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Abstract

In this thesis, I make some contributions to the development of representation learning in

the setting of external constraints and noisy supervision. A setting of external constraints

refers to the scenario in which the learner is forced to output a latent representation of

the given data points while enforcing some particular conditions. These conditions can

be geometrical constraints, for example forcing the vector embeddings to be close to each

other based on a particular relations, or forcing the embedding vectors to lie in a particular

manifold, such as the manifold of vectors whose elements sum to 1, or even more complex

constraints. The objects of interest in this thesis are elements of a collection X in an abstract

space that is endowed with a similarity function which quantifies how similar two objects

are. A collection is defined as a set of items in which the order is ignored but the multiplicity

is relevant. Various types of collections are used as inputs or outputs in the machine learning

field. The most common are perhaps sequences and sets.

Besides studying representation learning approaches in the presence of external constraints,

in this thesis I tackle the case in which the evaluation of this similarity function is not directly

possible. In recent years, the machine learning setting of having only binary answers to

some comparisons for tuples of elements has gained interest. Learning good representations

from a scenario in which a clear distance information cannot be obtained is of fundamental

importance. This problem is opposite to the standard machine learning setting where the

similarity function between elements can be directly evaluated. Moreover, I consider the

case in which the learner is given noisy supervision signals, with a certain probability for

the label to be incorrect. Another research question that was studied in this thesis is how to

assess the quality of the learned representations and how a learner can convey the uncertainty

about this representation.

After the introductory Chapter 1, the thesis is structured in three main parts. In the first

part, I present the results of representation learning based on data points that are sequences.

The focus in this part is on sentences and permutations, particular types of sequences. The

first contribution of this part consists in enforcing analogical relations between sentences
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and the second is learning appropriate representations for permutations, which are particular

mathematical objects, while using neural networks. The second part of this thesis tackles the

question of learning perceptual embeddings from binary and noisy comparisons. In machine

learning, this problem is referred as ordinal embedding problem. This part contains two

chapters which elaborate two different aspects of the problem: appropriately conveying the

uncertainty of the representation and learning the embeddings from aggregated and noisy

feedback. Finally the third part of the thesis, contains applications of the findings of the

previous part, namely unsupervised alignment of clouds of embedding vectors and entity set

extension.
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Kurzfassung

In dieser Dissertation leiste ich einige Beiträge zur Entwicklung des Repräsentation-

slernens im Kontext externer Zwänge und lauter Supervision. Eine Einstellung externer

Einschränkungen bezieht sich auf das Szenario, in dem der Lernende gezwungen ist,

eine latente Darstellung der gegebenen Datenpunkte auszugeben, während er bestimmte

Bedingungen durchsetzt. Diese Bedingungen können geometrische Einschränkungen sein, z.

B. das Erzwingen, dass die Vektoreinbettungen basierend auf bestimmten Beziehungen nahe

beieinander liegen, oder das Erzwingen, dass die Einbettungsvektoren in einer bestimmten

Mannigfaltigkeit liegen. wie die Mannigfaltigkeit von Vektoren, deren Elemente sich zu 1

summieren, oder noch komplexere Einschränkungen.

Die interessierenden Objekte dieser Arbeit sind Elemente einer Sammlung X in einem

abstrakten Raum, der mit einer Ähnlichkeitsfunktion ausgestattet ist, die quantifiziert, wie

ähnlich zwei Objekte sind. Eine Sammlung ist definiert als eine Menge von Elementen, bei

denen die Reihenfolge ignoriert wird, aber die Multiplizität relevant ist. Auf dem Gebiet

des maschinellen Lernens werden verschiedene Arten von Sammlungen als Eingaben oder

Ausgaben verwendet. Die gebräuchlichsten sind vielleicht Sequenzen und Mengen.

Neben der Untersuchung von Repräsentationslernansätzen in Gegenwart externer Ein-

schränkungen behandeln wir in dieser Arbeit den Fall, in dem die Auswertung dieser

Ähnlichkeitsfunktion nicht direkt möglich ist. In den letzten Jahren hat die Einstellung des

maschinellen Lernens, nur binäre Antworten auf einige Vergleiche für Tupel von Elementen

zu haben, an Interesse gewonnen. Es ist von grundlegender Bedeutung, gute Darstellun-

gen aus einem Szenario zu lernen, in dem keine eindeutigen Entfernungsinformationen

erhalten werden können. Dieses Problem steht im Gegensatz zu der Standardeinstellung

für maschinelles Lernen, bei der die Ähnlichkeitsfunktion zwischen Elementen direkt

ausgewertet werden kann. Außerdem gehen wir den Fall an, dass dem Lernenden verrauschte

Supervisionssignale gegeben werden, mit einer gewissen Wahrscheinlichkeit, dass das Etikett

falsch ist. Eine weitere Forschungsfrage, die in dieser Arbeit untersucht wurde, ist, wie die
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Qualität der erlernten Repräsentationen beurteilt werden kann und wie ein Lernender die

Unsicherheit über diese Repräsentation vermitteln kann.

Nach dem einleitenden Kapitel 1 ist die Arbeit in drei Hauptteile gegliedert. Im ersten

Teil präsentiere ich die Ergebnisse des Repräsentationslernens basierend auf Datenpunkten,

die Sequenzen sind. Der Schwerpunkt in diesem Teil liegt auf Sätzen und Permutationen,

bestimmten Arten von Sequenzen. Der erste Beitrag dieses Teils besteht darin, analoge

Beziehungen zwischen Sätzen durchzusetzen, und der zweite besteht darin, geeignete

Darstellungen für Permutationen zu lernen, die bestimmte mathematische Objekte sind,

indem neuronale Netze verwendet werden. Der zweite Teil dieser Arbeit befasst sich mit

der Frage des Lernens wahrnehmungsbezogener Einbettungen aus binären und verrauschten

Vergleichen. Beim maschinellen Lernen wird dieses Problem als ordinales Einbettungsprob-

lem bezeichnet. Dieser Teil enthält zwei Kapitel, die zwei unterschiedliche Aspekte des

Problems herausarbeiten: die angemessene Vermittlung der Unsicherheit der Darstellung

und das Lernen der Einbettungen aus aggregiertem und verrauschtem Feedback. Schließlich

enthält der dritte Teil der Arbeit Anwendungen der Ergebnisse des vorherigen Teils, nämlich

die unüberwachte Ausrichtung von Wolken von Einbettungsvektoren und die Erweiterung

von Entitätsmengen.
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1 Introduction

1.1 Overview

In this thesis, the focus will be on a specific type of machine learning models, namely deep

neural networks. In recent years, deep neural networks based models have shown to be

one of the most successful approaches on structured and complex data like images and text.

This is mostly due to the fact that the building blocks that constitute these models are suited

for the task at hand, for example convolutions for images or recurrent blocks for text. In

particular, these building blocks exploit the structure of the data and allow the neural network

to learn more efficiently. Nevertheless, this inherent structure is not available when dealing

with collections.

A collection can be defined as a group of several objects that can be considered as a

whole. Collections describe the general notion of an ensemble of items grouped without any

particular constraint on order or multiplicity. Notable examples of collections are sets and

sequences.

A sequence is defined as a collection of elements or items where the order matters. The

notion of a sequence can be generalized to an indexed family, which is defined as a mapping

from an index set (often the set of natural numbers) to another set of elements. On the other

hand, a set is a collection of elements for which an inherent order doesn’t exist and the

multiplicity of the elements of the set might or might not be relevant. One of the most known

examples of sequence is a sentence, which can be seen as a group of words with a particular

order that determine its meaning. If the order of the words in a sentence is changed, the

meaning of the original sentence might change completely or even be lost. That is to say that

two sequences with different orders are two distinct objects. On the contrary, given a set of

three sport items {football, tennis, swimming} any variation of the original order will not

change the nature of the concept described by this particular set.

Both sets and sequences are objects of great interest in many machine learning problems.

Sequences are key inputs for many machine learning problems such as Natural Language
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Processing (NLP) or Information Retrieval (IR) problem. To extend the example given

earlier, sentences are not the only example of sequences in machine learning related problems.

Rankings/orderings and permutations can be classified as sequences as well, according to

the definition given earlier. Pertaining to sets, they can be seen in several problems: object

detection, multi-label classification, protein prediction, point cloud prediction and many

more. In all these problems, a machine learning model can either take a set or a sequence as

input and/or produce one as an output.

While there are several works on neural networks approaches applied to sets and sequences,

they do not focus on higher order relations, such as preference or analogy among the

inputs. How can one correctly model high order relations and adequately handle sets

and/or sequences as input? This is one of the research questions this thesis explores by

identifying shortcomings in existing techniques and developing new techniques for modeling

and formally representing complex inputs with neural networks.

1.2 Research Questions

In this thesis, four research questions are addressed in the context of learning representations

for collections, namely sets and sequences. The answers to these questions are provided

throughout the thesis while motivating the choices implemented.

The typical setting in machine learning is to work with pairs (x, y) and try to learn how x

and y depend on each other. However, in order to do this, learning a good representation for

the input x is fundamental. Moreover, the structure in x, y, or both introduces constraints,

and a successful application of an algorithm to a particular problem does heavily depend on

whether or not this algorithm takes the relevant constraints into account. The first question

aims at proposing adequate ways to learn good embeddings in presence of a variety of

constraints. More precisely, the research question becomes:

Question 1

How to learn good representations for sequential elements while enforcing external

constraints or making high level relations explicit?

Sets and sequences are data types central to many machine learning problems. Many

studies have proposed approaches based on neural networks for these kind of data structures

but few have focus on high order relations among the input such as preferences or analogies.

Analogical reasoning has been applied to many problems, including learning to rank

(Fahandar and Hüllermeier, 2018), relation extraction (Liu et al., 2017), visual question

answering (Sadeghi et al., 2015) and has shown to improve learning and generalization
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capabilities in case imbalanced or poor quality data. In fact, in analogical reasoning, a source

and a target are compared and commonalities are identified. New knowledge is created via

transferring additional knowledge about the source case to the target case. However, often

state-of-the art approaches don’t enforce these relations while learning the representations.

Another aspect of this research question concerns dealing with representations that have

particular constraints. Constrained sequences, such as permutations and (partial) rankings

are difficult to optimize through deep learning approaches. In fact, permutations are discrete

mathematical objects that belongs to the Birkhoff polytope, a sub-Riemannian manifold.

However, if a good representation for permutations is given, it can leads to easier and more

straight-forward architectures for performing inference that involves ranking objects. The

example I illustrate in this thesis is the task of permutation learning. I propose principled

methods to solve these problems and to obtain good representations which have been

evaluated on real-world tasks and datasets.

Another aspect of fundamental importance when tackling the task of representation

learning is to find appropriate methods to visualize the data points. Often this is done by

mapping high dimensional embeddings to a two or three dimensional map. More specifically,

the research question is framed as:

Question 2

How to represent and visualize data points from a set of extreme size (see an entire

dataset) when the supervision given is noisy and not necessarily based on a metric?

Up to now, the size of the collections was fairly small. But what happens once the task is

to output embeddings for an entire dataset when the supervision is limited, hence available

for a limited for a number of data points? This task is also called ordinal embedding and I

propose a new approach for tackling it. The goal of ordinal embedding is to find an Euclidean

representation of a set of abstract items, using only answers to triplet comparisons of the

form "is item i closer to the item j or item k?". The main characteristic of this problem is

that the supervision is only available as binary comparisons for which the learner doesn’t

necessarily know the distance measure that generated the answers. Moreover, these binary

comparisons might be wrong or conflicting. The aspect of this problem I wanted to approach

is how to explicitly convey the noise and uncertainty in the training information.

Contrary to the setting in the two first research questions, this third question deals with the

case in which the feedback is available in aggregated form. Specifically, this question targets

the case in which the input to the learner is not a vector but is a set of vectors. In this case,

the dependencies between x and y become less clear.
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Question 3

Based on the previous research questions, how to treat and embed data points from

an abstract space when the supervision signal is available only for aggregations of

items?

This research question relates to the standard ordinal embedding problem. Particularly,

this time I wanted to address the case in which the set of items to embed is very large and

the number of binary answers is limited. A solution might be to aggregate the supervision

to subsets of items. How robust can the embeddings obtained in such setting be? This

is the main inquiry as well as how to adapt the learning process in order to obtain good

representations of items from an abstract space without relying on features and with partial

and noisy supervision.

Finally, the last research question concerns the application of the results obtained from

previous sections. Several machine learning tasks rely on dealing with embeddings either as

an input for a prediction task or as a final output.

Question 4

How well the learned representation embed information and can be used for

downstream tasks? How robust are the learned embeddings?

Once a good representation for a set is found, how can it be used? How informative is it and

how easy is it to use it for downstream tasks such as classification or prediction? I investigate

this question in the last part of the thesis in which I address the tasks of unsupervised

alignment of sets of embeddings and the entity set expansion task.

1.3 Organization of the thesis

The starting point of the rest of the thesis is motivating our work with a benchmark task in

Natural Language Processing: answer selection for question answering. This task requires

to select the correct answer to a question among a pool of candidates. In order to properly

handle this task, a machine learning model should first assess the relation that exists between

the question and a given candidate answer as well as learn how the candidates answer relates

to each other and finally transfer the knowledge from training samples to the test samples.

I identify a problem with existing answer selection models and propose to re-frame the

problem as a analogical reasoning problem. Our work on this task show that it is beneficial to

enforce high order relation among sequences inputs in term of performance for this particular

task. This will constitute Chapter 3.
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I then move on from one specific sequence setting, namely sentences, to another, per-

mutations. In this work, I tackle the task of learning to sort complex items such as images

in a end-to-end fashion. It is well known that permutations are combinatorial objects and

non-differentiable. For this reason, I choose to consider an embedding, namely Lehmer

codes, to learn to sort objects, this task is known as object ranking. It is worth specifying that

both the input and the output are sequences, in fact the input is a sequence of images to be

sorted and the output is the permutation that sorts the input according to the given criterion.

This is fully illustrated in Chapter 4.

Then, I treat the second part of this thesis which is dedicated to sets. This part contains

two sections. In the first section, I describe our work on ordinal embedding. The ordinal

embedding problem, which is the task of learning representations for a set of abstract items

relying on noisy triplet comparisons. Several methods have been proposed for this particular

task, in this study illustrated in Chapter 5 I choose to produce better perceptual embeddings

by relying on elliptical embeddings which encode not only the position of the items in the

latent space but also the uncertainty about the representation. Next, I try to answer the

question of learning the embeddings given a large collection of abstract items when the input

is given under the form of triplets of sets. The supervision in this case is available only at

the set level, which can be seen as an aggregated supervision. This is an extension of the

work described previously in Chapter 5. I propose to represent sets through probabilistic

embeddings based on Gaussian distributions such that the mean is the centroid of the set

and the covariance represents the dispersion or the area of the set. This work is illustrated in

Chapter 6.

Another part that closely deals with embedding sets is the one shown in the third part of

this thesis. First, I tackle the task of set entity expansion which consists in finding the correct

entities to complete a seed set of entities. Set expansion benefits a wide range of downstream

applications in knowledge discovery, such as web search, taxonomy construction, and query

suggestion. Once again, I rely on the the Gaussian representation of a set and the main

idea behind our approach is that the correct entity for a given seed set is the one that

better minimize the increase of the dispersion of the set, or the covariance of the Gaussian

representation.

Finally, I tackle a problem that is closely related to the one considered in the previous

chapters. This problem is unsupervised alignment of embeddings. Loosely speaking, it deals

with aligning sets of embeddings without relying on supervision. It is of fundamental

importance in machine translation, where it expresses the problem of aligning words

representation from two parallel languages without a supervision lexicon. In particular,
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Introduction
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Figure 1.1: Overview of the thesis structure. The red boxes illustrate the division in parts of the thesis,
the blue boxes represent the chapters. The dashed arrows indicate the flow of connecting
parts and the full lines show the suggested path for the reading the thesis.

I consider the variation of the problem in which the sets of embeddings are Gaussian

representation, which to the best of our knowledge, has not been addressed before.

The schema in 1.1 provides a diagrammatic presentation of the structure of the thesis.

1.4 List of contributions

Concretely, the contributions of this thesis are the following:

Chapter 2: Foundation and Background

I provide an accessible an extensive introduction to modeling sequences, specifically sen-

tences and permutations, as well as sets with neural networks. I cover various encoding

for ordered or unordered collections of items and how to represent them. I focus on the

appropriate encoders and how structural embedding are used in various areas of machine

learning.

Chapter 3: Embedding sequences with analogical reasoning

These contributions have been published in the Conference on Computational Natural

Language Learning (CoNLL) 2019 (Diallo et al., 2019).
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• I review related work on answer selection and analogical reasoning.

• I identify a problem in existing answer selection works and explain why introduce

external knowledge based on analogical reasoning ,might be beneficial.

• I propose a model for learning an analogical embedding based on prototypes for

W-questions.

• I evaluate our model on benchmark datasets and assess the validity of our approach.

Chapter 4: Embedding permutations

These contributions have been published in European Conference on Artificial Intelligence

(ECAI) 2020 (Diallo et al., 2020).

• I present an alternative methodology to obtain encode permutations which is based on

Lehmer codes, which have previously been proposed for label ranking tasks. Framing

the problem in this way allows to optimize for the objective of minimizing the Kendall

tau rank correlation, which is an ordinal metric for assessing the association between

permutations.

• I propose an optimization framework for learning Lehmer codes through row-stochastic

matrices.

• I review related work on learning permutations and sorting in neural networks.

• I evaluate our approach on Jigsaw version of MNIST and CIFAR, as well as multi-

digits version of MNIST.

Chapter 5: Embed and visualize datasets from Ordinal feedback

These contributions are in the paper "Elliptical Ordinal Embedding", accepted at Discovery

Science 2021 (Diallo and Fürnkranz, 2021).

• I propose to learn low-dimensional embeddings for a dataset of data points based

on noisy triplet comparisons using Elliptical embedding which allows to encode and

perceive the uncertainty from the noisy oracle.

• I propose a neural model for learning Gaussian embedding optimized through the

Wasserstein distance without relying on input features.

• I review related work on ordinal embeddings and distributional embedding.
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• I evaluate our approach synthetic datasets, MNIST, Food dataset and graph density

estimation.

Chapter 6: Embed and Visualize datasets from aggregated supervision

These contributions are in the paper "Learning Ordinal Embeddings from Sets", accepted at

Entropy, 2021, and have been presented in a shorter version "Ordinal Embedding for Sets "at

the SubSetML workshop, hosted at the Internation Conference on Machine Learning (ICML)

2021 (Diallo and Fürnkranz, 2021).

• I propose to learn low-dimensional embeddings for a dataset of data point when the

input to the oracle is under the form of sets of various size. I argue that in this way I

can embed dataset of bigger size than existing methods.

• I propose a neural model for learning embedding optimized through the Wasserstein

distance without relying on input features from set-valued input. I propose an encoding

of a set based on its centroid and the overall dispersion or size of the set through

Gaussian embeddings.

• I review related work on ordinal embeddings and set encoding with neural networks.

• I propose a set encoder that doesn’t rely on input features and models a set through the

centroid statistic and the dispersion of the set.

• I evaluate our approach synthetic datasets, MNIST, Poker game and Reuters paragraph

version of the dataset.

Chapter 7

These contributions are in the paper "Unsupervised Alignment of Distributional Word

Embeddings" (Diallo and Fürnkranz, 2022), published at the German Conference on Artificial

Intelligence (KI) 2022.

• I propose an approach to align Gaussian word embeddings in an unsupervised manner,

which was lacking in the literature of unsupervised alignment.

• Concretely, the approach consists in including in the optimization of the Orthogonal

Procrustes method via stochastic optimization a step that takes into account the

difference between matched covariances.
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• I review related works on point based and probabilistic embeddings, minimally

supervised and totally unsupervised alignment of point based word embeddings.

• I evaluate our method on different pairs of languages, in order to assess the validity of

this approach for close and distant languages for the task of unsupervised alignment of

Gaussian embeddings.

Chapter 8: Tackling set expansion.

These contributions are in the paper "GausSetExpander: A Simple Approach for Entity Set

Expansion" (Diallo and Fürnkranz, 2022), currently under submission.

• I propose a new framework to perform the task of set expansion based on probabilistic

embeddings and the Wasserstein distance.

• I introduce an iterative and distributional method based on encoding set of word

embeddings as Gaussian distributions.

• I review related works entity set expansion task and set encoding approaches.

• I use a scoring function based on the Wasserstein distance, a distance measure issued

from the Optimal Transport theory for quantify the similarity between distributions.

• Finally, I quantitatively evaluate our method on benchmark datasets and compare to

state of the art approaches.
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2 Foundation and Background

In this section, I will introduce the main concepts and objects as well as the notation used

throughout the thesis.

2.1 Machine Learning

Loosely speaking, Artificial intelligence (AI) can be defined as the study of systems of

agents that perceive their surroundings and act in a way that maximizes the likelihood of

achieving their predefined goals. More precisely, the aim of AI is to create models that can

for example that can produce and understand text in natural language, execute an action in

the physical world or again recognize and interpret a visual scene. The focus of AI research

has moved from several methods overtime, including simulating the human brain, modeling

human-like problem-solving or again understanding logic. In recent years, statistical machine

learning approaches have been central to the machine learning domain, and these methods

have proved to be very rewarding and achieve great performances in helping to solve many

challenging problems throughout industry and academia.

Machine Learning (ML) is the automation that instructs learning agents how to acquire

information from training data points that act as experience and it is a sub-field of AI. The

term "machine learning" originated in 1959 by Arthur Samuel, an American computer scien-

tist from IBM. In a nutshell, ML exploits computational algorithms to extract information

directly from the observed data. ML methods find occurring patterns in data that can provide

insight and help in making predictions.

ML algorithms are usually categorized according to the type of supervision accessible to

the learning system. The broadly recognized categories are:

• Unsupervised learning: the goal of the model is to detect patterns and hidden

structures in the data. The type of data usually unsupervised learning is used for

is commonly unlabeled data. The ML algorithm that belongs to this category do not

respond to a given feedback or supervision signal but they find shared characteristic
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among groups of data points and react in a suited way for a new data point based on

the existence or lack thereof of such common characteristic. Some applications of

such algorithms are density estimation which aims at finding the probability density

function that best fits the given unlabeled data or cluster analysis 2.1b which assigns

data points to sets in a manner such that the points in the same clusters are similar

to each other and the points outside that cluster are dissimilar according to a given

criterion.

(a) classification (b) clustering

Figure 2.1: Examples

• Supervised learning: In this case, the learning system is given a set of labeled data as

training data. The training data is a collection of training samples where each instance

is made of one or more inputs and a desired output which is the supervision signal, also

called target. The mathematical model of the learning system sees each training sample

as a tuple feature vector and a label. The learner is also given an objective function

that it has to minimize (or maximize) through iterative optimization and the goal of

such a model is to predict the correct label for new, unseen inputs. While monitoring

the performance of the model, if the accuracy of the outputs improves overtime, the

model is said to have learned to perform that given task. Some notable examples of

supervised learning models are classification 2.1a and regression. When the output

is categorical or bound to certain well-defined values, classification algorithms are

well adapted. On the other hand, if the desired output is a numerical value, then the

choice will be a regression algorithm. Another specific type of supervised algorithm is

similarity learning, an umbrella for learning to rank or recommendation algorithms.

These models rely on a similarity function to learn how similar two data points are.

• Semi-supervised learning: It is a learning setting where the learner is provide a

large amount of unlabeled data and a small, limited number of labeled samples. It is

closely related to weakly supervised learning, in which the labels available are noisy,

or imprecise, although cheap to obtain. Loosely speaking, this setting is between

supervised and unsupervised learning.
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• Reinforcement learning: Finally, Reinforcement Learning (RL) is a collection

of algorithms and methods with the objective of allowing an agent to learn in an

environment by exploration and exploitation using supervision provided by its own

actions and observations while interacting with the environment. Due to its peculiarity,

it is worth comparing the reinforcement learning setting to other learning frameworks.

If compared to unsupervised learning, reinforcement learning differs in terms of

purposes. While the objective in unsupervised learning is to find recurring tendencies

between data points, in RL the goal is to find an appropriate operation model that

would maximize the cumulative gain of the agent. Granting that both supervised

and reinforcement learning rely on obtaining a mapping between input and output

data points. However, in supervised learning setting, the supervision provided to the

learning agent is the correct set of data points for learning how to execute a task, also

called "ground truth". On the contrary, in the RL setting the learner receives gains and

penalties as feedback signals to be interpreted as positive and negative behavior.

• Unsupervised Dimensionality Reduction:

The last category of models for this section is dimensionality reduction approaches.

The goal of these models is to decrease the dimensionality of the provided data by

feature elimination or feature extraction while preserving the essential information.

Oftentimes, dimensionality reduction methods are used as a data transformation

technique in order to obtain appropriate inputs for other machine learning methods,

such as classification models, or again as very efficient visualization techniques by

projecting the data points in a lower dimension space that can be easily interpretable.

For these reasons, these approaches are very relevant to this thesis. There are different

mechanisms for unsupervised dimensionality reduction: (i) matrix factorization

techniques such as PCA (Principal Component Analysis) and SVD (Singular Value

Decomposition) which reduce a dataset matrix into its constituent parts; (ii) manifold

learning approaches such as t-SNE (t-distributed Stochastic Neighbor Embedding),

MDS (Multi-Dimensional Scaling) or Autoencoders, which are capable of learning

nonlinear dimensionality reduction functions by encoding and decoding to force

closeness to the original data point. Contrary to the first typology, manifold learning

approaches aims at preserving geometrical and topological properties of the data.

Often, unsupervised dimensionality reduction techniques do not use the class labels

while learning the low-dimensional representation often resulting in sub-optimal

performance for subsequent prediction tasks. On the other hand, the goal of supervised

dimensionality reduction algorithms is to obtain low dimensional representations that
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maximally separates the different classes specific to the input data, making subsequent

downstream tasks, such as classification, easier. Some works described in the next

chapters, closely relate to this category of representation learning, more specifically

manifold learning.

2.2 Deep Learning

Artificial neural networks (ANN) are the core component of Deep Learning and as suggested

by their name, these models were inspired by biology, imitating the way the information is

propagated in the biological neurons. However, most recent models have given up in the

attempts of holding a biological plausibility. The neurons in ANN are linked to each other

with various motifs, which can be described by a directed weighted graph, such that the

input of certain nodes is the output of other neurons. Loosely speaking, each neuron is a

node that is linked to others in the same manner as in the biological axon-synapse-dendrite

link. Each link has a weight that displays the intensity of the node activation to the one it is

linked to. An ANN is structured in numerous layers. The input layer is the one that directly

interfaces the external data. The output layer produces the final result. All layers in the

middle are designated as hidden. Finally, if every node in one layer is linked to every node

in the succeeding layer, the ANN is said to be fully connected. Oftentimes, a bias term is

added to the result of the weighted sum of the connections to the predecessor nodes.

Training ANNs necessitates the definition of a number of hyperparameters. Hyperparame-

ters are constants that need to be set in order to control the learning procedure. It is worth

specifying that the learning in the ANN is performed by adjusting the weights, hence adapting

the initial network, in order to improve the correctness of the results. Basically, learning

necessitates the evaluation of a cost function during the process which is the synthesis of the

observed errors. The cost (or loss) function is a function chosen such that it fits the problem

at hand.

Another crucial hyperparameter is the learning rate. This constant represents the size of

the steps at each iteration for correcting and adjusting for errors while moving towards a min-

imum defined by the objective function described earlier. The choice of this hyperparameter

relies on a trade-off between the speed of the learning process and the performance of the

model. A high learning rate decreases the training time but could yield a loss in the accuracy

of the results and vice versa. Finally, backpropagation is one of the methods used to modify

the connection weights at each iteration Technically, it works by computing the derivative of

the cost function with respect to the weights for a given state. Next, the chosen algorithm,

which often is a variation of the gradient descent is used to adjust these weights. Stochastic

13
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gradient descent is an optimization method among these collection of variation of gradient

descent that will be further described in next sections.

The actual process of learning can be described by the concepts of optimization theory

and statistical estimation. As stated earlier, Deep Learning (DL) denotes a class of machine

learning models based on artificial neural networks (ANN). Deep learning architectures have

the adjective "deep" defining the fact that Deep neural Networks (DNN) have multiple layers.

These models are characterized by the fact that each level transforms the data it has received

as input into a more abstract representation. One of the main advantages of DL models is

that they do not require prior feature engineering or dimensionality reduction techniques for

the input data to perform the learning task as these approaches are capable of extracting the

necessary intermediate representations.

Along the thesis, different types of neural networks are adopted. In the following chapters,

I will describe the most used. The commonly mentioned variables and functions are:

• xt: input vector, t stands for the time step.

• ht: hidden layer vector

• W,U and b: parameter matrices and vector. Specifically,W and U are weight matrices,

the organization in a matrix form of all the weights associated with each neuron in the

hidden layers of the ANN that transform the input data. In the same manner, b is the

bias vector and is a learnable parameter of the neural network.

• σh and σy: activation functions, which define the output of nodes given a input.

Feed-forward Networks. A Feed Forward Network (FFN) is a type of ANN characterized

by the fact that the links between the nodes do not form a cycle. It can be considered the

simplest form of neural network (the single layer version is the perceptron invented by F.

Rosenblatt in 1957) because the information is only processed in one direction even in the

case in which the data passes through multiple layers of hidden nodes. A schema of a FFN is

given in 2.2. The direction of the arrows shows that information only flows in one direction

and never backward. Specifically, it moves from the input nodes, through the hidden nodes,

two layers in the case of the figure, and to the output nodes. A characteristic of FFN is the

lack of cycles or loops.

The most common feed forward neural networks is the multilayer perceptron. They have

at least three layers: an input layer, a hidden layer and an output layer. It is inspired by

biological connections between neurons, hence the activation function modeled after the

firing of biological neurons. Common activation functions are:
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• The hyperbolic tangent: y(vi) = tanh(vi)

• The logistic function: y(vi) = (1 + e−vi)−1

• The rectifier linear unit (ReLU): y(vi) = vi
+ = max(0, vi)

Multilayer perceptrons have proven to be great to solve problems in a stochastic manner,

which often allow to find approximate solutions for complex problems.

They are universal function approximators as shown in Hornik et al. (1989), so they can

be used to develop mathematical algorithms by regression analysis. As classification is a

particular case of regression when the target variable is categorical, the multilayer perceptron

provides good classifier algorithms.

Figure 2.2: Feed-forward network

Recurrent Neural Network (RNN). This type of neural network is particularly suited for

tasks involving the notion of sequential flow. It is characterized by by connections between

nodes from a directed graph along a temporal sequence. RNN can use their internal state

(memory) to process variable length sequences of inputs and this allows them to be able to

treat input under the form of sequences. This is very useful in tasks requiring a particular

attention to temporal dynamic behaviour. A distinguishing characteristic of RNNs is that

they share parameters across all layers of the network and still rely on backpropagation and

gradient descent for the learning process. A compressed schema of a RNN is shown in 2.3 in

which it is possible to clearly see the information cycles through a loop.

The simple RNN has a recurrent hidden state as in:

ht = σ(Wxt +Uht−1 + b)
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where xt is the external n-dimensional input vector at the timestep t, ht is the d-dimensional

hidden state, σ is the pointwise activation function (in this case the sigmoid but can be any

other activation function),W is the n× d weight matrix, U is the n× n weight matrix and

b is the n× 1 bias vector.

RNNs exploit backpropagation through time (BPTT) algorithm, a slightly different version

of the classic backpropagation. This version is specific to sequential data although the main

concepts remain equal. The key distinction between BPTT and standard backpropagation

is that the first sums errors at each time step whereas in the second case, this is not needed

since generally they do not share parameters across layers.

δL(T )

δW
=

T∑
t=1

δL(T )

δW

∣∣∣∣
(t)

Figure 2.3: Recurrent neural network

However, this cause two main problems to RNN: exploding gradients and vanishing

gradient. These issues are linked to the size of the gradient: if too small, the weight

parameter update becomes close to 0, hence the algorithm is no longer learning (vanishing

gradient); if too big, the updates diverge to NaN (exploding gradient). A way to cope with

the exploding gradient problem sometimes is a technique called gradient clipping. It consists

of capping the maximum value for the gradient to a predefined value.

There are different variants of RNN, the most common are:

• Long short-term memory (LSTM): This is a well-known variation of the RNN ar-

chitecture, which was proposed by Hochreiter and Schmidhuber (1997) as a resolution
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of the vanishing gradient problem and the long-term dependencies problem in classic

RNNs. LSTM models have blocks called “cells” in the hidden layers of the neural

network. These blocks have three gates – an input gate it, an output gate ot, and a

forget gate ft. The purpose of these gates is to control the flow of information required

in order to predict the output. ct is the internal memory cell of a LSTM network and

it corresponds to the hidden state of a classic RNN. The main distinction between

the two states is that the LSTM memory cell c̃t has the characteristic of having an

element-wise weighted-sum of the previous value of internal memory state, ct−1 In

short:

ct = ft � ct−1 + it � c̃t
c̃t = σ(WCxt +UCht−1 + bc)

ht = ot � g(ct)

it = σ(WIxt +UIht−1 + bi)

ft = σ(WFxt +UFht−1 + bf )

ot = σ(WOxt +UOht−1 + bo)

It is worth mentioning that the number of parameters in the LSTM model is four times

higher than the simple RNN model.

Figure 2.4: Gated Recurrent Unit (GRU)

• Gated Recurrent Unit (GRU): This architecture from (Cho et al., 2014) is quite

similar to LSTMs because both models have the same cell component. It has been

proposed with the aim to propose a solution to the short-term memory problem
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common in RNNs for longer sequences. However, instead of using a specific "cell

state" to regulate the flow of information, it relies on hidden states.

ht = (1− zt)� ht−1 + zt � h̃t

h̃t = σ(WHxt +UH(rt � ht−1) + bh)

Moreover, it does not have three gates but only two: a reset gate rt and an update gate

zt, which control how much and which information has to be retained.

rt = σ(WRxt +URht−1 + br)

zt = σ(WZxt +UZht−1 + bz)

Convolutional Neural Network (CNN) . CNNs have been proposed as a countermeasure

for the scability problem of FFNs for images as input data points. In fact, an image with three

color channels of size 32× 32 as in CIFAR-10, a benchmark image classification dataset,

will require 3072 weights, a factor that can become quickly prohibitive with larger images.

CNN have three main types of layers:

• Convolutional layer

• Pooling layer

• Fully-connected (FC) layer

A CNN is constituted of a number of constituting building blogs namely the convolutional

layers containing a filter and a feature map. The input to a convolutional layer, most often an

image, is represented as a three dimensional matrix — a RGB (Red, Green and Blue) image

with a height, width, and depth.

The filter is a two-dimensional matrix of learnable weights. Other denominations are

kernel or feature detector, which will be used interchangeably. Generally, the filter has a size

of a 3x3 matrix, although variations are possible. The filter moves across the different areas

of the image known as receptive fields while checking if the feature under consideration is

present. A receptive field for a given neuron is a restricted region of the previous layer that

is fed as input to that neuron and where the convolution operation is performed. Loosely

speaking, the convolution can be referred as the mathematical operation that allows to merge

two sets of information. Each filter is applied to an area of the image across its weight and

height, and a matrix multiplication is calculated between the input and the filter. This result
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will then be structured into an output array. After this, the filter will be shifted by a stride

and the process will repeat until the kernel goes through the whole image. The final output

from the sequence of convolutions is known as a feature map or activation map.

The characteristic fact that the output matrix does not need to map directly to each input

value is generally called "local connectivity". Moreover, the convolutional (and pooling)

layers are commonly said to as “partially connected” thanks to the presence of the local

connectivity.

It is worth recalling that the weights in the feature detector are fixed in order to allow for

parameter sharing. The hyperparameters needed to be fixed before the learning process takes

place are: (i) number of filters which affects the depth of the output, (ii) the stride, described

as the number of pixels that the feature detector moves over in the input tensor, a larger stride

yields a smaller output and viceversa, (iii) padding, a parameter that can be set to zero in

the case of which the kernel does not fit the input image. In this case, the pixels outside the

input tensor are set to zero. This is described as the zero padding but other types of padding

exists such as, the no padding in that case no padding is applied and the last convolution

is dropped if the dimensions do not align, the same padding, where the output matrix has

the same dimensionality of the input matrix (for the simple case in which the stride is equal

to one), and the full padding which is the padding that expands the size of the output by

incorporating zeros to the border of the input.

Finally, an activation function, often (Rectifier Linear Unit) ReLU, is applied to the feature

map with the goal of introducing non-linearity to the output.

Pooling layers, whose objective is to perform down-sampling to the input, work by

decreasing the number of parameters in the input. Akin to the convolutional layers, the

pooling operation consists of a filter going across the whole input, although this particular

filter does not possess any weights. More specifically, the filter applies an aggregation

function to the values within its receptive field. There are two main types of pooling: (i) max

pooling which picks the pixel with the maximum value to include into the output while the

filter moves across the input and (ii) average pooling in which the filter computes the average

value while moving across the image within the receptive field to include into the output.

The last layer is the fully connected layer which the performs the task of prediction based

on the acquired features. 2.5 presents a typical network architecture for CNN for the task of

classification. The input image flows through various convolution and pooling layers and the

output is a classification to the semantic class of the image, animal or object.

Autoencoder. Autoencoders are unsupervised learning models. They are vastly used in

the domain of representation learning. More specifically, they are designed in such a way

that constrains the model to learn a compressed representation of the original input. It is
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Figure 2.5: Convolutional Neural Network (CNN)

important to mention that this will be a very hard task if the features of the input were each

independent from each other. However, if a correlation between the input features exists,

this structure can be learned and leveraged when forcing the input through the network

compression. 2.6 summarizes this model.

Figure 2.6: Autoencoder

Generally, the following supervised learning problem is adopted for autoencoders: mini-

mizing the error between the reconstruction x̂ of the original input x. The objective function

to be minimized in this case is the reconstruction error L(x, x̂) that measures the differences

between the original input and the reconstructed output. The compression in the network

is essential in order to avoid the model simply memorizing the input values. By doing this,

the amount of information that flows through the network is constrained and compression is

learned, namely the code. A good autoencoder should be sensitive to the inputs enough to

accurately reconstruct the input without overfitting to the training data. In order to respect

this trade-off, a regularizer term must be added to the objective function mentioned earlier,

which becomes L(x, x̂) + r. There are different variations of the autoencoder architectures,

and the standard variations are:
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• Undercomplete autoencoder: When the dimensionality of the feature space, given

by the hidden layers of the model, is lower than the dimensionality of the input space,

the encoded data becomes a compressed version of the input x. The undercomplete

autoeconder is the simplest variation of an autoencoder. More is said in the following

paragraphs.

• Sparse autoencoder: This type of autoencoder may have more hidden units than

inputs but only a subset is active at the same time, hence the sparsity. This fact

forces the network to learn codes where sparsity is a criterion to take into account.

Specifically sparse autoencoder have a training criterion that involves a sparsity penalty

Ω(h) as a regularization L(x, x̂) + Ω(h) where h indicates the encoded data layer.

• Denoising autoencoder: This type of architecture attempts to learn good codes by

trying to reconstruct the undistorted version of the input from a corrupted input. Hence,

they put emphasis on the reconstruction error. The main idea is that to perform the

task of denoising well, the model need to extract significant and useful features from

the input data.

• Contractive autoencoder: A contractive autoencoder adds an explicit regularizer in

the objective function. It is more extensively explained in the following paragraphs.

• Variational autoencoder: Variational autoencoder belongs to the group of variational

Bayesian approaches. They have different objectives and mathematical formulation

despite the architectural similarities compared to the other types of autoencoders.

In fact, the input data point is sampled from a parametrized distribution (the prior),

while the encoder and decoder are trained jointly such that the output minimizes

a reconstruction error in the sense of the Kullback–Leibler divergence, a statistical

distance that measure how one probability distribution is different from a second one,

between the parametric posterior and the true posterior.

In the following paragraphs, there will be brief description of the approaches that are

closer to the focus of this thesis.

Undercomplete autoencoder.
Constraining the total number of hidden nodes in the intermediate layers of the network is

straightforward strategy for designing an autoencoder. This procedure limits the quantity

of information that can pass through the network. The model learns to discern the main

attributes of the input data and to concurrently reconstruct the original input from a "code",
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by setting an objective learning based on the reconstruction error for the network. The

encoded input data point in the latent space is generally referred to as a "code".

The absence of an explicit regularization term is a key trait of this type of networks. For

this reason, the only way to avoid the naive memorization of data is further restraining

the number of intermediate nodes. These simple autoencoders can be seen as a nonlinear

generalization of PCA due to the fact that NNs are capable of learning nonlinear relationships.

One key dissimilarity between PCA and undercomplete autoencoders is in the overall goal

of these approaches. In fact, the aim of PCA is to find a lower dimensional hyperplane fitting

the input data points, whereas autoencoders are capable of learning nonlinear manifolds.

In the case of deep autoencoders, a key point of concern will be the capacity of the

encoder and decoder models. A valid alternative will be to consider sparse autoencoders for

obtaining an information bottleneck without lowering the number of neurons in the hidden

layers. This type of autoencoders will be better described in a further paragraphs.However,

it is worth mentioning that this is a distinctive method towards regularization, as generally

the regularization is performed on the weights of a network, not the output values of the

activation functions.

Contractive autoencoder. It is generally expected that similar input data points will yield

similar codes if the representation learning process is correct. A formal approach to obtain

this is to contract the vicinity of the inputs into a smaller vicinity of the outputs. This

is obtained by formulating a loss term that penalizes large derivatives produced by the

hidden layers with respect to the training data points. Loosely speaking, this corresponds to

penalizing instances where small variation in the input data causes a large alteration in the

encoding space so that dissimilar data points are pushed afar. Specifically, the regularization

loss term is the squared Frobenius norm ‖A‖F of the Jacobian matrix J for the hidden layer

action with respect to the input observation. Given m observations and n hidden layer nodes:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

J =


δa

(h)
1 (x)
δx1

. . .
δa

(h)
1 (x)
δxm

...
. . .

...
δa

(h)
n (x)
δx1

. . . δa
(h)
n (x)
δxm


which leads to the compact loss function:

L(x, x̂) + λ
∑
i

‖∇xa(h)
i (x)‖2
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where ∇xa(h)
i (x) represents the gradient field of the hidden layer activations with respect to

the input x summed over all i training samples.

2.3 Practical Methodology

The sole knowledge of the principles that determines how these models work is not sufficient

in order to successfully apply the models described earlier. Some other aspects must be taken

into account, namely an appropriate initialization of the learnable parameters, a suitable

regularization and the correct optimization method. An overview of the main principles for

these steps is given in the following paragraphs.

2.3.1 Initialization

One of the most common obstacles in learning through deep learning models is the vanishing

and/or exploding gradient phenomenon. In order to solve these issues, a viable solution is to

carefully choose the initialization point of the learnable parameters. For this reason, weight

initialization techniques are of fundamental importance because a adequate initialization of

the weights in a neural network is crucial for its convergence. There are different approaches

for weight initialization. The next paragraphs describe some notable examples:

• Zero (and Constant) initialization: This approach assigns zero (or a predefined

constant value) to all weights. Moreover, all activations in all neurons are the same,

and therefore all calculations are the same. This approach reduces the neural network

to a linear model. Hence, any kind of constant initialization is not recommended.

• Random initialization: This initialization sets the weights of the neural architecture

to random values. It can be of two types, (i) random normal or (ii) random uniform. In

(i), the weights are initialized from values in a normal distribution θi ∼ N (0, 1) and

in (ii) they are drawn from a uniform distribution θi ∼ U(0, 1). However, assigning

values randomly to the weights, can cause problems such as overfitting, vanishing and

or exploding gradient problem.

• Xavier/Glorot initialization: The Xavier/Glorot Initialization (Glorot and Bengio,

2010) fixes the initial values of the weights such that the variance is the same for

layer. The fact that the variance is constant helps in preventing the gradient from

diverging to high or small values. There are two types of Glorot Initialization:

(i) Uniform Xavier where the weights are assigned from values of this uniform

distribution θi ∼ U(−
√

σ
Fin+Fout

),
√

σ
Fin+Fout

); and (ii) Normalized Xavier where
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the weights are assigned from values of this normal distribution θi ∼ N (0, σ) with

σ =
√

6
Fin+Fout

. When the activation function used in the model is the sigmoid,

Xavier/Glorot initialization is advised.

• Kaiming initialization: Also known as the He initialization (He et al., 2015). This

method ensures that the non-linearity of the activation functions such as ReLU

activations is preserved. Additionally, it tries to reduce or increase the magnitudes of

the inputs exponentially. This helps in solving dying neuron problem. Again, there

are two variations of this initialization approach (i) Uniform Kaiming the weights

are assigned from values of a uniform distribution θi ∼ U(−
√

6
Fin

,
√

6
Fout

); and

(ii) Normalized Kaiming where the weights are assigned from values of this normal

distribution θi ∼ N (0, σ) with σ =
√

2
Fin

. This type of initialization is well adapted

in presence of the ReLU activation function.

2.3.2 Learning

A (deep) neural network goal is to map a set of input data points to a set of output data points

based on given training samples. As specified earlier, this mapping is performed through the

learnable weights and biases of the network. For doing this, the learning problem is framed

as an optimization problem and the goal of the chosen algorithm is to explore the space of

possible values of weights the model needs to obtain accurate predictions.

In order to achieve the correct learning strategy, the usual methodology is to rely on a

(stochastic) gradient descent optimization algorithm to update the weights using backpropa-

gation (BP) algorithm. Backpropagation is a class of algorithms that efficiently determines

the gradient of the losserror function with respect to the network learnable weights by chain

rule. The error gradient is the outcome of the following steps: the network with a current set

of weights at the instant t is used to make predictions and consequently, the error for these

predictions is computed. Then, the difference between the gold truth values and the current

predictions, specifically, the negative gradient of this difference, is commonly referred to as

the error gradient. The gradient descent algorithm aims at adjusting the weights such that

the next evaluation of the predictions at time t + 1 reduces the error. If this is the case, it

indicates that the optimization procedure is navigating down the slope of the error function

towards a minimum.

Loss functions. Contextualized to the optimization algorithm, the function used for

evaluating the weights at a given time is called the objective or loss function. The goal may

be to maximise or minimise the loss function but typically, in neural networks the goal is the

minimization of the error function, hence the name loss or cost function. The choice of the
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loss function is of fundamental importance because its objective is to faithfully summarize

in one value the main factors of the model that need to be changed or improved in order to

improve the learning performance. Moreover, the choice of the loss function must represent

the properties of the problem at hand.

Given a set of possible candidate loss functions, the chosen function must be such that the

space of candidate solutions maps onto a smooth and high dimensional manifold that the

optimization algorithm can explore through iterative updates to the model parameters.

One of the best-known frameworks for inference is the Maximum Likelihood Estimation

(MLE) whose goal is to find the best statistical estimates of parameters from training data.

Given the input data points, the model aims at making predictions that match the data

distribution of the target data points. The logic of MLE is that under the assumed statistical

model, maximizing the correct likelihood function makes the observed data most probable.

Loosely speaking, a cost function computes how closely the distribution of predicted data

points matches the distribution of target variables in the training data. A notable advantage

of this framework is the property of consistency, in the sense that as the quantity of training

examples goes to infinity, the estimate of a parameter tends to the true value of the parameters.

2.3.3 Regularization

After setting up the key elements of the learning process in neural networks, how to improve

this process is a key aspect. The set of techniques for training DNNs to prevent issues in

the learning process is referred as regularization. Concretely, the regularization parameter

reduces or prevent overfitting by adding information to an ill-posed problem. This parameter

is added to the objective function, and it is also referred as penalty and it imposes a cost

to the optimization in order to force the optimal solution to be unique. Specifically in the

machine learning context, the regularization term aims at reducing the generalization error,

which is the error computed for a trained model on the evaluation data. For this reason,

regularization is a technique to improve the generalization ability of the learned model.

The main types of regularization specific to deep learning models are:

• Regularization terms: The most known group of methods for regularization are

parameters norm penalties. They consist in including a parameter norm penalty Ω(θ)

to the loss function L(θ, x, y) such that the cost becomes: L′(θ, x, y) = L(θ, x, y) +

aΩ(θ). Here θ indicates the set of trainable parameters, x is the input data and y is

the target data. When Ω(θ) is chosen to be the `2 norm such that Ω(θ) = 1
2‖θ‖

2
2,

the regularization is called weight decay. The `1 can be chosen as well such that
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Ω(θ) = |θ|1. The `1 regularizer forces sparsity into the parameters by constraining

more values to be equal to zero instead of decreasing the average values of all weights.

• Entropy regularization: Entropy regularization is also a norm penalty method that is

applied to probabilistic models. Similarly, the penalty term Ω(θ) = −
∑
p(x) log(p(x))

where p(x) is the output of the model as a probability distribution. The explanation of

this penalty term is that it forces the model to reduce the variance by encouraging the

probability distribution to converge towards the uniform distribution.

• Label smoothing: Label smoothing is a way of injecting noise into the output targets.

Noise injection acts as a regularizer because by adding randomness, the variance of

the model is reduced and the generalization error decreases. Label smoothing consists

in replacing the 0 and 1 in the one-hot encoding of the target vector in a classification

problem by ε
k−1 for 0 and 1− k for 1, where k is the number of classes.

• Dropout: Dropout (Srivastava et al., 2014) is a regularization strategy that can be seen

as inserting noise into the hidden elements of the network. The effect that dropout

has on the result is to make the training process noisy by avoiding the layers of the

network to co-adapt in order to correct mistakes from previous layers. This makes the

model more robust and encourages the sparsity of the network.

• Early stopping: One of the most commonly used regularization strategies is early

stopping. The goal of this method is avoiding the model to overfit to the training

data when in an iterative learning setting. It refers to the practice of stopping the

training process when the training error is no further decreasing and the validation

error is beginning to increase which happens when overfitting occurs. This is done by

storing the trainable parameters periodically and tracking the validation error and after

stopping the training the best parameters are retrieved, which corresponds to the point

in time when the validation error started to increase. Early stopping can also be seen

as a hyperparameter selection approach for the number of epochs.

• Parameter sharing: In this case, instead of penalizing the parameters, this approach

forces a group of parameters to be equal. This generally occurs in CNNs where

the architecture takes advantage of the spatial configuration of images by sharing

parameters across different places in the input. Due to the fact that each filter is

convoluted with different sections of the input image, the weight is shared among

the sections instead of having separate ones. Weights sharing occurs also in Siamese

Networks, a type of neural network using two or more identical subnetworks that must

share the same parameters and weights.
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• Batch Normalization: Batch normalization (Ioffe and Szegedy, 2015) imposes a

normalization of the input data to obtain faster and more stable networks. In a nutshell,

this technique forces the means and variances of the input data to exist in the same

range. This is known as centering and scaling, respectively. More specifically, the

features are concentrated in a compact Gaussian-like space. This is presented in (Luo

et al., 2018).

• Data Augmentation: This is not strictly a regularization method but has a strategy it

acts as if it was. It consists in generating new training examples to add to the original

dataset. More training data means a lower variance in the model which in return lowers

the generalization error. This can be done by performing geometric manipulations to

the data (image flipping, cropping, rotations, etc.), transforming the feature space (e.g

adding noise to the latent representations), and generating data through GANs.

2.3.4 Optimization

Building an optimization model and learning the parameters in the objective function from

the given input data can be seen as the essence of most machine learning models. The

great majority of machine learning methods can be formulated as an optimization problem

aiming at finding the minimum (or maximum) of a loss function. Implementing models

and constructing plausible objective functions are crucial steps in the learning process.

Generally, the optimization problem is solved by using appropriate numerical and analytical

optimization methods together with a chosen objective function. From the perspective of

gradient, the main optimization methods can be divided into first-order optimization methods,

high-order optimization methods and derivative free optimization methods. In the context of

machine learning, the most commonly used first-order optimization methods are based on

gradient descent.

• Gradient descent: This is one of the best-known optimization approaches. The main

idea of the gradient descent method is to iteratively update the weights in the negative

direction of the gradients of the loss function. With every update, this algorithm directs

the network to be closer to the target value and to gradually converge to the optimal

value of the objective function at a linear rate. If the objective function is convex, the

solution at convergence is the global optimal. However, since at each parameter update

the gradient of all samples needs to be calculated, the calculation cost is high.

• Stochastic Gradient Descent : Stochastic gradient descent (SGD) was proposed in

(Robbins and Monro, 1951) to address the computational complexity involved in each
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iteration for large scale data. The stochastic gradient is an unbiased estimate of the

actual gradient and the update parameters are determined using a randomly sampled

mini-batch of the input data. The advantage is that the calculation time for each update

is not dependent on the total number of samples and applying this method eliminates

computational redundancy. Despite this, the convergence might be halted at a saddle

point and the choice of learning rate is difficult because this method is not suited for

constant learning rate for all the learnable parameters.

• Adaptive Learning Rate Methods: One of the key hyperparameters is the learning

rate. It is of primary importance and its choice determines the learning performance

considerably. As stated earlier, the learning rate has a great impact on the SGD

method. Adaptive methods were proposed to tune the learning rate automatically

and for this reason, the adaptive variants of SGD have been vastly used in NNs. The

main utilised are (i) AdaGrad (Duchi et al., 2011) which adjusts the learning rate

adaptively using the sum of the squares of all historical gradients. The method is

suitable for handling problems involving sparse gradients but not suitable for dealing

with non-convex problems because of the tendency of the learning rate to converge

to zero; (i) AdaDelta (Zeiler, 2012)/RMSProp (Tieleman and Hinton, 2017) is a

variant of the Adagrad method that reduces the learning rate which is monotonically

diminishing, by using the exponential moving average for computing the total gradient.

It is recommended for optimizing non-stationary and non-convex problems; (iii) Adam
(Kingma and Ba, 2014) is almost similar to RMSProp but with momentum and also

adds bias correction. It is adapted to most non-convex optimization problems with

large data sets and high dimensional spaces but has the issue of still not converging in

some cases.

For the problems where an objective function is highly non-linear and ill-conditioned,

the high-order methods can be a possible solution. They work effectively by introducing

curvature information. One of the main approaches is the Conjugate Gradient Methodis

used for solving large scale linear systems of equations and nonlinear optimization problems

(Nocedal and Wright, 1999). The main benefit of this technique is that it is an intermediate

approach which can use the straightforwardness of first-order optimization for certain

problems while ensuring the convergence speed of high-order methods.

Finally, it is worth mentioning the derivative free methods, which are suited for cases

where the derivative of the objective function may not exist or be difficult to compute.

They use a heuristic algorithm that chooses methods that have already worked well, rather

than deriving solutions systematically. Classical simulated annealing, genetic algorithms
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and particle swarm optimization are few such examples. Or another way is to adapt an

appropriate function based on the samples of the objective function, an example of such

approach is the coordinate descent method (Bertsekas, 1999) which is a derivative-free

approach for multi-variable functions.

2.4 Representation Learning

In recent years, ML applications have been extended to several tasks, from image seg-

mentation to natural language processing. In fact, the success of ML algorithms generally

depends on the quality of the representation on which they are applied to. That has led

representation learning, i.e. leaning representation of the data that facilitates the extraction

of useful information for the predictor, to become a central theme in deep learning (Liu et al.,

2020; Minaee et al., 2020).

Many tasks can be more or less difficult depending on the encoding of the data. For

example, it is easier to do elementary mathematical operations such addition or division if the

numbers are presented in decimal representation rather than roman numerals for most people.

In the same way, a ML algorithm will perform better if the representation it is given makes

the task easier. This is obtained by appropriately explaining the factors of variation behind

the data. That is to say that their value resides in their capacity to generate representations

that truly encode the meaning of each data point with respect to the task at hand. For example,

in case of probabilistic models, this is obtained by capturing the posterior distribution of the

underlying factors for the observed data points.

There exist various ways of learning good representations. The focus of this thesis is in

deep learning approaches which, through a composition of multiple transformations, produce

an embedding vector for a given input. An embedding can be defined as a mapping of a

discrete entity to a continuous vector. Neural network embeddings are beneficial because they

can reduce the dimensionality of categorical inputs and meaningfully represent categories in

the latent space. There are different categorizations of deep embeddings:

• The method that generated them (supervised learning, self-supervised learning and

unsupervised learning)

• The nature of the estimation (point-based or distribution based)

• The nature of the latent space (Euclidean, Hyperbolic, ...)

In general, a good embedding will result from a model that was able to identify the causal

factors that induce a variation in the distribution that generated the data. That is to say, that
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the model needs to be able to disentangle the main factors that better explains the interactions

between the data points and convert them into suitable latent representations such that the

distance between the vectors reflect the similarity.

Approaches for representation learning. As stated earlier, there are different methods

to learn embeddings. It is worth noting that not all embeddings are learned, for example,

one-hot encoding is a representation that doesn’t need any learning. However, when the

representation must be learned this process can be done in different ways. In fact, when

training a deep neural network on a supervised learning task (e.g. classification), the training

objective naturally yields embeddings that are suitable for solving the task. This can be

done in different ways; among which we can recall generic classification (as performed in

the chapter for the task answer selection) or metric learning. The latter aims at learning

a good embedding space, such that the similarity between data points is preserved in the

form of distances between the embedding vectors. This is performed by training the network

with a loss function whose main objective is to minimize inter-class distances and maximize

inter-class distances.

Another approach to learning embeddings in a supervised fashion is to rely on automati-

cally generated labels. This approach is called self-supervision. In a nutshell, semantically

meaningful embeddings are derived from solving pretext or ploy tasks such as predicting

the next word given an initial sequence of words. This is the base of language models in

NLP. Or again, the task of predicting if two image pieces come from the same picture , or

solving a jigsaw puzzle (Noroozi and Favaro, 2016). A good ploy task is one that requires

semantic understanding (or knowledge of important patterns) to solve the problem at hand.

The pretext task also takes advantage of known properties of the data in generating a training

dataset; e.g., for the task of predicting the angle of rotation for a given image, it is possible to

apply rotation transformations to the images, and then the target labels become the rotation

angles. If we construct pretext tasks that are inherently meaningful, then we can provide

some signal (or impose constraints) for the network to build notions of semantic meaning.

The tougher the ploy task, the more relevant the representations learned will be.

Finally, fully unsupervised methods can be considered in cases where it may be chal-

lenging to design good secondary tasks, for example, the data augmentation strategies or

transformations are not meaningful or easily identifiable or sampling positive or negative

pairs is difficult. Several of these methods fall under the class of generative models, where

the objective is to model a data distribution that can be consequently sampled from. Some

examples of these approaches include autoencoders and Generative Adversarial Networks

(GANs). While there is no explicit pretext task, the training objective still requires the
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model to disentangle input into main features which may sometimes have some semantic

significance.

Evaluation. There is a trade-off between the effort in terms of computational time and

complexity and the expected quality of the embeddings for a given embedding approach. On

one side, fully supervised approaches yield the best performance but require carefully curated

datasets of large size, and on the other side, fully unsupervised methods do not necessitate

the labelling effort but do not provide the strong guarantees of the former approach.

How does one know if they have good representations? What are the methods to verify

that a model has learned the underlying causal structures with respect to a task? This is hard

to mathematically quantify, and historically has been evaluated based on downstream task

performance (e.g., image classification, semantic segmentation, object detection, and action

recognition) or even visually for low-dimensional embeddings (multi-dimensional scaling,

ordinal embedding).

The former is loosely speaking an easy way of evaluating a representation learning

algorithm in terms of its usefulness with respect to a given task. In practice, this is done by

saving the learned embeddings and training a cheap classifier on top. However, training the

final classifier can be a substantial computational overhead and more importantly this may

give an incomplete evaluation of the features (what would happen for other tasks?).

When possible, visualization can be a good evaluation method to debug or understand an

embedding approach while still being cheap. Often, this evaluation method will require a

dimensionality reduction step. Rare exceptions are ordinal embedding or multi-dimensional

scaling approaches which very frequently output low-dimensional embedding (2d or 3d) that

can be directly visualised without projection. For all the other cases, typically, PCA (linear)

or t-SNE (non-linear) are used to project the representations in a 2d space. PCA projects

vector representations on a lower dimensional space whose axes correspond to the directions

of the highest variance in the dataset. Those dimensions do not carry any interpretable

meaning, making interpretation difficult. By visualizing the first two dimensions of a PCA

projection, the only insight obtainable is statistical relatedness. t-SNE, differently from PCA,

aims at optimizing a loss such that embeddings that are close in the original high-dimensional

space are close in the lower dimensional projection space. This helps in visualizing clusters

better than with PCA, as t-SNE puts each point in the projected space so that distance in

the original space with respect to its nearest neighbours is preserved as much as possible.

Visualizations obtained in this way reflect more the original embedding space and topical

clusters are more clearly distinguishable but do not solve the issue of comparability of two

different sets of embeddings, nor does it solve the lack of interpretability of the axes and still

does not allow for fine-grained inspection.
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2.5 Representation learning for Natural Language Processing

Different approaches for obtaining textual representations exist in the literature. There are

mainly two categories: a first one that yields the same embedding independently of the

context and a second one that outputs representations while considering the context of the

target word. The first category is represented by the well-known Word2Vec (Mikolov et al.,

2013d) and Glove(Pennington et al., 2014b). These embeddings are also called static because

given a large text corpus, the embeddings are learned through a neural network that takes

as input the words in the vicinity of the target, also called a window, and predicts the target

word.

Alternatively, the learning can be framed as the neural network taking as input the current

word and predicting the words within a certain window in the context. The mapping learned

in this fashion yields a vector representation for the word in the embedding space, and the

learned representations have the characteristic such that semantically similar words are close

to each other in the latent space. Specifically, the Word2Vec model considers the local

context in a certain window whereas Glove is based on matrix factorization of the word

co-occurrence matrix over the entire corpus. The rows of this factorized matrix produce

the word embeddings. The main disadvantage of the static embeddings is that they are not

able to provide representations for words out of the vocabulary and they are not aware of

polysemy, which is the ability of the same word to have multiple meanings, for example, the

word "light" referring to the nuance of colours or an unserious situation.

A solution to the problem was provided by the FastText model (Bojanowski et al., 2017).

The embeddings from this approach are obtained by taking as input several n-grams which

are the result of breaking the target word at the character level. Loosely speaking, the input

word "apple" is divided into {"<ap", "app", "ppl", "ple", "le>"}. However, a solution for the

polysemy problem is not possible for these off-the-shelf embeddings. To counter this issue,

a second category of textual representations was proposed. They are based on language

models and notable examples are ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019b).

ELMo is fundamentally one of the first models in NLP that made contextualization a central

focus. It stands for Embeddings from Language Models and produces words representations

using an architecture based on bi-directional LSTMs and exploiting the context in which the

words are employed in the sentence. On the other hand, BERT relies on transformer-based

(Vaswani et al., 2017) autoencoders to yield word embeddings. Basically, the representations

are the result of pre-training the model on tasks like predicting masked words or predicting

the following sentence given a text.
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This thesis uses static embeddings either as the input for initializing the embedding layers

for the different models Chapter 3 used or as off-the-shelf representations for different tasks

such as unsupervised machine translation Chapter 7 or entity set expansion Chapter 8.

2.6 Preferences and ranking

Preference learning (Fürnkranz and Hüllermeier, 2010) is a supervised learning paradigm

related to the field of preference modelling and decision-making. The characteristic that

makes preference learning differ from conventional supervised machine learning is that the

supervision is not in the form of scalar values (categorical for classification and numerical

for regression) but in the form of comparisons (pairwise or triplets) between input instances.

A preference is a comparison between two or more items to characterize which, among

a set of different choices is the one that better explains the preference, hence defining an

ordering relation. Preferences are the medium to guide our choices, discriminating among

items we like from those we dislike (or we like the least). In other terms, learning preferences

is a way to find the solution to a search (or optimization, in some cases) problem whose space

of possible solutions is represented by the set of the items the user prefers (for example, in

recommender systems, the set of items that should be recommended). Generally, preference

rules can be described into 2 categories: conditional preference rules which are of the form

"if X is the case, then a is preferred over b" and unconditional preference rules "a are

preferred over b".

Definition and notation. The relation "a is preferred over b" is expressed by the mathemat-

ical notion a � b. Variations of this preference can be expressed in different ways:

• a � b: a is strictly preferred over b;

• a � b: a is weakly preferred over b;

• a ∼ b: a is indifferent over b.

Another relevant distinction can be performed according to the type of input to the prefer-

ence learning model. (Fürnkranz and Hüllermeier, 2010) categorize into object preferences

and label preferences. The first concerns the cases where the preference is expressed between

the objects and this case relates to the task of object ranking (Kamishima et al., 2010) whereas

the latter refers to the case in which the preferences are expressed between the labels of a

training instance. This typology is related to the label ranking problem (Vembu and Gärtner,

2010). Finally, there are two main approaches to learning representations of preferences,

namely utility functions, which evaluate individual alternatives, and preference relations,
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which compare pairs of competing alternatives. The first type will not be discussed further in

the context of this thesis.

Ranking and sorting data. It is common to find ranking data in a wide variety of situations

in many fields relative to human activities ballots in political elections, survey answers,

competition results, customer buying behaviors or user preferences. Historically, the first

formalization of preference data, comes from a long series of works in social choice theory

initiated by Condorcet at the 18th century in (Nicolas et al., 1785), and the modelization of

these distributions started in 1951 by Mallows. However, ordering and sorting objects is also

a task that often arises in several modern applications of data processing.

Ranking data are heterogeneous but they can easily be categorized and explained. Let us

consider a set of items (labels) indexed by {1, ..., N}, which without loss of generality I am

going to denote JNK. A ranking is an ordering of a subset of elements of JNK according to a

predefined rule.

A ranking can be complete (i.e, involving all items) or incomplete as well as a total order

(not involving ties) or weak order. A full ranking is then a complete and without ties ranking,

also defined as a permutation, which can be denoted as a bijection π : JNK → JNK. This

bijection maps each item i to its rank π(i) and inversely, the item ranked at position j is

π−1(j). An item i is said to be preferred over j according to π, represented by i � j, if and

only if i is ranked lower than j, that is, π(i) < π(j).

In addition, a partial ranking is a complete ranking involving ties between the elements,

i.e., there exist two elements i and j where i 6= j such that π(i) = π(j). It is also defined as

mapping JNK→ JNK, although not being a bijection. In the literature, partial ranking are

also known as bucket order, being that partial ranking are often represented by buckets. In

such ordering, the elements of the set JNK are partitioned in k subset, also called buckets.

Two distinct items belong to the same bucket if and only if they are tied in π. A bipartite

ranking denotes the case of k = 2, which concretely is the problem of learning a ranking

model that can rank new objects such that those in one category are ranked higher than those

in the other.

Preference learning for embeddings. Although the semantics of the concept of preference

is pretty clear, acquiring the preferences and working with them is a more challenging task.

In fact, the complexity of the preference learning problem is related to dimensionality of

the representation for the set of possible choices. That is to say that the preference learning

problem is linked to the representation learning problem. A straightforward example is

the representation learning led by supervised metric learning. As stated earlier, a good

embedding will preserve the preference expressed as distances in the latent space. To this
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end, one can train deep neural network models with loss functions that yield this embedding

space. Traditional metric loss functions include contrastive loss (also known as pairwise

loss) and triplet loss. Both these losses are easy to be interpreted according to the preference

learning theory.

Pairwise loss. The contrastive or pairwise loss approximates the problem to optimizing a

binary classifier that predicts whether a pair of objects a and b is similar or dissimilar. The

pairs are chosen in a way to be positive or negative. The positive pairs are composed by

an anchor sample xa and a positive sample xp, similar to the xa according to the similarity

function δ, whereas the negative pairs contain the anchor sample and a negative sample xn
which is dissimilar to xa according to δ. The objective is to learn a good representation

with a small distance d between similar items and a distance larger than a margin value m

for dissimilar items. In case of positive pairs, the loss will be equal 0 only if the output

representations for both elements in the pair have a small distance between them. For

negative pairs, the loss will be equal to 0 when the distance between the embeddings of the

pair of elements is greater than the margin m. But when that distance is not greater than

m, the loss will be positive, and the network parameters will be updated to produce more

distant representations for those two dissimilar items. The loss value will be at most equal

to m, when the distance between xa and xn is 0. The goal of the margin coefficient is that,

when the embeddings produced for a negative pair are distant enough, no efforts should be

invested in expanding that distance, hence further conditioning can be concentrated on more

difficult pairs.

Let us denote xi and xj as the representations of the pair of input data points, i and j

respectively, y as a binary label equal to 0 for a negative pair and to 1 for a positive pair

and the distance between the embeddings as d. In this case, the distance is chosen to be the

Euclidean distance. The loss can be written as:

L(xi, xj , y) = y‖xi − xj‖+ (1− y) max(0,m− ‖xi − xj‖) (2.1)

Triplet loss. In this specific setting, xa is the anchor point, xp is the positive sample and

xn is the negative sample. The objective is the same as in the pairwise setting: the distance

d(xa, xn) between the anchor sample and the negative sample embeddings should be greater

and bigger than the margin m than the distance between the anchor sample and the positive

sample embeddings d(xa, xp). The loss function can be written as:

L(xa, xp, xn) = max(0,m+ d(xa, xp)− d(xa, xn)) (2.2)
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Figure 2.7: Siamese Neural Network

However, the configuration of the architecture used is different. In particular, the setup

with the conditional preference outperforms the other. Another interesting aspect of this

setting concerns the selection of the triplets. There are 3 different cases:

• Easy triplets: d(xa, xn) > d(xa, xp) +m. The negative sample is already sufficiently

distant from the anchor sample with respect to the positive sample in the latent space.

In this case, most likely the loss will be equal to 0 and the network parameters will not

be updated.

• Hard triplets: d(xa, xn) < d(xa, xp) In this case, the negative sample is close to the

anchor than the positive sample. The loss will be positive and most likely greater than

the margin m.

• Semi-hard triplets: d(xa, xp) < d(xa, xn) < d(xa, xp) + m. Finally, the negative

sample is more distant to the anchor than the positive, but the distance is not greater

than the margin, so the loss is still positive (and smaller than m).

Triplet and pair selection. A fundamental aspect in training with triplet and pairwise

loss is the triplet (or pair) mining. The procedure chosen will greatly impact the learning

performance of the network and the final quality of the embeddings. Obviously, easy triplets

and pairs must be avoided since the resulting loss is 0 and they do not contribute overly to the

learning process. The first strategy that can be used is offline triplet mining, which consists
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Figure 2.8: Triplet Network

of defining the triplets at the beginning of the training, or at each epoch. Secondly, online

triplet mining, that is to say that triplets are defined for every batch during the training, was

proposed as a method and resulted in better performance.

2.7 Ordinal embedding and ordinal data

As stated earlier, assessing similarity between objects is an inherent part of many machine

learning problems. The canonical case assumes the learner to be given a dataset and a

dissimilarity function that quantifies how close or similar two items of the dataset are.

However, there are relaxations to this scenario in which the learner is only given binary

answers to some comparisons rather than fixed quantity. The collections of answers to the

similarity comparison of items A,B,C and D:

δ(A,B)
?
> δ(C,D)

is known as ordinal distance information opposed to the cardinal distance information which

corresponds to δ(A,B) ∈ R. The symbol
?
> indicates an inequation that needs to be proven

true or false. This type of ordinal data can be seen as a particular form of preferences, which

has the specificity of being valuable only for a particular dataset at hand and the learner is

not given any feature representations of the objects.

Practical motivations for dealing with ordinal data are (and not limited to):
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• Crowdsourcing and human based computation: As it is a general phenomenon that

humans are significantly better at comparing stimuli than at identifying a single one,

it is widely believed and accepted that humans are also better and more reliable in

assessing dissimilarity on a relative scale (“Food A is more similar to food B than

food C is to food D”) than on an absolute one (“The similarity between A and B is

0.8 and the similarity between C and D is 0.3”). For this reason, ordinal questions are

often used when humans are involved in gathering distance information. In addition to

obtaining more robust results, this also has the advantage that one does not need to

align people’s different assessment scales.

• There are some cases in which providing the numerical similarity scores to a machine

learning algorithm can lead to the case in which the algorithm interprets them stronger

than they are meant to be.

• Finally, there are situations where the ordinal distance information is readily available,

but the underlying dissimilarity function is completely unknown. An example is the

case of search query logs: the user clicks A and B but not C, so that it can be assumed

that the relation between A and B is stronger than A and C or B and C.

In an ordinal data learning setting, the learner is not given access to the similarity function

δ but only a collection of binary answers to some similarity comparisons. The characteristics

of this ordinal distance information are:

• It is most likely noisy, in which it almost surely contains wrong and contradicting

answers. This leads to inconsistencies in the set of comparisons. A good algorithm for

dealing with ordinal data has to be robust and cope with noise and uncertainty.

• In practice, the form δ(A,B)
?
> δ(C,D) is rarely used. Most likely the similarity

comparisons are transformed in δ(A,B)
?
> δ(A,C) with A coinciding with D, hence

becoming an anchor point. These are called similarity triplets

One general approach to deal with ordinal distance information is to construct an ordinal

embedding of the data set D, that is to map data points to points in a Euclidean space Rd

such that the representation (with respect to the Euclidean metric) preserves the given ordinal

constraint “as much as possible”. The chapters 5 and 6 focus on learning in this particular

setting.
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3 Learning Analogy-Preserving Sentence
Embeddings for Answer Selection

Chapter abstract
Answer selection aims at identifying the correct answer for a given question from a set
of potentially correct answers. Contrary to previous works, which typically focus on the
semantic similarity between a question and its answer, our hypothesis is that question-
answer pairs are often in analogical relation to each other. Using analogical inference
as our use case, we propose a framework and a neural network architecture for learning
dedicated sentence embeddings that preserve analogical properties in the semantic space.
We evaluate the proposed method on benchmark datasets for answer selection and
demonstrate that our sentence embeddings indeed capture analogical properties better
than conventional embeddings, and that analogy-based question answering outperforms
a comparable similarity-based technique.

3.1 Introduction

Answer selection is the task of identifying the correct answer to a question from a pool of

candidate answers. The standard methodology is to prefer answers that are semantically

similar to the question. Often, this similarity is strengthened by bridging the lexical gap

between the text pairs via learned semantic embeddings for words and sentences. The main

drawback of this method is that question-answer (QA) pairs are modeled independently, and

that the correspondence between different pairs is not considered in these embeddings. In

fact, these methods only focus on the relationship that may exist between the entities that

constitutes the QA pair at hand and are thus, limited to pairwise semantic structures.

Instead, we argue in this chapter that questions and their correct answers often form analogical

relations. For example, the question ”Who is the president of the United States?” and its

answer are in the same relation to each other as the question ”Who is the current chancellor

of Germany?” and ”Angela Merkel”. Thus, for modelling these relations, we need to look at
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Figure 3.1: Illustration of analogy-based answer selection. Given a question and its candidate answers,
each pair is compared to a QA prototype pair. The candidate answer with the highest
score is assumed to be the correct answer.

quadruples of textual items in the form of two question-answer pairs, and want to reinforce

that they are in the same relation to each other.

We expect that using analogies to identify and transfer positive relationships between QA

pairs will be a better approach for tackling the task of answer selection than simply looking

at the similarity between individual questions and their answers.

We use sentence embeddings as the mechanism to assess the relationship between two

sentences, and aim to learn a latent representation in which their analogical relation is

explicitly enforced in the latent space. Analogies are defined as relational similarities

between two pairs of entities, such that the relation that holds between the entities of the

first pair, also holds for the second pair. Loosely speaking, the quadruple of sentences

is in analogical proportion if the difference between the first question and its answer is

approximately the same as the difference between the second question and its answer.

This formulation is especially valuable because analogies allow to put on relation pairs that

are not directly or explicitly linked. Consequently, in the vector space, analogous QA pairs

will be oriented in the same direction, whereas dissimilar pairs will not correspond.

The remainder of the chapter is organized as follows: the next section will present related

work on answer selection, metric learning, as well as laying down the foundations of

analogical reasoning. In Section 3.2.1, we formally define analogies, and introduce our

approach for learning such analogical embeddings. Finally, in Section 3.3.1, we evaluate the

learnt representations to demonstrate that the found embeddings indeed respect the sought

analogies, and to illustrate the benefits of analogies for the task of answer selection.

3.2 Approach

In this section, we explain our approach towards generating semantic embeddings that

preserve analogical proportions.
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3.2.1 Analogical Reasoning

In this section, we briefly introduce key concepts in analogical reasoning, starting with

analogical proportions.

Definition 1 (Analogical Proportion). Let a, b, c, d be four values from a domain X. The

quadruple (a, b, c, d) is said to be in analogical proportion a : b :: c : d if a is related to b as

c is related to d, i.e.,R(a, b) ∼ R(c, d).

This comparative relation between two pairs of entities can be expressed in many ways

(Dubois et al., 2016), but the most noteworthy are:

– Arithmetic proportion: (a− b) = (c− d)

– Geometric proportion:
min(ad, bc)

max(ad, bc)
In this work, we focus solely on the arithmetic interpretation of analogy.

An intuitive way of viewing analogies is through geometrical constraints in an Euclidean

space. Enforcing the relational similarity between pairs of elements is equivalent to

constraining the four elements to form a parallelogram.

The left graph of Figure 3.2 illustrates such an analogical parallelogram. As we can see, in

an analogical parallelogram, there is not only a relationR holding between (a, b) and (c, d)

respectively, but there must also hold a similar relationR′ between (a, c) and (b, d).

We can now make a first step towards our problem, which is learning to identify correct

answers according using analogical inference. Given the aforesaid quadruple, when one of

the four elements is unknown, an analogical proportion becomes an analogical equation.

Definition 2 (Analogical Equation). An analogical equation has the form

a : b :: c : x (3.1)

(a) (b)

Figure 3.2: Analogical parallelograms in Rn. (a) shows the case where (a − b) = (c − d). The
geometrical structure is a parallelogram. If (a− b) ∼ (c− d), the resulting structure is a
general quadrangle with almost parallel sides (b).
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where x represents an unknown element that is in analogical proportion to a, b, c.

In our setting, an exact solution to an analogical equation can often not be expected. Instead,

we aim at finding the element di, among n candidates, where the analogical proportion is as

closely satisfied as possible. For example, in the right graph of Figure 3.2, neither d1 nor

d2 are perfect solutions to the analogical equation a : b :: c : x, but d1 seems to be a better

solution than d2.

In order to relax the equality constraint between the pairs of entities, and to generalize the

formulation of analogical proportions beyond the Boolean case, Miclet et al. (2008) proposed

to measure the degree of an analogical proportion using analogical dissimilarity.

Definition 3 (Analogical Dissimilarity). In a Euclidean space, the degree of analogical

dissimilarity of a quadruple (a, b, c, d) is defined as

v(a, b, c, d) = ‖(a− b)− (c− d)‖ (3.2)

This equation represents the relation R as the difference between the entities of the pair

and ∼ as the difference between the previously the so expressed relation pairs. Obviously,

v(a, b, c, d) = 0 if (a, b, c, d) are in analogical proportion, and the value increases the less

similar (a− b) and (c− d) are to each other.

This allows us to re-frame the original problem of answer selection as a ranking problem, in

which the goal is to select the candidate answer d which minimizes the degree of analogical

dissimilarity:

d = arg min
i
v(a, b, c, di)i=1,...,N (3.3)

In the following sections, we will describe the details of the model by motivating the

architectural choices.

3.2.2 Generating Quadruples

In this work, we consider QA pairs as relational data. We aim to transfer knowledge from

pairs whose relation is well known, which we call prototypes, to unseen pairs. For this, we

train a model to encode analogies in the latent representations of the sentences. For creating

a instances of quadruples to train the model, we adapt state-of-the-art datasets.

An analogy quadruple has the following form:

[qp : ap :: qi : aij ]
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"Where" questions
Sentence A "Where was Abraham Lincoln born?"
Sentence B "On February 12, 1809, Abraham Lincoln was born Hardin County, Kentucky"
Sentence C "Where was Franz Kafka born?"
Sentence D "Franz Kafka was born on July 3, 1883 in Prague, Bohemia, now the Czech Republic."

"Who" questions
Sentence A "Who made the rotary engine automobile?"
Sentence B "Mazda continued work on developing the Wankel rotary engine."
Sentence C "Who discovered prions?"
Sentence D "Prusiner won Nobel prize last year for discovering prions"

"When" questions
Sentence A "When was Leonardo da Vinci born?"
Sentence B "Leonardo da Vinci was actually born on 15 April 1452 [...] "
Sentence C "When did Mt St Helen last have significant eruption?"
Sentence D "Pinatubo’s last eruption [...] as Mt St Helen’s did when it erupted in 1980."

Table 3.1: Example of analogy between sentences. Sentence A and Sentence B constitutes the prototype
QA pair in the analogical quadruples Sentence C and Sentence D are the QA pair at hand.

where the qp and ap, respectively stand for the question and the answer of the prototype pair,

whereas qi is the i-th question and aij is the j-th candidate answer to qi.

Given a set of questions and their relative candidates answers, we construct the analogical

quadruples in two steps. First, we divide all the questions into three different subsets of

wh-word questions: "Who", "When" and "Where". We focus on these three types because

their answer type fall in distinct and easily identifiable categories:

• "Where" corresponds to an answer of type "Location"

• "Who" corresponds to an answer of type "Person"

• "When" corresponds to an answer of type "Date" or "Time"

Table 3.1 illustrates examples of quadruples for the three described categories. From these

categories, we extract a variable number of QA pairs in order to form the prototype set. To

generate positive quadruples, we select a prototype from one of the above-mentioned subsets

and we associate a question from the same set and the correct answer among its candidates.

This procedure provides a large number of analogical quadruples. On the other hand, to

generate negative training samples we use the following approach: in the same subset, we

associate a prototype, a question and a randomly selected wrong answer among its candidates.

This is done in order to purposely break the analogical relation between a prototype QA pair

and the QA pair at hand. This approach will generate a set of hard examples to help improve

the training. Figure 3.3 illustrates the procedure.

To summarise, ranking by analogical dissimilarity is performed in three steps:
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Figure 3.3: Procedure to generate analogical quadruples. The cells in red represent positive analogical
quadruples, composed of a prototype QA pair, a question and its correct answer. In
reverse, a negative quadruple contains a QA prototype, a question and one of its incorrect
answer.

1. Given a prototype QA pair, a question and N candidate answers, N quadruples are

generated.

2. The analogical dissimilarity score is computed for each quadruple.

3. The N candidates are consequently ranked by the analogical dissimilarity score.

The next section closely describe the architectural choices of the model.

3.2.3 Quadruple Siamese Network

Figure 3.4: BiGRU with max pooling. The flow of information indicates the use of information from
both previous time steps and later time steps to make predictions about the current state.
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We recall that our focus is on learning an embedding function that pushes analogous QA

pairs with similar mappings to be mutually close by enforcing a geometrical constraint in the

vector space. This constraint states that the vector shift that maps the entities of the first pair

should be similar to the vector shift of the second pair, according to the degree of analogical

dissimilarity that holds between the two pairs (a, b), (c, d).

To tackle this problem, we propose a Siamese network architecture as shown in Figure 3.5.

In the next paragraphs, we describe the notation used and the details of each component of

the model.

Notation. Let Q and A be the space of all questions and candidate answers. We denote a

quadruple of sentences as (a, b, c, d), where a, c ∈ Q and b, d ∈ A. Quadruples are assigned

a label y = 1 if the analogical proportion holds, and 0 otherwise. θ denotes the parameters

to be learnt that map the relation from a to b, and c to d respectively. Let x· refer to the latent

representation of one sentence in the quadruple.

Figure 3.5: Siamese architecture.

Architecture. The Siamese network takes as input four sentences. The sub-networks in the

Siamese model share the parameters and learn the vector representations for every sentence

received as input. A sentence Si = wi1, ...wik where wij represents the jth word in the

sentence Si, ∀i ∈ 1 ≤ i ≤ n and ∀j ∈ 1 ≤ j ≤ k. Words are mapped into word embeddings

xij = Ewij , where Ed,|V | is a matrix of vectors of size d, and V is the vocabulary. Out-of-

vocabulary words are initialized by a random vector. We use bidirectional gated recurrent

units (GRUs) with max pooling (Cho et al., 2014) over the input sentence. An illustration

is shown in Figure 3.4. For a sentence of T words, the network encodes T hidden states

h1, ..., hT such that: −→
ht =

−−−→
GRU t(w1, ..., wT )

←−
ht =

←−−−
GRU t(w1, ..., wT )

ht = [
−→
ht ,
←−
ht ]
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In order to obtain a fixed-size vector, we select the maximum value over each dimension of

ht using max pooling. After this step, we obtain four vectors of dimension d, one for each

input sentence of the quadruple.

Training Strategy. The next step is to get the semantic relation between the pairs of input

sentences. Given a pair a vectors, (xi, xj), the arithmetic proportion expects the difference

of the vectors to encode the relational similarity between the entities that constitutes the pair.

We let the network predict four d-dimensional embedding vectors, which we merge through

a pairwise subtraction. Let fW (·) be the projection of an input sentence in the embedding

space computed by the network function fW . Furthermore, let

fab = fW (a)− fW (b) (3.4)

fcd = fW (c)− fW (d) (3.5)

be the pairwise differences between the embedding vectors. In order to separate instances of

analogical proportion, similar pairs need to be mapped mutually close to each other, whereas

dissimilar instances should be pushed apart.

For the energy of the model, we use the cosine similarity between the vector shifts of each

pair of the quadruple:

EW (fab, fcd) =
fab · fcd
‖fab‖‖fcd‖

(3.6)

We argue that this is an appropriate energy function since the goal is for the pairs of parallel

vectors to be parallel which maximises the analogical parallelogram likelihood.

We propose to use the contrastive loss (Hadsell et al., 2006) to perform the metric learning.

This loss function has two terms, one for the similar and and another dissimilar samples. The

similar instances are denoted by a label y = 1 whereas the dissimilar pairs are represented

by y = 0. Thus, the loss function has the following form:

LW = y L+(fab, fcd) + (1− y)L−(fab, fcd) (3.7)

Each term is expressed by:

L+(fab, fcd) = (1− EW )2 (3.8)

L−(fab, fcd) = max((EW −m)2, 0) (3.9)

This loss function measures how well the model learns to encode similar transformations

such that analogous pairs are mutually close and form an analogical parallelogram in the
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embedding space, while pushing dissimilar transformations apart. Given a question and a

pool of candidate answers, the goal is to rank the correct answer in the first position, based

on how well each sentence completes the analogical equation according to (3.6).

This architecture is summarized in Figure 3.5. We learn all the parameters of the model

through a gradient based method that minimizes the L2-regularized loss. Further details

about the implementation are given in section 3.3.1.

In this section, we present an evaluation of our approach in two experiments: first, in

Section 3.3.2, we confirm that the found analogical embeddings do indeed improve the

analogical parallelogram structure illustrated in Figure 3.2 over commonly used word- and

sentence-based embeddings. In Section 3.3.3 we then show that this also results in improved

performance for question answering. Before that, we start with a brief description of our

experimental setup.

3.3 Experiments

3.3.1 Experimental Setup

We begin the assessment of our model with a direct evaluation, which is ranking candidate

answers in the same setting as during the training of the embedding. We generate quadruples

with the same prototypes used for the training and we look for the correct answers by

iteratively solving the analogical equations. We compare our model to commonly used

sentence representations methods to evaluate the proposed approach results with respect to

general purpose sentence embedding and word embedding methods. In the next paragraphs

we present the experimental setup and the results obtained.

Datasets. We validate the proposed method on two datasets: WikiQA (Yang et al., 2015),

an open domain QA dataset with answers collected over Wikipedia and TrecQA, which was

created from the TREC Question Answer Track. Both resources are well established for

benchmarking answer selection. We split each dataset into three subsets, which contain only

"who", "where" and "when" questions. Table 3.2 reports the statistics of the two datasets.

WikiQA TrecQA
type train dev test train dev test

"Who" 119 15 34 190 11 8
"When" 86 11 16 116 13 19
"Where" 71 17 22 96 9 11
Comb. 276 43 72 402 33 38

Table 3.2: Dataset by question type.

48



3 Learning Analogy-Preserving Sentence Embeddings for Answer Selection

Evaluation metrics. We assess the performance of our method by measuring the Mean

Average Precision (MAP) and the Mean Reciprocal Rank (MRR) for the generated quadruples

in the test set. Given a set of questions Q, MRR is computed as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(3.10)

where ranki represents the rank position of the first correct candidate answer for the ith

question. In other words, MRR is the average of the reciprocal ranks of results for the

questions in set Q.

MAP is calculated as follows:

MAP =
1

|Q|

|Q|∑
j=1

1

mj

|mj |∑
k=1

Precision(πjk) (3.11)

where qj ∈ Q is a question whose candidate answers are a1, ..., amj and πjk is the rank

associated with those candidate answers. While MRR measures the rank of any correct

answer, MAP computes the rank of all correct answers. Generally, MRR is higher than MAP

on the same set of ranked objects.

Implementation details. We initiate the embedding layer with FastText vectors. These

weights are not updated during training. The dimension of the output of the sentence encoder

is 300. For alleviating overfitting we apply a dropout rate of 0.5. The model is trained with

Adam optimizer with a learning rate of 0.001 and a weight decay rate of 0.01.

3.3.2 Quality of Analogical Embedding

Baselines. To support our claim that the learnt representations of our model encode the

semantic of question answer pairs better than pre-trained sentence representation models, we

choose four baselines commonly used to encode sentences:

1. Word2Vec and Glove (Mikolov et al., 2013e; Pennington et al., 2014a): We use the

simple approach of averaging the word vectors for all words in a sentence. This

method has the drawback of ignoring the order of the words of the sentence, but has

shown to perform reasonably well.

2. InferSent (Conneau et al., 2017): Sentence embeddings obtained from training on

Natural Language Inference dataset.
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3. Sent2Vec (Pagliardini et al., 2017): A method to learn sentence embeddings such that

the average of all words and n-grams can serve as sentence vector.

For each document in test set, we generate analogical quadruples as explained in section

3.2.2. Given a question qi in the test set with k candidate answers, we obtain p× k possible

quadruples, where p is the cardinality of the prototype set. The network encodes each

sentence in the quadruple and computes the cosine similarity (3.6) between the obtained

vector shifts.

Not every prototype QA pair will fit to the QA pair at hand, so we compute p×m scores, and

choose only the prototype that leads to the highest analogical score for each document and

discard the other comparisons. One might think about using the average of the scores and

sorting the candidate answers accordingly, but this strategy introduces noise in the analogical

inference procedure.

Results. We applied the described procedure to vectors obtained from our network as well

as from the baseline representation methods. The results are shown in Table 3.3.

In order to better perceive the analogical properties of the baselines and the proposed

approach, we also include a random baseline in the comparison. We observe that averaging

word embeddings such as Glove or Word2Vec performs better than the dedicated sentence

representations in the WikiQA dataset. This might be due to the fact that word embeddings

have shown to encode some analogical properties. On the other hand, sentence embeddings

have been trained with a particular learning objective, for example, InferSent has been train

for the task of claim entailment with a classification objective and might not be suitable

for representing relations between pairs of sentences. Nevertheless, ranking by the cosine

similarity of the difference vectors do not lead to acceptable performances. This confirms

our hypothesis that pre-trained sentence representation do not preserve analogical properties.

Similarly, we measure the influence of the number of prototypes on the performances. We

vary the number of prototypes pair p ∈ {10, 20, 30, 40, 50} and measure the MAP and the

MRR for both datasets. The results are shown in Figures 3.6a and 3.6b. We can observe that

Model
WikiQA

MAP MRR

Word embeddings
Glove 0.464 0.475

Word2Vec 0.432 0.453

Sentence embeddings
InferSent 0.399 0.404
Sent2Vec 0.481 0.486

This work 0.677 0.684

Table 3.3: Evaluation on quadruples.
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the best performances are obtained for p = 30 and that after both MAP and MRR decrease.

The reason might be that a high number of prototypes brings more comparisons and increases

the probability of spurious interactions between QA prototypes and QA pairs.

(a) MAP (b) MRR

Figure 3.6: MAP and MRR for different number of prototypes.

3.3.3 Question-Answering Performance

A natural benchmark model for our work is the approach of Tam et al. (2017), which is

similar to ours in that it proposed to replace wh-word in questions with appropriate named

entities. This approach leverages typological information from a named entity recognizer

and the word vector space.

It showed that simply replacing the wh-word, with a named entity that has the highest cosine

similarity with all the candidate answers for a given question. This substitution is operated

for "where", "when" and "who" types of questions. Finally, the transformed QA pair is fed

to a network suited for the task of answer selection. This study demonstrated that this simple

pre-processing step improves the state of the art results for the task of answer selection.

Alike our experimental setup, they divide the dataset in three categories, namely "when",

"who" and "where", which is the same division we used for our experimental setup, and

evaluate their method on the split dataset and the full dataset. We will consider their work as

our baseline in order to evaluate the capabilities of the analogy based embeddings. Moreover,

we compare our approach to a setup which doesn’t exploit analogical properties. This is

to say, a Siamese network that takes as input a question and a candidate answer, generate

the respective representations and compute the cosine similarity of the obtained sentence

embeddings. The described baseline corresponds to the model proposed by (Tan et al., 2015)

except for the fact that we use BiGRU for fair comparison.

The results are shown in Table 3.4.
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Table 3.4: MRR on WikiQA and TrecQA.

WikiQA TrecQA
Baseline Tam et al. Analogy Baseline Tam et al. Analogy

"Who" 0.663 0.702 0.763 0.787 0.781 0.981
"When" 0.582 0.664 0.701 0.797 0.921 0.863
"Where" 0.568 0.616 0.602 0.894 0.864 0.929
Comb. 0.609 0.678 0.684 0.837 0.875 0.909

We observe that simply computing the cosine similarity between the difference vector of the

prototype QA pair and the QA pair at hand with the learnt embedding from the proposed

approach lead to significant improvements for some particular type of questions. The bold

numbers in Table 3.4 indicate the best results for each dataset. We can see that our method

improves the MRR of at least two of questions types by a relevant margin. The last row

of the same tables confirms that enforcing analogical properties in the embedding space

generally improves the overall MRR for these three subsets.

3.4 Related work

Answer Selection. Answer selection is an important problem in natural language processing

that has drawn a lot of attention in the research community (Lai et al., 2018). Given a question

and a set of candidate answers, the task is to identify the correct answer(s) in this set. This task

can be formulated as a classification or a ranking problem. Early works relied on computing

a matching score between a question and its correct answer, and were characterized by the

heavy reliance on feature engineering for representing the QA pairs. Representative works

include (Filice et al., 2016), which studies the effects of various similarity, heuristic, and

thread-based features, or (Tymoshenko and Moschitti, 2015), which analyzes the effect of

syntactic and semantic features extracted by syntactic parser for answer re-ranking. Recently,

deep learning methods have achieved excellent results in mitigating the difficulty of feature

engineering. These methods are used to learn latent representations for questions and answers

independently, and a matching function is applied to give the score of the two texts. The

most representative works in this line of work include (Wang and Nyberg, 2015; Yin et al.,

2016; Severyn and Moschitti, 2015; Tay et al., 2017).

Embeddings and Metric Learning. This work is well related to representation learning

using deep neural networks. In fact, learning the embeddings of entities can be seen as a

knowledge induction process, as those induced latent representations can be used to infer

properties of unseen samples. Although many studies confirmed that embeddings obtained
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from distributional similarity can be useful in a variety of different tasks, (Levy et al., 2015)

showed that the semantic knowledge encoded by general-purpose similarity embeddings

is limited, and that enforcing the learnt representations to distinguish functional similarity

from relatedness is beneficial. For this purpose, many task-specific embeddings have been

proposed for a variety of tasks including (Riedel et al., 2013) for binary relation extraction

and (FitzGerald et al., 2015) for semantic role labeling. This work aims to preserve more far

reaching structures, namely analogies between pairs of entities.

Analogical Reasoning. Analogical reasoning has been an active research topic in classic

artificial intelligence. It has been successfully used in different domains such as classification

(Bounhas et al., 2014), clustering (Marx et al., 2002), dimensionality reduction (Memisevic

and Hinton, 2004), or learning to rank (Fahandar and Hüllermeier, 2018). Gentner (1983)

studies analogies with respect to human cognition, defines an analogy as a relational similarity

over two pairs of entities, and differentiates it from the more superficial similarity defined by

attributes. Since this general definition of analogy requires high-level reasoning which is not

scalable to large-scale automated prediction systems, Miclet et al. (2008) define the concept

of analogical dissimilarity between entities in the same semantic universe. The analogical

dissimilarity allows to perform direct inference for unseen entities. Contrary to their direct

inference setting, we enforce the analogical constraints in the learned embedding in the form

of geometrical constraints, by imposing the co-linearity of the vector that maps the entities

of each pair in the analogical proportion. It is worth mentioning that analogies have been

found as the result of several word embedding models—inter alia (Mikolov et al., 2013e;

Pennington et al., 2014a)—but those are allegedly only empirical observations, which we

found to not carry over to our task.

3.5 Discussion

This work introduced a new approach to learn sentence representations for answer selection,

which preserve structural similarities in the form of analogies. Analogies can be seen as a

way of injecting reasoning ability, and we express this by requiring common dissimilarities

implied by analogies to be reflected in the learned feature space. We showed that explicitly

constraining structural analogies in the learnt embeddings leads to better results over the

distance-only embeddings. We believe that it is worth-while to further explore the potential

of analogical reasoning beyond their common use in word embeddings, as it is a natural

mean of learning and generalizing about relations between entities. The focus of this work

has been on answer selection, but analogical reasoning can be useful in many other machine

learning tasks such as machine translation or visual question answering.
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4 Permutation Learning via Lehmer
Codes

Chapter abstract
Many machine learning problems require to learn to permute a set of objects. Notable
applications include ranking or sorting. One of the difficulties of learning in such a
combinatorial space is the definition of meaningful and differentiable distances and loss
functions. Lehmer codes are an elegant way for mapping permutations into a vector
space where the Euclidean distance between two codes corresponds to the Kendall tau
distance between the corresponding rankings. This transformation, therefore, allows
the use of a surrogate loss converting the original permutation learning problem into a
surrogate prediction problem which is easier to optimize. To that end, learning to predict
Lehmer codes allows a transformation of the inference problem from permutations
matrices to row-stochastic matrices, thereby removing the constraints of row and
columns to sum to one. This permits a straight-forward optimization of the permutation
prediction problem. We demonstrate the effectiveness of this approach for object ranking
problems by providing empirical results and comparing it to competitive baselines on
different tasks.

4.1 Introduction

Permutation learning is a long-standing problem in many scientific fields. The need to deal

with permutations arises in a variety of applications, such as ranking (Meila et al., 2012),

information retrieval or multi-object tracking (Kondor et al., 2007) for computer vision. The

fundamental underlying problem is the correct identification of the permutation that allows

to reconstruct the original sequence. Ranking, sorting and matching problems are classical

examples of the necessity to perform inference over such a combinatorial space, and they can

be both represented by permutations over the set of objects to sort. However, one of the main

difficulties in dealing with such combinatorial objects is the factorial growth of the number

of permutations with growing number of elements. Moreover, there are mutual exclusivity
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constraints associated with permutations. Finally, the space of all possible permutations of

a set of objects is not smooth. In fact, permutations are discrete objects and thus it is not

possible to compute straight marginals with gradient-based methods. Thus, exact solutions

are intractable to find for most cases.

One strategy for working with combinatorial objects is to embed them into continuous spaces,

in order to impose a structure and a topology so that conventional tools for inference can

be used. Prior works have proposed different approaches to deal with this problem. For

example, several authors (Huang et al., 2009; Kondor et al., 2007) derived an approximation

of a general probability distribution with a restricted set of basis functions, performing

inference in the Fourier domain, and using accompanying transformations to project back to

the combinatorial space.

Another line of work investigated convex surrogates of the permutations themselves. The

classical workflow for tackling the discrete optimization problem over the set of permutations

of n elements is the following: (1) use permutation matrices to represent permutations, (2) as

these matrices are discrete, gradient-based optimisation is not possible; hence use a relaxation

in order to transform them into the nearest convex, surrogate, doubly stochastic matrix, i.e.,

into a matrix where all rows and all columns sum up to one. In particular, permutation

matrices may be viewed as special cases of doubly stochastic matrices which contain only

zero and ones.

In this chapter, we propose a different approach for learning permutations, which differs from

previous work (Kondor et al., 2007) in that we transform the permutation matrix from the

combinatorial space to the Hilbert space using Lehmer codes (Lehmer, 1960). Unlike (Korba

et al., 2018), where the use of Lehmer codes was proposed for label ranking, we employ them

for the task of object ranking. Lehmer codes provide a bijective mapping from permutations

onto sequences of integers. Moreover, Lehmer codes enjoy algorithmic advantages such as

that the L1 norm of the code represents the Kendall’s tau distance between the permutation

that generated the code and the lexicographic permutation, which is a commonly used metric

for assessing the ordinal association between ranking data. Lehmer codes provide vector

representations of permutations in which the coordinates are decoupled, i.e., the values of

each coordinate are not restricted by the other coordinates. This mapping allows to transform

the problem from learning a doubly stochastic matrix to an integer valued vector which

enjoys great advantages over the direct optimization of permutation matrices.

The remainder of the chapter is organized as follows: Section 4.2 lays the necessary

mathematical background and defines the notation used throughout the chapter, whereas

Section 4.5 introduces prior work on permutation learning and embedding of permutations.

Section 4.3 presents our primary contribution, motivating our theoretical choices. Finally,

55



4 Permutation Learning via Lehmer Codes

Section 4.4 presents experiments which compare our proposed approach against alternative

methods, illustrating the benefits of Lehmer codes for the task of permutation learning.

4.2 Preliminaries

In this section, we formally state the permutation learning problem as well as the notation

used throughout the chapter, which closely follows the literature (Korba et al., 2018; Li et al.,

2017).

4.2.1 Notation

Given an ordered list of items indexed by {1, ..., N} , let us denote without loss of generality,

πIn as the n-dimensional identity permutation vector. A permutation is a rearrangement

of the elements of πIn , i.e a bijection from πIn to πn, a generic permutation vector with

πn ∈ Pn. Pn denotes the set of all permutations vector of length n in the symmetric group,

and has the cardinality n!.

4.2.2 Learning problem

The permutation learning problem aims at learning a function s : X → Pn that maps a

feature space X to the permutation space Pn.

Loosely speaking, given a sequence of shuffled items, the goal is to recover their natural

order as defined by some specific criterion c. Formally, the underlying problem is to predict

the permutation matrix Pi ∈ {0, 1}n×n, given a sequence of shuffled items X̃i such that

P−1
i recovers the original ordered sequence Xi.

In such a setting, the cardinality of P is n!, which often is orders of magnitude larger than

the number of training samples. This is one of the difficulties in dealing with combinatorial

spaces such asPn. Moreover, permutations are represented as discrete points in the Euclidean

space. This discrete nature typically prohibits gradient-based optimization, because these

discrete solvers work by iteratively moving towards an optimum via stochastic updates along

gradient directions. A large part of the dedicated literature proposed different relaxations of

the permutation matrix, the best known of which involve the use of the Sinkhorn operator

(Sinkhorn and Knopp, 1967). This operator is a procedure that takes as an input a non-

negative square matrix and outputs a doubly-stochastic matrix by iteratively normalizing

rows and columns(Adams and Zemel, 2011).

Another approach consists of embedding the permutations into continuous spaces. An

example of such line of work is given by (Korba et al., 2018), which proposes three different

56



4 Permutation Learning via Lehmer Codes

encodings suitable to act as embeddings for the task of label ranking. Among these encodings,

Lehmer codes showed great algorithmic advantages, in particular, the fact that the encoding

and decoding step have a cost of O(n).

4.2.3 Permutation matrices

As previously stated, there are several ways to represent permutations. In matrix theory, a

permutation matrix is a square matrix with the peculiarity of having exactly a single unit

value for each row and column and zero elsewhere. They are a natural and concise way to

represent permutations. In fact, given an ordered sequence of elements represented as a vector

πIn , it is possible to derive the permutation πn from the permutation matrix Pn ∈ {0, 1}n×n

, simply by performing a vector-matrix multiplication:

πn = PnπIn (4.1)

where Pn is obtained by swapping the rows of the identity matrix according to the desired

permutation πn. The set of the n × n permutation matrices has cardinality n! and is the

subset of the non-singular matrices in Rn×n. This set is closed under multiplication, which

implies that P−1 = P T .

A row stochastic matrix is a non-negative square matrix whose rows all sum up to one.

Correspondingly, the transpose of such a matrix is said to be a column stochastic matrix

because all the columns sum to one. If a matrix happen to be simultaneously row and column

stochastic is said to be a doubly stochastic matrix. The characteristics of a doubly stochastic

matrix A are:

Aij ≥ 0

A1 = 1

AT1 = 1

where 1 is a column vector of ones.

Permutation matrices are a special case of doubly stochastic matrices. The Birkhoff-von

Neumann theorem (Lewandowski et al., 1986) states that any doubly stochastic matrix may

be viewed as a convex combination of a finite number of permutation matrices. The set of

n× n doubly stochastic matrices is the called the Birkhoff polytope (cf. Figure 4.1 (left)). A

natural consequence that arises from this theorem is to consider doubly stochastic matrices

as a convex relaxation of permutation matrices. However, it is difficult to learn matrices with

this particular structure. The dedicated literature proposed to use Sinkhorn normalization
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Figure 4.1: The Birkhoff (left) and Lehmer (right) polytopes of size 3. Permutations matrices are in
the column representation.

(Sinkhorn and Knopp, 1967; Knight, 2008) to ensure that columns and rows sums to one.

This procedure works by iteratively normalising rows and columns of the square matrix.

4.2.4 Lehmer codes

Several works in theoretical computer science and discrete mathematics deal with effective

ways to representing permutations. The Lehmer code (Lehmer, 1960) is a particular way to

encode each possible permutation of a sequence of n numbers. Concretely, it is a bijection

from every permutation JNK to a function φ : JNK→ {0, 1, . . . , N − 1}. The Lehmer code,

also known as inversion vector, is a word of the form cπ ∈ CN , {0} × {0, 1} × {0, 2} ×
· · · × {0, N − 1}, where for j = 1, ..., N ,

cπ(j) = #{i ∈ JNK : i < j, π(i) > π(j)} (4.2)

Thus, the coordinate cπ(j) represents the number of elements i with index smaller than j

that are ranked higher than j in the permutation π. Consider the following example, which

shows the canonical set of items e, a permutation π, and the corresponding Lehmer code cπ:

e 1 2 3 4 5 6 7 8 9

π 2 1 4 5 7 3 6 9 8

cπ 0 1 0 0 0 3 1 0 1

For example, the 6th digit of the Lehmer code cπ(6) = 3 because in π, three elements (4, 5,

and 7) that appear to the left of the 6th element are larger than this element (3).
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The mapping function based on the Lehmer code is the following

φ : Y → RN

π → (cπ(i))i=1,...,N

(4.3)

resulting in the Lehmer polytope illustrated in Figure 4.1 (right).

One of the key advantages of the Lehmer embedding is that the sum of the coordinates of

the Lehmer vector corresponds to the number of inversions of π with respect to the identity

permutation e, i.e., ‖cπ‖1 = dτ (π, e). In the above example, ‖cπ‖1 = 6, which means that

six swaps have to be made in order to transform π into e (move 1 one entry to the left, 3

three entries to the left, 6 one entry to the left, and 8 one entry to the left). Moreover, its

coordinates are decoupled, for this reason the decoding step is trivial.

4.2.5 Surrogate least square loss minimization

The structured output approach states the original prediction problem as follows:

minimize
s:X→Y

with E(s) =

∫
X×Y

∆(s(x), π)dP (x, π) (4.4)

In the standard setting for structured prediction, the quality of the prediction s(x) is measured

by a cost function ∆ : Y × Y → R, i.e., the loss incurred by predicting s(x) instead of the

correct output π is given by ∆(s(x), π).

The surrogate least squares framework allows to shift the problem from the original

combinatorial space to the Hilbert space by invoking a function g : X → F and a surrogate

cost function L(g(x), φ(π)). Additionally, φ is the embedding function for the permutations

into the Hilbert space. In this setting, the original problem becomes:

minimize
f :X→F

withR(g) =

∫
X×Y

L(f(x), φ(π))dP (x, π) (4.5)

And the surrogate loss is represented by:

L(f(x), φ(π)) = ‖g(x)− φ(π)‖2 (4.6)

To summarize, the surrogate least square problem can be divided in two steps:

1. Step 1: Define the regularized empirical risk ming
1
n

∑n
i=1 ‖g(xi)− φ(πi)‖2 + Ωg to

provide an estimator for the square surrogate risk. g∗ is the solution of this equation.

59



4 Permutation Learning via Lehmer Codes

2. Step 2: Solve the decoding problem for every x in X that provides a prediction in the

original space Pn: ŝ(x) = argminπ∈Pn ‖φ(π)− g∗(x)‖2.

4.3 Approach

The permutation prediction task aims at predicting a permutation Pi which when applied to

an ordered sequence Xi gives as a result a desired shuffled sequence X̃ . More concretely, the

permutation learning task takes as an input a set of shuffled items and outputs the permutation

matrix that shuffled the original set.

In the following, we first formally define this problem, and then sketch our approach for

tackling it.

4.3.1 Problem definition

Let D = {(xi, yi)}Mi=1 be the dataset with x̃i ∈ Rd the i-th sequence of shuffled objects and

yi ⊆ P the corresponding ground-truth permutation, where P , {1, 2, ..., N} is the set of

all permutations of the indexed elements to sort.

For example, given a set of ordered sequences, a dataset of this type can be obtained on the

fly by shuffling all sequences with random permutations. This is a method to obtain a great

amount of training data with low computational cost.

The learning task is then to recover the original permutation from the random sequence,

based on the characteristics of the randomly shuffled objects.

4.3.2 Principal solution approaches

As stated earlier, there are two ways to tackle the permutation learning problem. The first

consists in treating the permutation, (or the permutation matrix) as it is, while the second

approach transforms the permutation into a different representation. In other words, the first

approach learns the following parameterized function:

gθ : X −→ P

minimizeθ
∑

(X ,P)∈D

∆(P, fθ(X̃)) +R(θ)

where X̃ is the sequence of shuffled objects, P is a permutation, ∆ is the loss, θ the

parameters of the objective function and R(θ) a regularization term. Permutation matrices

are discrete points in the Euclidean space, hence the object of (4.3.2) is actually a convex

surrogate of the permutation matrix at hand, i.e., a doubly stochastic matrix.
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The second approach, which is the object of this chapter, learns the following function:

fθ : X −→ φ(P)

minimizeθ
∑

(X ,P)∈D

∆(φ(P ), fθ(X̃)) +R(θ)

where φ is the Lehmer embedding function defined in (4.3). We chose to format the Lehmer

code in matrix form, which is simply the one-hot encoding of the vector itself. In a nutshell,

given a tuple consisting of shuffled items and a ground-truth permutation, our objective

is to learn the Lehmer code of the ground-truth permutation. The encoded prediction is

subsequently decoded in order to map it back to the original combinatorial space.

4.3.3 Permutation learning using Lehmer codes

To solve the permutation learning problem, we propose to leverage Lehmer codes to provide

a surrogate representation of permutations. In fact, permutation matrices, as mentioned in

section 4.2 are particular discrete elements with a specific structure where columns and rows

sum to one. A convex relaxation of permutation matrices is represented by doubly stochastic

matrices which can be interpreted as marginals over the matrices themselves.

However, learning a mapping to the set of doubly stochastic matrices, (i.e., to the Birkhoff

polytope) is not easy because said matrices are difficult to parameterize. Instead, we propose

to learn a matrix form of the Lehmer encoding of the permutations. As previously stated,

Lehmer codes are permutation codes, which provide several computational advantages.

One of them, particularly relevant for our goal, is the property of independence of relative

ranks. That is to say that the coordinates of the Lehmer embedding are decoupled. Loosely

speaking, a Lehmer code is a sequence of random variables, independently drawn from

uniform distributions on [N − i], where i defines the i-th position in the sequence. We

motivate this choice by the fact that such representation doesn’t have the constraints of

double stochasticity proper of permutation matrices. Moreover, the disjoint nature of the

coordinates of the Lehmer code allows to represent them as a simple concatenation of feature

vectors of the elements of the sequence to sort. In other terms, Lehmer codes allow to map

permutation matrices to row-stochastic matrices. This is an advantage because we can easily

construct a surjective function using row-wise softmax function in order, followed by the

decoding step in order to retrieve the original permutation.
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4.3.4 Neural network training strategy

After encoding the training permutations, we perform end-to-end learning with gradient

descent. The least surrogate loss framework provides an alternative way to standard empirical

risk minimization. The goal of aforesaid framework is to directly find the model that best

explains the training data within a determined hypothesis space.

All experiments rely on networks that have the same structure. First, a convolutional

neural network shared among all elements is employed for the feature extraction step. We

concatenate the feature vectors into a matrix form and feed this matrix to the network that

will compute the final square matrix. Row-wise softmax is then applied in order to transform

the output matrix into a row-stochastic matrix. A natural loss function for such setting is the

binary cross entropy between the prediction and the ground-truth matrix, which we use for

all baselines.

4.4 Experiments

In this section, we report the results of various experiments comparing our proposed approach

to previous works on learning permutations. We provide experimental results that allow

us to assess the advantages of predicting Lehmer codes over the direct prediction of the

permutation or the prediction of some convex surrogates of the permutation matrix.

We recall that we wish to predict the latent permutation in order to sort a collection of given

shuffled objects according to a criterion c. With this objective in mind, we perform two

experiments comparing the use of Lehmer codes to existing methods: In the first setting, we

explore the capabilities of Lehmer codes for the task of solving jigsaw puzzles. This task

consists of reconstructing an image from a sequence a tiles in order to recover the original

spatial layout, as illustrated in Figure 4.2. The second experiment aims at sorting a set of

random unsorted objects into a sorted list. We will present quantitative and qualitative results

of reconstructed images and sorted sequences, but first start with a brief description of our

experimental setup.

4.4.1 Experimental Setup

Baselines. As representatives of the state-of-the-art in permutation learning, we implemented

the following baselines:

• Vanilla row-stochastic: This is the naive approach which consists in casting the

permutation learning problem to an n2 binary classification problem and optimizing

the cross entropy in a row-wise fashion. It is worth noting that this approach does not
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take into account the geometry of permutation matrices and for this reason has several

inefficiencies.

• Sinkhorn (Adams and Zemel, 2011): As discussed in Section 4.5, the Sinkhorn operator

allows to transforms a non-negative square matrix into a doubly stochastic matrix

by repeatedly normalizing rows and columns. The Sinkhorn networks interpret such

matrices as marginals of the distribution over permutations.

• Gumbel-Sinkhorn (Mena et al., 2018b): This approach uses the Sinkhorn operator

with the addition of Gumbel noise to obtain doubly stochastic matrices that define a

latent distribution over the permutation matrices themselves. This allows to perform

posterior inference on the distribution of permutation matrices.

All implemented baselines as well as our approach based on Lehmer code have a joint feature

extraction layer in common, which is a deep convolutional neural network shared across all

items in the sequence to sort (cf. Section 4.3.4). The aim is to map each concatenated image

to intermediate representations in a feature space.

Evaluation metrics. We use three commonly used metrics for comparing our results

obtained with our approach against the baselines (Mena et al., 2018b):

• Kendall’s tau coefficient (kτ ): A distance function of interest focuses on transpositions.

A transposition (i, j) is a swap of elements at positions i and j, with i 6= j. The

smallest number of such transpositions denotes the Kendall’s tau distance between σ

and π, dτ (σ, π), which is defined as

kτ (σ, π) = #{(i, j) : π(i) > π(j), σ(i) < σ(j)} (4.7)

• Proportion of Correctly identified permutations (PC): This measure is useful to assess

the capabilities of our approach to correctly identify entire permutations. This metric

is particular relevant for permutation learning where the underlying goal is to correctly

match elements to their correct position in the ordered sequence.

• Proportion of Any Correctly identified element (PAC): In addition to the proportion

of entire permutations correctly found, another interesting metric is the proportion of

individual items correctly ranked in the sequence. In combination with the previous

metric, these two metrics evaluate the performance of permutation learning models

with respect to accuracy.

63



4 Permutation Learning via Lehmer Codes

Table 4.1: Jigsaw puzzle results. We evaluate Kendall’s tau coefficient, the proportion of correctly
identified permutations (PC) and the proportion of individual elements correctly ranked
(PAC). We compare our results to (Mena et al., 2018b) for the available datasets (MNIST)
and to a Sinkhorn based network as in (Adams and Zemel, 2011) which doesn’t need fine-
tuning additional parameters. Randomly sorted elements have a PAC score of (n− 1)/n.

MNIST CIFAR10
2x2 3x3 4x4 5x5 2x2 3x3 4x4 5x5

kτ

Sinkhorn 1. .82 .42 .31 .82 .72 .35 .21
Gumbel Sinkhorn 1. .83 .43 .39 – – – –

Lehmer code 1. .85 .50 .39 .99 .96 .73 .69

PC
Sinkhorn 1. .89 .0 .0 .74 .11 .0 .0

Gumbel Sinkhorn 1. .91 .0 .0 – – – –
Lehmer code 1. .66 .0 .0 .99 .75 .0 .0

PAC
Sinkhorn 1. .69 .44 .37 .84 .50 .18 .06

Gumbel Sinkhorn 1. .97 .45 .45 – – – –
Lehmer code 1. .84 .41 .11 .99 .92 .34 .18

4.4.2 Jigsaw Puzzles

Our first experiment concerns the task of solving jigsaw puzzles which is a complex scenario

to test the capabilities of the proposed approach in the context of convolutional neural

networks. The goal is to reconstruct an image from a collection of shuffled pieces of the

same image (see also Figure 4.2).

Figure 4.2: The jigsaw puzzle problem consists of identifying the underlying permutation that sorts
the shuffled tiles in order to reconstruct the image. This is an example of permutation
learning task.
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In this particular case, the input consists of N non-overlapping, equally-sized pieces in the

same orientation as the original image. Specifically, given a a puzzle of size H ×W , the

input is a sequence of N = H ×W :

X = (x1, x2, ..., xN ) = π(1, 2, ..., N)

such that xi is the index of the piece of puzzle. The objective is to learn a function π(X)

which takes the input sequence X and returns a permutation:

π(X) = σ(1, 2, ..., N)

that represents the order in which the input image pieces should be sorted to reconstruct the

original image. Figure 4.3 illustrates the task.

Figure 4.3: Illustration of the jigsaw puzzle task. Given an image of shuffled pieces, the task is to
recover the permutation that will recover the original spatial layout.

In this particular case, the latent ranking criterion c is the reconstruction of the original

spatial layout, i.e., the first rank should be assigned to the image part that constitutes the

upper left corner of the image, and last rank to the lower right corner. A good model for the

task of solving jigsaw puzzles has to be able to identify individual tiles, and compare them

against each other in order to determine their correct relative position in the sequence.

We evaluate our approach using two benchmark image datasets, MNIST and CIFAR10, the

second one being more challenging due to the high multimodality and the lack of a clear

sequential structure that generalizes over images. Nonetheless, we will see that our approach

based on Lehmer codes outperforms the baseline models.

Setting. For both datasets, we first normalize the inputs to have zero mean and standard

deviation one. MNIST is composed of images of dimensions 28 × 28 pixels, whereas

CIFAR10 images have 32× 32 pixels. For cases in which the image is not exactly divisible

by the number of tiles, we pad the original image to the next larger size that allows such a

partition. Finally, the tiles are arranged into a sequence and randomly shuffled.

Implementation details. Following previous works, we process each tile with a 5 × 5

convolutional network, with padding and stride 1 and 2 × 2 max pooling. This step is to
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obtain intermediate representations for each tile which are then fed to our network to output

a square matrix. Figure 4.4 summarizes the network architecture used for this task.

Conv[Kernel: 5x5, Stride: 1, Output: 28x28x32, Act.: Relu]

−→ Pool[Stride: 2, Output: 14x14x32]

−→ FC[Units: 64, Activation: Relu]

Figure 4.4: Network architecture for the jigsaw puzzle task. It consists of an CNN for feature
extraction of each tile and a fully connected network that maps each vector to a hidden
dimension of 64.

Evaluation Measures. Following the work of (Mena et al., 2018b), evaluation on the test

data is assessed with different metrics: (i) Kendall tau coefficient, which is a measure of rank

correlation on ranked data, (ii) proportion of individual tile ranks correctly assigned and (iii)

the proportion of permutations correctly identified. We train the model with Adam optimizer

at a learning rate of 1e−3 and a batch size of 32. The CNN maps each tile to a feature vector

of dimension d = 64 for both datasets.

Results. As stated earlier, we compare the results obtained from our approach with two

alternative methods to optimize permutations. The results are presented in Table 4.1. These

two methods, namely Sinkhorn and Gumbel-Sinkhorn are designed particularly for the task

of recovering permutation matrices for matchings. On the other hand, our method is based on

Lehmer codes which by nature are designed to minimize the Kendall tau’s correlation. This

explanation is highlighted by the obtained results, in fact we can notice that our approach

outperforms the baselines for all n with respect to the Kendall’s tau metric. The lower

performance of our approach shown in Table 4.1 compared to the Sinkhorn baselines is due

to the peculiarity of Lehmer codes. In fact, the coordinates of the encoding are disjointed

so an error in the prediction is actually an error in estimating the relative position of the
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elements with index bigger than that particular coordinate. This characteristic is particularly

desirable for the task of ranking but is sub-optimal for matching.

Moreover, the gap of performance between the datasets is of particular interest. In fact, for a

growing number of tiles, the jigsaw puzzle becomes ill-posed in particular for the MNIST

dataset. In fact, when n increases, there are many black tiles that become indistinguishable

between each other. We can notice that the low accuracy problem is not present CIFAR10

dataset, even though it is a more challenging dataset than MNIST. This confirms our

hypothesis that learning a matrix form of the Lehmer code allows to learn permutations with

the objective of sorting according to the spatial layout.

Table 4.2: Average performance for sorting handwritten digits. Shown are Kendall’s tau coefficients
as well as the proportions of fully correctly predicted permutations and the proportion of
individual objects of the sequence whose position was correctly predicted.

Model n = 3 n = 5 n = 7 n = 9 n = 15

kτ

Vanilla RS .75 .58 .28 .23 .11
Sinkhorn .56 .47 .39 .32 .21

Gumbel-Sinkhorn .56 .46 .40 .27 .19
Lehmer code .80 .62 .49 .38 .25

PC
Vanilla RS 0.467 0.093 0.009 0. 0.
Sinkhorn 0.462 0.038 0.001 0. 0.

Gumbel Sinkhorn 0.484 0.033 0.001 0. 0.
Lehmer code 0.809 0.379 0.112 0.013 0.

PAC
Vanilla RS 0.801 0.603 0.492 0.113 0.067
Sinkhorn 0.561 0.293 0.197 0.143 0.078

Gumbel Sinkhorn 0.575 0.295 0.189 0.146 0.078
Lehmer code 0.869 0.676 0.511 0.367 0.155

4.4.3 Sorting Sequences of Handwritten Digits

For this particular experiment, we adapt the MNIST dataset in order to create sequences

of random handwritten digits. More specifically, the dataset we used for this particular

experiment is a set of multi-digit images obtained by concatenating 4 random MNIST

images, and the task is to sort resulting set of 4-digit numbers. Figure 4.5 is an illustration

of the task of sorting handwritten multi-digits. Training, validation and test sets are then

obtained by random sampling of multi-MNIST images.

Given a sequence of n multi-MNIST images, the task is to predict the permutation such that

the sequence of images is sorted in ascending order. The supervision signal comes from the

ground truth permutation. This task is more challenging than sorting scalar numbers. In
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Figure 4.5: Illustration of the task of sorting a sequence of multi handwritten MNIST digits. The goal
is to recover the ascending order of the items of each sequence.

fact, in order to perform well on this task, a model has to learn meaningful semantics of the

high-dimensional elements and learn the structure of the elements in order to be able to sort

the multi-digits.

The learning process is supervised by the ground-truth permutation. It is worth mentioning

that this is a weak signal for this task. In fact, ideally, the model should be able to learn to

separate the individual digits of each element of the sequence of multi-MNIST images. Then,

it should rank the digits in order to retrieve the underlying correct permutation, while lacking

the image labels available when optimizing for the classification task.

Implementation Details. As in the previous experiment, we compare against the Vanilla

row-stochastic model, and the two variants of the Sinkhorn networks. We slightly modified

the configuration of the previous network in order to adapt to the complexity of this

experiment. In this case, the architecture is composed by stacking two convolutional

networks of the same type used in the jigsaw experiment. We follow the common practice

of normalizing to 0 mean and standard deviation equal to 1 for every individual MNIST

image before concatenation. Thus, the sequence of input images has dimension n× 4× 28,

i.e., each element of the sequence is a 112× 28 image. Figure 4.6 summarizes the network

architecture for this task.

Evaluation Measures. In order to assess the performance of our model, we compute

the same metrics as in the jigsaw puzzle experiment. The proportion of individual ranks

correctly identified and permutations correctly identified constitutes good metrics to assess

the accuracy of the sorting task. Moreover, we again compare models based on the Kendall

tau coefficient, which is the the optimal metric to assess the capabilities of a model to learn

an ordinal association between objects.

Results. The results are shown in Table 4.2. For this particular task, we can observe that

the Lehmer code based approach consistently outperforms the baselines with respect to the

Kendall’s tau metric. Moreover, in many cases, we can also see a considerable improvement

for the PC and the PAC metrics. It is, however, worth mentioning, that the Vanilla RS

baseline performs well in ranking individual elements but the same performance is not found

for predicting the overall permutation. This experiment is more related to the ranking task
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Conv[Kernel: 5x5, Stride: 1, Output: 140x28x32, Act.: Relu]

−→ Pool[Stride: 2, Output: 70x14x32]

−→ Conv[Kernel: 5x5, Stride: 1, Output: 70x14x64, Ac.: Relu]

−→ Pool[Stride: 2, Output: 35x7x64]

−→ FC[Units: 64, Activation: Relu]

Figure 4.6: Network architecture for the handwritten digits sorting task.

rather than the sorting task, hence the improvement over the baselines across all metrics for

most cases of sequences with increasing length.

4.5 Related Work

The problem of reasoning about permutations appears in several applications in different

fields of the scientific community. Broadly speaking, the task of permutation learning consists

of learning the underlying order for a collection of objects based on a predetermined criterion.

In information retrieval, for example, a good model should select the documents and sort them

according to the permutation that maximizes the given criterion. Another common example

from computer vision, is the Jigsaw problem, consisting of reconstructing an image from a set

of puzzle parts (Santa Cruz et al., 2017; Noroozi and Favaro, 2016) (cf. Figure 4.2). In natural

language processing, the task of reordering sentence from a collection of shuffled sentences

is a typical case involving sorting and permutation learning (Lapata, 2003). Or again,

DNA/RNA modeling in biology or re-assembling relics in archaeology can be formulated as

permutation learning problems (Willenbring, 2009).

Unfortunately, maximizing the marginal likelihood for problems that involve latent permu-

tations is very difficult. The exploding cardinality of the combinatorial space is a factor

that makes exact inference intractable. This is due to the fact that it is not possible to treat
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these problems as if they involved categorical latent variables since the computation of the

partition function is intractable.

Moreover, permutations are discrete objects in the Euclidean space, hence gradient-based

optimization methods are not adapted. In fact, these solvers start with an initial point and

iteratively update it by making small steps towards an optimum. A number of works in the

dedicated literature have considered approximating the non-differentiable parameterization

of a permutation with a differentiable relaxation through the Sinkhorn operator. This

operator proceeds by iteratively normalizing the rows and the columns of output matrix,

in order to obtain a doubly stochastic matrix. Permutation matrices being a special case

of permutation matrices, and drawing from the Birkhoff’s theorem, the double stochastic

matrices obtained through the Sinkhorn operator can be seen as the result of the convex

combination incorporating uncertainty around the rank of the jth item. This methodology

is, e.g. used in (Adams and Zemel, 2011; Santa Cruz et al., 2017). The approach taken in

(Mena et al., 2018b) extends these cited works because it adds a Gumbel noise component to

the output matrix before applying the Sinkhorn operator, leveraging a temperature parameter.

Along the same line of work, (Grover et al., 2019) proposed a continuous relaxation of the

permutation learning problem, which involves transforming the permutation matrix into

a unimodal row-stochastic matrix, that is to say a positive real square matrix where each

row sums to one. The work relies on a temperature parameter which controls the degree of

approximation to the real underlying permutation matrix. This approach allows to perform

straight-through gradient optimization (Bengio et al., 2013) which requires exact permutation

matrices to evaluate the learning objective. Our approach relates to this work with respect to

the form of the output of their network. In fact, we propose to predict the Lehmer code of

the permutation rather than the permutation itself. The nature of this encoding is such that its

differentiable matrix form is a row-stochastic matrix that is obtained applying the softmax

operator row-wise on the output matrix. The use of Lehmer codes has been proposed before

in (Korba et al., 2018) for the task of label ranking. The main difference to our work is

that we tackle the task of object ranking. Moreover, we extend the surrogate least square

prediction framework to the use of the cross-entropy loss.

It is also possible to deal with inference over combinatorial objects such as permutations by

shifting the domain. For example, (Huang et al., 2009; Kondor et al., 2007) approximated

distributions over permutations with the low-frequency Fourier components. This work

states that it is natural to approximate smooth association distributions over the intractably

large permutation space Pn by their first few Fourier matrices, very much analogous to the

way how smooth periodic functions on Rn can be approximated by their first few Fourier

components.
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Another representative work along the same lines is (Plis et al., 2011), which proposed a

continuous relaxation from permutation matrices to points on a hypersphere, and then use

the von Mises-Fisher (vMF) distribution to model distributions on a sphere’s surface. By

doing this, they map the n! permutation space to a (n − 1)2 space. Or again, Linderman

et al (Linderman et al., 2018), who relaxed permutations to points in the Birkhoff polytope

and derived temperature-controlled densities such that, as the temperature goes to zero, the

distribution converges to an atomic density on permutation matrices.

Besides exploring approximation with respect to permutation matrices, (Korba et al., 2018)

proposed different embeddings suitable for permutation vectors for the task of label ranking.

This work adopts a least square surrogate loss approach to solve the structured output regres-

sion problem and for doing so, they propose three different embeddings for permutations,

namely: Kemeny embeddings, Hamming embeddings and Lehmer embeddings. The authors

went along to demonstrate theoretical guarantees and algorithmic complexity for the three

vector representations.

We build upon this work by exploiting the Lehmer transformation and applying it to

the underlying permutation problem. In this way, the original problem of finding good

approximations for the permutation matrices becomes the matrix form of an integer-valued

vector, where the coordinates are decoupled, which is one of the interesting properties of

the Lehmer codes. In the following section, we will further explain the characteristics of the

Lehmer codes and how we apply this transformation to the original permutation learning

problem.

4.6 Discussion

In this chapter, we have proposed a new way to perform optimization for the task of

permutation learning. We present an alternative methodology to encode permutations

based on Lehmer codes, which have previously been proposed for label ranking tasks.

Framing the problem in this way allows to optimize for the objective of minimizing the

Kendall tau rank correlation, which is an ordinal metric for assessing the association between

permutations. Moreover, Lehmer codes come with the natural advantage of not relying on

the hard constraint of doubly stochastic matrices in which columns and rows have to sum to

one, but can optimize on simpler row-stochastic matrices. We motivated our choices on two

challenging experiments regarding sorting and matching complex items (images), namely

solving jigsaw puzzles and sorting multi-MNIST digits, where we generally outperformed

competitive models based on approximations of permutations matrices, in particular with

respect to Kendall’s tau.
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5 Elliptical Ordinal Embedding

Chapter abstract
Ordinal embedding aims at finding a low dimensional representation of objects from a
set of constraints of the form ”item j is closer to item i than item k”. Typically, each
object is mapped onto a point vector in a low dimensional metric space. We argue that
mapping to a density instead of a point vector provides some interesting advantages,
including an inherent reflection of the uncertainty about the representation itself and its
relative location in the space. Indeed, in this chapter, we propose to embed each object
as a Gaussian distribution. We investigate the ability of these embeddings to capture the
underlying structure of the data while satisfying the constraints, and explore properties
of the representation. Experiments on synthetic and real-world datasets showcase the
advantages of our approach. In addition, we illustrate the merit of modelling uncertainty,
which enriches the visual perception of the mapped objects in the space.

5.1 Introduction

A crucial problem in machine learning is the assessment of similarities between data instances.

In fact, multiple tasks depend on such an ability. For example, in clustering, we expect

similar items to be grouped together, or in classification, where similar items should be

assigned similar labels. In general, one expects to be given a collection of data instances

and a similarity function that allows determining how similar objects are to each other.

Yet, it is not always straight-forward to define such a similarity function for a given data

representation. For instance, in order to identify the food preferences, we might ask several

persons to express which food they prefer by showing them two images of dishes at time

for a certain number of dishes. For such a task, we cannot expect that the natural Euclidean

distance between the images captures the underlying preference structure of the subjects.

Thus, a recent trend in machine learning focuses on a scenario in which the learner is only

given relative comparisons between data instances (Agarwal et al., 2007; McFee, 2012).

Instead of directly querying the degree of similarity between items on an absolute scale, it

has been shown that eliciting ordinal feedback from subjects in the form of ”item i is more
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similar to item j than to item k” is a more reliable form of supervision, especially when the

feedback is subjective (Stewart et al., 2005).

The problem of interest is to learn representations in a low-dimensional metric space such

that the relative distances of the representation satisfy a set of ordinal triplet constraints of the

above type. This problem is known as ordinal embedding. The main expected result of this

task is to obtain faithful geometric representation that allows to easily visualize similarities

between data instances.

Several tasks in Machine Learning (ML) and Information Retrieval (IR) depend on some

underlying notion of similarity between objects. Supervised learning attempts to assign

labels to objects based on a notion of feature similarity, while unsupervised learning attempts

to discover hidden patterns of similarity between objects. Prior work in this area has focused

on various aspects of the ordinal embedding problem. Agarwal et al. (2007) provide a

flexible and modular algorithm with proven convergence guarantees. Later work focused

on explaining disagreement between human assessors, modeled by noisy triplets and were

more tailored to crowd-sourcing (McFee, 2012; Tamuz et al., 2011; Van Der Maaten and

Weinberger, 2012). Terada and von Luxburg (2014) promised embeddings that recovered

the exact point position with application for density estimation. Other works focused on

theoretical aspects of the ordinal embedding problem. For example, Kleindessner and von

Luxburg (2017) proved that under reasonable distributional assumptions, it is possible to

recover an embedding that places all objects within a reasonable error range of their correct

position, and Jamieson and Nowak (2011) showed that the triplet selection phase is as critical

as the algorithm itself and derived a lower bound on the number of triples necessary for

recovering an ordinal embedding.

A common application for ordinal embedding methods is crowd-sourcing. In practice, the

triplet comparisons are often obtained by combining the answers from multiple human

assessors that are asked to give subjective feedback. Moreover, it has been shown that

eliciting such ordinal feedback is more reliable than the feedback based on the question

"how close is item i to item j" (Joachims et al., 2017). The unequivocal advantage is

that this method is a solution for the issue of comparing subjective scales across different

crowd-workers.

We argue that the classical representation of items as points does not allow to capture

important aspects of the data, such as the inherent noise of the ordinal feedback and the

resulting uncertainty of the representation. Consider the case of an object for which the

different triplets are conflicting with each other or even revealing contradicting underlying

patterns. Such a discrepancy should be reflected and possibly visually expressed by the learnt

embedding. As a remedy, we propose to embed items as probability distributions in Rd, with
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a location and a scale parameter, which captures the uncertainty of the location. In particular,

we focus on Gaussian distributions which enjoy some desirable properties (cf. Section 5.3).

Contributions. In this chapter, we propose a novel ordinal embedding approach that

represents items as Gaussian measures based on ordinal constraints: each object becomes

a full distribution rather than a single point. Thereby, we capture the uncertainty about its

representation and location in the latent space. Our method draws inspiration from recent

developments in optimal transport techniques for representation learning. We adapt these

techniques for the ordinal feedback setting using the Wasserstein metric, a distance metric

between two probability distributions. The result is a fast embedding approach which we

call elliptical ordinal embedding (ElOE).

We show that ElOE recovers a latent embedding with a sufficient number of triplets. We

empirically validate our results on both synthetic and real triplet datasets, and provide

examples where elliptical ordinal embedding techniques can be used for a better visualization

of complex datasets.

The chapter is organized as follows: in Section 5.2, we formally introduce the problem of

ordinal embedding. In Section 5.3 we present our approach for elliptical ordinal embedding.

Then, Section 5.4 presents our empirical studies and analyzes the results. Finally, Section 5.5

reviews related work on ordinal as well as probabilistic embeddings for representation

learning.

5.2 Problem Statement

Figure 5.1: Triplet comparison with
δ(xi, xj) < δ(xi, xk)

In this section, we formally state the ordinal embed-

ding problem and establish the notation, for which

we follow Muzellec and Cuturi (2018).

‖ · ‖ denotes the `2 norm. Sd+ is the set of all positive

definite matrices. In the scope of this work, we

only focus on Gaussian distributions which belong to

the family of parametrized probability distributions

zh,a,A having a location vector a ∈ Rd which represents the shift of the distribution, a

scale parameter A ∈ Sd+, which represents the statistical dispersion of the distribution,

and a characteristic generator function h. Specifically, for Gaussian distributions, the scale

parameter coincides with the covariance matrix var(zh,a,A) = A. From now on, we denote

Gaussian distributions (or embeddings) as z(h,a,A) = N (a,A).

Consider n items in an abstract space X , which we represent by their indices [n] = 1, ..., n.

It is worth mentioning that no explicit representation of the items is available so it is not
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possible to analytically express the dissimilarity between the items. We assume a latent

underlying dissimilarity (or similarity) function δ : X × X −→ R≥0. Let T := {〈i, j, k〉 :

1 ≤ i 6= j 6= k ≤ n} be a set of unique triplets of elements in X . We further have access to

an oracle O which indicates whether the inequality δ(i, j) < δ(i, k) holds or not:

O(〈i, j, k〉) =

{
+1 if δ(i, j) < δ(i, k)

−1 if δ(i, j) > δ(i, k)
(5.1)

Note that at this stage, we do not require the latent function δ to be a metric. Together, T
and O represent the observed ordinal constraints on distances.

We can now formally define the problem as follows:

Definition 4 (Ordinal Embedding). Consider n vector points X = (x1,x2, ...,xn) in

a d-dimensional Euclidean space X . Given a set of triplets T ⊂ X 3 and an oracle

O : X 3 → {−1, 1}, the ordinal embedding problem consists of recovering X given O
and T .

As introduced in Section 5.1, a common application for such an ordinal setting is crowd-

sourcing, where many untrained workers complete given tasks. The unequivocal advantage

is that this method is a solution for the issue of comparing subjective scales across different

crowd-workers. Moreover, the obtained embedding can be used in a range of down-stream

supervised and unsupervised tasks such as clustering, (Ukkonen, 2017; Kleindessner and von

Luxburg, 2017), classification (Kleindessner and von Luxburg, 2017), and density estimation

(Ukkonen, 2017; Kleindessner and von Luxburg, 2017) or even as perceptual embeddings

(Wilber et al., 2014).

Figure 5.2: Given a set of objects and a collection of binary answers to distance comparisons, the
goal of the ordinal embedding problem is to learn a metric representation of the objects.

5.3 Elliptical Ordinal Embedding

We propose to learn probabilistic embeddings in lieu of the conventional Euclidean embed-

dings, taking advantage of the fact that vectors can be considered as an extreme case of
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probability measures, namely a Dirac (Muzellec and Cuturi, 2018). For this purpose, we

focus on the family of elliptical distributions, more precisely Gaussian distributions, which

enjoy many advantages.

Our goal is to extend the ordinal embedding problem, which we defined in Definition 4 for

Euclidean embeddings, to Gaussian embeddings. Hence the considered problem becomes:

Definition 5 (Probabilistic Ordinal Embedding). Suppose T ⊂ X 3 is a set of triplets

over X and O : X 3 → {−1, 1} is an oracle as defined in (5.1). Let Z = {z1, . . . , zn}
the desired probabilistic embedding, where each of the original points xi is mapped to

probability distribution parametrized by zi. Probabilistic ordinal embedding is the problem

of obtaining Z from ordinal constraints T and O and a distance measure d such that

sgn(d(zi, zj)− d(zi, zk)) = O(〈i, j, k〉), for 〈i, j, k〉 ∈ T .

This definition requires a distance measure d between distributions. For this purpose, we

selected the Wasserstein distance (Olkin and Pukelsheim, 1982), also known as Earth

Mover’s distance, which has been previously used as a loss function for supervised learning

(Frogner et al., 2015) and in several applications. For many probability distributions, it does

not have a closed-form solution, however this is the case for Gaussian distributions.

Concretely, the differences between the Ordinal embedding problem described in Defini-

tion 4 and the Probabilistic Ordinal Embedding described in Definition 5 are illustrated in

Figure 5.3.

Per definition, the variance is the expectation of the squared deviation of a random variable

from its mean, hence it is well suited to convey the uncertainty we reach for.

Figure 5.3: The left figure represent deterministic embedding in which every item is embedded as a
point in the latent space without regards for the ambiguity and the uncertainty. The right
figure, probabilistic embedding provides a distributional estimation of the position in the
latent space.

The 2-Wasserstein distance. In Optimal Transport (OT) theory, the Wasserstein or

Kantorovich–Rubinstein metric (Olkin and Pukelsheim, 1982) is a distance function defined
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between probability distributions (measures) on a given metric space M . The squared

Wasserstein metric for two arbitrary probability measures µ, ν ∈ P(Rd) is defined as:

W 2
2 (µ, ν)

def
= inf

X∼µ,Y∼ν
E‖X−Y ‖2

In the general case, it is difficult to find analytical solutions for the Wasserstein distance.

However, a closed form solution exists in the case of Gaussian distributions. Let α def
=

N (a,A) and β def
= N (b,B), where a,b ∈ Rd and A,B ∈ Sd+ are positive semi-definite.

Hence:

W 2
2 (α, β) = ‖a− b‖2 + B2(A,B) (5.2)

where B2 is the squared Bures metric (Dittmann, 1999), defined as:

B2(A,B)
def
= Tr(A + B− 2(A

1
2 BA

1
2 )

1
2 ) (5.3)

When A = diag dA and B = diag dB are diagonal, W 2
2 simplifies to the sum of two terms:

W 2
2 (α, β) = ‖a− b‖2 + h2(dA,dB) (5.4)

where h2(dA,dB)
def
= ‖
√

dA −
√

dB‖2 is the squared Hellinger distance (Beran, 1977)

between the diagonal dA and dB.

Learning problem. As mentioned earlier, the goal is to learn a function that maps each item

to a d-dimensional Gaussian embeddings in Rd such that the 2-Wasserstein distances between

the embeddings satisfy as many triplets as possible. Each Gaussian embedding is denoted as

zµ,Σ, which for the sake of compactness, we abbreviate in z. Let Eij be the energy function

between two items (i, j) (LeCun et al., 2006) which characterizes our energy-based learning

approach. In particular, we set Eij = W 2
2 (zi, zj). Finally, the corresponding optimization

problem is the following:

max
z1,...zn∈Rd

∑
t=(i,j,k)∈T

O(t) · sgn(Eij − Eik) (5.5)

which is discrete, non-convex and NP-hard. For these reasons, a relaxation of this optimiza-

tion problem is needed. We make the choice of using the hinge loss L((t = 〈i, j, k〉,O(t)),

a well established loss function in contrastive metric learning, as a convex surrogate:

L =
∑

t=〈i,j,k〉∈T

max(1−O(t) · (Eij − Eik), 0) (5.6)
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The empirical performance of embedding methods is evaluated by the empirical error.

Err =
1

|T ′|
∑

〈i,j,k〉∈T

1[(y · sgn(Eij − Eik)) = 1] (5.7)

Figure 5.4: Schematization of the proposed elliptical embeddings. µ is the mean of the distribution
and represents the location in the latent space. σ11 and σ22 are the coordinates of the
diagonal covariance matrix Σ and represent the dispersion and the uncertainty. The more
uncertain the location due to noise the bigger the spread.

Deep neural encoder. We now detail how the parameters of the elliptical embedding are

learned. While our work relates to numerous architectures proposed in the metric learning

literature such as (Hoffer and Ailon, 2015), our deep neural encoder have a fundamental

difference due to the nature of the problem. The most distinctive point is that we do not have

access to the features of the items we aim to embed. In fact our model learns a representation

of the items based on a random input to the encoder. In particular, we chose as inputs

random vectors on input dimension h = 50 sampled from N (0, Ih). A first deep encoder

fθ(·) processes these random inputs and outputs a representation that is then fed to µθ(·) and

Σθ(·), two functions that are non-linear deep-forward networks parametrized by θ as well.

The output of these two functions are the mean and the covariance matrix for each element

of the input triplet.

Learning. Besides relying on the optimization of the energy-based max-margin loss (5.6),

we apply some regularization to the learning process. We observed that no regularization

is needed for learning the location vectors. However, the covariance matrix needs to be

bounded, since the main goal of our approach is to obtain perceptual embeddings. Hence,

we constrained the covariance matrix to lie within the hypercube [0, C]d, C being a chosen

constant. We chose to focus on diagonal covariance because we argue the rotation angle is

not easily interpretable to appreciate the similarity between items and that the principal axes

are sufficient to appreciate the uncertainty of the representation. Thus, the regularization is
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Figure 5.5: This model learns probabilistic embeddings which embeds each data point as a
multivariate Gaussian distribution rather deterministic point in the latent space. In
particular, the detail of the encoding of features objects.

achieved by bounding each element of the covariance matrix, Σii = max(Σii, C) (cf. also

Section 5.4).

Complexity. The training complexity is linear to the size of T , which is the set of all triplets

and bounded by O(n3). However, a well chosen sampling strategy may decrease this bound.

It has been shown by (Jamieson and Nowak, 2011) that the minimum number of triplets

to recover the ordinal embedding is Ω(nd log n) in Rd. We adapt this result to the setting

in which the parameters to be learnt are a mean vector in Rd and a covariance matrix Sd+.

Hence, the dimensionality can be considered to be d′ = d+ d2 and O(d2). Thus, the new

recovered lower bound for the triplets becomes Ω(d2n log n), which is still polynomial in

d and O(n log n). Since ordinal embeddings typically map into a low-dimensional space,

this is not a drastic loss in efficiency. Moreover, it is worth mentioning that a low number of

epochs was needed for convergence for all experiments. Finally, the computational bottleneck

when dealing with Wasserstein distance in its closed-form is computing the matrix square

roots of the scale parameters. However, as we opted to learn diagonal covariances, hence

this problem is not present in our approach.

Architecture and hyperparameters. We noticed that ElOE is not very sensitive to the

choice of number and size of hidden layers. For such reason, we chose a sufficiently large
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hidden vector size, specifically hdim = 50. To obtain the embeddings for an item indexed i

we have:

hi = relu(xiWi + b)

µi = hiWµ + bµ

σi = exp(hiWΣ + bΣ)

where xi is a random sample fromN (0, Ih) and relu is the rectifier linear unit. We apply the

exponential function to make sure that σi is positive (and Σi is positive definite). Weight

matrices Wµ, WΣ and W are initialized with Xavier initialization (Glorot and Bengio,

2010). As stated earlier, we do not regularize the norm of the mean vectors but we bound

the values of the covariance matrices with C = log(100). However, we observe that this

additional precaution is not needed unless the number of contradicting triplets is too large.

This is due to the self-regularizing nature of the Wasserstein distance and it was confirmed

by our experiments in which the average value of the variance is far from that bound for

reasonable levels of noise. All parameters are optimized using Adam (Kingma and Ba, 2014),

with a fixed learning rate of 0.01 and a learning rate decay of 10−5.

5.4 Experiments

Our main objective is to investigate the effectiveness of elliptical embeddings for the problem

of ordinal embedding. For this reason, we evaluate our method in two settings. First,

we perform experiments on synthetic datasets in order to gain some insight regarding our

approach. We then apply our approach to real datasets in order to assess the performance of

our model in real cases.

As stated earlier, one common outcome of ordinal embedding methods is the reconstruction

of dataset as well as density estimation. More specifically, in the ordinal embedding problem

the distances can be recovered up to an orthogonal transformation. For this reason, when

the ground truth is available, an adequate error metric to assess the embedding quality is the

Procrustes distance (Dryden and Mardia, 2016).

Definition 6 (Procrustes Distance). Given two finite sequences X = (xi)
n
i=1, X

′
= (x

′
i)
n
i=1

in Rd of equal length with centroids in x̄, x̄
′

and centroids sizes SX , SX′ 1, respectively, the

Procrustes distance dP (X,X
′
) between X and X

′
is defined by:

1Let us define the centroid x̄ as x̄ = 1
n

∑n
i=1 xi, then the centroid size SX is SX = ( 1

n

∑n
i=1(x̄−xi)2)1/2
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dP (X,X ′) = inf
R∈R

 n∑
i=1

∥∥∥∥∥RxiSX
− x

′
i

SX′

∥∥∥∥∥
2
1/2

(5.8)

whereR is the group of Euclidean transformations (reflections, rotations and translations).

We generalize the conventional definition to a distance between vectors and distributions as

follows:

Definition 7 (Procrustes Distance between distributions). Given two finite sequences X =

(xi)
n
i=1, X

′
= (x

′
i,µ,Σ)ni=1 in Rd of equal length with centroids in x̄, x̄

′
and centroids sizes

SX , SX′ 2, respectively, the Procrustes distance d?P (X,X
′
) between X and X

′
is defined as:

d?P (X,X ′) = inf
R∈R

(
n∑
i=1

∥∥∥∥RxiSX
− µi
SX′

∥∥∥∥2

+
Tr(Σi)

S2
X′

) 1
2

(5.9)

The steps that led to the generalization are the following: Let us rewrite the Procrustes
distance from eq. (5.8) as, where δ is a distance measure:

dP (X,X ′) = inf
R∈R

(
n∑
i=1

δ

(
Rxi
SX
− x′i
SX′

)2
)1/2

x′i ∼ N (µi,Σi)

x′i
SX′
∼ N

(
µi
SX′

,
Σi

S2
X′

)
Let us define δ as the 2-Wasserstein distance W2. Then:

dP (X,X′) = inf
R∈R

(
n∑
i=1

W2

(
Rxi
SX

,
x′i
SX′

)2
)1/2

∀i ∈ |X ′|, ∀SX′ ∈ R>0

It has been established that the Wasserstein distance between a vector h and a Gaussian
distribution ν ∼ N (µν ,Σν) is Muzellec and Cuturi (2018):

W 2
2 (h, ν) = ‖h− µν‖2 + Tr(Σν)

Hence:

dP (X,X ′) = inf
R∈R

(
n∑
i=1

∥∥∥∥RxiSX
− µi
SX′

∥∥∥∥2

+ Tr

(
Σi

S2
X′

))1/2

2Let us define the centroid x̄ as x̄ = 1
n

∑n
i=1 xi, then the centroid size SX is SX = ( 1

n

∑n
i=1(x̄−xi)2)1/2,

provided we ignore the trivial case in which all points coincide.
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Using the linearity of the trace operator:

dP (X,X ′) = inf
R∈R

(
n∑
i=1

∥∥∥∥RxiSX
− µi
SX′

∥∥∥∥2

+
Tr(Σi)

S2
X′

)1/2

Figure 5.6: Schematization of evaluation through the Procrustes Distance between points (in red) and
distributions (in blue).

Visualization of embeddings using ellipses. The most significant difference between our

distribution-based approach and the point-based embeddings is the variance. In particular, the

variance has the purpose of reflecting the uncertainty. It does so by enriching the scope of the

embeddings and by providing the possibility of continuously representing a discrete object in

the metric space. In most cases related to multidimensional scaling, the output dimensionality

of the representations is low, thus the learned embeddings can be visualized as they are. We

argue that mapping objects into ellipses on a plane allows to better observe the relationship

between objects visually. Muzellec and Cuturi (2018) state that visualizing the variances

as they are is not natural to the human eye, and they instead favor a representation by the

precision matrix rather than the covariance matrix. On the contrary, we believe that in this

context a visualization based on the variance is preferable when the focus is on illustrating

the spread around the location rather than the distance between the embeddings themselves.

5.4.1 Reconstruction

We present empirical results that aim to evaluate the reconstruction abilities of the proposed

approach. For this, we follow the same experimental setting of Haghiri et al. (2019). More

specifically, we use three 2-dimensional synthetic datasets generated with the scikit-learn

package3 in Python. The datasets are: a) two-moons dataset with two labels, b) the Blobs

dataset, a mixture of three Gaussians N (µ, 1√
2
I2) and c) 2 concentric circles with 2 labels.

For each dataset, n = 1000 points are generated. The label information is used only for

visualization purposes.

3https://scikit-learn.org/
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(a) ε = 0; p = {1, 2, 4} (b) ε = {0.1, 0.2}; p = 4

Figure 5.7: ElOE embeddings for synthetic experiments. From left to right, columns represent
ground-truths, elliptical embeddings in nose-free setting (ε = 0) for increasing numbers
of triplets pd2n log n for p = {1, 2, 4} (col. 2-4) and increasing noise for p = 4 and
ε = {0.1, 0.2} (col. 5-6). Color indicates labels not used for training.

We generate |T | random triplets sampled from a uniform distribution. To simulate the ordinal

feedback from the oracle, we compute the difference of the squared `2 norm between the

points for a given triplet. The total number |T | is set to be pd2nlogn for p = {1, 2, 4}. To

evaluate the performance, we compute the triplet error as well as the Procrustes distance

shown in (5.9).

Noise-free setting. In this series of experiments, we aim at investigating the influence of the

number of triplets on the reconstruction ability, specifically on the variance of the elliptical

embeddings. We first test in a noise-free setting. Section 5.4.1 depicts the original datasets

(to the left) and the learned embeddings for different values of T . From left to right, the

number of used triplets |T | increases with |T | = pd2nlogn, where p ∈ {1, 2, 4}. For all

three datasets, we observe that the reconstruction abilities w.r.t the location point improves

when the number of triplets increases. Furthermore, we observe that on average the variance

decreases with increasing |T |, which confirms that the uncertainty about a point’s location

decreases when more exact comparisons are available. For example, for p = 4, the average

area of the ellipses is minimal. We can also observe that the variance enriches the visual

representation. A point-vector representation may be misleading because when the algorithm

is given few triplets, it has also to satisfy fewer constraints which means that the overall

degree of freedom for selecting the individual points is greater. However a point-based

visualization does not appreciate this fact.
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Ground-truth Distance matrix Similarity scores

Figure 5.8: For each row, from left to right, 1st plot: ground truth points; 2nd plot: Distance matrix for
STE embeddings, 3rd plot: Distance matrix for ElOE embeddings, 4th plot: Similarity
scores for STE embeddings, Similarity scores for ElOE embeddings.

Noisy setting. Our next goal was to investigate the influence of noisy or erroneous triplets on

the behaviour of the variance. We follow the procedure described above, but simulated noise

by randomly swapping the assessment of the oracle with a probability of ε = {0.1, 0.2}.
Section 5.4.1 shows the results obtained. We notice that when the proportion of erroneous

triplets increases (from left to right), the variance on average increases for all triplets.

Additionally, in order to quantitatively estimate the performance of our approach we measure

the Procrustes distance d?P Equation (5.9) with respect to the ground truths. As a baseline, we

compare our model to STE (Stochastic Triplet Embedding) (Van Der Maaten and Weinberger,

2012). For 10 rounds, we compute d?P e Equation (5.9) w.r.t ε. We notice that generally,

ElOE recovers better the density estimate even considering the variance of the ellipses.

We also present additional figures that compare the performance of STE and ElOE embed-

dings. Experiments were conducted on three synthetic datasets, each consisting of 1000

points. The results shown in fig. 5.8 are for p = 2. In particular, the similarity score column

underlines the behaviour of the Wasserstein distance. We notice that the similarity is higher

between a given point (marked with an "x" in figs. 5.9a and 5.9b) and the others when the

distance of their means is lower and the difference of their variance is smaller. Figure 5.10

and Figure 5.11 illustrates the relation between Procrustes distance and empirical triplet error

and the number of triplets, for STE and ElOE. We notice that overall, ElOE performs better

than the baseline embeddings.
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(a) Graph of the VOC dataset. Blue dots are image
nodes, yellow are class nodes.

(b) Graph of CIFAR-100. Blue dots are image
nodes, cyan dots are fine-class nodes and green
dots are super-class nodes.

Figure 5.9: Ground truth embedding of CIFAR and VOC datasets.

(a) Blobs dataset (b) Moons dataset (c) Circles dataset

Figure 5.10: Procrustes distance vs p for synthetic datasets.

(a) Blobs dataset (b) Moons dataset (c) Circles dataset

Figure 5.11: Empirical error vs p for synthetic datasets.

5.4.2 Ordinal embedding

Food Dataset. We evaluate our method on the Food relative similarity dataset (Wilber et al.,

2014), humans were presented images of dishes and asked to compare similar dishes based

on their taste. A good embedding method should show clusters of dishes of the same type.
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(a) Blobs dataset (b) Moons dataset

(c) Circles dataset (d) Purity vs n

Figure 5.12: (a)–(c) Procrustes distance vs ε for synthetic datasets; (d) purity for MNIST dataset.

We compute two-dimensional embeddings of the food images based on the available unique

triplets of 100 images with |T | =190376.

We compare our embeddings to STE and we observe that our embeddings in Figure 5.13

closely match the one produced by STE, which is the reference model used by the authors of

the dataset. A full scale image is provided in the appendix as well as dendrograms of clusters.

This dataset has also 9349 pairs of contradicting triplets. Note that for this dataset, no ground

truth is available and hence there is no way other than visual inspection for evaluating our

results.

We also present additional figures for better visualizing the Food dataset embeddings.

section 5.4.2 and section 5.4.2 depict the dendrograms of the hierarchical clustering for STE
and ElOE embeddings, respectively. Closely analyzing each of the ten clusters, we can

notice that they are quite homogeneous w.r.t the taste of the dishes ( e.g all desserts being

grouped together or the salads). fig. 5.13 compares the embedding generated from STE and

ElOE.
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MNIST Dataset. On this dataset, we reproduce the experiment conducted in (Kleindessner

and von Luxburg, 2017). For n = 500, 1000 and 2500, we uniformly chose n MNIST

digits randomly and we generate 200n log n triplets comparisons based on the Euclidean

distances between the digits. Each comparison is incorrect with probability ε = 0.15. We

then generate an ordinal embedding with d = 5 and compute a k-means clustering on the

obtained embeddings. Figure 5.12d compares the purity of the clusters obtained with STE
and ElOE embeddings. Purity is computed as purity(Ω, C) = n−1

∑
k |wk ∩ cj |, where the

clusters are Ω = {w1, . . . , wk} and the classes are C = {c1, . . . , cj}. High purity is better.

In order to take into account the variance, we concatenate the diagonal of the covariance

matrix and the mean vector for each embedding. We observe that the purity of the clustering

from ElOE is consistently higher for all values of n considered.

Table 5.1 presents the empirical error for corresponding to fig. 5.15. The values were

obtained after averaging 10 runs for different values of ε = {0, 0.1, 0.2, 0.3}. In order to

better compare the values, we consider the triplet error when training point vectors as in

Haghiri et al. (2019) and the triplet error for distributional embedding from ELOE(µ,Σ) but

only considering the center of the ellipses. We obtained very similar values, which prove

that we indeed obtain plausible and correct embeddings.

Table 5.1: Triplet error results for the MNIST dataset.

ε = 0 ε = 0.1 ε = 0.2 ε = 0.3

(Haghiri et al., 2019) 0.00 0.01 0.03 0.08
ELOE(µ,Σ) 0.00 0.01 0.03 0.09

5.4.3 Semantic Embedding

In this section, we intend to embed a real-world full or partial ordinal relation between data

points, in this case images. In particular we study the following three types of relations,

where the given ordinal relation is derived from various label structures of the objects, such

as a linear or a hierarchical order.

Intuitively, we want all nodes that belong to the 1-hop neighborhood of item i to be closer

to i in their embedding, compared to the nodes in the 2-hop neighborhood, which in turn

will be closer than the items in the 3-hop neighborhood and so on. Moreover, we need to

adapt the sampling strategy to deal with this task because uniformly sampling triplets leads

to oversampling more frequent high-degree nodes. Thus, we use the following strategy: we

first sample a node i, then we sample a node from each of its neighborhoods, and randomly

choose one of those triplets.
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Table 5.2: Link prediction scores.

CIFAR VOC

AUC AP AUC AP

STE 0.47 0.53 0.54 0.56
Baseline 0.88 0.90 0.93 0.94
ELOE 0.89 0.92 0.95 0.95

Linear order. This simple experiment aims at verifying whether our approach is able to

capture the structural information when the underlying ordinal feedback derived from labels

is a linear order with MNIST dataset. In this case, we use the same sampling strategy

described in Section 5.4.1. We train our model with 200n log n triplets and we sample

500 digits for visualization. We perturbed a subset of the available triplets defined by

ε = {0, 0.1, 0.2, 0.3}. Figure 5.15 illustrates the obtained embeddings.

In the noise-free case (Figure 5.15a) we obtain a linear relation in which the embedding

have very small variances. When perturbing 10% of the triplets, as shown in Figure 5.15b

the linear order is maintained but we can observe an average increase in the variance of the

embeddings. Finally, for ε = 0.3 (Figure 5.15d), the proportion of noisy triplets is so high

that even the linear order is perturbed. Nevertheless, the clusters defined by the classes of

the embeddings are still easily identified. Additional numerical results are presented in the

supplemental material section.

Hierarchical relation. This experiment was conducted on CIFAR100, a multi-class image

dataset where each of the 60000 images has two different levels of labels, a super-class label

and a fine-class label. The semantics of the dataset is such that there are 20 super-classes,

each of which has 5 labels. The graph structures can be seen in the appendix. We sample

n = 5000 images to create 2nd2 log n triplets. The triplet score is computed with the

methodology described earlier, through the shortest path distance between nodes.

To quantitatively assess the meaningfulness of the embeddings, we report the area under the

ROC curve (AUC) and the average precision (AP) of randomly sampled triplets. We compare

our results to (Haghiri et al., 2019) which we re-implemented with the same hidden size

of ElOE and STE. It is worth noticing that this method can also be seen as the producing

distributional vectors with null variance. The score considered for ElOE is Eij , ‖xi − xj‖2

for STE and (Haghiri et al., 2019), where xi is the embedding of item i. Results are reported

in Table 5.2. We see that ElOE embeddings satisfy more triplets than STE embeddings.

Multilabel distance. Finally, we looked at the PASCAL VOC multi-label dataset, where

each image can be assigned to multiple labels. Here n = 5000 and p = 2. The same
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concerns with respect to the sampling strategy occur in this case as well, and we apply the

same methodology described earlier. In this case, an image node can be connected to multiple

node classes. The obtained results showed in Figure 5.16b confirm our intuition, nodes

with less diverse neighborhoods have a lower variance, hence less uncertainty compared to

nodes that belongs to multiple classes. In fact, the inclusion in multiple classes makes the

embedding location less certain.

5.5 Related Work

Ordinal Embeddings. In recent years, ordinal data have received a growing interest in

machine learning. The ordinal embedding problem has been studied from different points

of view: Multiple methods have been designed to deal with triplet similarity producing

low-dimensional Euclidean vectors as output. In particular, generalized non-metric multi-

dimensional scaling (GNMDS) (Agarwal et al., 2007) relies on a max-margin approach to

minimize a hinge loss. Stochastic triplet embedding (STE) (Van Der Maaten and Weinberger,

2012), on the other hand, assumes a Gaussian noise model and minimizes a logistic noise.

The crowd kernel model (Tamuz et al., 2011) makes the assumption that triplets have been

generated by an explicit noise model. It is worth mentioning that these models adopt a

classification scheme to solve the problem by predicting the label of the relative comparisons.

(Terada and von Luxburg, 2014) solve the ordinal embedding problem via reduction to the

embedding of nearest-neighbor graphs. Moreover, these methods rely on expensive gradient

projections and do not easily scale to large datasets. The theoretical and statistical guarantees

of the ordinal embedding problem have been investigated in (Kazemi et al., 2018; Jamieson

and Nowak, 2011; Jain et al., 2016). The main purpose of the above methods is to facilitate

data visualization of similarity inferred from human assessments. However, other tasks

employing similarity triplets have been studied, such as medoid estimation (Heikinheimo

and Ukkonen, 2013), density estimation (Ukkonen et al., 2015), or clustering (Ukkonen,

2017). Closely related to our approach are (Haghiri et al., 2019; Anderton and Aslam, 2019),

which employs deep learning to scale the ordinal problem to large datasets.

Probabilistic Embeddings. The work of Vilnis and McCallum (2015) established a new

trend in the representation learning field by proposing to embed data points, in this case words,

as probability distributions in Rd. Representing objects in the latent space as probability

distributions allows more flexibility in the representation and even express multi-modality.

In fact, point embeddings can be considered as a special case of probabilistic embeddings,

namely a Dirac distribution, where the uncertainty is collapsed in a single point. In the above-

mentioned work Vilnis and McCallum (2015), the metric used is KL divergence. However,
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this metric has a drawback: when variances of the probabilistic embedding collapse, the

measure does not coincide with the Euclidean metric between point embeddings. Loosely

speaking, the KL divergence and the `2 distance between two probability measures diverge

to infinity when the variances become too small. In addition, the KL divergence does not

behave well when the two compared distributions have little or no overlap. It has been shown

by Muzellec and Cuturi (2018) that the Wasserstein metric is a better metric to compare

probabilistic embeddings.

Chumbalov et al. (2020) propose to use a distributional embedding based on triplet compar-

isons with and without features for the task of information retrieval based on the maximization

the evidence lower bound.

5.6 Discussion

We have proposed to generalize the ordinal embedding problem by mapping objects in the

space of Gaussian distributions endowed with the Wasserstein distance. This is based on

the generalization of point embeddings in Rd to distributions. Each embedding is described

by a location parameter µ and a scale parameter Σ, visualized as ellipses. We argue that

this allows to more informative perceptual embeddings by representing uncertainty of the

representation. In a number of experiments on different datasets we demonstrate the validity

of our approach. We show that the proposed framework is robust and beneficial when the

triplet comparisons are noisy. Overall, with our proposed approach we are able to obtain

valid embedding that can be used for downstream tasks. As future work we aim to study

other distributions beyond Gaussian for the problem of ordinal embedding.
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Figure 5.13: Visualization of the Food dataset embeddings. (a) STE, (b) ElOE.
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Figure 5.14: Dendrogram of the clustering for the Food dataset. (a) STE, (b) ElOE.

(a) ε = 0 (b) ε = 0.1

(c) ε = 0.2 (d) ε = 0.3

Figure 5.15: Linear order in the MNIST dataset. Color indicates the label of the handwritten digits to
better appreciate the linearity.
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(a) CIFAR

(b) VOC

Figure 5.16: Visualization of the embeddings for CIFAR And VOC.

94



6 Learning Ordinal Embedding from Sets

Chapter abstract
Ordinal embedding is the task of computing a meaningful multi-dimensional represen-
tation of objects, for which only qualitative constraints on their distance functions are
known. In particular, we consider comparisons of the form “Which object from the
pair (j, k) is more similar to object i?”. In this chapter, we generalize this framework
to the case where the ordinal constraints are not given at the level of individual points,
but at the level of sets, and propose a distributional triplet embedding approach in a
scalable learning framework. We show that the query complexity of our approach is on
par with the single item approach. Without having access to features of the items to
be embedded, we show the applicability of our model on toy datasets for the task of
reconstruction, and demonstrate the validity of the obtained embeddings in experiments
on synthetic and real-world datasets.

6.1 Introduction

As stated in the previous chapter, the objective of an ordinal embedding algorithm is to find

a low dimensional Euclidean representation of a number of abstract items, for which no

feature representation or numerical distance information is available. Instead, the learner has

access to a set of comparisons where for a quadruple of points i, j, l, and k from an abstract

space X , it is specified whether the pair (i, j) is closer to each other than the pair (l, k),

i.e., whether δ(i, j) < δ(l, k) for some latent distance function δ (Shepard, 1962, 1966). A

special case of this problem results when points i and l coincide, i.e., when the learner has

access to triplets comparisons, which specify for three objects i, j, and k, whether i is closer

to j or to k.

In this work, we extend this concept to the case when the learner is not presented with triplets

of abstract items but rather sets of abstract items. We are now given (unordered) sets of

items and training triplets that provide answer to questions of the form "the set of items J

is closer to the sets of items I than the set of items K", where I, J,K ⊂ X . Note that the

sets may have overlaps, so that each element x ∈ X may occur in multiple sets. The task is
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now to output a meaningful representation of all items x ∈ X in a low dimensional space

that respects the observed constraints. Obviously, this problem is a generalization of the

classical ordinal embedding problem, where each set only consists of a single element. The

set-based formulation is particularly useful when the number of abstract items is very large

and/or the number of times the oracle that yields the binary answers can be interrogated is

limited. How can we build a model that deals with sets of abstract values and outputs sets of

low dimensional representation while satisfying the triplets constraints? This chapter aims at

answering this question. We summarize our main contributions as follows:

• A set-valued ordinal embedding (SetOE) is proposed to embed data points in a low-

dimensional space. We reformulate the classical ordinal embedding problem based on

single data points into a generalization based on sets while assuring the permutation

invariance necessary when dealing with set. We develop an architecture to allow for

conditioning with possibly different sizes of sets and adapt the margin-based loss for

sets-valued input

• We propose a distributional approach that does not rely on the features of the individual

data points for the ordinal embedding problem with sets. We motivates the advantages

of such setting and explain the properties we use to enable this.

• Experiments on both synthetic and reals datasets demonstrate the validity of our ap-

proach for embedding datasets of considerable size in a significantly low-dimensional

space (e.g 2). We evaluate our approach on several datasets. First, we present a

proof-of-concept with different synthetic datasets. Then, we escalate the complexity

of the tasks to the MNIST dataset, the Poker game and more real-word datasets such

as Reuters.

The remainder of the chapter is organized as follows: In Section 6.2 we formally introduce

the ordinal embedding problem and lay down the mathematical preliminaries as well as the

notation used throughout the chapter. In Section 6.2 we present our approach for set-valued

ordinal embedding, which we evaluate in Section 6.3 with empirical studies in a variety of

datasets. Finally, Section 6.4 collects related work on ordinal embedding, set-valued input

and representation learning, before we draw some conclusions in Section 6.5.

6.2 Ordinal Embedding for Sets

We shortly recall the main definitions of the ordinal embedding problem detailed in the

previous chapter.
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The Ordinal Embedding problem from Definition 4 is defined as follows:

sgn(‖φ(i)− φ(k)‖ − ‖φ(i)− φ(j)‖) = O(〈i, j, k〉) (6.1)

The Probabilistic Ordinal Embedding problem defined in Definition 5 is described as:

sgn(‖φ(i)− φ(k)‖ − ‖φ(i)− φ(j)‖) = O(〈i, j, k〉) (6.2)

This section contains our primary contribution: an approach for encoding sets of abstract

items into sets of low-dimensional vectors. As previously established for the ordinal

embedding problem, the only supervision given is in the form of triplet comparisons by an

oracle O(t) that takes as input of triplet of sets t = 〈I , J ,K 〉 and returns a value {−1,+1}.

6.2.1 Problem statement

As in conventional ordinal embedding, we consider n items in the abstract space X which

we represent without loss of generality by their indices [n] = 1, ..., n. However, in this work

the input available for learning are sets of abstract items. Let us represent a set X as an

unordered collection of indices of size kX , i.e., X = {x1, ..., xkX} ⊂ X .

The input to our model is a triplet of sets t = 〈I , J ,K 〉. The sets can be overlapping, so that

each item i ∈ X may occur in arbitrarily many sets. Also, each set X can have different

cardinality kX , a constant set size is not a prerequisite of our approach. However, for the

rest of this chapter, if the context is clear, we omit the set index and denote the cardinality of

each set as k. Analogous to (5.1), we assume that each triplet in the set of training triplets T
has been labeled by an oracle O as

O(〈I , J ,K 〉) =

{
+1 if δ(I , J ) < δ(I ,K )

−1 if δ(I , J ) > δ(I ,K )
(6.3)

where δ(., .) is a latent, unspecified similarity function between sets. The setting of this

problem is very similar to the one considered in the previous Chapter 5, with the main

difference that the input this time are triplets of sets of abstract items.

The goal is to learn a mapping function that takes as input a set of indices X and a training

set of labeled triplets T defined over elements in X , and outputs a set of vectors in Rd

corresponding to the embedding of the individual items that compose X . Formally, we can

define the problem as follows:

Definition 8 (Set-Based Ordinal Embedding). Let X be an abstract space of items which

we denote with {1, . . . , n}, and PX = 2X × 2X × 2X the space of all triples of subsets of
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X . Given T ⊂ PX and an oracle O : PX → {−1, 1}, which provides information about a

latent similarity function δ as specified in (6.3), the set-based ordinal embedding problem

consists of finding a suitable embedding function φ : X −→ Rd, such that

sgn(‖ agg(Φ(I ))− agg(Φ(K ))‖ − ‖ agg(Φ(I ))− agg(Φ(J ))‖) = O(〈I , J ,K 〉) (6.4)

where Φ(.) denotes the element-wise extension of φ(.) to sets, and agg(.) : Rd×k → Rd is

an aggregation operator defined over elements in Rd.

6.2.2 Set Encoding

Clearly, the ordinal embedding for sets problem is a natural generalization of the classical

ordinal embedding problem as defined in Definition 4.

The generic input for our model is not a single item but a set of items X = {x1, ..., xk} of

size k, where each xi is an indexed item of X . The output of the model is a set of feature

vectors of dimensionality d represented by the matrix Y = Φ(X ) ∈ Rd×k with the column

elements Y = [y1, ...,yk], where Φ is the learned mapping function.

In order to properly deal with sets, all the operations that compose Φ need to have the

properties of permutation equivariance and permutation-invariance. That is to say that Φ

should not rely on the arbitrary order of the elements of the input set. The approach proposed

in this work relies on set encoders. A set encoder is a model that encodes set of elements into

feature vectors in a latent space. They are built as a composition of permutation-equivariant

operations with a permutation-invariant at the end. Specifically, we assume that the function

Φ can be decomposed into an element-wise function φ(.), which can be independently

applied to each element, i.e.,

Φ(X) = [φ(x1), ..., φ(xk)] = [y1, ...,yk]. (6.5)

Essentially, the function φ(.) corresponds to the element-wise function of Definition 4. The

resulting Φ(.) is permutation-equivariant because its defining function φ(.) is applied to

every element individually. Hence it does not rely on the arbitrary order of the input set and

the the order of the output will adapt to any change in the order of the input.

Since the supervision is available only for the set and not for the single components, intuitively

the vectors {yi}ki=1 need to be aggregated into a single vector using an aggregation function

agg(.). Obviously, agg(.) also needs to respect the property of permutatation-invariance.

Multiple operations abide by this rule, for example, sum, average, min or max. This allows

us to obtain a representation of the set and its elements regardless of the order in which of
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the set elements are presented. In our experiments, we focus on the centroid, the center of

mass ȳ ∈ Rd, i.e.,

agg(Y)
def
= ȳ =

1

k

∑
k

yk. (6.6)

(a) A Gaussian set embedding with a large spread
among the items.

(b) A more concentrated variance indicates a
higher degree of homogeneity of the items
within the set.

Figure 6.1: Schematization of the main idea of the distributional embeddings for sets. The Gaussian
set embedding is represented by the centroid of the vector representation of the single
items and the spread of the items within the set.

Figure 6.2: Architecture to learn embeddings from a set of data points.

6.2.3 Distributional Embeddings for Sets

Learning ordinal embeddings from triplet comparisons based on sets is a problem that can

lead to substantial approximations and imprecisions. One of the main advantages of the

distributional approach outlined in defined in definition 5, is that it is possible to represent

and address severe perturbations in the data. As stated earlier, the representation through

probability measures naturally allows to encapsulate the uncertainty about the representation.

Hence, following this approach, we further generalize our approach to a distributional

embedding, where each set in the target space corresponds to a probability distribution.
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To that end, we chose the Gaussian distributionN (µ,Σ) characterized by a location vector µ

and a covariance matrix Σ, i.e., we associate each set X with a distribution zX = (µX ,ΣX ),

where µX = ȳ, i.e., the centroid (6.6) of the set and a diagonal covariance matrix ΣX .

Overall, such a distributional embedding for sets allows to obtain a meaningful representation

for each set, while being bounded by the components of the sets themselves.

The updates performed on a single training triplet are illustrated in Algorithm 1. Essentially,

it takes a set triplet 〈I , J ,K 〉 and updates the item embeddings for all the elements in these

sets, so that the hinge loss 5.6, which is based on the Wasserstein distances between the

distribution of the item embeddings of the elements in each of the three sets, is reduced.

Algorithm 1: Distributional Ordinal Embeddings from Set Constraints
Data: set of items X , set of training triplets T , oracle O
Result: set embeddings Y of points in X

1 initialize Y randomly
2 for (t = 〈I , J ,K 〉) ∈ T do
3 for (S ∈ {I , J ,K} do
4 YS = {y1, . . . ,y|S|} column vectors of Y corresponding to S
5 zS ← N (µS ,ΣS) mean and variance of YS
6 end for
7 l← max(1−O(t)(W (zI , zJ )−W (zI , zK )), 0) compute hinge loss
8 Y· ← Y· − η ∂l

∂Y gradient descent step
9 end for

Deep set encoder. We represent the element-wise embedding function φ(.) as a deep neural

network, as illustrated in Figure 6.2. While our work relates to numerous architectures

proposed in metric learning such as (Hoffer and Ailon, 2015), our deep neural encoder is

fundamentally different because of the nature of the problem. The most distinctive point is

that we do not have access to the features of the items we aim to embed. In fact our model

learns a representation of the items based on a random input to the encoder. In particular,

we chose as inputs random vectors on input dimension h = 64 sampled from N (0, Ih). A

first deep encoder, namely 2-layer MLP with Relu, φθ(·) maps these random inputs into

d-dimensional outputs. These are then aggregated to µθ(·) and fed to produce the variance

Σθ(·), a function which is again represented with a deep forward network.

Complexity. The training complexity is linear in the size of T , which is the set of all triplets,

and bounded by O(n3). However, a well chosen sampling strategy may decrease this bound.

It has been shown by Jamieson and Nowak (2011) that the minimum number of triplets

to recover an ordinal embedding is Ω(nd log n) in Rd. We adapt this result to the setting

in which the parameters to be learnt are a mean vector in Rd and a covariance matrix Sd+.
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Figure 6.3: Detail of the encoding approach for learning ordinal embedding from a set of data points.

Hence, the dimensionality can be considered to be d′ = d+ d2 and O(d2). Thus, the new

recovered lower bound for the triplets becomes Ω(d2n log n), which is still polynomial in

d and O(n log n). Since ordinal embeddings typically map into a low-dimensional space,

this is not a drastic loss in efficiency. Moreover, it is worth mentioning that a low number of

epochs was needed for convergence for all experiments.

Finally, the computational bottleneck when dealing with Wasserstein distance in its closed-

form is computing the matrix square roots of the scale parameters. However, as we opted to

learn diagonal covariances, hence this problem is not present in our approach.

Practical tricks. Besides relying on the optimization of the energy-based max-margin

loss (5.6), we apply some regularization to the learning process. We observed that no

regularization is needed for learning the location vectors. However, the covariance matrix

needs to be bounded, since the main goal of our approach is to obtain perceptual embeddings.

Hence, we constrained the covariance matrix to lie within the hypercube [0, C]d, C being

a chosen constant. We chose to focus on diagonal covariance because we argue the

rotation angle is not easily interpretable to appreciate the similarity between items and

that the principal axes are sufficient to appreciate the uncertainty of the representation.

Thus, the regularization is achieved by bounding each element of the covariance matrix,

Σii = max(Σii, C). Moreover, we adapt our approach to be able to handle sets of variable

size. First, we pad all sets in a batch to allow for efficient computation. We then provide an

additional mask feature mi for each set Pi that indicates whether it is a regular element of

the set (mi(k) = 1) or padding element (mi(k) = 0). This mask is useful for computing

the centroid of the set thought weighted average and the covariance of the set.

101



6 Learning Ordinal Embedding from Sets

6.3 Experiments

Our main objective is to investigate the effectiveness of our approach for the ordinal

embedding problem. With this objective in mind, we evaluate our model in two different

settings. First, we perform experiments with reconstruction tasks on synthetic datasets

with particular shapes. These sets of experiments are particularly useful as a controlled

environment because the ground truth is available. Then, we apply our approach to real-world

datasets for more complex data in order to assess the performance of our model in real cases.

In all experiments, we used the following hyperparameters: lr = 1e− 3 as the learning rate,

batch size 512, h = 64 as the hidden size of the input layer and d = 2, the output size of the

embeddings. We compare our proposed model to a model that learns to embed a set simply

as its centroid. In order to evaluate our approach, we use as metric the Procrustes Distance

as well as the triplet error (5.7) between ground truth and learned embeddings.

6.3.1 Synthetic datasets

Data. In this section, we present a series of experiments that use reconstruction tasks

in order to illustrate the capabilities of our approach. We follow the experimental setting

of (Haghiri et al., 2019). More specifically, we use four 2-dimensional synthetic datasets

generated with the scikit-learn package in Python. The datasets are:

(i) Gaussian isotropic blobs,

(ii) a large circle containing a smaller circle in 2D,

(iii) two interwoven spirals,

(iv) two interleaving half circles,

as illustrated in Figure 6.4a. For each of these datasets, we proceed as follows:

• Fix n and ki with i = 1, ..., n, respectively the number of sets of items, and the size of

each set;

• Generate n points ci that follow the pattern of the chosen dataset. These points are the

centroids of the n sets;

• Given the ci, draw ki random points from a normal distribution parameterized as

N (ci, ε). We chose ε, the spread of the set, between 0 and 0.5;
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Target

(a) Ground Truth

p = 1 p = 2 p = 4

(b) p = 1, 2, 4

Baseline

(c) p = 4

Figure 6.4: SteOE embeddings for synthetic experiments. The first column (a) shows the ground truth,
(b) the progression of learned embeddings from increasing number for triplets pnd log n
with p = {1, 2, 4}, and (c) the learned embedding from the baseline model with p = 4.
The colors are merely used for better visibility of the different groups, they are not used
for training.

• We divide the obtained n cloud of points in overlapping sets.

Following the approach described, we generate |T | triplets sampled from a uniform distribu-

tion. In order to simulate the ordinal feedback from the oracle, we compute the difference of

the squared l2-norm between the centroids of the sets for a given triplet. The total number

|T | of sets is set to be pnd log n with p = 1, 2, 4.

Results. This series of experiments illustrate the performance for reconstruction and density

estimation of our approach and particularly, the influence of the number of triplets on

the reconstruction ability. The first column of Figure 6.4 depicts the ground truth. Then,

proceeding left to right, the learned embeddings for different values of T . The number of

triplets increases with T = pnd log n, where p = {1, 2, 4}.
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Table 6.1: Procrustes distance from ground truth and learned embeddings. Small is better.
Ours Baseline

Circles 0.12 0.18
Moons 0.09 0.33
Spirals 0.25 0.91
Blobs 0.03 0.04

(a) k = 10 (b) k = 25 (c) k = 50

Figure 6.5: Ordinal embeddings of MNIST digits. The supervision information is the sum of the
digits in the sets. Color represent the label of single digits, used only for visualization

purposes.

For all datasets, we observe that the quality of the reconstruction with respect to the the

location of the point vector improves when the number of triplets increases. We recall that

an ordinal embedding is not unique but the distances can be recovered up to an orthogonal

transformation (translation, rotation and reflection).

The last column Figure 6.4c is the visualization of the embeddings obtained by the baseline

model, which is visibly less accurate than the proposed model. In order to get a quantitative,

objective evaluation of the difference, Table 6.1 shows the Procrustes distance between the

ground truth and the resulting embedding for both our proposed model and the baseline

approach. We can can notice that our embeddings are consistently more precise and this

suggests that our distributional approach for sets embedding leads to better and more accurate

representation.

6.3.2 Sum of MNIST digits

Data. Next, we apply our approach to more complex distributions than the synthetic datasets

previously illustrated. We adapt the MNIST dataset for this task. MNIST contains 60, 000

instances of 28× 28 grey-scale stamps of digits in the range 0, ..., 9. We randomly sample

N = 100000 training and 1000 testing sets with a maximum size of k = 10, 25, 50 images.
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The supervision information provided by the oracle (6.3) is based on the difference of the

sum of the digits in a set, i.e.,

δ(I, J) =
∣∣∣∑
i∈I

λi −
∑
j∈J

λj

∣∣∣ (6.7)

where λi is label of image i, i.e., the one-digit number displayed by it. Thus, we cannot

directly observe the label of the image but we can only observe whether it tends to appear in

sets with larger or smaller sums. The desired outcome is that the embedding of the individual

images is able to capture the hidden label information.

Results. Figure 6.5 illustrates the obtained results for three different maximal set sizes.

Each point represents a single image of the MNIST dataset. The color indicates the label of

each single digit. We can clearly recognize the linear order in the learned embeddings. Low

digits are separated from high digits and the gradient is clearly noticeable.

Table 6.2: Mean accuracy for the classifi-
cation of single MNIST digits
embeddings obtained.

Baseline Ours

k = 10 0.76 0.78
k = 25 0.76 0.82
k = 50 0.77 0.79

Moreover, the smaller the sets used for learning the

better the order is distinguishable. In fact, although it

is clear that the model was able to capture the linear

order from the feedback of each triplet comparison,

the results of Figure 6.5c are not as clear as those of

Figure 6.5a. This can be expected, because in larger

sets, the contribution of each individual number of the

sum is lower than in smaller sets. This is an important

factor from which we conclude that there exist a trade-off between reconstruction ability and

precision of the obtained representations. When density estimation is the priority, a bigger

set size is advantageous because it necessitates fewer comparisons. However, when the focus

is on the preciseness of the location of individual items in the space, a smaller set size should

be preferred.

6.3.3 Poker Hands

Data. Poker is one of the best-known card games. The players bet whether the value of

the hand they hold will beat all others according to a predefined ranking of hands. The

complexity of the ranking system, where each card can be part of a winning hand depending

on the other cards in the hand, provides an interesting use case for assessing the embedding

abilities of our approach. Variants largely differ on how cards are dealt and the methods by

which players can improve a hand. In our experiments, we model a setting that is motivated
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(a) p = 2, c = 5 (b) p = 5, c = 2 (c) p = 1, c = 4

Figure 6.6: Ordinal embeddings from poker game for different numbers of player cards p and
community cards c.

by the Texas Hold’em variant. We assume two players J and K, each holding p cards, and a

set of c community cards I .

The supervision information we use is based on which of the two players can obtain the best

hand of five cards by combining her own cards with the community cards. The hand strength

computations is based on the Cactus Kev’s algorithm.

Results. Figure 6.6 illustrates the results. In all cases, the number of triplets is 2nd log n,

with d = 2 and n = 52. The colors show the rank of the cards but this information is not

available during the training. We illustrate three different variants: Figure 6.6a shows the

results of the setting with 5 community cards and each of the two players having 2 cards.

This correspond to the Texas Hold’em game. The remaining figures show variants with

differing numbers of board and community cards, which do not correspond to actual game

settings, but which we studied to get more insight into the obtained embeddings.

The results for the classical variant (Figure 6.6a) show that even if the supervision comes

from a highly non-linear source, our approach is still able to learn ordinal embeddings and

to output latent representations for the game that are fair and interpretable. First, we notice

that unlike in the previous experiment, where a clear linear order of the embedded MNIST

images has obtained, the structure obtained here is more complex. Nevertheless, we see

that cards with similar values tend to form clusters because they go well together, forming

pairs, triples, or even pokers, which have a high evaluation in the game. We can also see that

clusters of cards with low rank are pushed afar whereas cards with higher ranks tend to be

closer to each other. This again, makes sens from the perspective of the game, because two

high cards (regardless of whether they match or not), are a good combination. In particular,

aces, being the cards with the highest rank in the deck remain in the center of the plot. This

finding is in accord with the rules of the game, since the probability of having a good hand is
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Figure 6.7: Procrustes
distance.

Figure Pearson coeff.
6.6a 0.58
6.6b 0.68
6.6c 0.65

Table 6.3: Pearson correlation coefficient between l2 of the differ-
ence the embedding vectors and the Chen score for all
possible pairs of poker cards.

higher if it includes aces. It is possible to notice how the clusters are arranged in a spiral-like

shape with the aces being in the center and moving farther away, we can find the other values

in decreasing order.

We then, choose to evaluate the opposite setting of the one just described, in which the board

has less cards then each player hands, more specifically 2 cards for the board and 5 for each

player. This correspond to 6.6b. Even though, this setting doesn’t correspond to any game

configuration we assume that investing it could be of interest. Once again, we reach the same

conclusions: cards with similar ranks are close to each other, also arranged in spiral-like

shape emanating from the center of cluster of aces. However, contrary to the canonical

setting, the cluster of aces is further from the middle of the point and this is probably due to

the higher combinatorial nature of the evaluation that perturbed the original order.

In the next setting, we try to remove the combinatorial factor of the excess community cards.

For this, we use the configuration in which each player has one card (a singleton) and the

board has 4 cards. The results, shown in Figure 6.6c, exhibit the best separation between

the difference clusters of ranks and the spiral shape of their arrangement. Low ranks are far

apart from high ranked cards and higher are closer to center with the cluster of aces being

the most centered one.

Overall, the found embeddings appear to be quite reasonable in all three cases. They seem

to capture the expected property that cards that go well together in a poker hand have a

low pairwise distance, whereas pairs of hands that do not go well together are further apart.

For that reason, the low cards are rather far from all other cards except for their own kind,

whereas the higher cards tend to be more close to each other. In order to test this, we

computed a correlation coefficient between the distance of a pair of card and the pairs Chen
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score,1 for all pairs of cards. As expected, the results, shown in Table 6.3, show a reasonably

high positive correlation.

6.3.4 Reuters

Data. For this experiment, we used data from the Reuters-21578 benchmark corpus (Xue

et al., 2011). This dataset contains n = 10788 Reuters newswire articles. Each article

is represented as a set of paragraphs with size k ∈ {2, 15}, 60, 222 paragraphs in total.

The goal is to cluster these documents according to the categories of the newspaper. The

documents belong to 90 different categories. The supervision used is the same as the one

used in the MNIST sums of digits experiments.

Results. The results are shown in Figure 6.7. We embed each document as a set of

paragraphs in a 2-dimensional space. As we can notice from the colors that indicate the label

of the documents, the clusters are clearly distinguishable.

Moreover, we conduct a quantitative evaluation on the obtained embeddings. For this, we

compute the centroid each set from learned feature vector. Then, we train a MLP classifier to

predict the label associated with the n documents. We compare the mean accuracy of our

approach to the baseline. We obtained an improvement of 5% in the mean accuracy, which

proves that our obtained embedding are better suited for downstream tasks.

6.4 Related Work

In this section, we briefly summarize work that is related to our approach, both in the realm

of ordinal embeddings as well as in finding set representations.

6.4.1 Ordinal Embeddings

In recent years, ordinal data have received a growing interest in machine learning. The

ordinal embedding problem has been studied from different points of view: For example,

the question of finding the minimum number of triplets necessary to determine an ordinal

embedding in the Euclidean space has been tackled in (Jamieson and Nowak, 2011), and

further extended and generalized in (Jain et al., 2016). Multiple methods have been designed

to deal with triplet similarity. They typically produce representations of data points as

low-dimensional Euclidean vectors. In particular, Generalized Non-metric Multidimensional

Scaling (GNMDS) (Agarwal et al., 2007) relies on a max-margin approach to minimize a

1The Chen score is a formula proposed by Bill Chen for assessing the strength of a pair of starting cards in
Texas Hold’em (Chen and Ankenman, 2006).
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hinge loss. Stochastic Triplet Embedding (STE) (Van Der Maaten and Weinberger, 2012), on

the other hand, assumes a Gaussian noise model and minimizes a logistic noise. The Crowd

Kernel model (Tamuz et al., 2011) makes the assumption that triplets have been generated

by an explicit noise model. It is worth mentioning that these models adopt a classification

scheme to solve the problem by predicting the label of the relative comparisons. Another

notable work is (Terada and von Luxburg, 2014) which solves the ordinal embedding problem

via a reduction to the problem of embedding a nearest-neighbor graphs. Moreover, these

methods rely on expensive gradient projections and are unsuitable for large datasets. The

main purpose of those methods is to facilitate data visualization of similarity inferred from

human assessments. However, other tasks employing similarity triplets have been studied,

such as medoid estimation (Heikinheimo and Ukkonen, 2013), density estimation (Ukkonen

et al., 2015), or clustering (Ukkonen, 2017). Closely related to our approach is (Haghiri

et al., 2019), which employs deep learning to scale the ordinal problem to large datasets.

6.4.2 Sets representation

Machine learning on sets includes different subgroups depending on the nature of the input

and output (e.g vector-to-set, set-to-set, set-to-sequence). To the best of our knowledge, we

are the first to propose an approach for set-valued input that doesn’t rely on features. However,

there are different works in the literature that relates to ours, more specifically in the set-to-set

domain where both input and output are structured as sets. Notable examples are (Zaheer

et al., 2017),which offers a permutation invariant function for inference over sets by relying

on summation of all element representations prior to further nonlinear transformations. Other

less recent works in the set-to-set domain are (Qi et al., 2017; Vinyals et al., 2015, 2016). A

more complete comparison of set encoders can be found in the next section. It is important

to clearly differentiate our work that falls into the set-to-set mappings from some related

works on vector-to-set (Zhang et al., 2020, 2019a). In fact, our works related more to (Zaheer

et al., 2017). The main difference is that the input to our model is necessarily a set of items,

albeit without features. Notable works in vector-to-set literature are suited to tasks such as

object detection, taking as input a feature representation of an images and producing set of

coordinates for the bounding boxes. Loosely related are also methods like (Zhang et al.,

2019b; Diallo et al., 2020; Mena et al., 2018a) that learn a permutation matrix for sets of

items. Once the permutation matrix is learned, it is applied to the input set hence turning the

set into an (ordered) sequence. Once again, our method differs because there the output set

is not ordered, hence not a sequence.
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6.4.3 Sets encoder models

The goal of a set encoder is to encode an input set into an embedding vector as an output.

Several studies have proposed different approaches for performing this task. In this section,

we will list the most relevant to our work and we provide a more thorough comparison in

order to deepen the comparison from the previous section. As stated earlier, in this work we

propose a deep neural architecture for encoding sets without feature. Moreover, our approach

belongs to the set-to-set category. However, since the ordinal feedback available is only at the

set level, the optimization is performed on the embedding of the set rather than the encoding

of the single items that compose the set. The most natural comparison to our work is Deep

Sets, (Zaheer et al., 2017) which provides a robust mathematical analysis for designing

permutation invariant and permutation equivariant deep learning models. This framework

offers a simplified procedure by relying on summation of all elements representation for

obtaining the set feature vector which is consequently transformed into the desired output

(e.g. class probability for classification or single number for set regression. Our approach is a

generalization of the Deep Sets framework in which we do not require the input feature of the

elements of the sets. Additional main differences from our work is that our set representation

is a probabilistic measure rather than a point vector and the permutation equivariant function

is the mean rather than the sum.

Other works have tackled the task of finding robust set encoders. They largely differ from

our proposition, but we will discuss them for the sake of completion. The Pointer Network

(Vinyals et al., 2015) is an encoder-decoder architecture that provides a modified attention

mechanism and its main goal is to learn the target reordering of the input elements. An

important characteristic of Pointer Networks is that they do no treat set-valued input in

the strict sense. In fact, the input is treated through sequential recurrent neural networks,

hence the obtained representation is not permutation-equivariant. The primary application

of Pointer Networks are tasks where the target output is a reordering or permutation of the

elements of the initial input. This reordering is based on pointers to indices of the original

input sequence.

Another important set encoder architecture is represented by the Read-Process-and-Write

Model. It is a neural network architecture made of different blocks which aims to obtain an

permutation invariant representation of the input set and learning a mapping to arbitrary target

outputs. It relies on attention mechanism to satisfy the property of permutation invariance

and can be seen as a special case of Memory Networks (Weston et al., 2014). In fact, it is a

recurrent neural network model that creates a memory representation of each element in the

input sequence and accesses the representation via the attention mechanism.
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Among the most complex methods designed to handle set-input problems there is the Set

Transformer (Lee et al., 2019). The Set Transformer consists of stacked multi-head self-

attention layers for both the internal encoder and decoder as seen in the classic Transformer

(Vaswani et al., 2017). One main difference from the previously described set encoding

approaches methods is that instead of using a fixed pooling operation such as sum() or

average() to ensure permutation invariance, it employs a parameterized pooling function that

is learned and therefore results to be much more adaptive to the particular task at hand. The

Set Transformer (Lee et al., 2019) is designed to model higher-order interactions among

elements and their subsets within the input set. Its key advantage is that it concurrently

encodes the entire input set through a sequence of permutation equivariant Set Attention

Blocks (SABs). By comparison, the previously discussed DeepSets and our proposed

approach method obtained element features independently of other input set elements. The

main limitation of the Set Transformer is its computational cost. In fact the SABs requires

quadratic complexityO(n2) with n being the cardinality of the input set. A lower- projection

is proposed by the authors to try to overcome this limit bringing the overall complexity to

O(mn) with m being the chosen number of inducing points for the low-rank projection.

(Zhang et al., 2020) proposes a permutation invariant approach that derives from the the

naive method of sorting all the elements of the input set by a chosen feature. However, when

the output is a set, this approaches leads to discontinuities which the authors describe as the

responsibility problem. In a nutshell, these discontinuities arise whenever two elements are

swapped in the input and the output. To avoid this difficulty, the authors have developed

a novel pooling method which sorts each feature across the elements of the input set and

then performs a weighted sum. This allows the model to remember the permutation applied

through the featurewise sorting and apply its inverse in the decoder. This process restores the

original, arbitrary order of the input elements making the encoding a permutation equivariant

operation, preventing the discontinuity in the outputs of the model.

Another interesting approach to encode sets based on the reordering of the input is the

Janossy pooling approach by (Murphy et al., 2019) the symmetric (permutation invariant)

encoding function is expressed as the average of a mixture of permutation sensitive functions

applied to all reorderings of the original input. Generating all permutations of a set results

in n! intermediate inputs, all of which would then require the application of the chosen

permutation sensitive function. However, this approach is not tractable as it is. To mitigate

this, the authors propose a number of strategies, among them the use of a smaller number of

selected canonical orderings that are presumed to carry relevant information.

PointNet by (Qi et al., 2017) is a neural architecture for encoding 3D point clouds. An

additional constraint for this architecture is that the output should be independent on the
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translation or rotation of the input point cloud. Loosely speaking, PointNet first obtains

an embedding of each of the input points through stacked, fully-connected layers in the

form of a MLP, such that each element is identically and independently transformed. This

permutation equivariant representation is then pooled via the max() operator (per dimension)

and further transformed through an additional fully-connected layer. Finally, the obtained

point cloud encoding is concatenated with the embedding of each point. This combination of

local and global features is shown to be crucial for point segmentation tasks.

The AttSets model, proposed by (Yang et al., 2020), uses weighted attention to obtain a

permutation invariant representation of the input set. This model is originally meant to be

applied to a multi-view 3D reconstruction task, where a set of images of the same object from

different angles is used to estimate its true 3D shape. In order to achieve this, each element

of the set is individually and independently transformed via a learned attention function,

which can take the form of a MLP or a multidimensional CNN, according to the form of the

input. The output of this function is normalized via softmax() and then used as an attention

mask over the original input elements. This allows the model to learn to pay a varying degree

of attention to individual dimensions of the input elements’ representations. Finally, the

original input elements are multiplied by the attention mask and summed together to fixed

length set encoding.

Finally, the RepSet (Skianis et al., 2020) model consists of stacked feed-forward, fully-

connected layers, like in the DeepSets method (Vinyals et al., 2015), followed by a custom

permutation invariant layer replacing the sum() operator. This layer is inspired by concepts

from the field of bipartite graph matching. The permutation invariance is achieved through

a configurable number of hidden sets (potentially of different sizes), whose elements

correspond to columns of trainable weight matrices. These are then compared with the

elements of the actual input set to create matrices that are fed the Hungarian algorithm. The

resulting values can be further transformed through standard neural network layers according

to the problem at hand. One limitation of this approach is the computational complexity of

O(mn+ n2 log n) where n is the cardinality of the input set and m is the chosen number of

hidden sets.

6.5 Discussion

We have proposed an approach to solve the ordinal embedding problem when the input

is under the form of sets of items and the feedback is available only for triplets of sets.

Our approach maps the objects in a low dimensional space endowed with the Wasserstein

distance. This is based on learning a representation for sets and taking advantage of the
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common statistic for sets, which is the centroid. Each set is described by a location

parameter, its centroid and a scale parameter, that represents the spread of the set. We

argue that reformulating the problem under this point of view allows to prompt fewer triplets

comparisons for a greater number of learned items. Our algorithm is suitable when the input

sets have variable size. Moreover, a trade-off between precision of the individual embeddings

and the accuracy of the overall density estimation has to be taken into account when choosing

the size of the input sets. In a number of experiments on different datasets we demonstrate

the validity of our approach. We show that the proposed framework is robust and beneficial

when the triplet comparisons are limited. Overall, with our proposed approach we are able to

obtain valid embedding that can be used for downstream tasks. In conclusion, we think that

our main idea should be readily extensible to similar domain, even including features, such

as set-to-sequence, set-to-graphs or set-to-set. Future directions of improvement involve

extending the model to consider pairwise or more complex interactions among the elements

of a given set. In fact, so far the encoding step focuses on one element at time. Moreover,

an additional way of improvement might to relax the link between cardinality of input set

and precision of the output embedding. Finally, a next improvement we aim to do would be

to improve the aggregation function by using a parameterized and learned function which

could improve the performance according to the task at hand.
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7 Unsupervised Alignment of Gaussian
Embeddings

Chapter abstract
Cross-domain alignment plays a key role in tasks ranging from image-text retrieval to
machine translation. The main objective of this task is to associate related entities across
different domains. Recently, purely unsupervised methods operating on monolingual
embeddings have successfully been used to infer a bilingual lexicon without relying
on supervision. However, current state-of-the art methods only focus on point vectors
although distributional embeddings have proven to embed richer semantic information
when representing words. This chapter investigates a novel stochastic optimization
approach for aligning word distributional embeddings. Our method builds upon
techniques in optimal transport (OT) to resolve the cross-domain matching problem in
a principled manner. Finally, we evaluate our method on the problem of unsupervised
word translation, by aligning word embeddings trained on monolingual data. We present
empirical evidence to demonstrate the validity of our approach on the bilingual lexicon
induction task across several language pairs.

7.1 Introduction

Word embedding alignment is a fundamental Natural Language Processing task that aims at

finding the correspondence between two sets of word embeddings. Word embeddings are

vector representation of words capable of capturing the context of a word in a document,

semantic and syntactic similarity as well as its relation to other words. Therefore, each

embedding space exhibits different characteristics based on the semantic differences in the

source of information provided as input. However, it has been first observed in (Mikolov

et al., 2013b) that continuous word embeddings exhibit similar structures across languages,

even for the distant ones such as English and Vietnamese. For this reason, the task of aligning

two clouds of points is a crucial problem in this specific setting.
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More than often, the set of embedding to align are in different languages which corresponds

to the task of cross-lingual alignment. Loosely speaking, given a source-target language pair,

the goal is to find a mapping that goes from the embedding space of one language to the

embedding space of the other language. An example related to Natural Language Processing

(NLP) is the task of unsupervised word translation. In this setting, the learning process can

be seen as a generalization of the unsupervised cross-domain adaptation problem (Sun et al.,

2016; Mahadevan et al., 2018; Ben-David et al., 2006; Gopalan et al., 2011).

(a) Point vector embedding alignment.

(b) Distributional vector embedding alignment.

Figure 7.1: Unsupervised embedding alignment for two clouds of points in two different languages
(English and French.)

Several among the early studies have relied on supervision from a bilingual dictionary under

the form of few anchor points in order to induce the learning of the mapping (Artetxe et al.,

2018a; Joulin et al., 2018; Jawanpuria et al., 2019) at training time. However, recently many

unsupervised approaches have been proposed and have obtained compelling results (Zhang

et al., 2017a; Grave et al., 2019; Alvarez-Melis et al., 2019; Lample et al., 2018; Artetxe

et al., 2018b; Zhang et al., 2017b; Jawanpuria et al., 2020). The unsupervised approaches

frame the problem as a distance minimization between distributions using various distances,

adversarial training or domain adaptation. Generally speaking, all these methods build on

the observation that mono-lingual word embeddings, or distributed representation of words,

show similar geometric properties across languages. Another key point is the nature of

the representation. According to the literature of word representation learning, the word
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embeddings develop in two directions: point embeddings and probabilistic embeddings.

The point embeddings are powerful and compact representations that map each word into

a deterministic vector in a semantic space as a single point where the semantic similarity

and other symmetric word relations can be effectively captured by the relative position of

points. Although all the positive sides, this projection into a single point in the embedding

space carries a series a limitations. In fact, it has been shown that point vector struggles

to naturally model entailment among words (e.g., animal entails dog but not viceversa) or

other asymmetric relations. Moreover, point vectors are typically compared by dot products,

cosine-distance or Euclidean distance, which are not well suited for carrying asymmetric

comparisons between objects (as is necessary to represent relations such as inclusion or

entailment). Asymmetries can reveal hierarchical structures among words that can be crucial

in knowledge representation and reasoning (Roller et al., 2014). Additionally, the point

vector representation fails to express the uncertainty about the concepts associated to a

specific word.

Figure 7.2: Illustration of diagonal variances. Each
word is defined by the position of
its mean vector in the space and the
dispersion is indicated by the variance.
The more specific word Labrador has a
smaller variance than the more general
categories animal or canine.

On the other hand, Gaussian embedding rep-

resents each word as a Gaussian distribution,

which is innately more expressive having

the ability to additionally capture semantic

uncertainties of words (as their “geometric

shapes”) to represent words more naturally

and more accurately than point vectors

(Vilnis and McCallum, 2015). They allows

to map each word to soft regions in space

in a manner that facilitates the modeling

of uncertainty, inclusion and entailment.

Nevertheless, all the approaches for unsuper-

vised alignment of word embedding focused

on point vector. In this chapter, we propose

an approach for aligning embedding spaces

for a source and a target language in an unsupervised manner that is suited for a large set of

embeddings. In particular, our algorithm shares similarities with the work of (Grave et al.,

2019) where a non-linear transformation and an alignment between two point clouds are

jointly learned. Experiments show the validity of the proposed approach on the bilingual

lexicon induction benchmark.

The chapter is organized as follows: we first present some related works that deal with point-

vector and distributional embedding models as well as alignment of word embeddings with
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different degrees of supervision. Then, we present the problem formulation and introduce

the necessary notation used throughout the chapter. Finally, we present our experimental

setup and discuss the results obtained.

7.2 Approach

In this section, we describe the unsupervised alignment problem and the solution strategy for

dealing with Gaussian embeddings.

7.2.1 Problem Formulation

In the cross-lingual alignment problem, we are given a pair of source target language with

vocabularies Vx, with |Vx| = n and Vy, with |Vy| = m, respectively. These vocabularies

are represented by word embeddingsX ∈ Rn×d and Y ∈ Rm×d. The goal of the problem

in its classical form is to find a mapping between the set of source embeddings and target

embeddings without parallel data. In this work, we tackle the problem of finding an mapping

between sets of embeddings from a pair of languages but the input are not point vectors.

We rely on Gaussian embeddings which have been extensively described in Chapter 5.

Additionally, in this work, we focus on diagonal Gaussian embedding, the most used in the

literature of probabilistic embeddings but our approach can easily be extended to the general

case with little effort.

The problem, then becomes, given a pair of sets of Gaussian embeddings from a source

language X represented by Mx ∈ Rn×d and Σx ∈ Rn×d+ and from a target language Y
My ∈ Rn×d and Σy ∈ Rn×d+ , find a mapping T : X −→ Y such that T (xi ∈Mx) ≈ yj ∈
My.

In the next section, we begin by discussing the solution by (Grave et al., 2019) and then

present our adaptation to deal with Gaussian embeddings.

7.2.2 Orthogonal Procrustes

The problem of finding a linear mapping between to clouds of matched vectors is known as

Procrustes. In the classical form, it is described as:

min
W∈RD×D

‖XW − Y ‖2F

where W is the learned mapping and ‖ · ‖F is the Frobenius norm. This technique has

been successfully applied in different fields, from analyzing sets of 2D shapes to learning a

linear mapping between word vectors in two different languages with the help of a bilingual
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lexicon (Mikolov et al., 2013b). Constraints on the mappingW can be further imposed to

suit the geometry of the problem. An appropriate choice of the space for the mapping T

represented byW in the general case will be the space of the orthogonal matrices (rotations

and reflections). Hence the problem becomes Orthogonal Procrustes:

min
Q∈OD

‖XQ− Y ‖2F (7.1)

where Od is the space of orthogonal matrices defined as Od = {W ∈ Rd×d|W TW = I}.
The key advantage is that this problem has a closed-form solution. In fact, given the singular

value decomposition ofXY T in UDV T , the optimal solution isQopt = UV T .

7.2.3 Wasserstein Procrustes

However, the eq. (7.1) represent the supervised alignment problem, in which the learner

is given a pair of sets of embedding correctly matched. If we generalize the problem, to

the case in which the learned does not have access to a pair of matching embeddings, the

problem at hand becomes:

min
Q∈OD ,P∈Pd

‖XQ− PY ‖2F (7.2)

In this general case, the permutation matrix P that represent the matching is also unknown.

(Grave et al., 2019) tackle this problem by jointly learning P and W . While the overall

problem is non-convex and computationally expensive, they propose an efficient stochastic

algorithm to solve the problem. and a convex relaxation used as an initialization. This

convex relaxation, namely the Gold-Rangarajanng (Gold and Rangarajan, 1996) relaxation

is a convex approximation of the NP-hard matching problem and can be solved with the

Frank Wolfe algorithm. Loosely speaking, once an initial transformation is obtained, it is

used for learning the singular value decomposition. Then, the authors propose a stochastic

approach in which a batch of vectors is sampled form both languages, at each step t. This is

motivated by the fact that the dimension of the permutation matrix P scales quadratically

with the number of points n. The approach consists in alternating the full minimization of

eq. (7.2) in P and a gradient based update inQ.
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7.2.4 Wasserstein Procrustes for Gaussian Embedding

In order to adapt the learning problem for Gaussian distributions as inputs, we re-frame the

problem described by eq. (7.2):

‖MxR− PMy‖2F + ‖Σx − PΣy‖2F (7.3)

As stated earlier, Mx and My represent the location (mean) vectors of the source and

target Gaussian embeddings respectively, whereas Σx and Σy are the diagonal covariance

matrices. The transformation R is derived solely from the first term of the equation. The

intuition comes from the fact that the covariances represent, from a geometrical point of

view, the dispersion of the embeddings. However, the permutation matrix P , that identify

the matching should be based also on the covariances. This is justified by the fact that

mono-lingual embeddings exhibit similar geometric properties across languages and taking

into account the covariances of the embedding acts as a regularization of the optimization

problem. Concretely, the permutation matrix P t ∈ Pd at step t is derived fromRTXTPY

and ΣT
xΣy. The procedure is illustrated in Algorithm 2.

The second term of eq. (7.3) is the contribution of the dispersion term to the Wasserstein

distance of the Gaussian distributions. If we assume that the geometrical similarity of

the embedding spaces is maintained across languages, then we can reasonably expect that

corresponding embeddings in different languages will behave in the same way. As an

example, we can consider words that describe a categorisation of elements such as the

words "fruit" or "animal". We know that the Gaussian representation of these words have a

greater dispersion then their more specific counterparts, such as "pear" or "dog". We can

reasonably expect the same phenomenon to occur across languages. We propose to optimize

this problem in steps:

• First, learn an optimal orthogonal matrix Rt and permutation matrix P t only using

the means of the Gaussian embeddings.

• Then, given this initial mapping and matching applications, refine the permutation

matrix P t with few iterations to match also the covariances and used this new learned

P i to deriveRi.

The naive approach to optimize eq. (7.3) might be to add a term to take into account the

covariances at step denoted by line 3 in Algorithm 2. However, the magnitude of the cost

matrix derived from the covariances is too small, and we found that the best approach will

be a nested gradient descent. First, we estimate optimal P and R only from the location

vectors, then we refine them with few iterations L << T .
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In order to quantitatively assess the quality of our approach, we consider the problem of

bilingual lexicon induction for Gaussian embedding. In the next section, we describe the

procedure to generate our mono-lingual probabilistic embeddings and we investigate the use

of the covariance to learning the unsupervised alignment.
Algorithm 2: Unsupervised alignment of Gaussian embeddings

1 for t = 1 to T do
2 DrawXt fromMX and Y t fromMY , of size b
3 Given the currentRt, compute P t betweenXt and Y t

4 P t = arg maxP ∈ Pb
5 P t = P ∈ Pb
6 Tr(RtXtP tY t)
7 Compute the gradientGt w.r.tRt:
8 Gt = −2XtP tY t Gradient step:
9 Rt+1 = (Rt − αGt)

10 Project on the set of orthogonal matrices:
11 Rt+1 =

∏
Od

(Rt+1) = UV T

12 for i = 1 to L do
13 DrawXi fromXtRt and Y i from P tY t

14 Draw CX i from Σt and CY i from P tΣt

15 P i = arg maxP ∈ Pb
16 Tr(CX

T
i CY i)

17 Compute the gradientGi w.r.tRi:
18 Gi = −2XiP iY i

19 Gradient step:
20 Ri+1 = (Ri − αGi)
21 Project on the set of orthogonal matrices:
22 Ri+1 =

∏
Od

(Ri+1) = UV T

23 end for
24 end for

7.3 Experiments

In the following section, we present the experimental evaluation of our approach. Through

this step, we seek to understand the impact of the covariance in the optimization dynamics

and to evaluate the performance of our approach for the task of cross-lingual word embedding

translation.

Data generation. The first step for any unsupervised alignment algorithm is to provide

the source and target embeddings. To the best of our knowledge, there aren’t any trained

Gaussian mono-lingual embeddings publicly available. The standard benchmark dataset for
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en-fr fr-en en-es es-en en-de de-en en-ru ru-en

µ 68.4 69.3 67.4 71.3 62.1 59.8 33.4 49.7
(µ,Σ) 70.5 71.8 70.8 73.2 64.1 60.1 29.6 41.2

Table 7.1: P@1 on five European languages: English, French, Spanish, German and Russian. Here
"en-xx" refers to the average P@1 over multiple runs when English is the source language
and xx is the target language. We notice, as expected that the performance is similar for
closely related pairs of languages.

the cross-lingual is from (Lample et al., 2018) trained with FastText (Bojanowski et al., 2017)

on Wikipedia dumps and parallel dictionaries for 110 language pairs. The original Wikipedia

dumps were not made available, which would have made it easier to retrain Gaussian

embedding. We choose the following solution: we train a model using the method described

in (Vilnis and McCallum, 2015) with the exception that the weights for the mean component

of the model are initialized with FastText embeddings. We fine-tune the embedding on

Wikipedia dumps for each language for 3 epochs, with a learning rate λr = 0.05 using as

optimizer Adagrad. We maintain the dimensionality of the FastText embedding, that is to say

300. As generally done for language modeling, we keep only the tokens appearing more than

100 times in the text (for a total average number of 210000 different words for all languages

used).

Experimental setup. After obtaining the required monolingual embeddings we proceed as

follows: we first learn an alignment solely based on the means. This will be considered as

the baseline that will allow to appreciate the influence of the covariances in the computation

of the alignment. We follow the same training protocol as in (Grave et al., 2019). More

precisely, we perform 5 epochs and the batch size is doubled at the beginning of each

epoch while reducing the number of iterations by a factor 4. The first epoch of our method

uses a batch size of 500 and 5000 iterations. We also use the Sinkhorn solver of (Cuturi,

2013) to compute approximate solutions of optimal transport problems, with a regularization

parameter of 0.05. The number of iterations in the nested step is set at 2 and the learning rate

is set 0.1 times the learning rate used in the prior step.

Since the bilingual lexicon induction problem can be seen as a retrieval problem, the standard

practice is to report the precision at one (P@1). As a criterion, we compute a direct nearest-

neighbor search on the mean of the Gaussian embeddings. We tried computing a distance

that will take into account the covariance matrix but we noticed that the impact on the P@1

score was negligible.
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Following (Alvarez-Melis et al., 2019), we consider top n = 20000 most frequent words in

the vocabulary set for all the languages during the training stage. The inference is performed

on the the full vocabulary set. We report the results obtained in Table 7.1.

7.4 Discussion

In order to qualitatively assess the contribution of the covariance matrix, the results obtained

considering the covariance matrices are compared to the ones without considering the

covariance matrices. Overall, the performance improves when taking into account the

covariances. This can also be explained by the fact that the terms containing the covariance

acts as a regularization. Due to the presence of a nested step, the computational time increases

slightly compared to the point-vector case. However, the number of iteration in the nested

loop is small, between 2 and 5, hence it is not a dramatic increase.

One explanation for the improvement of the results when taking into account the covariances

might be the refinement step. In fact, it has been observed in (Artetxe et al., 2018a) and

(Lample et al., 2018) that refining the alignments improves the performance by a significantly

margin.

A general observation is that similar pairs of languages have similar performance overall.

However, some interesting points must be taken into account for the task of unsupervised

bilingual dictionary induction:

• Impact of off-the-shelf embeddings: We rely on the FastText embedding for obtain-

ing the embedding to align for different languages. However, FastText is trained on

approximately 16M sentences Spanish and 1M sentences in English. The Gaussian

embedding are induced from the point vector and the performance can be explained

by the quality of the starting embeddings.

• Impact of domain difference: having a large monolingual corpora from similar

domains across languages is of vital importance. In fact, it is known that when two

corpora come from different topics or domains, the performance is extremely degraded.

In fact, the domain dissimilarity computed by metrics such as the Jensen-Shannon

divergence is significant. The term distribution is an important factor in Gaussian

embedding, since the dispersion (the variance) is the direct result of the uncertainty

inherent in the dataset. This is a factor that must be taken into account for aligning

Gaussian embeddings in an unsupervised manner.
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• Impact of language similarity: The morphological typology of the language is a

factor that should be considered. The main considered are: fusional, agglutinative,

isolating. A fusional language tends to form words by the fusion (rather than the

agglutination) of morphemes, so that the constituent elements of a word are not

kept distinct. Notable examples are the Indo-European languages. An agglutinative

language have words are that are made up of a linear sequence of distinct morphemes

and each component of meaning is represented by its own morpheme, for example

Finnish and Turkish. Finally an isolating language is a natural language with no

demonstrable genealogical relationship with other languages, examples are Vietnamese

and Classical Chinese. The nature of the language pairs should be considered as it

could have a bigger impact in unsupervised alignment for distributional embedding

rather than the point-vector counterpart.

In general, our results are aligned with the performance shown by (Grave et al., 2019) for

the same retrieval criterion. It is worth noticing that the embeddings used are the result of

quick fine-tuning, their quality is far lower the FastText embedding from the MUSE dataset

(Lample et al., 2018). This is valid for all pairs of languages beside the coupling "en-ru". In

this specific case, we observe that the performance of the covariance approach is worse than

alignment of the only means. This can be explained by the fact that English and Russian are

distant languages and the relations expressed by the dispersion in the Gaussian embeddings

in English might not correspond to the same relations in Russian. In fact, as stated earlier,

the covariance matrix in Gaussian embeddings from a geometrical point of view corresponds

to the uncertainty in the representation. Hence broad concepts in have large variance and

viceversa.

Another explanation can be in the fact that the main assumption for unsupervised alignment

approaches is that transformation are isomorphic. However, as shown in (Søgaard et al.,

2018) this is not true for all language pairs. And since our approach is based on the enforcing

similarity between concepts that might not share the same dispersion this might be an

explanation for the poor performance in this specific language. A way to overcome this,

might be to provide a small seed dictionary and turn the problem into a minimally supervised.

Few key concepts that are geometrically related even in distant languages might work as

landmarks points.

7.5 Motivation and Related Work

Point based word embeddings. One of the key problem in machine learning and natural

language processing has been computing meaningful representation for high dimensional
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complex data. This has been an active research area, from the traditional non neural isometric

embeddings (Brown et al., 1992) (Blitzer et al., 2006) to the more recent and complex

methods (Mikolov et al., 2013c)(Mikolov et al., 2013a) (Pennington et al., 2014b). And the

most widely used algorithms for learning point based word embeddings are the continuous

bag of words and skip-gram models (Mikolov et al., 2013a)(Mikolov et al., 2013a), which

use a series of optimization methods such as negative sampling and hierarchical softmax

(Mnih and Hinton, 2008). Another way to learn word embeddings is through factorization of

word co-occurrence matrices such as GloVe embeddings (Pennington et al., 2014b). This

method of matrix factorization has been shown to be intrinsically linked to skip-gram and

negative sampling.

Figure 7.3: Broader and more common terms have a wider dispersion than more specific ones. This
characteristic is lacking in point vector embeddings.

Minimally supervised alignment of word embeddings. As stated earlier, word embedding

allows to represent word relations in a metric space. Learning the projection of a word

embedding space for a given language into another embedding space is useful in many

applications, in particular in aligning vocabularies for different languages. Learning these

cross-lingual mappings have initially been done using seed dictionaries. In fact most early

work assumed some, albeit minimal, amount of parallel data (Mikolov et al., 2013b)(Dinu

et al., 2014) (Zhang et al., 2016). (Mikolov et al., 2013b) least a mapping from one space

to the other based on the least-squares objective whereas (Zhang et al., 2016); (Smith et al.,

2017) (Artetxe et al., 2018a), aims at finding an orthogonal transformation. other works that

falls under the minimally supervised category but aim at finding a common space on which

to project both sets of embeddings (Faruqui and Dyer, 2014)(Lu et al., 2015).

Fully unsupervised alignment of word embeddings. In recent works in the area, fully-

unsupervised methods have been shown to perform on par with their supervised counterparts.

The first unsupervised bilingual alignment approaches (Miceli Barone, 2016) (Zhang et al.,
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2017a) (Lample et al., 2018) were based on Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014). These methods learn a linear transformation to minimize the

divergence between a target distribution (e.g. Spanish word embeddings) and a source

distribution (the English word embeddings projected into the Spanish space). Recently, a

range of unsupervised approaches that do not rely on GANs have been proposed (Artetxe

et al., 2018a) (Grave et al., 2019). Our approach relates more to these methods. (Artetxe

et al., 2018a) introduced a very simple, related initialization method that is also based on

Gromov-Wasserstein distances between nearest neighbors: they use these second-order

statistics to build a seed dictionary directly by aligning nearest neighbors across languages.

(Alvarez-Melis et al., 2019) propose to learn the doubly stochastic Y as a transport map

between the metric spaces of the words in the source and the target languages. They optimize

the Gromov-Wasserstein (GW) distance, which measures how distances between pairs of

words are mapped across languages. In brief, (Alvarez-Melis et al., 2019) learn a linear

transformation to minimize Gromov-Wasserstein distances of distances between nearest

neighbors, in the absence of cross-lingual supervision.

Another line of work of interest is the one that try to solve the unsupervised alignment

problem as a domain adaptation task (Sun et al., 2016). Their formulation search the optimal

permutation matrix for a limited number of items, specifically the 20000 most frequent

over the space of doubly stochastic matrices. They rely on a Riemannian solver that allows

to exploit the geometry of the doubly stochastic manifold. Empirically, we observe that

the proposed algorithm outperforms the GW algorithm for learning bilingual mapping.

Nevertheless, their approach is computationally more expensive.

However, all these approaches rely on point vector. In this chapter, we argue that an

unsupervised approach for aligning Gaussian embedding can be beneficial because these

type of embeddings have been proven to encode relations that normal point vector fails to

encode and it could be beneficial in particular for the low-resource languages.

7.6 Discussion

This work presents a method to align Gaussian embeddings in high dimensional space.

Our approach is motivated by the fact that Gaussian embedding have proven to possess

characteristics that are not present in normal point-based vectors. We propose to include in

the optimization of the Orthogonal Procrustes method via stochastic optimization a step that

takes into account the difference between matched covariances. We show that our method

performs better than the solely point-vector based approach. However, we also observed that

this approach might lead to a decrease in accuracy when the pair of languages considered is

126



7 Unsupervised Alignment of Gaussian Embeddings

too distant. In fact, in that case, the approach might force distant concepts to have similar

dispersion. In future work, we would like to extend this to deal with full covariance Gaussian

embeddings as well as other elliptical embeddings and find a solution to overcome the issue

of distant languages.

127



8 A Simple Approach for Entity Set
Expansion

Chapter abstract
Set Expansion (ESE) is an important task in Natural Language Processing that
aims at expanding a small set of entities into a larger one with items from a
large pool of candidates. The problem implicitly requires the definition of the
notion of similarity between the given entities and the candidates. In this chapter,
we propose GausSetExpander, an unsupervised approach for the task of ESE
based on optimal transport techniques. We propose to re-frame the problem as
choosing the entity that best completes the input set. For this, we interpret a
set as an elliptical distribution with a centroid which represents the mean and a
dispersion that serves as the spread of the variance. The best candidate entity is
the one that increases the spread of the set the least. We analyze the strength
and the weaknesses of the proposed solution in order to assess the validity of
our proposed approach.

8.1 Introduction

The Entity Set Expansion (ESE) task aims at expanding a small seed set e.g {Paris, Berlin}

to a larger set of entities that belongs to the same semantic class, in this example Capitals.

Loosely speaking, the goal is to find all other entities in a given corpus that complete the

original small set of entities. The latter is called a seed set. From a theoretical point of

view, the ESE task can be seen as a problem of generalization from few examples. The

steps that are necessary to successfully solve this problem are: (1) identifying the semantic

class from the given seed set; (2) identifying similar examples from a large pool of items

that fit the semantic class. This task is useful to several downstream applications such as

question answering (Wang et al., 2008), taxonomy construction (Shen et al., 2018), relation

extraction (Lang and Henderson, 2013), query suggestion (Cao et al., 2008) or generation of
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user-guided dictionaries (Kohita et al., 2020). In order to perform well in the ESE task, the

learner is required to have an approach of similarity between the elements that compose the

seed set and the possible candidates for the expansion of the set.

In this chapter, we propose an approach to tackle the ESE task based on pretrained embedding

models and optimal transport techniques. It has been shown (Yaghoobzadeh et al., 2019)

that pretrained embedding vectors contain semantic, syntactic and knowledge background

that can be exploited for transfer learning tasks.

One of the major challenges of ESE task is the limited (or lack thereof) of supervision. In

fact, generally the set seed is too small for attempting fine-tuning and sometimes, the ground

truth semantic class is an open set. From the literature, we can identify two main ways of

solving the ESE task: a pattern-based approach and a distributional approach. The first has

as an objective mining revealing textual patterns in the corpus that signal the semantic class

and extracting the correct entity from this patterns. On the other hand, the distributional

approach relies on the assumption that similar words appear in similar contexts. These

methods operate by representing each term in the vocabulary as an embedding vector that

summarizes all the contexts the term appears in given a large corpus, and then look for terms

with vectors that are similar to those of the seed entity. One of the main critiques to these

approaches is that they consider all occurrences of a term in the corpus when calculating its

representation, including many contexts that are irrelevant or non-informative to the concept

which causes noise in the corpus.

We propose an algorithm that is more similar to the distributional approach, although our

algorithm has some notable differences. GausSetExpander, proceeds in an iterative manner

across all terms in a vocabulary V , extracted from a corpus D. Given an initial seed set S0,

and two terms embedded with a pretrained embedding model, we aim at finding the term that

completes better the original set seed S0. For doing this, we simply produce two different

expanded sets from the simple concatenation of the previously two random terms to the seed

set and we evaluate the better expansion. The evaluation of the new obtained sets relies on

techniques related to optimal transport, elliptical embeddings and set clustering, which are

concepts this chapter is treating. In a nutshell, we leverage the fact that one of the most

common statistics of a set S is its centroid c(S) ∈ Rd, represented as:

c(S) =
1

|S|
∑
i∈S

xi (8.1)

This implies that, it is possible to approximate a set of vectors to its centroid. Another

key element of our approach comes from the literature of Gaussian embeddings, which

has demonstrated to provide a better and richer representation for items in the latent space.
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In fact, a Gaussian embedding is characterized by two parameters, the mean vector which

represents the location in the latent space and the covariance matrix, which encodes the

dispersion around the location vector, that is to say the uncertainty of the representation.

We make the hypothesis that given an original seed set and two candidate items to expand

it, the better entity is the one that causes the less increase in the dispersion of the set. This

hypothesis is the key element of GausSetExpander. Additionally, ESE is a challenging task

for the lack of available labels. For this reason, the pretrained embedding is a key element,

because at each iteration we produce a weak label based on the cosine similarity between

the centroid of the seed set and each candidate term. Finally, we rank the scores in order to

identify candidates term from the vocabulary to generated the expanded set. To summarize,

in this study we propose an iterative approach based on Gaussian representation for the ESE

task to expand a seed set. We conduct experiments to verify our hypotheses and show the

effectiveness of GausSetExpander.

The chapter is organized as follows: we first present some related works that tackles the

ESE task, pre-trained embedding and learning from sets. Then, we present the problem

formulation and introduce the necessary notation used throughout the chapter. Next, we

introduce our approach GausSetExpander as well as a natural baseline derived from our

hypothesis. Finally, we present our experimental setup and discuss the results obtained.

8.2 Problem Formulation

Terminology. In this section, we formally introduce the concepts necessary for this study as

well the Entity Set Expansion problem. An entity is a string, that can be either a word or a

phrase, that corresponds to a real-world entity in designated category. This category is better

defined as a semantic class which is a set of entities that share a common characteristic, for

example fruits or animals. An entity set, is a set of terms that refers to the same real-world

entity. More specifically, UK and United Kingdom refers to the same entity, hence are an

entity synset. It is worth mentioning that an entity synset can be a singleton. Finally, a

vocabulary is defined as the list of terms that is derived from a given corpus.

Problem Formulation. Given a text corpus D, a vocabulary V extracted from D, a seed

set of size n (usually small) of terms S0 = [e1, e2, ...en] from the same semantic class C, the

Entity Set Expansion task aims at expanding S0 with terms from the vocabulary V from the

same semantic class C. In practice, the goal is to rank all available entities and said ranking

must have the terms that best expand S0 at the top of the ranking.
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8.3 Approach

In this section, we first lay down the notation as well as the mathematical background

used for our hypothesis. Then we describe our hypothesis and the algorithm we proposed:

GausSetExpander.

8.3.1 Notation

Sd+ is the set of all positive definite matrices. In the scope of this work, we only focus on

Gaussian distributions which belong to the family of parameterized probability distributions

zh,a,A having a location vector a ∈ Rd which represents the shift of the distribution, a

scale parameter A ∈ Sd+, that represents the statistical dispersion of the distribution, and

a characteristic generator function h. This is the same hypothesis that have been used

throughout the chapter. Specifically, for Gaussian distributions, the scale parameter coincides

with the covariance matrix var(zh,a,A) = A. From now on, we denote Gaussian distributions

(or embeddings) as z(h,a,A) = N (a,A).

Finally, when stated Tr, we indicate the trace operator, that is the sum of the diagonal

elements of a matrix.

8.3.2 Mathematical Background

In this section, we explicitly describe few mathematical concepts that are useful for under-

standing our approach.

We need to explicitly describe few mathematical concepts useful the understanding of our

hypothesis. First, as briefly mention in Section 8.1, one key element in our approach is the

notion of centroid of a set from eq. (8.1). In fact an (aggregation) function that takes as

input a set must respect the property of permutation to the order of objects in the set. Good

candidate functions are the sum or the average, hence the centroid is a good representation

a given set. Then, we need to go from the point-vector representation of an item to a

distributional representation. We choose to focus on Gaussian distributions, particularly

diagonal Gaussian distributions. For doing this we propose to use a set encoder, that takes as

input a vector, mainly the centroid of the set and outputs a location vector µ and the diagonal

of a covariance matrix dΣ. These concepts have been fully described in Chapter 6.

Finally, we need to describe the scoring function that takes as input two Gaussian representa-

tion of sets and assess which one is the better representation. As stated earlier, the best set is

the one that have the smallest dispersion. We propose to use the Tr, trace operator for scoring
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the sets. This is derived from the optimal transport theory, in particular the Wasserstein

distance which have been fully explained in section 5.3.

The Wasserstein distance derived from the appropriate simplifications, and relying on the

squared Bures metric and squared Hellinger metric explained in Chapter 5 is:

W 2
2 (α, β) = ‖a− b‖2 + ‖

√
dA −

√
dB‖2 (8.2)

8.4 GausSetExpander

In the following section, we present the proposed approach for the Entity Set Expansion task.

We propose an iterative approach that takes as input a small seed set and two candidates term

and outputs two scores that indicates the best alternative. In a nutshell, our main hypothesis

is that given two candidate entities for expanding the seed set, the best hypothesis will "fit"

better the input set. We choose to represent this fit by considering the dispersion that the

addition of a new term will cause to an existent set. A well suited mathematical notion for

representing the dispersion around a center is the covariance matrix of a Gaussian distribution.

That is the first key element of GausSetExpander. Algorithm 3 describes our approach.

Figure 8.1: Overview of the set encoder that takes as input a set of terms and outputs a tuple of mean
vector and a covariance matrix for the Gaussian distribution.

Set Encoder. Given a seed set, the first step is to encode it as a tuple of location vector and

covariance matrix in order to have the the dispersion before adding the candidate terms for the

expansion. For this, we represent the element-wise embedding function φ(.) as a deep neural

network, as illustrated in Figure fig. 8.1. This network takes as input a set, very similarly

to the model proposed in chapter 6. We again choose to only focus on diagonal covariance

matrices for the sake of simplicity. A first deep encoder, namely a 2-layer MLP with ReLU,

φθ(·) maps these random inputs into d-dimensional outputs. These are then aggregated to
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8 A Simple Approach for Entity Set Expansion

µθ(·) and fed to produce the variance Σθ(·), a function which is again represented with a

deep forward network.
Algorithm 3: GausSetExpander

Input :corpus D, vocabulary V , set S0

1 for t← 0 to |D| do
2 Get i, j, ci, cj from D

3 Embed i and j to ei ∈ Rd, ej ∈ Rd
4 Embed terms in S0 to [e0, ..., en]
5 Encode S0 ← N (µ0,Σ0):

c(S0) = 1
n

∑
i ei µ0= φµ(c(S0))

Σ0 = e
1
2
φΣ(c(S0))

6 Append i and j to S0:
S

′
t = [S0, ei] and S

′′
t = [S0, ej ]

7 Compute cosine similarity:
sim1 = cos(c(S0), c(ci)) and sim2 = cos(c(S0), c(cj))

8 if sim1 > sim2 then
9 l = 1

10 else
11 l = −1
12 end if
13 Encode S

′
t and S

′′
t :

S
′
t ← N (µ

′
t,Σ

′
t)

S
′′
t ← N (µ

′′
t ,Σ

′′
t )

14 Compute the score:
score(i|S0) = W ((µ0,Σ0), (µi,Σi))
score(j|S0) = W ((µ0,Σ0), (µj ,Σj))
l(i, j|S0) = max(0, s(i|S0)− s(j|S0))

15 end for

Scoring function. After describing the step to obtain the Gaussian representation of the

sets, we illustrate the scoring process. In practice, most of the proposed methods for solving

the ESE problem return a (top-k) ranking of the vocabulary rather than a fixed set. Then the

evaluation is done on the returned ranking. Ideally, all terms that belongs to the semantic

class identified by the seed set should be ranked higher.

From the Wasserstein distance in eq. (8.2), we derive the scoring function for two given

expanded sets encoded as Gaussian distributions is:

score(Si, Sj) = W ((µi,Σi), (µj ,Σj)) (8.3)

This scoring function can be interpreted as point-wise mutual information between the the

candidate item and the set to be expanded.
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We stated earlier that GausSetExpander proceeds in stages. It first encodes the seed set S0 as

a tuple of vectors µ0 and σ0. Then, it appends each candidate to the seed set S0 to obtain

two new sets S′ and S′′, which are transformed in Gaussian distributions as well. It is worth

mentioning, that the weights of the set encoder shared are shared among candidates. Finally,

the scoring function proceeds as follows:

score(i|S0) = W ((µ0,Σ0), ((µ′,Σ′))) (8.4)

score(j|S0) = W ((µ0,Σ0), ((µ′′,Σ′′))) (8.5)

where (µ0,Σ0) are the parameters of the Gaussian encoding of S0. (µ′,Σ′) and (µ′′,Σ′′) are

the parameters for [S0, i] and [S0, j]. [] indicates the concatenation.

(a) The expanded set S′ has a small increase in the
dispersion after adding the entity i to the seed
set s0.

(b) The expanded set S′′ has a greater increase in
the dispersion after adding the entity j to the
seed set s0.

Figure 8.2: Illustration of the hypothesis under GausSetExpander. Given two candidate entity for
the seed set S0, the better candidate is the one that will induce the least increase in the
dispersion of the generated set.

Loss function. For learning the score, we utilize the large-margin classification loss:

l(i, j|S0) = max(0, s(i|S0)− s(j|S0) + ∆(i, j)) (8.6)

Loosely speaking, this loss function is to ensure that s(i|S0)) > s(j|S0) + ∆(i, j) whenever

i should be preferred for expanding S0 over j.

Weak supervision. Per definition, the ESE tasks is challenging for the lack of proper

supervision under the form of ground truth labels. Several works in the area rely on pre-

trained language models or pre-trained embedding models to deliver the semantic, syntactic

and background knowledge to provide weak labels. We proceed in the same manner, and use

Glove (Pennington et al., 2014b) for encoding the terms extracted from the corpus. Moreover,

we assume that the seed terms are part of vocabulary. In order to generate, weak labels

for training the scoring function we leverage the distributional hypothesis of the language
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models. In fact, that hypothesis states that similar words appear in similar contexts. For

this reason, given two candidates terms i and j, we extract their context as well, ci, and cj
respectively. Then we use the simple cosine similarity to induce a weak label l:

l(S0, ci, cj) =

{
+1 if R(ci|S0) > R(cj |S0)

−1 if R(ci|S0) < R(cj |S0)
(8.7)

The function R is defined as follows:

R(x|S0) = max
si∈S0

cosine_sim(x, si) (8.8)

Algorithm 4: CentroidSetExpander
Input :corpus D, vocabulary V , set S0

1 for t← 0 to |D| do
2 Get i, j, ci, cj from D

3 Embed i and j to ei ∈ Rd, ej ∈ Rd
4 Embed terms in S0 to [e0, ..., en]
5 Encode S0 as its centroid:

c(S0) = 1
n

∑
i ei Append i and j to S0:

S
′
t = [S0, ei] and S

′′
t = [S0, ej ]

6 Compute cosine similarity:
sim1 = cos(c(S0), c(ci)) and sim2 = cos(c(S0), c(cj))

7 if sim1 > sim2 then
8 l = 1
9 else

10 l = −1
11 end if
12 Encode S

′
t and S

′′
t as their centroids:

S
′
t ← c(S

′
t)

S
′
t ← c(S

′′
t )

13 Compute the score:
score(i|S0) = l2(c(S0)− c(S′

t))
score(j|S0) = l2(c(S0)− c(S′

t))
l(i, j|S0) = max(0, s(i|S0)− s(j|S0))

14 end for

8.5 Experiments

In this section we describe our experimental setting as well as the main results obtained.
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Method NFL MLB Pres US Cntrs Euro Caps Music Avg
SetExpander .54 .45 .33 .55 .55 .61 .14 .99 .52
CB .98 .97 .70 .93 .74 .46 .21 .67 .71
Cent-SetExp. .89 .67 .10 .70 .64 .46 .19 .62 .54
GausSetExp. .98 .69 .14 .98 .76 .74 .34 .98 .70

Table 8.1: Set expansion results. We report the MAP@k for different k. Results are averaged over 3
random seed of cardinality 3.

Dataset. We used English Wikipedia as the corpus. Following, (Kushilevitz et al., 2020),

we use for evaluation 7 datasets of closed sets. These sets are the are National football

league teams (NFL, size:32), Major league baseball teams (MLB, size:30), US states (US,

size:50), Countries (Cntrs, size:195), European countries (Euro, size:44) Capital cities (Caps,

size:195) and Presidents of the USA (Pres, size:44) and one open class set: Music Genres

(Genre).

Setup and Evaluation. We rely on 300-dimensional Glove for obtaining the pre-trained

embedding. Moreover, we fix the maximum number of terms to 200,000 most frequent

terms. Our approach has also a learning module, for which we need to define the following

hyperparameters lr = 1e− 3 as the learning rate, batch size 512, h = 64 as the hidden size.

Following other works in the literature, we chose the Mean Average Precision (MAP) at

different positions k for evaluating our approach:

MAP@k =
1

|V |
∑
t∈V

AP (Sexp, Sgt) (8.9)

where AP (Sexp, Sgt) is the average precision at position k given the ranked expanded set

Sexp and the ground-truth set Sgt. The training and the evaluation is done with random set

seeds of cardinality 3 and the results presented are averaged over random seeds. We follow

the recommendation of the authors of the datasets used for evaluation and fixed the size of

the expanded set to 200 for smaller sets and to 350 for bigger sets that have size > 100. The

open set of music genre is evaluate with MAP70.

Baseline methods. We compare our approach to the following corpus based ESE ap-

proaches: SetExpander (Mamou et al., 2018), a method based on entity ranking based on

multi-context entity similarity defined on multiple embeddings, Category Builder (Mamou

et al., 2018). Both this approaches are distributional, which is the category to which our

method belongs to. For the sake of gaining a better insight of our hypothesis, we add a

natural comparison approach which consists in our same architecture but the encoding of the

sets remain the centroid representation. This comparison will act as an ablation experiment

136



8 A Simple Approach for Entity Set Expansion

which we perform to assess the benefit or lack thereof of the Gaussian representation of the

sets. We call this last baseline, Centroid-SetExpander and we described it in algorithm 4.

Results. We assess the set expansion performance by comparing our approach to the

baselines methods. Table 8.1 presents the quantitative evaluation of our model. We can

notice that GausSetExpander achieves comparable performance with current state-of-the-art

methods. This demonstrates the validity of our hypothesis. When doing a fine grained

analysis, we notice that GausSetExpander performs particularly poorly in the semantic class

corresponding to the "Presidents". When investigating the results retrieved, we hypothesize

that our algorithm probably fails in recognising the acronyms. In fact, a typical synset for the

class "Presidents" will be "John_Fitzgerald_Kennedy, John_F._Kennedy, John_F_Kennedy,

John_Kennedy, Kennedy, JFK". We hypothesize that probably a better encoding of the

entities and tokens could resolve this problem.

An emblematic example could be that, among the top retrieved entity for the class "Presi-

dents" we can find "Hillary" or "Barack" or even Presidents of other nations which were not

present among the ground-truths. This let us think that the results might not be as bad as the

numerical evaluation lead to think. Table 8.2 showcases few examples of top ranked entities

but rejected.

One reason for this phenomenon could be the fact that the weak label is generated from a

very noisy procedure. In fact, it is the result of the cosine similarity between the centroid

of the set seed and the contexts of the 2 candidates entities. We hypothesize that a better

method for generating a weak label than the naive cosine similarity could be beneficial. This

leads to a a second point that it is worth mentioning which is that, our algorithm is very

sensible to the amount of data. In fact, after a threshold which we empirically estimated

around 50,000 articles, with a vocabulary of around 500,000 terms, we notice that the labels

become extremely noisy and the overall performance degrades rapidly.

Finally, we compare GausSetExpander to CentroidSetExpander. We notice that the perfor-

mance of the latter is worse in all datasets, and it declines even further for the semantic

class "Presidents". This confirms that our initial hypothesis of considering the Wasserstein

Distance between the sets is effective for the task of Entity Set Expansion.

8.6 Related Work

Entity Set Expansion. The Entity Set Expansion is a task that can be seen as a intermediate

step for many problems and applications such as question answering or literature search.

It can be considered a weakly supervised task in which a small set of entities, the seed set

is used as supervision to retrieve the other entities in order to expand the small set. A first
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Seed set Top-k results
Presidents [’mccain’, ’barack’, ’hillary’, ’gore’, ’fahmy’, ’letterman’]
Capitals [’georgia’, ’ababa’, ’petersburg’, ’berliner’, ’sapienza’]
Countries [’maldive’, ’federation’, ’duchy’, ’bissau’, ’herzegovina’]
MLB [’milwaukee’, ’hammonds’, ’packers’, ’tigers’, ’cardinals’]
Euro [”herzegovina’, ’yugoslavia’, ’slovak’, ’tirana’, ’uzbekistan’]

Table 8.2: Case study of entities retrieved but rejected for the least performing semantic classes.

categorization can be made based on the corpus used for the ESE task. In fact, the used

corpus can be either limited such as in (Shi et al., 2014; Shen et al., 2017), or an open corpus

relying on a search engine for the web (Wang and Cohen, 2007). It was common for entity

set expansion systems such as Google Sets (Tong and Dean, 2008) and SEAL (Wang et al.,

2008) to submit a query made of seed entities to a general-domain search engine and then

extract new entities from retrieved web pages. Web-based methods for set expansion (Chen

et al., 2016) extract entities from documents retrieved by a search engine. The documents

are chosen with respect to the query obtained from seed entities. However, this type of

approaches demand an external search engine adapted to seed-oriented data, which could

be costly. In fact, such methods impose significant run-time overhead and they make the

assumption that top-ranked web pages contain other entities of the set, which might not

necessarily be exact.

As a solution, more recent works propose to expand the seed set processing a corpus offline

without the need to prompt an online search engine. These corpus-based set expansion

methods can be categorized into two general approaches: (1) entity ranking which calculates

entity similarities and ranks all entities (Mamou et al., 2018; Pantel et al., 2009; Kushilevitz

et al., 2020), and (2) iterative bootstrapping whose goal is to bootstrap the seed entity set

by iteratively selecting context features and ranking new entities (Shen et al., 2017; Huang

et al., 2020; Rong et al., 2016) with respect to the original seed set. The approach proposed

in this chapter belongs to the first category.

Pre-training. Early works in computer vision on ImageNet (Russakovsky et al., 2015) have

shown the advantages of pretrained models (Huang et al., 2017; He et al., 2017). In Natural

Language Processing, pretrained embeddings such as Glove (Pennington et al., 2014b) or

Word2Vec (Mikolov et al., 2013d) have also proven to be highly effective in several tasks. In

addition to the embeddings, the pretrained language models are currently vastly used such as

BERT (Devlin et al., 2019a).

Set encoding. Machine learning on sets can be divided into different subgroups depending

on the nature of the input and output (e.g vector-to-set, set-to-set, set-to-sequence). Our
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work falls under the category of vector-to-set such as (Zhang et al., 2020, 2019a). Notable

works in vector-to-set literature are suited to tasks such as object detection, taking as input a

feature representation of an images and producing set of coordinates for the bounding boxes.

Loosely related are also methods like (Zhang et al., 2019b) that learn a permutation matrix

for sets of items. Once the permutation matrix is learned, it is applied to the input set in order

to turn the set into an (ordered) sequence. Once again, our method differs because the output

set is not ordered, hence not a sequence.

Probabilistic Embeddings. The work of (Vilnis and McCallum, 2015) established a new

trend in the representation learning field by proposing to embed data points, in this case words,

as probability distributions in Rd. Representing objects in the latent space as probability

distributions allows more flexibility in the representation and even express multi-modality.

In fact, point embeddings can be considered as a special case of probabilistic embeddings,

namely a Dirac distribution, where the uncertainty is collapsed in a single point. In the above-

mentioned work (Vilnis and McCallum, 2015), the metric used is KL divergence. However,

this metric has a drawback: when variances of the probabilistic embedding collapse, the

measure does not coincide with the Euclidean metric between point embeddings. Loosely

speaking, the KL divergence and the `2 distance between two probability measures diverge

to infinity when the variances become too small. In addition, the KL divergence does not

behave well when the two compared distributions have little or no overlap. It has been shown

by (Muzellec and Cuturi, 2018) that the Wasserstein metric is a better metric to compare

probabilistic embeddings.

8.7 Discussion

We introduce an iterative and distributional approach for the task of Entity Set Expansion. Our

method is based on encoding sets of vectors as Gaussian distributions. These probabilistic

representations are learned from the centroid of the sets and are useful because they allow

to represents the sets as a tuple of location and dispersion. In fact, our main hypothesis

states that given to candidates entities for a set, the best candidate will be the entity that will

cause the least increase in the dispersion, represented as the covariance matrix. Finally, we

use a scoring function based on the Wasserstein distance. The quantitative evaluation on

benchmark datasets demonstrate the effectiveness of our approach.
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Summary

The key objective of this dissertation was to propose theoretically sound methods and

associated implementations to embed sequences and sets of heterogeneous data. In particular,

I studied deep learning models for representation learning for text and images in different

settings. I considered aggregating mechanisms for data with and without a fixed order as well

as different types of supervision for performing the learning process. A constant motivation

was to make the methods applicable to real-world problems, hence the choice of a variety of

complex datasets.

In the first part, two methods have been proposed for dealing with sequential data. In

particular, the examples chosen were sentences and permutations. In Chapter 3 as a starting

point, I introduced a new approach to learn sentence representations for answer selection,

which preserve structural similarities in the form of analogies. Analogies can be seen as a

way of injecting reasoning ability, and we express this by requiring common dissimilarities

implied by analogies to be reflected in the learned feature space. We showed that explicitly

constraining structural analogies in the learned embeddings leads to better results over the

distance-only embeddings. We believe that it is worth-while to further explore the potential

of analogical reasoning beyond their common use in word embeddings, as it is a natural

mean of learning and generalizing about relations between entities. The focus of this work

has been on answer selection, but analogical reasoning can be useful in many other machine

learning tasks such as machine translation or visual question answering. In Chapter 4, we

have proposed a new way to perform optimization for the task of permutation learning. We

present an alternative methodology to obtain encode permutations which is based on Lehmer

codes, which have previously been proposed for label ranking tasks. framing the problem in

this way allows to optimize for the objective of minimizing the Kendall tau rank correlation,

which is an ordinal metric for assessing the association between permutations. Moreover,

Lehmer codes come with the natural advantage of not relying on the hard constraint of doubly
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stochastic matrices in which columns and rows have to sum to one, but can optimize on

simpler row-stochastic matrices. We motivated our choices on two challenging experiments

regarding sorting and matching complex items (images), namely solving jigsaw puzzles and

sorting multi-MNIST digits, where we generally outperformed competitive models based on

approximations of permutations matrices, in particular with respect to Kendall’s tau.

In the second part of the thesis, handling heterogeneous data points without the input feature

representation and a noisy supervision has been tackled. The formalization of this problem

is the ordinal embedding problem, which falls in the realm of data analysis. The problem

has been divided into two different settings, the first one is closer to the classical ordinal

embedding problem but the goal is to learn a richer perceptual embedding. In the second

setting, the data points are organized in random sets and the supervision information is

presented in an aggregated form.

In Chapter 5 I have proposed to generalize the ordinal embedding problem by mapping

objects in the space of Gaussian distributions endowed with the Wasserstein distance. This

is based on the generalization of point embeddings in Rd to distributions. Each embedding

is described by a location parameter µ and a scale parameter Σ, visualized as ellipses. We

argue that this allows to more informative perceptual embeddings by representing uncertainty

of the representation. In a number of experiments on different datasets we demonstrate the

validity of our approach. We show that the proposed framework is robust and beneficial

when the triplet comparisons are noisy. Overall, with our proposed approach we are able to

obtain valid embedding that can be used for downstream tasks.

In Chapter 6 I have proposed an approach to solve the ordinal embedding problem when

the input is under the form of sets of items and the feedback is available only for triplets

of sets. Our approach maps the objects in a low dimensional space endowed with the

Wasserstein distance. This is based on learning a representation for sets and taking advantage

of the common statistic for sets, which is the centroid. Each set is described by a location

parameter, its centroid and a scale parameter, that represents the spread of the set. We argue

that reformulating the problem under this point of view allows to prompt fewer triplets

comparisons for a greater number of learned items. Our algorithm is suitable when the input

sets have variable size. Moreover, a trade-off between precision of the individual embeddings

and the accuracy of the overall density estimation has to be taken into account when choosing

the size of the input sets. We demonstrate the validity of our approach by experimenting on

different datasets. We show that the proposed framework is robust and beneficial when the

number of triplet comparisons is limited. Future directions of improvement might involve

extending the model to consider pairwise or more complex interactions among the elements

of a given set. In fact, so far the encoding step focuses on one element at time by encoding
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them in an independent manner. Moreover, an additional way of improvement might be to

relax the link between cardinality of input set and precision of the output embedding.

Part III mainly concerns the application of tools and concepts developed in the previous

parts. The chapters are ongoing works focusing on the task of unsupervised alignment

of embeddings and the task of set extension. In particular, chapter 7 illustrates a method

to align two clouds of probabilistic embedding in high dimensional space. This problem

is derived from the unsupervised alignment of point-vector embedding which has gained

vast interest especially in the machine translation community. We argue that probabilistic

embeddings have shown their superior ability in encoding asymmetries and relations that are

often not immediately captured by point-vector embeddings, hence an extension to aligning

clouds of such embeddings should be considered. Initial experiments show promising results

for relative close language pairs, although we notice a decrease in performance for distant

language pairs.

Chapter 8 presents an approach for the task of entity set expansion. The proposed method is

based on encoding sets as probabilistic distribution, as performed in chapter 6. The mean

vector of the probabilistic representation is the centroid of the vector representation that

forms the set and the covariance matrix serves as the dispersion of the items within the set.

The main hypothesis expresses that, given two alternatives as feature vectors to be added

to a set, the best between the two is the one that increases the least the dispersion of the

set once included. We rely on a scoring function based on the Wasserstein distance and the

cosine similarity between word vectors to produce a top-k ranking for all the items in a given

vocabulary. The initial quantitative evaluation on benchmark datasets both open and close

demonstrate the effectiveness of our hypothesis.

Perspectives

While this work answers some questions regarding the embedding of complex data structures,

it also opens up new perspectives:

• A first extension of the work presented in Chapter 3 involves exploring other forms

of analogies that involve modelling across domains. In this particular chapter, both

domains were data points of the same nature, i.e., sentences, however, a new direction

of work could involve either extending the concept of analogical coherence among

heterogeneous data points, or even enforce different types of high-level relation then

analogies between points.

• Focusing on permutation learning, the work presented in Chapter 4 differs from

the rest of the thesis in which the representation of the permutation is not learned.
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However, a first ambitious extension will be to adapt the use of the Lehmer code in a

generative setting or a variational setting. This work has proven the compatibility of

Lehmer codes in a deep learning framework, so extending the use could make it easier

to perform inference by directly optimizing the permutations in Birkhoff manifold.

Another extension of our work could be to deal with more general loss functions, in

order to reach out to other tasks not related to classification.

• Continuing to the second part of this thesis, which is more focused on representation

learning for set-valued inputs, an extension of the work described in Chapter 5 would

be to allow the parameterization of the data points with other elliptical distributions

than Gaussian. The framework presented could be generalized to other distributions

which could be more meaningful according to the granularity of the details one might

look for in learned perceptive embeddings.

• A next viable improvement for the work presented in Chapter 6 would be to improve

the aggregation function by using a parameterized and learned function, which could

improve the performance according to the task at hand. Similarly to what expressed for

Chapter 4, the aggregation function leads to the centroid, the most common statistic

for a finite set. Rather than simply computing the arithmetic mean position of the

data points in the set, a learned aggregation could improve the results by assigning a

coefficient that could lead to a more meaningful representation of the set.

• Finally, the third part of this thesis contains currently submitted work. These chapters

mainly illustrate direct applications of the concepts developed in the previous chapters.
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