences net negative for all orientations.
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Figure 3. Capacity normalized annual ($/kW) combined Value of Solar (VOS), Levelized Annual
Cost (LAC), and net value (VOS—LAC) for south-facing 41◦ tilt (41S), horizontal one-axis tracking
(One-Axis), and optimal fixed orientation (Optimal) systems. VOS is broken down into fuel, vari-
able operation and maintenance (VOM), capacity credit, fixed operations and maintenance (FOM),
transmission and distribution (T&D), transmission losses, and environmental carbon credit (CO2).
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Figure 4. Difference in Value of Solar (VOS) for the production data model versus Typical Meteorological
Year (TMY) solar prediction. Differences in category (fuel, VOM, capacity, etc.) are plotted as negative or
positive, with positive indicating that production model VOS is higher than TMY prediction.
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The underlying cause of the VOS difference between the production data model and
TMY prediction is compared in more detail in Figure 5 for the optimal fixed orientation
systems. The comparison is based off the Residual Load Duration Curve (RLDC) for
each scenario such that residual conventional generation can be broken down into base,
intermediate, and peak generation. The difference between the RLDC and original LDC
peak demand is the capacity credit. The capacity credit decreases quite dramatically with
increasing PV energy contribution from over 65% in the marginal (0.1%) case to less than
15% in the high PV energy contribution case. The relative reduction in the peak generation
capacity is highest for 4% PV energy contribution, and the capacity credit transitions to
more displaced base generation at 25% PV energy contribution. Comparing the production
data model and TMY prediction, the largest difference is in the 4% PV energy case, where
the production data model capacity credit remains over 60% while the TMY prediction
is closer to 40%. This difference explains much of the 12% VOS difference observed in
Figure 4. Another key observable difference between the production data model and TMY
prediction is the production data model has a consistently lower RLDC peak capacity,
which is again evidence of the correlation between maximum PV system generation and
high municipal energy demand.
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Figure 5. Residual Load Duration Curve (RLDC) conventional generation capacities for the optimal
Value of Solar (VOS) fixed orientation system. Solar capacity credit is above 60% for PV energy
contribution less than 4% but decreases to below 15% for 25% PV energy contribution. Base generation
is most significantly reduced at 25% PV energy contribution.

3.2. Orientation Optimization

Alternate TOU and ROU rates were set following the methods outlined in the 2.4 Alternate
Rate Structures section. The resulting equivalent revenue base rates are shown in Table 4.
Multipliers for intermediate and peak rates were set at 1.4 and 2.1, respectively, based on the
relative levelized costs for intermediate and peak conventional generation energy as defined
by the municipal LDC (see Figure A2). These multipliers are consistent with published
TOU rate structures in California and Ontario, Canada [39,40]. Based on the LDC, the
SCMU ROU base rate is applied for a demand less than 13,322 kW, the peak rate is triggered
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above 18,417 kW, and the intermediate rate is charged in between. The average hourly
consumption plots for SCMU and the base/intermediate/peak conventional generation
costs that inform these rate designs are included in Figures A2 and A3.

Table 4. Time-of-Use (TOU) and Rate-of-Use (ROU) energy costs for base, intermediate, and peak
energy. Energy costs were calculated to generate revenue equivalent to the existing demand/energy
rate (D/E) structure over the five years of analysis. Resulting rates are similar for TOU and ROU
structures at 0.06–0.07 $/kWh for base energy and 0.013–0.014 $/kWh for peak energy.

Rate Structure
Equivalent Revenue Rate [$/kWh]

Base Intermediate Peak

TOU midday (TOUm) 0.063 0.089 0.133

TOU evening (TOUe) 0.066 0.066 0.139

ROU 0.067 0.094 0.141

With the optimal fixed orientation achieving the highest net value of the VOS less
LAC, the optimal orientation (azimuth, tilt) and annual PV system savings for the different
electric rate structures are compared to the benchmark VOS results. Optimal azimuth
and tilt angles are shown in Figure 6. Demand-dependent VOS and D/E systems favor
a more southwest facing system at lower PV energy contributions, up to 225◦ azimuth.
Only at 25% PV energy contribution does the optimal azimuth consistently stay within 10◦

of south as found in other VOS studies [23]. The Time-of-Use (TOU) optimal orientation
is nearly constant, owing to the time-dependent nature of the rate structure and known
temporal position of the sun. The optimal evening (TOUe) azimuth is 10◦ further west than
midday (TOUm). The production data modeling and TMY results are overall similar and
follow the same trends per rate structure. There is not significant tilt variation amongst
the design optimizations, as all tilts of all systems are between 30 and 40◦ from horizontal
and somewhat concentrated near the 37◦ found to maximize total hourly irradiation [22].
However, one interesting observation is that the optimal TMY tilt is consistently 3–5◦ higher
than the corresponding optimal tilt of the production data model.
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Figure 6. Comparison of optimal azimuth (plot (A)) and tilt (plot (B)) angles for production data
model and Typical Meteorological Year (TMY) for Value of Solar (VOS), as well as demand/energy
(D/E), Time-of-Use midday (TOUm), TOU evening (TOUe), and Rate-of-Use (ROU) energy rate
structures. With small differences in specific azimuth angles, in general, the trends remain the
same: VOS and D/E favor a south-southwest-facing system with an optimal azimuth that decreases
with increasing PV energy contribution, while TOU rate structures maintain a constant optimal
azimuth with the TOUe favoring a more southwest direction than TOUm. Tilt is less of an orientation
factor than azimuth as all the optimal configurations lie between 30 and 40◦ tilt. However, there
is a consistent trend where the optimal production data tilt is 3–5◦ less than the corresponding
TMY optimization.

The capacity-normalized ($/kW) annual cost savings of the optimal fixed orientation
PV system are presented in Figure 7 for different rate structures. The D/E and ROU savings
trend down with increasing PV energy, consistent with observations in the VOS. The TOU
savings stay flat with increasing PV contributions because they are sensitive to the time of
energy generation rather than the capacity/rate of energy generation. The ROU savings
are consistently the highest, while D/E overall agrees best with the VOS benchmark. The
extra D/E marginal (0.1%) PV savings can provide some economic incentive to overcome
the negative net value for small-capacity installations noted in Figure 3.

The plotted uncertainty of the annual cost savings is based upon the uncertainty of
the production data and production model error. Production model regression curves of
the verification and validation data are included in Figure A4 and found to be less than
2.3% RMSE of rated capacity and less than 1.2% error in total annual energy generated (see
Table A1). The 90% confidence interval error bars on the plots are based on the converged
Monte Carlo simulations shown in Figure A5.

The production data modeling of annual costs savings are compared to the TMY
prediction and presented as a difference in Figure 8 where positive means the production
data model savings are greater. The same 12% difference in VOS identified in Figure 4 is also
shown Figure 8. For this same 4% PV energy contribution case, there is also a 6% advantage
of the production data model of D/E annual savings. Another large 11% advantage is
observed for D/E in the marginal PV energy contribution case. TOU and ROU have small
differences in savings in nearly all cases, while D/E maintains a statistically significant
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advantage through 10% PV energy contribution. For the 25% PV energy contribution
case, all rate structures have savings less than the TMY, which is attributed to increased
overproduction.
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Figure 7. Optimal fixed orientation annual cost savings capacity normalized ($/kW) for De-
mand/Energy (D/E), Time-of-Use midday (TOUm) and evening (TOUe), and Rate-of-Use (ROU)
energy structures compared to the Value of Solar (VOS) benchmark. D/E and ROU savings trend
down with increasing PV energy similar to VOS, while TOU savings remains flat. ROU savings are
consistently the highest. Error bars represent 90% confidence intervals from Monte Carlo simulations.

3.3. Investment Analysis

The PV investment analysis results are summarized in Table 5. The simple payback is
shortest for the 4% PV energy case at 13 years and is the longest for the 25% PV energy case
at 22 years. For the zero NPV analysis, a positive RROE was found for all cases, except the
25% PV energy contribution, which is slightly negative. The 4% PV case yields a 13% RROE,
corresponding to a 7.5% nominal WACC, indicating that installing PV is a sound financial
investment. This analysis assumes an overnight install at the optimal PV orientation for
each level of PV contribution. It is possible that higher rate-of-returns could be obtained
for incremental capacity installations at corresponding optimal PV orientations.

RROE is highest for the 4% PV energy contribution, which is notable since SCMU’s
current energy portfolio includes 4% wind energy [27]. Thus, these results indicate that
investment in PV makes sense from a financial standpoint in addition to the system energy
and capacity value provided by mixed RES generation.
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Figure 8. Comparison of annual cost savings for the production data model and Typical Meteoro-
logical Year (TMY) solar prediction. The 90% confidence interval uncertainty confirms a statistically
significant savings difference for Value of Solar (VOS) and demand/energy (D/E), which are most
dependent on PV production during specific instances of peak demand. Time-of-Use midday and
evening (TOUm, TOUe) show little difference since they are more dependent on total annual energy
production which was intentionally equalized. The high 25% PV energy contribution shows a nega-
tive difference due to increased PV overproduction as the TMY production tends to be more levelized
day-to-day.

Table 5. Investment analysis and rate-of-return for PV investment. A simple payback was calculated
based on total PV installation costs and annual cost savings. A zero net present value (NPV) analysis
was run to calculate the Rate-of-Return on Equity (RROE) and corresponding Weighted Average
Cost of Capital (WACC) over the 25-year period of performance. The 4% PV energy contribution
has the shortest simple payback and highest RROE and WACC. The RROE of the 25% PV energy
contribution is negative to achieve a zero NPV.

PV Energy
Contribution

Simple
Payback [yr] RROE WACC

Nominal
WACC

Real

0.1% 16 8% 5.3% 2.7%

4% 13 13% 7.5% 4.9%

10% 16 7% 4.9% 2.5%

25% 22 −2% 1.3% −1.0%

4. Conclusions

Value of Solar (VOS) effectively measures the net system benefit provided by PV as
total grid energy contribution is increased. VOS is calculated from real PV production data
and found to be up to 12% higher than TMY predictions due to the higher capacity credit
indicative of a significant correlation between the maximum PV generation and the peak
utility demand. VOS is calculated for a northwest Iowa municipal utility representative of
the upper Midwest USA geographically and found to exceed the levelized annual costs of
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installation for low (4%) and medium (10%) PV energy contribution. VOS results can be
used by decision makers to inform policies regarding PV installation incentives and local
electric rates for both consumption and generation.

Leveraging VOS as a benchmarking optimization tool, a demand/energy rate structure
is shown to best match VOS in terms of its economic value and optimal orientation as PV
energy contribution is increased. A 25-year net present value (NPV) economic analysis
indicates that PV energy is a sound investment up to and beyond a 4% energy contribution
that equals the current wind contribution of the utility’s energy portfolio. Given the
high-capacity credit of lower PV energy contribution installations, there is opportunity
to meet short-term peak demand growth with cleaner PV energy while delaying and/or
eliminating the need to build new fossil-based generation plants. As energy storage and
other renewable energy enabling technology continues to grow in capability and decrease
in cost, adding more PV capacity to the upper Midwest generation portfolio makes good
social, environmental, and economic sense.
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Abbreviations

ATB Annual Technology Baseline
CAPEX Capital Expenditures
CC Combined Cycle
CT Combustion Turbine
CF Capacity Factor
DF Debt Fraction
FCR Fixed Charge Rate
FOM Fixed Operation and Maintenance
IR Interest Rate
LAC Levelized Annual Cost
LCOE Levelized Cost of Energy
LDC Load Duration Curve
MACRS Modified Accelerated Cost Recovery System
NPV Net Present Value
NREL National Renewable Energy Lab
PV Photovoltaic
RES Renewable Energy Systems
RLDC Residual Load Duration Curve
RMSE Root Mean Square Error
ROU Rate-of-Use
RROE Rate of Return on Equity
SCMU Sioux Center Municipal Utilities
SSW South-Southwest
T&D Transmission and Distribution
TOUm Time-of-Use midday
TOUe Time-of-Use evening
TMY Typical Meteorological Year
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TR Tax Rate
U.S. EIA United States Energy Information Administration
VOM Variable Operation and Maintenance
VOR Value of Resource
VOS Value of Solar
WACC Weighted Average Cost of Capital
WWSIS Western Wind and Solar Integration Study
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Figure A1. PV optimization system model diagram showing input data of electric load/demand and
PV Power. Two iterative processes are leveraged. First, the energy production model is calibrated to
best fit the PV production data. Then, the PV system orientation is optimized to maximize energy
cost savings.
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categories of capital expenditures (CAPEX), fixed operations and maintenance (FOM), fuel, and
variable operations and maintenance (VOM). CAPEX and FOM fixed costs represent an increasing
portion of the total cost for intermediate and peak generation. The calculated cost ratios of 1.4 for
intermediate to base and 2.1 for intermediate/peak to base agree well with published time-of-use
rate structures [39,40].
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Figure A3. Hourly energy consumption broken down into base, intermediate, and peak types from
the Load Duration Curve (LDC). Graph (A) is the entirety of the five years of load data, while graph
(B) shows the increased commercial/industrial load on weekdays. Graphs (C,D) demonstrate the
increased peak demand from late spring to early fall, peaking specifically in July.
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Figure A4. Verification and validation regression plots for 16, 29, 41, and 65° tilt, south-facing pro-
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then validated with the 29° tilt production data. 

Figure A4. Verification and validation regression plots for 16, 29, 41, and 65◦ tilt, south-facing
production data. The production model is calibrated and verified with 16, 41, and 65◦ tilt data and
then validated with the 29◦ tilt production data.
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Figure A5. Convergence of the Monte-Carlo simulation as runs are increased from 100 to 800 for each
of the 0.1, 4, 10, and 25% PV energy contribution scenarios. Results are plotted as percent difference
of Monte Carlo simulation mean compared to nominal annual cost savings. Value of Solar (VOS) and
Demand/Energy (D/E) rate have a negative bias in simulation savings beyond the 0.1% PV energy
marginal scenario, while the Time-of-Use (TOU) and Rate-of-Use (ROU) have slight positive bias.
The 90% confidence interval error bars are greater for VOS and D/E rate due to their cost sensitivity
to instances of peak demand. The span of VOS and D/E confidence interval also decreases with
increased PV energy contribution as a higher portion of total cost savings is attributed to energy
than demand.

Table A1. Annual production (kWh/kW) for installed PV compared to PVWatts Typical Meteorolog-
ical Year (TMY) prediction. PVWatts DC losses were lowered to 11% from the default 14% to best
match the annual production. Also included for comparison to the raw data is the production data
model of annual production.
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South, 41◦ Tilt 1476 1479 +0.2% 1475 −0.1%

South, 65◦ Tilt 1366 1359 −0.5% 1355 −0.8%

One-Axis Tracking - 1616 - 1571 -
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