
 

  

 

 

 

 

 

Assessment of Visual Literacy –  

Contributions of Eye Tracking 

 

 

 

Kumulative Inaugural-Dissertation zur Erlangung der Doktorwürde der Fakultät 

für Humanwissenschaften der Universität Regensburg 

 

vorgelegt von 

Miles Tallon 

aus Köln 

-2022- 

 

 

 

 

Regensburg 2022 



  Preface 

ii 

Gutachter (Betreuer): Prof. Dr. rer. nat. Mark W. Greenlee 

Gutachter:   Prof. Dr. rer. biol. hum. Ulrich Frick



  Preface 

iii 

PREFACE 

The aim of the thesis entitled “Assessment of Visual Literacy – Contributions of Eye Tracking” 

is to explore cognitive strategies in visual problem-solving in order to make a cognitive-

psychological contribution to the assessment of Visual Literacy (VL). Solution strategies used 

by VL experts and novices are analyzed with eye tracking in combination with latent structure 

models. 

The dissertation is arranged in three chapters: Introduction, Publications, and Conclusion. The 

references of all three publications are merged into one bibliography at the end of the thesis. 

All three papers were submitted to peer-reviewed journals (impact factor > 2.0) and entered 

their review process. Two out of the three projects have been successfully published. All 

publications are presented as pre-print versions of the published papers. The yet unpublished 

paper is represented in its most recently revised version. The manuscripts of all publications are 

formatted according to the guidelines of the American Psychological Association (APA). 

Layout of figures and tables have been adapted accordingly. No other changes have been made 

to the manuscripts.  

The presented studies are part of the research project “Bildkompetenz in der Kulturellen 

Bildung” (BKKB) funded by the Federal Ministry of Education and Research (grant number: 

01JK1606A). The overarching goal of BKKB was to lay groundwork for the development of 

an assessment battery that could measure VL. Contributions of co-authors are listed on page 3 

and 4 and after each publication in chapter 2. 

The dissertation has a special focus on the results from the eye-tracking experiments. Further 

analysis of VL assessment items and BKKB research results can be found at Frick, Rakoczy, 

Tallon, and Weiß (2020). For BKKB results on the influence of students’ social background on 

cultural aesthetic practice and motivation in art class see Weiß-Wittstadt (2022).  
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ABSTRACT   

Visual Literacy (VL) is defined as a set of competencies to understand and express oneself through 

visual imagery. An expansive model, the Common European Framework of Reference for Visual 

Literacy (CEFR-VL) (Wagner & Schönau, 2016), comprises 16 sub-competencies, including 

abilities such as analyzing, judging, experimenting with or aesthetically experiencing images. To 

empirically assess VL sub-competencies different visual tasks were presented to VL experts and 

novices. Problem-solving behavior and cognitive strategies involved in visual logical reasoning 

(Paper 1), Visual Search (Paper 2), and judgments of visual abstraction (Paper 3) were investigated. 

Eye tracking in combination with innovative statistical methods were used to uncover latent 

variables during task performance and to assess the possible effects of differences in expertise level. 

Furthermore, the relationship between students' self-reported visual abilities and their performance 

on VL assessment tasks is systematically explored. 

Results show how effects of perceptual skills of VL experts are less pronounced and more nuanced 

than implied by VL models. The comprehension of visual logical models does not seem to depend 

much on VL as experts and novices did not differ in their solution strategies and eye movement 

indicators (Paper 1). In contrast, the visual search task on artworks revealed how experts were able 

to detect target regions with higher efficiency than novices revealed by higher precision of fixations 

on target regions. Furthermore, latent image features were detected by experts with more certainty 

(Paper 2). The assessment of perceived level of visual abstraction revealed how, contrary to our 

expectations, experts did not outperform novices but despite that were able to detect nuanced level 

of abstraction compared to student groups. Distribution of fixations indicate how attention is 

directed towards more ambiguous images (Paper 3). Students can be classified based on different 

levels of visual logical comprehension (Paper 1), on self-reported visual skills, and the time spent 

on the tasks (Paper 2, Paper 3). Self-reported visual art abilities of students (e.g., imagination) 

influences the visual search and the judgment of visual abstraction.  

Taken together the results show how VL skills are not determined solely by the number of correct 

responses, but rather by how visual tasks are solved and deconstructed; for example, experts are 

able to focus on less salient image regions during visual search and demonstrate a more nuanced 

interpretation of visual abstraction. Low-level perceptual abilities of experts and novices differ 

marginally, which is consistent with research on art expertise. Assessment of VL remains 

challenging, but new empirical methods are proposed to uncover the underlying components of VL. 
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CHAPTER 1. INTRODUCTION 

Visual Literacy 

Visual Literacy (VL), also referred to as Visual Competency (Schönau & Kárpáti, 2019), is defined 

as a group of sub-competencies to actively decode visual messages, to discriminate, create, 

comprehend and appreciate images (Avgerinou & Pettersson, 2011; Brill et al., 2007). VL 

comprises multiple sub-competencies or visual literacy competencies (Loerts & Belcher, 2019; 

Tillmann, 2012). Most definitions refer to VL either as a skill, ability or competency often 

interchangeably (Avgerinou, 2003). The Common European Framework of Reference for Visual 

Literacy (CEFR-VL) builds upon the definition by Brill et al. (2007) and proposes a 

phenomenological model with 16 sub-competencies of VL (Wagner & Schönau, 2016). Basic 

competencies (producing and responding to images) are broken down into: analyze, communicate, 

create, describe, draft, empathize, envision, experience aesthetically, experiment with, interpret, 

judge, perceive, present, realize, use and value (Wagner & Schönau, 2016, p. 68). Figure 1 shows 

how most CEFR-VL sub-competencies include both producing and responding elements. 

VL has been defined as a key competency of art education (Stokes, 2002; Vermeersch & 

Vandenbroucke, 2015). McMaster (2015) points out a significant research gap on how students 

create and deconstruct images and how VL is still an underdeveloped element of learning. What 

are the advantages of VL beyond better understanding of images? Current research supports the 

notion that visual language and communication play a key role in our cognitive and emotional 

development (Bentwich & Gilbey, 2017; Tyler & Likova, 2012) and can increase our ability to 

learn in other subject areas (Wagner, 2017), for example, to support reading comprehension (Kaya, 

2020; Vaknin-Nusbaum & Nevo, 2021), to enrich informal learning environments (Guinibert, 

2020), help to model and visualize data (Spalter & van Dam, 2008), or support science education 

(Güney, 2019). 
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Figure 1 

The Common European Framework of Reference for Visual Literacy (CEFR-VL) with Sub-

competencies Proposed by ENViL 

 

Note. Adapted from Wagner and Schönau (2016). Common European Framework of Reference for 

Visual Literacy-Prototype. Waxmann, pp. 67–68. 

Some efforts have been put forward to quantify VL (Brown & Lockyer, 2007; Groenendijk et al., 

2020). However, empirical assessment of VL is challenging, as many heterogeneous 

phenomenological models, including different sub-competencies of VL have been proposed by art 

education research (Avgerinou & Pettersson, 2011; Kędra, 2018). The CEFR-VL model has a focus 

on art education with examples of potential assignments for art class. However, there is no empirical 

foundation on the connection of proposed sub-competencies of VL. Furthermore, the model 

incorporates sub-competencies, such as perceiving images, which are conceivable as perceptual 

learning abilities and others, such as aesthetically experiencing images, which may be addressed 

by empirical aesthetics and art expertise research. As the characterizations of VL competencies may 

differ depending on the research focus and discipline, the relationship of VL to perceptual learning 

and visual expertise is therefore clarified in the context of this thesis. 
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Perceptual Learning  

Perceptual learning is the experience-driven improvement of our psychophysiological senses, 

including (but not limited to) vision (Fahle & Poggio, 2002; Harris, 2014). In contrast to procedural 

learning, which is defined as the improvement in performance for a given task after repeated 

training, perceptual learning modifies perception and behavior as a result of sensory experience and 

is generally thought to be independent of conscious forms of learning (Greenlee, 2014). However, 

empirical studies frequently use similar conditions to study both types of learning, making 

fundamental differences between the two difficult (Gold & Watanabe, 2010). Furthermore, the 

association with a reward may still be required for at least some forms of perceptual learning 

(Bourgeois et al., 2016). 

The effects of perceptual learning are relatively permanent as subjects are able to maintain enhanced 

discriminatory ability even after not performing the learned task for years (Frank et al., 2018; W. 

Li & Gilbert, 2009; Seitz, 2017), for example, the skill to discriminate between specific horizontal 

and vertical target textures (Karni & Sagi, 1993). Moreover, these changes are not merely 

coincidental, but adaptive, and thus impose advantages such as enhanced responsiveness even to 

weak stimuli (Gold & Watanabe, 2010; Harris, 2014). The improved perceptual skills rarely 

interfere with each other and there is little learning transfer to new stimuli and tasks (W. Li & 

Gilbert, 2008; Seitz, 2017). There is also evidence for individual differences in perceptual learning 

(Greenlee et al., 2014; Muller-Gass et al., 2017; Yang et al., 2020), that is, differences between 

task-specific components of learning (e.g., learning context or number of repetitions), and subject-

specific learning abilities (e.g., sensitivity to punishment or openness to experience) (Dale et al., 

2021). Learning can also occur in early stages of vision, for example, the Vernier acuity, the ability 

to distinguish between the offset of one line to the left or right of another line can improve with 

training (Fahle & Edelman, 1993). Other learning experiences, such as the oblique effect, that is, 

humans’ higher sensitivity for vertical and horizontal lines compared to oblique orientations, can 

also be found in empirical aesthetics research, for example, the preference for original Mondrian 

(1874-1944) compositions in contrast to oblique rotations of Mondrian art (Latto et al., 2000).  

Both procedural learning as well as perceptual learning are involved in skill acquisition and are 

linked to the formation of professional (visual) expertise (Greenlee, 2014; Kellman & Garrigan, 

2009). We could consider a person who learned to discriminate between shapes or colors a 

perceptual expert. However, the term "expert" usually refers to someone who works in a 

professional domain that necessitates higher, more cognitive, and top-down processes. 
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Visual Expertise 

Expertise is described as extraordinary performance in a domain-specific subject, attained through 

training and measured by behavior analysis (Ericsson & Towne, 2010). Visual expertise is also 

domain specific, i.e., the perceptual skillset necessary is bound to a specific visually intensive task 

(Gegenfurtner & van Merriënboer, 2017) and can be observed in professional domains with the 

need for high visual acuity. Expert radiologists for example, are particularly skilled in visual 

awareness and illness characterization when inspecting medical images (Fox & Faulkner-Jones, 

2017; Kundel et al., 2007; Wood, 1999). Chess experts can memorize chess board states and 

identify relevant positions in milliseconds (Charness et al., 2001; Sheridan & Reingold, 2014).  

However, unlike research fields such as chess or medicine (Finan, 2002; Reingold & Sheridan, 

2011), the study of art expertise and artistic experience is particularly challenging as artists are a 

very diverse group of people (Chamberlain, 2018; Kozbelt & Seeley, 2007). Regarding low-level 

perceptual abilities of expert artists, there is some evidence for enhanced facial information 

processes (Gartus et al., 2020; Hsiao et al., 2021; Solso, 2001) and visuo-spatial abilities (Calabrese 

& Marucci, 2006). Chamberlain et al. (2019) described artists as “experts in visual cognition” as 

art students differ from non-art students in their capacity to exercise top-down control over 

attentional processing but do not differ much in low-level visual processing.  

The CEFR-VL model includes sub-competencies that are commonly found in artists, art experts, 

and art teachers, but also in those individuals who have an avid interest in the visual arts or 

professional experience in appraising, or even producing (e.g., drawing or painting), artwork. Art 

expertise may be regarded as a subset of VL since it requires training and understanding of domain-

specific norms and practices for encoding and decoding visual information (Bauer, 2014). In the 

context of this thesis VL experts are defined as individuals with knowledge and experience in the 

professional domain of the visual arts, these include art educators, art designers, photographers, 

gallerists, art students, and freelance artists.  

Research Questions 

VL in its most basic form refers to the fundamentals of visual perceptual learning (Kappas & Olk, 

2008). However, top-down processes of professionally acquired skills and aesthetic experience 

(Leder et al., 2014) are essential to consider someone a visual (art) expert (Chamberlain, 2018; 

Kozbelt & Seeley, 2007; Schabmann et al., 2016). In its current form, the CEFR-VL by ENViL 

encompasses low-level visual processing skills as well as top-down skills necessary for visual art 

expertise. As a result, and to make a cognitive-psychological contribution to the clarification of the 
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VL skillset, this thesis employs a set of visual tasks based on the CEFR-VL sub-competencies 

interpreting, analyzing, and judging to determine whether VL experts and novices differ in their 

ability to solve visual problems and their use of cognitive strategies. 

The following overarching research questions are addressed:   

1. How do VL experts (art educators, artists) and novices (laypeople unrelated to visual arts) 

differ in their cognitive strategies while solving visual tasks? 

2. How can eye tracking in combination with other empirical methods be used to identify and 

explicate VL competencies in students, novices and experts? 

Eye-tracking data were used as an external validation of the BKKB assessment tasks, i.e., VL 

experts should outperform novices on the visual tasks. As art expertise research and empirical VL 

research are in their infancy (Chamberlain, 2018; Matusiak, 2020) new empirical approaches are 

proposed to advance the field.  

Methodological Approach 

Eye Tracking 

All presented publications in this thesis include the method of eye tracking as an essential part of 

the data analysis. Eye tracking is widely used in psychological and behavioral sciences (Holmqvist 

et al., 2011; Holmqvist & Andersson, 2017; Orquin & Holmqvist, 2019), including decision making 

(Boisvert & Bruce, 2016), diagnostics (Chan et al., 2018), marketing (Wedel & Pieters, 2017), or 

human computer interaction (Mason et al., 2017).  

There are multiple ways to detect and classify eye movements, i.e., to classify distinct eye 

movement types (e.g., fixations, saccades) from raw data (Andersson et al., 2017). Fixations are 

periods where the eye is relatively still and the participant looks at a specific location on a screen 

(Holmqvist & Andersson, 2017, pp. 22–23). Fixation durations commonly last 200–300ms but can 

last multiple seconds depending on the task and situation. The eyes however are never completely 

motionless as intra-fixational micro-movements are always occurring (Martinez-Conde et al., 

2013). By contrast, saccades are periods where the gaze shifts rapidly to another (target) position 

(Holmqvist & Andersson, 2017, p. 23). Besides the sampling frequency (Andersson et al., 2010), 

precision and accuracy of eye movement measurements are also influenced by detection algorithms 

and the mathematical model of the eye (Orquin & Holmqvist, 2018, 2019). 
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Two common event-detection algorithms are Fixation Dispersion Algorithms (Identification by 

Dispersion-Threshold, IDT) (Komogortsev et al., 2010) and Velocity based algorithms 

(Identification by Velocity Threshold, IVT) (Salvucci & Goldberg, 2000). IDT algorithms consider 

a fixation in data samples containing at least enough time to satisfy a set (or adaptive) duration and 

is located within a spatial area that does not exceed a dispersion threshold. Samples that meet these 

criteria are labeled as fixations. On the other hand, IVT algorithms identify fixations and saccades 

using a preset velocity threshold, where fixations are segments of samples with less than the set 

velocity threshold and saccades are segments with velocities greater than the given velocity 

threshold (Stuart et al., 2019). Combinations of both algorithm types, including other machine 

learning approaches, are possible and desirable for a valid event detection (Andersson et al., 2017; 

Zemblys et al., 2018). Micro-movements of the eye, e.g., micro-saccades (Engbert, 2006) are 

detectable but require higher sampling frequencies above 200Hz (Martinez-Conde et al., 2009). 

Expertise-driven, top-down processes of eye movements often base their research on Yarbus’s 

(Yarbus, 1967a) famous study on the effect of task instruction on eye movements: Yarbus (1967b) 

observed how the viewers' attention was drawn to the elements of the image that were relevant to 

the task at hand. Different task instructions before viewing the painting They did not expect him 

(Ilya Repin 1844-1930), such as “how long was the visitor gone?” or “how many people are in the 

room?” had significant influence on the individuals eye movement patterns. Recent research has 

confirmed the effect of task instruction on top-down eye movement control (Boisvert & Bruce, 

2016; Borji & Itti, 2014; Haji-Abolhassani & Clark, 2014), for example, Simola et al. (2008) 

predicted different information search reading strategies based on the spatio-temporal distribution 

of eye movement patterns. 

Eye tracking is also commonly used for research on expertise (Derek Panchuk et al., 2015; Fox & 

Faulkner-Jones, 2017; Gegenfurtner et al., 2011; R. Li et al., 2012; Tien et al., 2014; Vogt & 

Magnussen, 2007). Studies on visual expertise often list three major concepts that attempt to explain 

the superior visual abilities of experts over novices:  

• Higher capacity of long-term working memory (Ericsson & Kintsch, 1995) to encode and 

retrieve visual information by experts; 

• Selective attention to relevant stimuli of experts to reduce redundant information (Haider 

& Frensch, 1999); and 

• An holistic approach to image perception that allows experts to extract more information 

from distal and para-foveal regions (Kundel et al., 2007).  
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A systematic review by Brams et al. (2019) emphasizes the importance of an efficient visual search 

rate, enhanced selective attention allocation, and an extended visual span for expert performance in 

sports and medicine. However, studies on art expertise are more rare and significant differences 

regarding number of fixations or fixation durations between art experts and novices are infrequent 

(Francuz et al., 2018; Vogt & Magnussen, 2007), for example, artists seem to fixate longer on 

familiar paintings while novices make longer fixations on unfamiliar paintings (Antes & 

Kristjanson, 1991). Instead differences are more often observed by scanpaths (fixations sequences) 

on task relevant high-level image features (Chamberlain et al., 2019; Jarodzka et al., 2010; Ylitalo 

et al., 2016). Artists seem to benefit from their holistic perception of images the most, as abstract, 

less salient regions of artwork are explored more (Koide et al., 2015; Kolodziej et al., 2018; Pihko 

et al., 2011; Vogt & Magnussen, 2007), and this may also help experts focus on the global overall 

structures during the creation of drawings (Drake et al., 2021).  

Only recently has eye tracking been identified as an appealing methodology for VL research 

(Brumberger, 2021). Furthermore, the combination of eye tracking with advanced statistical 

methods may elevate the field of VL research, as it allows us to explore the intricate differences 

between experts and novices and the effects of VL on cognitive processes more closely. Details on 

the eye-tracking equipment and procedure used for this thesis can be found in Appendix A.  

Latent Class and Latent Profile Analysis 

Latent class analysis (LCA) and latent profile analysis (LPA) are statistical methods aimed to 

recover hidden groups from observed data (McCutcheon, 1987). LCA and LPA are used on 

continuous (LPA) or categorical (LCA) variables to detect the structure of relationships between 

subgroups to create typologies or scales (Oberski, 2016). Unlike factor analysis, which assumes 

that people differ by degrees on continuous latent dimensions, LCA/LPA models assume that 

people fall into latent categories. They are like clustering techniques, but more flexible because 

they can account for group uncertainty by using probability distributions for each class. LCA 

assumes local independence within each latent class (LC). The basic LC model can be formulated 

as 

 𝑃(𝒀 = 𝒚) = ∑ 𝑃(𝑋 = 𝑥) ∏ 𝑃(𝑌ℓ = 𝑦ℓ|𝑋 = 𝑥)

𝐿

ℓ=1

𝐶

𝑥=1

 (Eq. 1.1) 
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Where P(Y=y) is the probability for a complete response pattern, X represents the latent variable 

and Yℓ the manifest variable, C is the total number of LCs, P(X=x) indicates the proportion of 

individuals belonging to LC x. The probability of obtaining response pattern y, is a weighted 

average of the C class-specific probabilities P(Y = y | X = x) (c.f. Vermunt et al., 2004). Typically, 

each person can be categorized to the LC with their highest posterior membership probability 

(Hagenaars & McCutcheon, 2002; Rost & Langeheine, 1997). This probability can be obtained by 

the Bayes rule (Vermunt et al., 2004); 

 𝑃(𝑿 = 𝑥|𝑌 = 𝑦) =
𝑃(𝑋 = 𝑥)𝑃(𝒀 = 𝒚|𝑋 = 𝑥)

𝑃(𝒀 = 𝒚)
 (Eq. 1.2) 

 

In Paper 1 we used LCA to determine different classes for visual logical reasoning of students and 

adults. There we used the notation by Rost and Langeheine (1997), where g refers to the relative 

size of class g, and ixg refers to the posterior membership probability to belong to class g of G 

classes. In Paper 2 we applied LPA to describe different response profiles (solution patterns) during 

visual search. 

Hidden Markov Models 

Hidden Markov Models (HMM) are statistical methods to describe and analyze latent states and 

their transition probabilities over time (Rabiner, 1989; Visser et al., 2002). HMM have some 

important characteristics. Firstly, the states are discrete, as the data are sampled from many 

distributions with different parameters rather than following a single unimodal distribution. 

Secondly, the states are not directly observable (i.e., hidden) and can only be observed indirectly, 

as the mapping between states and observations is probabilistic rather than deterministic. Finally, 

the Markov property, i.e., every response is only dependent on the previous response, independent 

of all past states prior 𝑡 − 1, creates an otherwise memoryless model beyond the most recent state 

transition (Visser, 2011). 

The formal definition of a HMM is as follows (c.f. Rabiner, 1989)  

 𝛌 = (𝑨, 𝑩, 𝛑) (Eq. 1.3) 

 

A describes the transition probability array of state j following state i, where the state probability is 

independent of time t:  
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 𝐴 =  [𝑎𝑖𝑗 ], 𝑎𝑖𝑗 =  𝑃(𝑞𝑡  = 𝑠𝑗  |𝑞𝑡−1 =  𝑠𝑖) (Eq. 1.4) 

 

B describes the probability of observation k being produced from state j, independent of time t 

(sometimes called the emission probability): 

 𝐵 =  [𝑏𝑖(𝑘)], 𝑏𝑖(𝑘) =  𝑃(𝑥𝑡  = 𝑣𝑘 |𝑞𝑡 =  𝑠𝑖) (Eq. 1.5) 

 

π describes the initial state probability: 

 π =  [π𝑖], π𝑖 =  𝑃(𝑞𝑡 = 𝑠𝑖) (Eq. 1.6) 

 

A set of machine learning algorithms are used to reduce the complexity of calculations for HMM 

to compute the probability of the observation sequence effectively (evaluate), to discover the hidden 

state sequence that maximizes the probability of the observation sequence given the model 

parameters (decode), and to estimate the model parameters that best describe the model (training) 

(Visser, 2011). The algorithms that deal with evaluation, decoding, and training problems are called 

forward (backward), Viterbi and Baum-Welch algorithms, respectively (Rabiner, 1989). For a 

discussion on implementations see Blunsom (2004). Figure 2 shows an example of an HMM with 

three hidden states. 
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Figure 2 

Hidden Markov Model with three Hidden States and Probability Distributions 

 

Note. An HMM with three hidden states (S1-S3), transition probabilities (A), observation 

probabilities (B), and initial state distribution (π). The states are hidden to the observer and the 

output is a series of observations that are the outcomes of the observation probability density 

functions (PDFs). Adapted from “A computational model for task inference in visual search” by 

Haji-Abolhassani & Clark, 2013, Journal of Vision, 13(3):29, p. 6. 

HMM have been popularized in speech recognition (Rabiner, 1989) but has since been used for a 

variety of applications (Mor et al., 2021) including eye movements, e.g., HMM as event-detection 

algorithms for eye movement types (Komogortsev et al., 2010). A study by Haji-Abolhassani and 

Clark (2013) used HMM to analyze visual search behavior on a grid with symbols and letters. The 

authors trained the HMM on a task modulated saliency map to infer between easy and difficult 

search processes given the observed eye movement patterns.  

More recently HMM were also used to analyze eye movements during face perception (Chuk et al., 

2014; Chuk et al., 2019; Hsiao et al., 2021). For eye movement data each fixation on an image can 

be interpreted as an observation following a probability distribution of an underlying image area 

(hidden state). The general concept that eye movement events are random variables manifested as 
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the observable outputs of underlying stochastic processes is central to probabilistic models such as 

HMM (Boccignone, 2019; Coutrot et al., 2018).  

Paper 2 goes into detail on how HMM can be used to analyze eye movement fixation sequences 

during visual search on artworks. 

Bradley Terry Models 

Objects or their properties can be characterized by a systematic comparison in form of a paired 

comparison (PC) task. The PC is a psychometric scaling method whose basic principle was 

developed by Thurstone (1927). PC tasks are the most common method when objects are to be 

placed into an ordered ranking. PC tasks are especially useful when the items can only be evaluated 

subjectively (David, 1988). The statistical model by Bradley and Terry (1952) and Luce (1959), 

called the Bradley-Terry-Luce model (BTM), is frequently used to analyze such preference 

decisions.  

The probability to prefer item i over j is defined by 

 𝑃𝑖>𝑗 =
𝜋𝑖

𝜋𝑖 + 𝜋𝑗
 (Eq. 1.7) 

 

where πk is a strength parameter (also called worth parameter) for item k, 1 ≤ k ≤ K (c.f. Bradley 

& Terry, 1952). The worth parameters (π) indicate how likely an item is selected in a PC. For all 

comparisons, pij + pji = 1 holds, since a decision is forced and no draw is allowed.  

Such forced-choice questioning techniques overcome further problems such as end-aversion bias, 

that is, the tendency to choose the middle of the scale closer to a neutral position (Choi & Pak, 

2005). Furthermore, the assumption of equidistant response categories is not required for BT 

models. Even though BT models have been widely used in studies on comparison data, for example, 

to determine the best sport teams (Tutz & Schauberger, 2015) or to detect the individual preference 

for fashion models (Strobl et al., 2011), the presented application may also be useful for art-class 

assignments, as the individual sensitivity for latent images characteristics are made observable and 

quantifiable.  

Paper 3 describes how BT models can be combined with model-based partitioning (MOB) to 

uncover heterogeneity in students’ judgments of visual abstraction.   



Chapter 2. Publications  

 

17 

CHAPTER 2. PUBLICATIONS 

Preparations 

All presented papers include data from two separate samples: a student sample, comprising high 

school students and an eye-tracking sample comprising VL expert and novice participants. 

Members of ENViL were invited to contribute to a generic framework for visual assessment tasks 

and to take part in pre-tests on selected assignments and eye-tracking items. All items were 

specifically programmed for the assessment tool and were presented on Android tablet screens (see 

Andrews et al., 2018). Data acquisition in students was conducted in a classroom setting in schools 

in Germany. School classes were recruited and informed on the details of the study by using printed 

or identical electronic leaflets that had been sent to school principals (see Appendix C). Up to 30 

students were able to take part simultaneously.   

The eye-tracking experiments were conducted with experts and novices on a selected group of 

assessment items. Participants were classified as VL-experts if they were members of the European 

Network of Visual Literacy (ENViL) or worked in professions that required a high level of visual 

competence (photographer, gallerist, art educator, art designer, art students, or self-employed 

artists). Novices in VL were recruited adults from various educational settings' clerical and 

academic personnel who stated that they were not particularly talented or familiar with visual arts 

or design. Multiple locations were allocated for eye-tracking recording sessions. These included a 

laboratory rooms at the HSD University of Applied Sciences in Cologne, Ulm University, and a 

seminar room at the Academy of Fine Arts in Munich (see Appendix A).  

The presented publications focus on three different item-sets included in the VL assessment battery.  

1) Understanding Business Process Models (BPM) 

To interpret images and objects as defined by the CEFR-VL requires one to assign meaning to 

them, i.e., to translate the effect of an image into words by reasoning after reflection on the basis 

of observation and knowledge of codes and conventions (Wagner & Schönau, 2016, p. 75). 

Similar to flowcharts, BPMs represent logical sequences of information and workflows in a 

visual form. Comprehension of BPMs can be seen as a special form of diagrammatic reasoning 

(Kazmierczak, 2001), where thought processes are explained through visual imagery instead of 

verbal or mathematical means. The CEFR-VL model does not specify how VL may influence 

the understanding of visual logical representations. The article explores if VL-experts benefit 

from their expertise when logical processes are presented in a visual form. 
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2) Visual Search on Artwork 

The CEFR-VL considers analyzing, i.e., to attentively and accurately focus on visual stimuli 

and to identify characteristics of images (Wagner & Schönau, 2016, p. 70) to be an essential 

part of VL as it is closely related to multiple other sub-competencies (e.g., perceiving, 

interpreting). Continuous involvement in art and images by VL experts may influence cognitive 

strategies involved in visual search on images of artwork. Analyzing should therefore be crucial 

in visual search. The study reveals and visualizes efficient search behavior for identifying latent 

image features in artworks.  

3) Judgment of Visual Abstraction 

The CEFR-VL defines judging (or evaluating) images as the ability to formulate a justified 

statement or estimation about images and artistic creations (Wagner & Schönau, 2016, p. 76). 

Similar to the aesthetic appreciation of art (Leder et al., 2012), the judgment of artwork may be 

affected by specific image features as well as individual characteristics of viewers. Therefore, 

it is interesting to see how the individual judgments of VL experts and novices differ when 

tasked to rank images by their level of visual abstraction. The presented approach in paper 3 

makes the underlying preference judgment of visual abstraction quantifiable. 
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Paper 1: Comprehension of Visual Logical Models 

 

Comprehension of Business Process Models:  

Insight into Cognitive Strategies via Eye Tracking 

Miles Tallon, Michael Winter, Rüdiger Pryss, Katrin Rakoczy, Manfred Reichert, Mark W. 

Greenlee, Ulrich Frick 

Author-produced version of this article published after peer-review on December 1st 2019 in Expert 

Systems with Applications https://doi.org/10.1016/j.eswa.2019.06.032. (Tallon et al., 2019) 

reprinted with permission. 

 

Abstract 

Process Models (PM) are visual documentations of the business processes within or across 

enterprises. Activities (tasks) are arranged together into a model (i.e., similar to flowcharts). This 

study aimed at understanding the underlying structure of PM comprehension. Though standards for 

describing PM have been defined, the cognitive work load they evoke, their structure, and the 

efficacy of information transmission are only partially understood. Two studies were conducted to 

better differentiate the concept of visual literacy (VL) and logical reasoning in interpreting PM. 

Study I: A total of 1047 students from 52 school classes were assessed. Three different process 

models of increasing complexity were presented on tablets. Additionally, written labels of the 

models’ elements were randomly allocated to scholars in a 3-group between-subjects design. 

Comprehension of process models was assessed by a series of 3*4 (=12) dichotomous test items. 

Latent Class Analysis of solved items revealed 6 qualitatively differing solution patterns, 

suggesting that a single test score is insufficient to reflect participants’ performance. 

Study II: Overall, 21 experts and 15 novices with respect to visual literacy were presented the same 

set of PMs as in Study I, while wearing eye-tracking glasses. The fixation duration on relevant parts 

of the PM and on questions were recorded, as well as the total time needed to solve all 12 test items. 

The number of gaze transitions between process model and comprehension questions was measured 

as well. Being an expert in visual literacy did not alter the capability of correctly understanding 

graphical logical PMs. Presenting PMs that are labelled by single letters had a significant influence 

on reducing the time spent on irrelevant model parts but did not affect the fixation duration on 

relevant areas of interest. 

Both samples’ participants required longer response times with increasing model complexity. The 

number of toggles (i.e., gaze transitions between model and statement area of interest) was 

predictive for membership in one of the latent classes. Contrary to expectations, denoting the PM 

events and decisions not with real-world descriptions, but with single letters, led to lower cognitive 

workload in responding to comprehension questions and to better results. Visual Literacy experts 

could neither outperform novices nor high-school students in comprehending PM. 

Keywords: visual literacy; business process model; eye tracking; latent class analysis; 

cognitive workload 

  

https://doi.org/10.1016/j.eswa.2019.06.032
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1 Introduction 

What are process models? 

A process model (PM) is a textual or visual representation, which documents all steps of an entire 

process (Schultheiss & Heiliger, 1963). Thereby, visual process models, inter alia, allow the 

depiction of complex algorithms, business steps, or logistical operations in a descriptive form 

(Aguilar-Savén, 2004; Bharathi et al., 2008; Rojas et al., 2016). PM should be designed such that 

practitioners can apply them for their tasks at hand (Roehm et al., 2012; Ungan, 2006). Moreover, 

PMs have to be understandable by all practitioners (Reggio et al., 2015; Zimoch, Pryss, et al., 2017). 

Existing research on process model comprehension has considered two groups of factors: (1) 

Subjective capability (e.g., model reader expertise) should be distinguished from (2) objective 

characteristics of the model itself (e.g., process model complexity).  

For objective factors, a framework has been proposed (Moody et al., 2002) to evaluate the quality 

of process models. Notational deficiencies (e.g., semantic transparency) and their influence on the 

comprehension of process models have been reported by Figl et al. (2013). Regarding subjective 

factors, Recker and Dreiling (2007) compared two popular process modeling languages (business 

process model notation BPMN and event-driven process chain EPC). These studies focus on 

subjective aspects of PM comprehension, since they conclude that subjective factors have a greater 

impact than objective factors. A recent overview on studies investigating subjective as well as 

objective factors of PM comprehension is provided by (Figl, 2017).  

Understanding PMs may not only be regarded as an endpoint depending on both factors described 

above, but also as a key competence for a multitude of cognitive tasks that share in common the 

classification and ordering of events and decisions into meaningful sequences (Dumas et al., 2013). 

As PMs are mostly presented as charts following specific rules of formalization in a standardized 

notation, it seems to be of interest to analyse the interplay between the visual inspection of charts 

representing PMs and their comprehension (Dumas et al., 2012).  

Semantic Notation of PM 

After a series of experiments with both subjective (i.e., cognitive load, Sweller et al. (2011) and 

objective factors (i.e., semiotic theory), Mendling et al. (2012) conclude that additional semantic 

information impedes syntax comprehension, whereas theoretical knowledge facilitates syntax 

comprehension.  



Chapter 2. Publications  

 

21 

The study at hand tries to open up the perspective of PM comprehension from pure graphical 

notation to semantic notions (real-world problem descriptions versus symbolic notation) as well as 

to personal capacities necessary for model comprehension (psychometric measurement of 

competence types or levels). Recker and Dreiling (2011) also highlight the importance of 

understanding subjective factors to enable development of understandable PMs. 

Visual Literacy 

Subjective factors play a key role in the understanding of PMs. It is therefore of interest to take a 

closer look at the ability of attentively analysing and interpreting images, an ability that is coined 

as Visual Literacy (VL; see Avgerinou and Pettersson (2011)). From the review by Figl (2017), it 

becomes clear that the construct of VL has not yet been used to analyse potential interactions 

between subjective and objective factors with respect to model comprehension. To the best of our 

knowledge, with the exception of a recent study (Bačić & Fadlalla, 2016), whose authors focused 

more on visual intelligence than on literacy, no study has yet been published dealing with the 

concept of Visual Literacy and its impact on PM comprehension. This is even more astonishing 

considering that VL has been postulated as a basic competence underlying the precise deciphering 

of images (receptive component of VL), the production of such images, as well as the reflection on 

the constituent processes (Wagner & Schönau, 2016). Images guide our perception of the world, 

our preferences, and our decisions, and VL is considered a central goal of arts education (Wagner 

and Schönau, 2016). Whether or not a good capability of analysing, memorizing, and envisaging 

visual stimuli is helpful for the comprehension or production of PMs (Brumberger, 2011), has yet 

to be determined.  

It also remains unclear whether VL can be measured like an IQ score on a continuum of 

homogeneous tasks representing the same, continuously distributed latent trait, best assessed by a 

“Rasch scale” (see Boy et al. (2014) for an example in the field of visualization capability). By 

contrast, VL might also represent a categorical model (Brill et al., 2007), for which different groups 

of people have specific gifts and talents in common, qualitatively differing from each other without 

the possibility of representing these differences by a single score (latent class model, see 

McCutcheon (1987). 

Eye tracking as measurement for PM comprehension  

Eye-tracking methods help to understand and visualize underlying cognitive processes in problem 

solving (Bednarik & Tukiainen, 2006). Thus, eye-tracking can help to externally validate the 
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measurement method of VL. Eye-tracking has been established in the investigation of competence 

and competence acquisition (Jarodzka et al., 2017). Conclusions about strategies or procedural 

knowledge can be drawn by analysing the processing of visual tasks that, otherwise, could not have 

been verbalized or could only be partially verbalized by the subjects retrospectively (Reingold & 

Sheridan, 2011; Sheridan & Reingold, 2014). The underlying cognitive processes thus may be 

better understood (Lai et al., 2013). Eye-tracking measures have provided insights into differences 

in experts and novices (Gegenfurtner et al., 2011; Vogt & Magnussen, 2007), the prediction of fluid 

intelligence (Laurence et al., 2018), as well as distinguishing between strategies in spatial problem 

solving (Y.-C. Chen & Yang, 2014). 

PM comprehension has been studied by means of eye tracking (Figl, 2017; Hogrebe et al., 2011; 

Petrusel & Mendling, 2013; Zimoch et al., 2018; Zimoch, Mohring, et al., 2017), but not from the 

viewpoint of VL. It could be shown that subjects providing correct responses to comprehension 

questions after regarding a graphical model had fixated longer on relevant parts of the respective 

PM than on irrelevant parts (Petrusel & Mendling, 2013; Zimoch et al., 2018).  

Cognitive strategies analysed by eye movements have been studied for graphically oriented 

intelligence tests (Hayes et al., 2011; Vakil & Lifshitz-Zehavi, 2012). A recent study by (Laurence 

et al., 2018) could predict from eye movement indicators approximately 45% of the variance of 

“Wiener Matrizen Test 2” (Formann et al., 2011) test results. Toggling (gaze transition between 

two areas of interest) has been shown to be the most reliable measure (Laurence et al., 2018) in this 

context. Other typical measurements include pupillometry (van der Meer et al., 2010) or fixation 

distribution (Najemnik & Geisler, 2005); (Bucher & Schumacher, 2006). Based on previous results 

on the analysis of matrix-based cognitive tests, the present study enhances the spectrum of visual 

tasks and tries to compare similar output measures for the comprehension of PMs.  

To conclude, this study contributes to further analysing comprehension of PMs by using eye-

tracking data. Previous studies have shown that experts in their professional domain (e.g. art, 

medicine, chess) fixate longer on task relevant parts and shorter on task redundant parts 

(Gegenfurtner et al., 2011). It has yet to be determined how the comprehension of graphically 

presented logical models is influenced by VL.  

Research goals and objectives 

This study aims to apply psychometric concepts to the field of PM research. Moreover, we try to 

corroborate these efforts by using innovative technology (i.e., eye-tracking measurements). 
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Notably, the role of expertise in VL for solving visual tasks seems unclear, and even questionable 

for comprehending PMs.  

Based on the previous research on process model comprehension, this paper wants to contribute 

empirically to the influences on process model comprehension. Methodologically, this is 

accomplished by means of (1) latent class analysis (LCA) and (2) eye tracking. Through LCA, we 

are able to determine if the answers given by students follow a homogeneous latent trait or should 

better be interpreted as qualitatively differing solution patterns. The use of eye tracking helps to 

identify potential differences in participants’ understanding by analysing where and for how long 

subjects fixate PM aspects. Cognitive load theory (Sweller et al., 2011) interprets these 

measurements as indicators for cognitive workload. 

In summary, three major research questions are addressed in this paper: 

1) How can the comprehension of PMs be measured in a population of students? More 

specifically, do answering patterns follow a homogeneous latent trait or should they be 

interpreted as qualitatively differing solution patterns? 

2) How do features of PMs have an impact on the general PM comprehension? 

a. Do students successfully decipher the graphical notation (e.g., logical symbols like 

arrows, “x” or “+”)? 

b. How does the semantic notation of PMs influence the response time and the PM 

comprehension? 

c. What effect does the model complexity have on response time and comprehension? 

3) How does the competence level in analysing and interpreting images (VL) covary with PM 

comprehension? 

a. How do VL experts and novices differ in fixation duration on relevant rsp. redundant 

parts of the PMs?  

b. How does the expertise in VL covary with the eye movement’s volatility of gaze 

transitions? 
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2 Materials and Methods 

Subjects 

Sample I comprised 1047 high-school students from 52 classes (9th to 13th grade: 21, 28, 1, 1, 1) in 

29 schools in Germany. Overall, 52.5% were female, the average age was 15.27 years (SD = 0.94). 

Schools were recruited in the federal states of Hessen, North-Rhine Westphalia, Schleswig-

Holstein, and Rhineland Palatinate via leaflets, letters and personal recommendations. The test was 

conducted in regular classrooms. Up to 30 students were able to participate in the test 

simultaneously. In Sample I understanding PM was one segment of a longer (duration: 45 minutes) 

test on Visual Literacy. All answers were given via touchscreen input by the participants. School 

classes were offered a lump sum of 100€ as collective compensation.  

Participants in Sample II were enrolled as experts in visual literacy (n=21), if they were members 

of the European Network of Visual Literacy (ENViL) or working in professions requiring a high 

visual competence (photographer, gallerist, art educator, art designer, art students, or self-employed 

artists). Novices (n=15) in visual literacy were adults from the clerical and academic staff of various 

educational settings declaring themselves as not overwhelmingly talented or familiar with arts and 

visual design. The age span ranged from 16 to 66 years (M = 29.5). All participants had normal or 

corrected-to-normal vision. Student participants in Sample II received 20€ each as compensation. 

Other participants, including the expert group, who were intrinsically interested in the topic of 

Visual Literacy and eye tracking, participated without further compensation.  

The study was conducted according to the guidelines for human research outlined by the 

Declaration of Helsinki and was approved by the Ethics Committee of Research of the Leibniz 

Institute for Research and Information in Education (DIPF, 01JK1606A). All subjects (and their 

legal representatives respectively) had given written informed consent.  

Materials and procedure 

The assessment in both samples was conducted on Android A6 Tablets with 10.1-inch screen size. 

All test items were programmed specifically for the assessment tool (Andrews et al., 2018). The 

process models were created in BPMN 2.0 (OMG, Object Management Group, 2011). This 

language serves as an industry standard and constitutes the most widely used process modeling 

language (Allweyer, 2016).  
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All participants were given the identical instruction on the tablet screen: “In the following, different 

processes are presented in the form of process models. A process model visualizes the sequence of 

events and decisions. Try to understand the process in the process model and select all correct 

statements (multiple statements can be correct).”  

Participants were required to inspect three subsequently presented PMs and to evaluate 4 statements 

based on the respective model, thereby representing a within-subject factor with three factor levels 

(Fig. 1). Statements were balanced for affirmation and rejection to indicate the correct response. 

The models were ordered in increasing complexity, where each new model included more activities 

(boxes) and gateways (inclusive, exclusive or parallel paths). Furthermore, in order to ensure a 

proper increase in process model complexity, the process models were created using the guidelines 

from Becker et al. (2000) and the adopted cognitive complexity measure proposed in Gruhn and 

Laue (2006). The comprehension statements as well as the activity-labels in the respective “boxes” 

of each process model were randomly allocated to each subject in one of three different verbal 

frames, thereby representing a between-subjects factor with the following factor levels: Letters (L), 

Sentences (S) and Pseudo Sentences (P). This manipulation means that events in the process models 

as well as in the comprehension test items were either denoted with a single letter (e.g. “execute 

F”), a meaningful sentence describing an everyday situation (e.g. “read Facebook message”), or 

with a pseudo sentence (e.g. “An ecap with mistives cannot be handed over”) using meaningless 

artificial nouns to describe the events. 
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Figure 1 

Process Models (PM1, PM2, PM3) in the Letter Condition.  

 

Note. PMs were presented to respondents in increasing complexity. The boxes (activities) include 

actions to be performed, the arrows (sequence flow) define the execution order of activities, the x 

(an exclusive gateway) splits the routes of the sequence flow to exactly one of the outgoing 

branches. The + symbolizes a parallel gateway that is used to activate all outgoing branches 

simultaneously.  

For Sample II, SMI eye-tracking glasses were used (SMI ETG 2w Analysis Pro). The glasses were 

positioned onto the subject's head, and the subjects were free to move their heads during task 

completion. Subjects were seated 50-80 cm away from the tablet screen. All eye-tracking data were 

recorded at 60Hz. Saccades and fixations (as well as blinks) were recorded binocularly and 

computed by the SMI event detection algorithm. Each session started with a 3-point calibration 
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following the standard procedures for SMI iViewTM. The default eye movement parameters from 

SMI BeGazeTM version 3.7 were used. A fixation cross was displayed between each trial for 2 

seconds. More details of the procedure and on data processing for eye-tracking measurements are 

given in a supplementary e-appendix (Appendix A).  

Measurement and Data Analysis 

The vector of 12 responses given on the tablets was transformed into 12 dichotomous items x 

representing each a correct judgement of the underlying verbal statement (1 = correct). The vector  

x of judgements then was analysed by latent class models (Dayton & Macready, 2006) describing 

typical solution patterns among the participants.  

𝑝(𝒙𝑣) = ∑ 𝜋𝑔 ∏ 𝜋𝑖𝑥𝑔
𝑘
𝑖=1

𝐺
𝑔=1             where:        ∑ 𝜋𝑔

𝐺
𝑔=1 = 1      (1) 

with g := number of latent class (1 .. G), x := response chosen on item i (1 .. k), x vector of correct 

judgments, g := relative size of class g, and ixg probability of choosing response x on item i given 

class g. Model parameters (g, ix|g) were estimated with MPLUS (6.0) software for all LCA 

solutions between 2 and 8 latent classes. The best number of latent classes was decided on model 

fit criteria (AIC, BIC) and the Vuong-Lo-Mendell-Rubin Likelihood Ratio Test, as well as the Lo-

Mendell-Rubin adjusted LR test implemented in MPLUS (Asparouhov & Muthén, 2012). In order 

to prevent local maxima of the likelihood function of the estimated parameters, the number of initial 

stage random starts was set to 1000, and the number of final stage optimizations to 50 for each 

number of classes. The estimated model parameters (g, ix|g) can be used to calculate membership 

probabilities for each participant in every latent class g in the following way (see equation 37, Rost 

and Langeheine (1997) p. 29).  

𝑝(𝑔|𝑥𝑣) =
𝜋𝑔 ∏ 𝜋𝑖𝑥𝑔

𝑘
𝑖=1

∑ 𝜋ℎ
𝐺
ℎ=1 ∏ 𝜋𝑖𝑥ℎ

𝑘
𝑖=1

         (2) 

Based on the modal value, each participant was classified in his/her most probable latent class. 

Participants from Sample II were also classified using their response patterns and the item 

parameters estimated from Sample I. Additional measurements in Sample II were based on the 

following eye-tracking characteristics: a) response latency, which is the time spent on each trial in 

seconds, b) fixation duration on PM, which is the sum of all fixation durations on the model, c) 

fixation time on statements, which is the time spent on fixating the four response statements, d) 

number of toggles, which is the number of transitions between model and responses, and e) toggling 

rate, which is the number of toggles between model and responses divided by response latency. 
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Transitions between model and responses were counted each time the subject’s gaze moved from 

model area of interest (AOI) to any statement AOI or vice versa. Whenever the gaze would stop to 

fixate on regions that were not defined by any AOI (“White Space”), the transition was not counted 

as a toggle. 

Fixations for each trial were mapped on corresponding reference images by a single rater (MT) 

using SMI fixation-by-fixation semantic gaze mapping. For a comparison to frame-by-frame 

mapping see (Vansteenkiste et al., 2015). Independent ratings were performed (by MW) based on 

complete datasets of two randomly chosen subjects. In our study we reached a high inter-rater-

reliability (Cohen’s Kappa > 0.94 for all PMs). Figure 2 shows the AOIs of the second PM. Relevant 

parts of the graphical model (coloured in red) that were necessary for correctly accepting/rejecting 

a statement were a priori determined by process modeling experts from Ulm University (Zimoch, 

Pryss, et al., 2017). The wording of all test items (in German) was also a result of expert discussions 

within the same group. All gaze data was acquired by SMI iView ETGTM software. The analyses 

were carried out with SMI eye-tracking software “BeGaze 3.7”. Further information on the eye-

tracking equipment, technical settings and calibration procedure can be found in the e-appendix of 

this article (Appendix A). 

Figure 2 

AOI Distribution for Process Model 2 (Parallel Paths, 1 Loop) 
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Note. Colors indicate irrelevant PM parts (blue), relevant PM parts (red), and relevant parts of 

answers 1-4 (green). 

Differences between PMs were analysed using repeated measurement ANOVA models for all eye 

movement indicators. Due to the relatively small sample size, differences between groups of 

respondents on the same indicators (e.g. status of expertise) were tested using univariate GLM 

models. In order to test significant associations between latent class membership and eye movement 

indicators, dummy variables for the larger groups (LC4, LC5, and LC6, see section 3.2) were 

constructed. In separate models, response latency, fixation duration on redundant or relevant parts 

of PM2 (second model in order of appearance), fixation duration on response statements, and 

number of toggles between PM2 and answering statements were tested as predictors of class 

membership via logistic regression models. All subjects not classified into one of the three larger 

groups were incorporated as part of the respective reference group, against which the impact of, for 

example, toggles was tested to predict membership. Again, due to small sample size these 

calculations were performed only in univariate analyses (only one predictor) omitting multivariate 

relationships and interaction effects during these explorative analyses. All statistical tests beyond 

the experimental variation of conditions are regarded as purely explorative and therefore not subject 

to measures against inflation of Type-I error risk.   

3 Results 

Solution Patterns in Scholars in Sample I 

Both criteria (AIC and BIC) displayed substantial improvement of model fit until the introduction 

of a sixth latent class to be estimated. A seventh class resulted in deterioration of the BIC index, 

and no statistically significant differences could be demonstrated compared to the more 

parsimonious model with 6 latent classes in both the Vuong-Lo-Mendell-Rubin Likelihood Ratio 

Test, and the Lo-Mendell-Rubin adjusted LR test. Therefore, six latent classes were chosen as the 

final solution.  

Table 1 gives an overview on the item parameters ix|g, which denote the probability of a correct 

solution in each of the six latent classes for each comprehension item.  
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Table 1 

Process Model Complexity and Latent Class Parameters in Sample I 

Model 

complexity 
Item 

Test items  

(wording for Letter condition*) 
Solution 

Probability of correct solution in latent class 

(corresponds to ixg in formula 1) 

LC1 LC2 LC3 LC4 LC5 LC6  
Total  

Sample I 

linear 

model 

Q1 

After the execution of D,  

C takes place.  reject 0.727 0.611 

0.90

6 0.896 0.979 0.998 0.889 

Q2 

To get to F, B needs to be 

executed. accept 0.566 0.578 

0.63

2 0.652 0.876 0.918 0.757 

Q3 

Before the execution of B,  

D takes place. reject 0.594 0.394 

0.72

6 0.822 1 1 0.825 

Q4 

Between C and E, only the 

execution of D takes place. accept 0.337 0.351 0.34 0.489 0.766 0.576 0.541 

parallel 

paths,  

1 loop 

Q1 
E must be executed at least once.  

accept 0 1 0 0 0.094 1 0.377 

Q2 

While E, the execution of D is not 

possible. reject 0 0.815 1 1 0 0.871 0.527 

Q3 

E can be executed a maximum of 

four times. reject 0.872 0.836 0 0.933 0.932 0.948 0.822 

Q4 

The execution of C is absolutely 

necessary. accept 0.126 0.208 0 1 0.064 0.436 0.287 

linear, 

exclusive 

and 

inclusive 

gateways, 

2 loops 

Q1 

After the execution of F and G, H 

takes place immediately. accept 0.306 0.565 

0.21

7 0.385 0.598 0.55 0.481 

Q2 

If x is chosen, I cannot be executed 

thereafter accept 0.244 0.323 

0.39

6 0.341 0.597 0.548 0.456 

Q3 

Each activity is executed at least 

once. reject 0.448 0.497 

0.60

4 0.644 0.78 0.608 0.630 

Q4 

If x is chosen, then G is always 

executed. reject 0.538 0.579 

0.73

6 0.696 0.877 0.72 0.726 

Note. Table 1 gives model parameters for all conditions. Red-shaded cells depict below-average 

probabilities (> |10%|) of solutions for the respective item in each latent class. Green-shaded cells 

signify above-average probabilities (> 10%) of correctly solved items. 

Interpretation of latent class 1 (LC1) and latent class 6 (LC6) seems straightforward: LC1 represents 

a group of persons with rather poor chances to solve each of the comprehension items. Members 

display probabilities at least 10% below the chance rates of the whole sample. This group comprised 

about 13% of the sample and was called “under performers”. On the contrary, LC6 consists of about 

31% of the participants with excellent performance: members had no comprehension probability 

below sample average, but most items were solved with slightly or clearly better (green cells: > 

10%) probabilities than the total sample. LC6 were called “logic champions”.  
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LC2 (24%) closely resembles LC1 except that participants are most likely able to respond correctly 

to items 1 and 2 of the “parallel paths – 1 loop” model (PM2), which had zero probability in LC1. 

On the other hand, the group LC5 (10%) is quite similar to the largest group “logic champions” 

class (LC6), but it fails to recognize the correct solutions for question 1, 2 and 4 of the “parallel 

paths – 1 loop” model (PM2). LC2 can be labelled as “under-performers with understanding of 

simultaneous tasks”, and LC5 as “logically correct thinking with misinterpretation of parallel 

paths”.   

LC3 represents a typical response pattern (12%) that is performing at an average level for all test 

items requiring a comparison of not more than two activities. But when 3 or more information units 

have to be combined for a correct solution, LC3 strongly underperforms (e.g. “After the execution 

of D, C takes place“ (PM1,Q1 ) vs. “After the execution of F and G, H takes place immediately” 

(PM3, Q1). Therefore they were called “binary thinking group”. Finally, the solution probabilities 

in LC4 (size 10%) display an excellent understanding of parallel paths (but misunderstand the “x” 

notation of loops), and a slightly below average comprehension of PM1 and PM3. Accordingly, 

this group was therefore called “multi-tasking group”.  

Table 2 

Number of Latent Class Members by Model Condition in Sample I  

Condition 
Latent Class 

 1 2 3 4 5 6 N Total 

Letter (L) 

Frequency 35 56 20 24 11 191 337 

(32.19%) 
Row % 10.39 16.62 5.93 7.12 3.26 56.68 

Column % 25.93 22.13 16.26 22.64 10.58 58.59 

Sentence (S) 

Frequency 49 121 46 33 63 42 354 

(33.81%) 
Row % 13.84 34.18 12.99 9.32 17.8 11.86 

Column % 36.3 47.83 37.4 31.13 60.58 12.88 

Pseudo Sentence (P) 

Frequency 51 76 57 49 30 93 356  

(34%) Row % 14.33 21.35 16.01 13.76 8.43 26.12 

Column % 37.78 30.04 46.34 46.23 28.85 28.53 

Total 
Frequency 135 253 123 106 104 326 1047 

% 12.89 24.16 11.75 10.12 9.93 31.14 100  
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Both the fact of numerous intersections of solution profiles in Table 1 and a formal model test of a 

Rasch scale (Andersen LR Test score = 104.99; df = 11, p< 0.0001) reject a homogenous latent trait 

as adequate psychometric model of PM comprehension, as measured by the given 12 items (see 

Rost, 1988, Andersen 1973).  It is therefore not meaningful to interpret the sum of correctly solved 

items as a simple measure to quantify a latent, continuous ability of high-school students to 

understand graphical models. Instead, it seems necessary to compare the interrelations of the typical 

comprehension patterns as qualitatively differing groups according to other variables like 

sociocultural background and task-relevant eye movements. 

When events and decisions were presented under the “P”-condition (pseudo sentences), latent 

classes 3 (binary thinking group) and 4 (multi-tasking group) were more prevalent (each by 12%) 

than expected under the assumption of having no association between model condition and 

problem-solving pattern (see Table 2), while the better performing groups LC5 and LC6 were 

under-represented. Thus, describing processes with pseudo sentences seems to prohibit correct 

deciphering of more complex loop structures. When PM were presented with meaningful sentences 

(condition “S”), latent classes 2 (under performers with understanding of simultaneous tasks) and 

5 (misinterpretation of parallel paths) were clearly over-frequented (by 15% and 26% respectively). 

Finally, under the condition of solely mentioning letters for events and decisions of a PM (condition 

“L”), latent class 6 (logic champions) was the most prominent cognitive solution pattern, and a 

clear under-representation of LC3 (binary thinking) and LC5 (misinterpretation of parallel paths) 

was observed. Denoting PMs with only letters thus favours good task performance. These effects 

are statistically significant (Pearson Χ2 (d.f. 10) = 202.99; p < 0.0001) and can be interpreted 

causally, as each participant’s allocation to one of the conditions was randomly chosen.  

Neither age nor gender of the participants, nor parental educational background or students’ self-

ratings of being gifted with visual imagination could be shown to interact with class membership 

(results not shown here). The condition of PM presentation clearly resulted in differing durations 

of problem solving. Overall, task completion for the letters condition required, on average, 206.2 

seconds (SD = 85.8) and meaningful sentences 239.2s (SD=82.0). In turn pseudo sentences required 

a mean duration of 290.7s (SD=149.9) before completely responding to all 12 items.  

Increasing complexity of PMs required more time over all six latent classes (F2,2080 = 2059.7 , p < 

0.001). Though differences between latent classes (F5,1040 = 16.3, p < 0.001) and an interaction 

effect of complexity*latentclass (F10,2080 = 30.8, p < 0.001) in the respective ANOVA model proved 

also significant, this is mainly due to the large sample size. Effect sizes were 0.30 (eta squared) for 

complexity, but only 0.06 for latent classes and 0.03 for the interaction effect.     
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Figure 3 

Impact of increasing complexity of PMs on task completion durations (=response latencies) in 

Sample I 

 

Solution patterns and corresponding eye movement parameters in Sample II  

Table 3 displays descriptive statistics for the eye-tracking measurements broken down by a) status 

of respondents’ expertise, b) condition of the PM phrasing, and c) membership of the respondents 

in latent class.  



 

 

3
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Table 3. Descriptive Statistics for the Eye-tracking Measurements in Sample II. 

  

 

Expertise Status 

  

Model Condition 

 

 

Membership in Latent Class 

 Total sample II 

(N=36) 

 VL Experts 

(N=21) 

VL Novices 

(N=15) 

 Letters 

(N= 14) 

Sentences  

(N= 12) 

Pseudo  

(N= 10) 

 LC4 

(N= 6) 

LC5 

(N= 11) 

LC6 

(N= 16) 

Other  

(N=3) 

  

Mean (SD) 

 

  

Mean (SD)*2 

 

  

Mean (SD)*3 

 

  

Mean (SD) 

 

Response latency (sec) 78.10 (33.14)  87.07 (30.66) 65.55 (33.37)  
60.92 

(26.49) 

84.34 

(36.61) 

94.66 

(28.36) 
 

57.80 

(9.25) 

85.40 

(37.12) 

82.12 

(35.62) 

70.52 

(29.26) 

Fixation duration on 

models (sec) 
38.15 (19.91)  41.51 (17.87) 33.44 (19.91)  

27.74 

(15.40) 

43.82 

(23.99) 

45.91 

(14.76) 
 

24.10 

(5.05) 

41.38 

(19.45) 

42.30 

(22.84) 

32.23 

(15.22) 

Fixation duration on 

models (%) 
47.54 (7.39)  46.59 (7.52) 48.87 (7.39)  

44.49 

(7.28) 

50.29  

(8.14) 

48.50 

(5.42) 
 

42.00 

(7.23) 

47.77 

(4.89) 

49.75 

(7.21) 

46.00 

(13.45) 

Fixation duration on 

Relevant (Red)*1  (sec) 

29.30 (17.86)  29.64 (13.1) 28.83 (23.48)  
28.23 

(15.02) 

32.62 

(25.65) 

26.83 

(9.31) 
 

21.65 

(8.67) 

29.26 

(12.41) 

33.67 

(23.38) 

21.46 

(10.14) 

Fixation duration on 

Irrelevant (Blue)*1 (sec) 
10.41 (8.31)  12.14 (7.64) 7.98 (8.86)  

4.01  

(2.37) 

13.70  

(9.53) 

15.42 

(6.59) 
 

5.00  

(1.87) 

9.96  

(8.05) 

12.29 

(9.57) 

12.86 

(7.92) 

Fixation duration on 

statements (sec)  

25.81 (9.81)  29.71 (9.68) 20.34 (9.82)  
21.29 

(8.55) 

25.79  

(9.67) 

32.16 

(8.84) 
 

22.91 

(5.67) 

28.13 

(11.14) 

25.29 

(10.01) 

25.82 

(13.32) 

Fixation duration on 

statements (%) 
33.96 (6.45)  34.98 (6.73) 32.54 (6.45)  

35.22 

(3.80) 

32.21  

(9.83) 

34.31 

(4.03) 
 

39.45 

(6.05) 

33.47 

(3.11) 

31.64 

(6.70) 

37.20 

(10.09) 

PM2 fixation duration on 

statements (sec) 
21.37 (8.93)  24.44 (8.03) 17.06 (8.55)  

18.99 

(8.39) 

22.43  

(9.86) 

23.42 

(8.64) 
 

20.32 

(8.13) 

20.90 

(8.70) 

22.46 

(10.16) 

19.59 

(7.72) 

PM2 fixation duration on 

statements (%) 
29.76 (8.89)  31.09 (8.84) 27.90 (8.93)  

30.26 

(7.18) 

29.32 

(12.74) 

29.57 

(5.81) 
 

35.14 

(9.19) 

28.75 

(6.99) 

27.99 

(8.39) 

32.10 

(16.55) 

Number of toggles 19.87 (8.24)  21.76 (9.34) 17.22 (8.24)  
19.83 

(9.34) 

18.97  

(9.41) 

21.00 

(5.24) 
 

13.61 

(3.55) 

23.15 

(9.63) 

20.79 

(7.06) 

15.44 

(10.36) 

Rate of toggling .267 (.083)  .253 (.083) .287 (.092)  
.333 

(.078) 

.223  

(.067) 

.228 

(.040) 
 

.239 

(.061) 

.295 

(.102) 

.271 

(.074) 

0.20 

(0.07) 

Note. *1exclusively for PM2, *2 bold font: significant p< .05 for fixation duration on statements, marginally significant p=0.053 for response latency 

(t-test), *3 bold font: significant p< .05 (F-test) 
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As in Sample I, increasing model complexity required longer response latencies (F2, 70 = 12.31,  

p < 0.001,  η²= .260). With rising complexity, the fixation duration on models rose as well (F2, 

70 = 31.46, p < 0.001, η²=.466) and the number of toggles increased (F2, 70 =7.49, p=.001, η² 

=.181).  

Bonferroni-adjusted post-hoc analysis revealed a significant difference in response latency 

between PM1 and PM3 (-36.44 sec., nominal p = 0.001) and between PM2 and PM3 (-22.11 

sec., nominal p= .002) (see Figure 4). Additionally, number of toggles for PM3 was 

significantly higher than for PM1 (+ 7.6 toggles, nominal p = 0.004). Furthermore, response 

latency in the letter condition differed significantly from the one in the pseudo sentences 

condition (-33.74 sec., p< .05) with an average duration being about 34 seconds longer in the 

pseudo sentences compared to the letter conditions.  

Figure 4 

Response Latency in Seconds (SEM) on each Model by PM Complexity, Expertise Level, and 

Latent Class Membership in Sample II 

Note. *significant (on p< .05) 

No differences could be shown between VL experts and novices concerning eye movements, 

with the exception of fixation duration on statements, which differed significantly with VL 

experts spending more time on the possible responses than novices (MExperts = 29.71 sec., 

MNovices = 20.34 sec.; F1,34=6.994, p < 0.05, η² = 0.171).  Also, task completion duration of VL 

experts tended to last longer (p = 0.053). VL experts tended to invest more time in arriving at 

any solution, but failed to outperform novices. There were no statistically significant differences 
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between the VL experts and novices in fixation durations on relevant (F1,34 = 0.017, n.s.) or 

redundant model parts (F1,34 = 2.274, n.s.) of PM2,. We could also not demonstrate an 

association between expertise status and latent class membership (χ2 (3, N = 36) = 1.870, p 

=.600). The number of toggles between PM2 and statements was inversely predictive for LC4 

(OR = 0.785 [0.622-0.992]). Other eye-tracking measurements (fixation durations on either part 

of the model) were not associated with membership in latent classes. Membership in latent 

class, model condition, and visual expertise did not interact significantly with the main effect 

of increasing complexity. However statistical power is quite low for most of the variables in 

Table 3 (e.g. 1-β ranging from 0.069 up to 0.643 for the observed differences).  

For a hypothetical “small” effect size in variable “response latencies (Cohen’s d = 0.22), 

meaning that experts were on average 7 seconds faster than non-experts, statistical power would 

reach 0.16. For a medium effect size (d = 0.40, 14 seconds difference) power would reach 0.35, 

and for a large effect size (d=0.66, 21 seconds difference) power would reach 0.60.  

Fig 5A and 5B show the AOI hit distribution over the first 100 seconds of PM2. Different 

colours represent different AOI (see Fig. 2). As can be seen from Figure 5A, median response 

latency of PM2 (right vertical axis, solid black step function) in Sample II was reached in about 

66 – 70 seconds. After this time, 50% of all participants in Sample II had made their decision 

for PM2, only 5 participants needed longer than 100 seconds to respond. PM2 was chosen as 

an example, as it proved to differentiate between the participants’ problem-solving patterns in 

Sample I most prominently. On average, participants directed their fixations primarily to 

relevant parts (red) of the model (29.3 sec.; SD 17.9), which is about three times longer than 

the time inspecting the irrelevant parts (blue) of PM2 (10.4 sec.; SD 8.3).  

However, as can be seen in Figure 5B, there were characteristic differences between the three 

model conditions in attention distribution as measured by fixation durations. 



Chapter 2. Publications  

 

37 

Figure 5A (left) and 5B (right) 

Histogram of AOI Hit Distribution for PM2 over the First 100 Seconds (A) and by Model 

Condition (L=Letter, S=Sentences, P=Pseudo Sentences) (B) 

 

 

Further investigating the relationship between the different model conditions (L, S, P) and the 

time spent on fixating different (relevant/irrelevant) parts of the PMs revealed an advantage of 

the letter condition with respect to the redundant parts of the model: Separately analysing 

fixation durations by model condition (Figure 6) indicates that the letter condition is associated 

with shorter fixation periods on irrelevant parts of the process model (M= 4.01 sec., SD=2.37) 

compared to the sentence (M=13.70 sec, SD= 9.64) and pseudo sentence (M=15.42 sec., 

SD=6.59) condition (F2, 33 =10.757 sec., p<.05, η²= 0.395).  

Figure 7 illustrates the total time spent on the process model (= response latency, left half A) 

and fixation duration on each process model (right half B) as part of the total response latency. 
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Figure 6 

Average Fixation Duration on Relevant and Irrelevant Parts of PM2 by Condition 

 

Note. *significant (on p< .05) 

Fig. 7A (left) and 7B (right)  

Bar Charts of Average Response Latencies (left) and Average Fixation Duration (right) on each 

PM by Model Complexity and Letter, Sentence and Pseudo Sentence Condition 
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4 Discussion 

Measurement of PM comprehension: Solution Patterns  

Six latent classes with qualitatively differing solution profiles were adequate to classify scholars 

in Sample I. These configurative and non-ordered profiles can be interpreted as separate 

solution patterns, where specific model parts are understood better than others. Beyond very 

good performers (LC6 “logic champions”) and quite bad performers (LC1 “under performers”) 

there exist other groups of students at intermediate “levels”, which can be related to 

qualitatively differing errors. E.g. isolated good comprehension of simultaneous activities in 

process models (LC2) in front of otherwise bad performance, or isolated lacking comprehension 

of parallel paths (LC5), or lacking capacity to compare more than 2 relevant facts (LC3). 

Participants in LC4 are best in understanding the concept of parallel pathways, but at the same 

time do not easily understand repeating loops.  

Thus, an interpretation of the total number of correct responses would disregard important 

differences between different cognitive strategies mainly for “average” good participants. 

Given the unknown increase in cognitive workload with more complex graphical models, and 

given the experimentally varied wording conditions of graphs and test items, and thirdly given 

the differing logical problems formulated by test items, a grouping algorithm like LCA seems 

to be a good choice to differentiate students according to their capacity to decipher process 

models.  

Moreover, differentiating specific comprehension errors has also a practical implication: Within 

educative context, it is important to know, which specific concepts and tasks are still 

misunderstood or are already understood in order to give meaningful feedback (Shute, 2008). 

Knowing which solution profile a learner applies helps to give meaningful feedback and derive 

adequate strategies for improvement. 

In Sample II, the majority of the participants responded in a similar fashion to the profiles of 

LC5 (“logically correct thinking, with misinterpretation”) or LC6 (“logic champions”). This 

better performance might partly be explained by the higher mean age and, resulting from that, 

the longer formal education of these participants. Nevertheless, solution patterns were only 

weakly connected to aspects of eye movements while working on the tasks. Only the number 

of toggles (gaze transitions) between the graphical model and the written statements was 

negatively associated with membership in LC4 (“multi-taskers”). The lower the number of 
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toggles in PM2, the more likely the participant displayed a correct understanding of parallel 

pathways (even better than LC6), while failing to understand the notion of loops. In other 

studies a high rate of toggling was negatively correlated with intelligence scores that used visual 

tasks as a measurement basis (e.g. the Wiener Matrizen Test 2, see (Laurence et al., 2018)). 

Excessive toggling characterized a strategy to eliminate mutual contradictory responses instead 

of finding logical sequences within systematically ordered matrices of pictograms (Arendasy 

& Sommer, 2013; Bethell-Fox et al., 1984). In our study, the four statements underneath each 

PM often addressed similar activities. In PM2 there were two statements addressing the notion 

of loops, which could have been weighted against each other by means of toggling (Q1: “E 

must be executed at least once” vs. Q3: “E can be executed a maximum of four times”). 

Even though LC5 and LC6 were quite different in the comprehension of PM2, other eye-

tracking measurements like the participants’ fixation durations on either part of the model 

(classified into various areas of interest) were not associated with membership in latent classes. 

But finding no differences could be due to low statistical power. 

Features impacting comprehension: PM complexity 

Model complexity was handled as a within-subject factor in each condition. With increasing 

model complexity, the time required to respond to the comprehension questions rose. This is 

true for both Sample I and Sample II. Concerning eye movement indicators, the same increase 

could be observed for fixation duration on the models and the total number of toggles. This 

demonstrates that participants aspired to find the correct solutions and were not prone to click 

a response alternative quickly or randomly, in reaction to overly excessive demands. While we 

do not have comparable eye-tracking data in Sample I, the participants had been asked whether 

they thought the test was too difficult to be solved and whether they understood the tasks. Only 

25 participants (of 1047) responded in the affirmative to the former and 23 denied the latter 

question. Therefore, we assume a high aspiration level across both samples, which supports a 

preliminary interpretation of the determined latent classes as potential “cognitive styles”. It 

should be kept in mind, that the interpretation of latent classes as “cognitive styles” is based on 

a purely data driven approach and should be regarded a preliminary tentative interpretation of 

empirical solution patterns. Further studies should focus on a convincing link between cognitive 

theory and solution patterns, as the latter might change with alternative operationalisations of 

PM complexity.  
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Features impacting comprehension: Semantic notation 

The PM conditions, i.e., whether the PM components had been labelled by letters, sentences, 

or pseudo sentences, were associated with a different prevalence of latent classes in Sample I 

(see Table 2). They also exerted a systematic influence on some of the eye-tracking variables. 

Contrary to our expectations, sentences representing everyday processes as naturalistic 

scenarios were not associated with a higher prevalence of the “logic champions” LC6, as earlier 

studies would have predicted (Sweller & Sweller, 2006; van Merrienboer & Sweller, 2005). 

Instead, in more than half of the participants single letters as denotation generated a solution 

pattern of the “logic champion” type. This is in line with the finding of Mendling et al. (2012) 

on the impeding effects of additional semantic information on syntax comprehension. 

Stimulus features nested in the PMs appear to impose a high extraneous cognitive load (Sweller, 

2005) that requires working memory resources. Longer fixation duration (as measured in 

Sample II) can be understood as prolonged cognitive processing (Sweller et al., 2011, p. 81). 

eye-tracking data can indicate where and for how long the subject focuses his or her attention, 

implying corresponding variations on cognitive load. When splitting the model AOI into 

relevant and irrelevant parts, as we did with PM2 (see Fig. 2), the fixation duration on irrelevant 

parts was significantly shorter in the letter condition than in the sentences and pseudo sentences 

condition. On the other hand, fixating relevant parts of the models displayed no significant 

differences between conditions (see Fig. 6). The relevant parts all had about the same fixation 

time in all three stimulus conditions (see the percentage of red and blue in Fig. 5B).  

Additional verbal workload, regardless of sentences content (pseudo or real sentences) does not 

increase the time needed to focus on relevant model parts; additional time is only spent on 

verifying irrelevant model activities. Verbal attributes seem to distract from identifying the 

relevant model parts, but do not increase the time needed to focus on the relevant parts of the 

model. One might assume that for PMs that only include letters, the fixation duration could be 

expected to decrease on every part of the model corresponding to less reading time. However, 

this is not the case here. So, what contributes to this effect? 

We assume three different types of cognitive processes, which are needed to come up with a 

solution to the statements presented below each model. First you need to read and understand 

(A) the sentences and model activities, then find and compare (B) the statements with the 

relevant model parts, and finally evaluate and decide (C) whether or not the statement is correct. 

This follows the idea of the so-called SOI model (“Selection-Organization-Integration”), which 
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has been elaborated for cognitive load theory in multimedia learning (Mayer, 1996, 1999). The 

time spent on irrelevant parts is only used for reading and understanding (A) as well as finding 

and comparing (B), but not for evaluating (C) the statements. A and B take significantly longer 

in the sentences and pseudo sentences condition as the structure of the sentence and the meaning 

of words need to be understood before it can be rejected as irrelevant. The relevant parts of 

PM2 include logical gateways, which were essential for answering most questions. These 

gateway symbols did not differ between conditions. From this point of view the fixation 

duration on relevant model parts should not differ between conditions, as the symbols did not 

change between conditions and the time spent on relevant model parts prominently included 

the time to evaluate and decide (C), whether the statement is true or false.  

It might be speculated that a model, which combines letters for redundant model parts and 

sentences for important model parts, would be the most efficient design implementation for 

reducing the time spent fixating on the model as a whole. The practical implication would be 

that the most important information can be presented in a more natural verbal form (sentences), 

where other information should be presented in a short “logic-inducing” variant (e.g. letters or 

symbols) to keep the observant from looking at less important model parts and therefore 

reducing cognitive workload of reading and understanding (A) as well as finding and 

comparing (B). Further research needs to be conducted, in combining both elements in one 

process model to verify these conclusions. 

Visual Literacy and PM comprehension 

We could not find significant differences in cognitive solution patterns between VL experts and 

novices. Thus, understanding and “solving” process models does not seem to depend too much 

on visual literacy as defined in this study. Apparently, comprehending the logic behind IF and 

OR gates as well as recognising pathways is crucial to follow the information flow in PMs. 

Even though the PMs are presented in a visual form, the ability to “interpret, analyse or 

appreciate visual media” does not seem to help understanding the “logical structure” of the PM. 

This result is useful with respect to other VL assessment items in terms of discriminatory 

validity. Given the small observed mean differences, it seems reasonable to hypothesize that 

the capacity for solving PMs does not contribute to the distinctiveness of visual literacy, which 

brings up an important distinction between logical models and other forms of visual information 

(e.g. parts/details of pictures Vogt & Magnussen, 2007). Regarding the eye-tracking indicators, 

we also did not find significant differences between VL experts and novices on fixation duration 
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between relevant and irrelevant PM parts. If VL had a substantial influence on PM 

comprehension, we would assume longer fixations on relevant AOIs and shorter on irrelevant 

AOIs, as indicated by Gegenfurtner et al. (2011). On the contrary, it seems that the search for 

subjective factors impacting PM comprehension (favoured by Recker and Dreiling, 2011) 

should not address primarily visual competence but cognitive capacities.  

VL experts spent more time looking at the four statements below each model, and therefore 

took more time reading or thinking about the given statements. It would be interesting to see if 

artistic model features like colours or fonts would facilitate or distract specifically VL experts 

in following the logical character of PM. In further studies, longer linear models (requiring the 

exclusion of more nodes as “irrelevant”) could help to distinguish between the workload 

emerging from actively omitting irrelevant facts from the workload necessary to draw logical 

decisions. That way the effect of verbal contribution on the distribution of cognitive load could 

be differentiated independently from the influence of logical gateway symbols. 

Practical applications and future investigations  

Eye tracking allows for a multitude of interesting experiments on analysing visual perception 

(Holmqvist & Andersson, 2017). Many other studies try to find differences in eye-movements 

between experts and novices. Experts in their field may faster distinguish relevant from 

irrelevant information than novices do (Gegenfurtner et al., 2011). For example, it can be shown 

that expert chess players are able to use their parafoveal vision (complete field of vision) to 

extract information that is relevant for the solution of the tasks better than novice players 

(Charness et al., 2001; Reingold et al., 2001; Sheridan & Reingold, 2014). Higher cognitive 

functions like this holistic perception of a scene require perceptive as well as memory processes. 

Whether or not the VL experts in our study profit from their greater experience with visual 

stimuli or whether they were able to perceive relevant details more holistically, should not be 

decided on our novel setting, because the perceptive part of the visual tasks may be mantled by 

necessary logical reasoning.  

There are implications that could lead to practical progress e.g. in teaching software 

engineering. The video recordings of participants gaze behaviour on target stimuli can be used 

as an educational tool, to show and teach novices when and where to look at (e.g. in information 

retrieval from medical images; Gegenfurtner et al., 2017). Combining eye-movement modeling 

examples (known as EMME) with other learning systems used for training in process model 

comprehension (e.g., a step-by-step assistant that teaches a complete and correct comprehension 
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of process models) can be developed accordingly, thus enabling especially novices a better 

initiation to working with process models (see Jarodzka et al., 2017 for further proposals in 

using eye tracking in educational context).  

The identification of latent classes with differing solution profiles helps to provide learners with 

useful feedback on adequate strategies how to improve their decisions. Assessment of visual 

competence might be helpful to address different target groups among apprentices while 

preparing specific learning materials (Andrà et al., 2009). We encourage further research on 

process model comprehension by means of eye tracking. Moreover, in the context of Industry 

4.0, process models serve as an enabler for automatization. Because process models used for 

this purpose often are very complex and thus hard to read and comprehend, the methodology 

introduced by this article might contribute to enable further studies with high relevance for the 

field of organizational research (Meißner & Oll, 2017). 

Limiting factors  

Some limiting factors of our study need to be addressed. (1) We assume the same latent 

classification from Sample I (high-school students) to be present in Sample II (VL expert and 

novice group). However, it is possible that through age differences and recruitment outside a 

classroom context, different underlying classifications might be more appropriate. (2) When 

looking at AOIs from a narrow and dynamic visual angle, the risk for error prone AOI-fixation 

detection increases (Orquin & Holmqvist, 2018). Our AOIs were therefore drawn more 

conservatively (larger) and included multiple activities and pathways to compensate for eye-

tracking inaccuracy. Using remote devices with constant lightning conditions and steady head 

position (minimizing Pupil foreshortening effect, Hayes & Petrov, 2016) in future studies could 

avoid this imprecision and also allow pupillometric analyses. (3) The generalizability of the 

typology of cognitive solution patterns to other PMs is difficult, if not impossible, due to the 

different features of the PM that we used to operationalize complexity. Increasing model 

complexity was based on the guidelines from Becker et al. (2000): PM1 was constructed as a 

linear model, PM2 had one prominent parallel pathway and one loop, and PM3 had multiple 

inclusive and exclusive pathways in combination with a higher number of total activities. 

Whether this selection of demand characteristics is representative for the whole universe of 

possible model complexities cannot be decided from our data.  

(4) Potential effects of various statistical aspects of our study: sequence of model presentation 

and/or of comprehension test items cannot be excluded due to their uniform ordering 
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corresponding to their complexity. (5) The selection of valid eye-tracking indicators: At this 

point, we could not deduce a single variable as major study endpoint because of lacking 

theoretical foundation, and also could not construct a combined scaled measure of the correlated 

variables in use due to the limited sample size of study II. (6) The semantic language structure 

of the four statements presented below each PM was also not varied systematically: PM1 only 

included questions regarding sequence (e.g. A follows B), PM2 included questions regarding 

sequence, conditional activities and loops, and PM3 included questions on sequence, on 

conditional activities as well as a statement on all activities in the model (PM3, Q3). Therefore, 

it is difficult to identify a specific model feature or statement as exerting the main influence on 

the solution patterns. Future studies should systematically vary the cognitive workload that 

results from the logical structure, labels or comprehension statements.  

(7) Finally, if done in more detail, the latent structure of solution patterns could be analysed 

using more sophisticated psychometric models than a “simple” latent class analysis. Though 

LCA seems appropriate for the comparisons in this study, it is conceivable that different 

subgroups of high-school students (or adults) share different PM features for comprehension. 

Mixed Rasch Models or so called “hybrid models” (Rost & Langeheine, 1997) may be applied 

to test these patterns of responses in PM comprehension tasks. As in research on intelligence, 

one could also speculate on the existence of second order abilities (dominated from the subject’s 

characteristics) and first order task-specific latent classes.   

Conclusion 

To conclude, the present study demonstrates an association between problem solving behaviour 

as measured through eye tracking and the comprehension of PMs. Specific solution patterns 

could be revealed, depending on the structure and complexity of PMs. The condition of how 

PMs are presented (i.e., letter, sentence, or pseudo-sentences) displayed significant influence 

on the answering patterns and the time spent on each model. PMs cannot be interpreted solely 

based on their graphical nature, but their semantic structure plays an important role for their 

comprehension as well. Specifically, the use of single letters for model activities resulted in a 

faster and more precise understanding of the models. Experts in VL could not be shown to 

outperform novices with respect to PM comprehension. It seems worthwhile to focus on the 

cognitive mechanisms and less on visual competence of subjects when assessing their PM 

comprehension. 
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From a methodological point of view, eye tracking demonstrated a fruitful path into analysing 

the comprehension of graphical logical models like PMs. Fixation duration on different parts 

of a model enabled scrutinizing effects of verbal model features on attention distribution and 

cognitive workload. In future studies, relevant and/or difficult to comprehend parts in a process 

model may be extended with other visual features for effective guidance through a PM. Due to 

the restricted variation of characteristics of (Business) PMs, further research needs to include a 

wider range of model formulations.  
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Abstract 

The results of two experiments are analyzed to find out how artistic expertise influences visual 

search. Experiment I comprised survey data of 1065 students on self-reported visual memory 

skills and their ability to find three targets in four images of artwork. Experiment II comprised 

eye movement data of 50 Visual Literacy (VL) experts and non-experts whose eye movements 

during visual search were analyzed for nine images of artwork as an external validation of the 

assessment tasks performed in Sample I. No time constraint was set for completion of the visual 

search task. 

A latent profile analysis revealed four typical solution patterns for the students in Sample I, 

including a mainstream group, a group that completes easy images fast and difficult images 

slowly, a fast and erroneous group, and a slow working student group, depending on task 

completion time and on the probability of finding all three targets. Eidetic memory, 

performance in art education and visual imagination as self-reported visual skills have 

significant impact on latent class membership probability. We present a hidden Markov model 

(HMM) approach to uncover underlying regions of attraction that result from visual search eye-

movement behavior in Experiment II. VL experts and non-experts did not significantly differ 

in task time and number of targets found but they did differ in their visual search process: 

compared to non-experts, experts showed greater precision in fixating specific prime and target 

regions, assessed through hidden state fixation overlap.  

Exploratory analysis of HMMs revealed differences between experts and non-experts in image 

locations of attraction (HMM states). Experts seem to focus their attention on smaller image 

parts whereas non-experts used wider parts of the image during their search. Differences 

between experts and non-experts depend on the relative saliency of targets embedded in images. 

HMMs can determine the effect of expertise on exploratory eye movements executed during 

visual search tasks. Further research on HMMs and art expertise is required to confirm 

exploratory results.   

 

Keywords: visual literacy, assessment, fixation sequence, hidden markov model, eye-

tracking data, visual search task, latent profile analysis  
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1 Introduction 

Visual perception is an active process of constructing meaningful information from external 

visual stimuli based both on neurobiological capacities (i.e. laws of perception) and individual 

learning history (skill training, memory). Perceptual psychology describes the cognitive 

mechanisms employed to transform visual stimuli into information. The comparison of experts’ 

and non-experts’ processing during a challenging visual task can be used to decipher these 

cognitive mechanisms. In a broad sense, visual expertise has been studied in medicine (medical 

imaging), engineering (surveillance of technical processes) or education (learning behavior) 

and has been defined as a domain-specific adaptation to the requirements of a visually 

challenging task (Gegenfurtner & van Merriënboer, 2017), which has been coined Visual 

Literacy (VL). More recently, mostly from authors in the context of aesthetics and fine arts, this 

concept has also been referred to as visual competency (Schönau & Kárpáti, 2019). Other 

authors (Avgerinou & Pettersson, 2011; Wagner & Schönau, 2016) used the term VL, which 

they described as the ability to inspect and understand images and express oneself through 

visual media. 

Psychological models of visual expertise have focused on three major theories (Brams et al., 

2019; Gegenfurtner et al., 2011): (1) the long term working memory theory (Ericsson & 

Kintsch, 1995) suggests that experts can retrieve more visual information from long term 

working memory than novices do, (2) the information reduction hypothesis (Haider & Frensch, 

1996, 1999) proposes that experts selectively focus on important visual image parts relevant for 

the task and ignore irrelevant stimuli, and (3) the holistic model of image perception (Kundel 

et al., 2007), which states that experts gain more visual information from global and para-foveal 

regions, effectively allowing a broader grasp of the image to guide their search. Recent studies 

find evidence in support of the information-reduction hypothesis as the most important skill 

developed in experts across most domains (Brams et al., 2019).  

Restricting the discussion to fine art studies and art education, differing VL models have been 

proposed (Kędra, 2018). One of the broadest conceptual models (ENViL-model, see Wagner 

& Schönau, 2016) divides VL into as many as 16 subdomains, which include “value”, 

“envision”, “experiment” or “aesthetic experience”. Many of these domains show considerable 

overlap. As this model was not generated by psychometricians but by art educators, this model 

is strictly phenomenological and has not been empirically tested. Nevertheless, it has received 

great attention from applied art education theory (e.g. Groenendijk et al., 2018). One 

subdomain, “analysing”, has been described as the ability to attentively and accurately focus on 
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visual stimuli and to identify characteristics of images (Wagner & Schönau, 2016, p.70) and 

therefore should be crucial in visual search tasks. The “analysing” ability is directly associated 

with the information-reduction hypotheses, where experts find important visual information by 

focusing on important image features and ignoring irrelevant features. Experts’ continuous 

engagement in art and imagery plausibly should impact on how cognitive processes differ 

between VL experts and non-experts. VL experts thus may serve as best-practice examples to 

describe effective cognitive strategies in detecting details in images of artwork.  

In a visual search experiment the participant is asked to look for a target among distractors 

(Wolfe et al., 2003; Wolfe, 2010). A visual search experiment might be analyzed by either 

evaluating the correct solution or by recording task-solving behavior (e.g., reaction times, eye 

movements). Thus, visual search paradigms are oftentimes used to investigate differences of 

experts and novices with respect to the participant’s speed or accuracy in locating targets, for 

example in medical image examination (Drew et al., 2013; Sheridan & Reingold, 2017; van der 

Gijp et al., 2017) or in sports (Piras et al., 2014; Vaeyens et al., 2007). The influence of reading 

literacy on visual search has been extensively studied (Ferretti et al., 2008; Franceschini et al., 

2012; Olivers et al., 2013). Few studies have considered the influence of visual literacy and its 

effects on visual-search performance. Studies on artistic visual expertise (e.g. Francuz et al., 

2018; Vogt & Magnussen, 2007) are typically not conducted with visual search tasks (finding 

targets among distractors) but e.g. by judging abstract from realistic paintings or in the context 

of visual memory tasks. Expertise-related differences in target search have been mainly 

explored in domains other than the visual arts (e.g. medicine (Kundel et al., 2007) or sports 

(Vaeyens et al., 2007)). To our knowledge, the use of artwork in a visual search task still 

remains fairly uncommon (e.g. Nodine et al., 1979).  

Aesthetic appreciation and a general interest in the visual arts might amplify a person’s ability 

to identify specific details in images of artwork. With respect to art appreciation, five domains 

have been put forward: A (attraction), R (representation and realism), E (emotional expression) 

S (style and form), and I (interpretation), denoted as ARESI classification (van Meel-Jansen, 

2006). Visual experts tend to show more appreciation for images rated high on the “style and 

form” and “realism” domain. Evidence from neuroaesthetic research revealed perceptual 

processing enhancement at behavioral and at a neurophysiological level when images are 

aesthetically appreciated (Sarasso et al., 2020). Art appreciation might facilitate visual search 

performance. Research on the aesthetic appreciation of art has differentiated between two 

modes of perception: pleasure and interest, which are conceptualized as partly overlapping, 
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partly distinct functions of aesthetic appreciation (Graf & Landwehr, 2017). Whereas the free 

viewing of abstract paintings presumably favors the “pleasure” mode, a visual search task for a 

specific detail in paintings might require a more analytical way of regarding a piece of art 

(“interest” mode), depending on the painting style or content of the artwork. This might also 

elicit aesthetic appreciation. Thus, experts would operate more according to the “interest” 

pathway to aesthetic appreciation.  

Studies of eye movement behavior often are regarded as a tool to link observed behavior to 

cognitive mechanisms (Hollingworth & Bahle, 2020). Previous eye-movement research has 

focused on domain-specific differences in visual expertise with respect to number of fixations 

and fixation duration (Gegenfurtner et al., 2011). Studies showed that professional art viewers 

were reported to exhibit greater saccadic amplitudes than novices, particularly when viewing 

abstract paintings (Zangemeister, 1995). Experts also tend to have more short fixation 

durations, i.e. direct their attention on specific areas of paintings (Ylitalo et al., 2016). Novices, 

when revisiting previously seen images, exhibit fewer and longer fixations (Vogt & Magnussen, 

2007). Some studies used eye movement patterns to distinguish artists from laymen (Kolodziej 

et al., 2018). Other studies demonstrated differences between expert and novice artists in how 

they looked at particular works of art. Accordingly, experts differ from novices in the number 

of fixations and average fixation duration on specific parts of the image (Kolodziej et al., 2018). 

Interestingly, in a study on artists’ free viewing behavior of abstract paintings, Koide et al. 

(2015) report that expertise leads to fewer fixations on salient image regions. The authors 

suggest that the artists’ knowledge of art overrides stimulus-driven guidance of fixations, 

opening up the possibility of focusing their attention to less obvious image areas. Even though 

the transfer of VL ability across the art domain boundary remains uncertain, some studies have 

found differences in visual-spatial tasks depending on the person’s level of artistic expertise 

(Angelone et al., 2016; Chamberlain et al., 2019). In these studies, visual artists outperform 

novices through top-down control over attentional processes and fast and more precise visual 

encoding.   

As previous studies pointed out differences in fixation duration or number of fixations, the time 

dependence of fixation sequences is rarely taken into account. However, the order of fixation 

sequences can be used to deepen our understanding of expertise-related differences in visual 

search. Eye-movements play an important role in visual search behavior, as they can indicate 

where and for how long people look at something, allowing researchers to model attention 

throughout the given task (Hollingworth & Bahle, 2020; Koochaki & Najafizadeh, 2018). 
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Heatmaps (Bojko, 2009), for example, can be used to visualize fixation density (number of 

fixations) over time. However, sequences (spatial as well as chronological order) of eye 

movements (i.e. scanpaths) are often neglected in the analysis of saliency or fixation density 

(Le Meur & Baccino, 2013). The sequence of eye movements is crucial in understanding not 

only where, but in what order people direct their gaze and attention while inspecting images.  

To account for sequence dependent effects in eye movements, we chose to compare the spatial 

coordinates of fixations (i.e., the series of numbered fixations by index) across VL expert and 

non-expert groups. We use Hidden Markov Models (HMM (Rabiner, 1989)) to analyze the 

fixation sequence to reveal latent image areas. Through HMM-analysis we can find and 

visualize hidden (i.e. not directly observable) attention states (for details see methods section). 

Combining eye-tracking analysis with statistical approaches such as HMM leads to further 

insight into factors underlying scanpaths during visual search (Borji & Itti, 2013; Coutrot et al., 

2018; Koochaki & Najafizadeh, 2018; Ulutas et al., 2019). HMMs have been successfully used 

in combination with eye-tracking data to parse fixations from saccades (Houpt et al., 2018), to 

depict processes underlying facial recognition (Chuk et al., 2014; Chuk et al., 2019) or for 

information retrieval during reading (Simola et al., 2008). The feasibility of a latent state 

approach for the analysis of eye-tracking data has become increasingly popular in applied 

research areas such as marketing research (Netzer et al., 2017).   

Which parts of the image are closely examined and in what order are they examined during 

visual search? Search effectiveness and the probability of finding pre-defined targets are only 

one aspect of visual search performance. The psychometric assessment of search time and 

number of correctly identified targets does not allow for a detailed understanding of the 

underlying search process. Using eye-tracking measurements search processes and differences 

in expertise strategies can be examined more closely.  

The research reported here is part of a larger study (Rakoczy et al., 2019) on visual literacy. A 

test battery was constructed to assess various aspects of VL, which was administered to a large 

sample of high school students for psychometric evaluation. The reliable and valid 

measurement of VL could serve as a tool for quality management in educational settings and 

thus contribute to the improvement of art education. Two aspects are especially interesting for 

the study of VL: First, not much is known about self-reported artistic skills and VL performance 

in young students. What influence do self-reported visual skills have on search time and number 

of found targets of students? Self-confidence or interest in visual arts may facilitate engagement 

in artistic stimuli. Secondly, cognitive mechanisms employed to solve visually guided tasks are 
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a necessary link to translate skill level measurement to didactic improvements and to sharpen 

the association between self-perceived visual competency and art teacher’s feedback. In 

addition to the psychometric evaluation of visually guided tasks, we compare VL experts and 

non-experts’ visual search process to uncover expertise-specific modes of search behavior. Eye 

tracking is used to determine the external validity of the assessment items. Do VL experts differ 

from non-experts in search time and number of found targets? The comparison of both a student 

sample and a sample of VL-experts and novices can enhance our understanding of cognitive 

processes engaged in the visual tasks going beyond the measurement of performance (i.e., 

reaction times and hit rates; effectiveness) to also include information on order and precision 

of the search (efficiency).    

This study addresses the following hypotheses:  

H1a: VL experts identify more targets than students (Experiment 1)  

H1b: VL experts are faster than students in finding the targets (Experiment 1) 

H2a: VL experts identify more targets than non-experts (Experiment 2)  

H2b: VL experts are faster than non-experts in finding the targets (Experiment 2) 

To get insight into the search process we take a closer look at the participant’s eye-movements 

during the search: Do VL experts differ in spatial and/or chronological aspects of their 

scanpaths from non-experts? More specifically, do VL experts identify more and/or other 

meaningful regions of interest in images of artwork than non-experts do?  

H3: VL experts show higher precision in target detection, i.e. exhibit eye movements to targets 

that differ from those of non-experts during visual search (Experiment 2) 

The eye-tracking research questions are assessed through exploratory analysis with the help of 

HMM models to investigate differences between the search strategies of VL experts and 

novices. Differences can be interpreted as empirically derived hypotheses for future 

confirmatory analysis. As the use of HMM in the context of expertise research is relatively new, 

we give some examples of how this method can be advantageous over traditional eye-

movement visualization and analysis. 
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2 Method 

Subjects 

The data reported in this study was acquired as part of a larger research project on the 

assessment of Visual Literacy (Rakoczy et al., 2019) and is comprised of two samples: an 

assessment sample (Sample I) involving a large sample of high-school students and an eye-

tracking sample (Sample II) consisting of VL experts and non-experts. 

Sample I comprised 1065 high-school students from 52 classes (9th to 13th grade) of 29 schools 

in Germany of which 1056 worked on the visual search task. Overall, 52% were female, the 

average age was 15.27 years (SD = 0.94). Schools were recruited in the federal states of Hessen, 

North-Rhine Westphalia, Schleswig-Holstein, and Rhineland Palatinate via leaflets, letters and 

personal recommendations. The test was conducted in regular classrooms. Up to 30 students 

were able to participate in the assessment simultaneously. The visual search task under 

investigation was one segment of a longer (duration: 45 min) study on the topic of VL including 

a sociodemographic questionnaire (age, gender) and questions regarding the topic of art and 

personal experience with art: “Do you regularly attend an art school or art workshops?” Scale 

from 1 (never) to 4 (multiple times a week), “Art is important for me personally”, “My parents 

are interested in art and artistic subjects”, “In our family, art is very important”, “We like to 

talk about art and artistic subjects in our family” on a scale from 1 (strongly disagree) to 4 

(strongly agree); “How good are you at art theory (e.g. interpreting pictures, understanding art 

history)?” “How well do you perform in arts education generally?” from 1 (very bad) to 5 (very 

good) and questions including the grade in art class and self-reported skills: photographic 

memory (PM; “I have a 'photographic memory'”), spatial orientation (SO; “When I see a 

photographed geometric object, I can imagine what it looks like from behind”), long-term 

memory (LM; “I can remember small details in pictures”), imagination (IM; “I can visualize 

things mentally”), and interest in visual puzzles (IP; “I like to solve picture puzzles”). These 

were reported on a scale from 1 (strongly disagree) to 4 (strongly agree). All answers were 

given via touchscreen input by the participants. School classes were offered a lump sum of 100€ 

as collective compensation. Sample I was presented four images included in the visual search 

task: “Exhibition”, “Oppermann”, “Footprints” and “Clock & Graffiti” (see Figure 1). 

Sample II comprised 52 participants, who were screened for eligibility as part of the eye-

tracking study. Two participants were excluded from further analysis, one because of poor 

acuity and the other because of insufficient eye-tracking quality. For another participant in the 
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expert group the eye-tracker lost the tracking signal on two trials and therefore data from this 

participant were only included for the remaining trials (images 1-7). As there is currently no 

validated test available on the assessment of VL, experts and novices were screened based on 

their prior experience and interest in the visual arts. Participants in the expert group (n= 25) 

were either members of the European Network of Visual Literacy (ENViL) or working in 

professions requiring a high visual competency (photographer, gallerist, art educator, art 

designer, art students, or self-employed artists). The non-expert group (n= 25) were adults from 

the clerical and academic staff of various educational settings not associated with academic or 

professional work in the visual arts. The participants’ ages ranged from 16 to 66 years (mean 

age = 29.08 years, SD =12.55 years). Participants in Sample II were individually assessed in 

seminar or laboratory rooms (e.g. at the Academy of Fine Arts in Munich) or at expert’s 

working places. All participants had normal or corrected-to-normal vision. Student participants 

received 20€ each as compensation. Other participants, including experts in the expert group, 

who were generally interested in the topic of visual literacy and eye tracking, participated 

without any compensation.  

Stimuli 

Subjects were required to identify three targets (details) on each of the four (Experiment I) or 

nine (Experiment II) subsequently presented images. Figure 1 illustrates the procedure of the 

experiment. Calibration screen and fixation cross was only visible for Experiment II. 



Chapter 2. Publications  

 

55 

Figure 1 

Procedure of experiment with nine images 

 

Note. Sample I only included the following images: Exhibition, Oppermann, Footprints and 

Clock & Graffiti. Sample II included all nine images. 

In a short pre-study, four untrained VL experts independently rated each of the photographs in 

our sample of images with the ARESI classification (van Meel-Jansen, 2006) on a scale from 1 

(feature not present) to 7 (highly prominent feature). Ratings reached a reasonable mean 

interrater correlation of ICC = 0.50 (Shrout & Fleiss, 1979) and the following mean values: A= 

4.8, R= 5.1, E= 3.6, S= 5.1, I= 4.4. Thus, images can be regarded as of satisfactory aesthetic 

value with above average rating on realism (R) and style and form (S) and not representing 

outliers on one of the five aesthetic domains.  

Each image had three primes positioned on the right-hand side (P_1, P_2, and P_3). The primes 

represented details to be found as targets on the left (T_1 to T_3). Figure 2 shows prime and 

associated targets as pre-defined AOIs (see Appendix B for all nine images). Image areas not 

covered by any AOI are defined as white space (WS). Once the subject found (or thought to 

have found) a target they touched the region on the screen to indicate the corresponding position 

of the given target. A red circle of 50-pixel radius appeared at each touching point to indicate 

that input was registered. Targets were counted as identified when they were touched within a 

50-pixel radius around the center of each target region.  
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Figure 2  

Example image “Exhibition” with pre-defined AOIs  

 

Note. Primes (P_1 to P_3) on the right-hand side and targets (T_1 to T3) of the image are 

correspondingly shaded in color. Note that neither the colored shading nor the labelling of AOIs 

was presented to the subjects during the experiments. See supplementary material for all nine 

images (Appendix B). 

All participants were assessed on Android A6 Tablets with 10.1-inch screen size. Tasks were 

constructed explicitly for the study (Andrews et al., 2018). There was no time constraint during 

the task. The participant ended each trial by pressing the “Done”-button. 

In Sample II eye movements were recorded with SMI eye-tracking glasses (SMI ETG 2w 

Analysis Pro). The glasses were positioned and strapped tightly onto the subject’s head, which 

they could freely move during task completion. Participants were seated 50–80 cm away from 

the tablet screen. Eye movements where calibrated with a 3-point calibration. All eye-tracking 

data were recorded at 60 Hz. Saccades and fixations (as well as blinks) were recorded 

binocularly. Before each image was presented, a fixation cross was displayed for 2 seconds. 

Subjects were free to search the targets in any order and received no further feedback during 

the trial (on number of correct targets found).  
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The session started with a task instruction (in German):  

 “In the following task you have to search for specific details inside a given picture. Touch the 

area on the picture where you found it. There will always be 3 details to find. When you are 

done, click ‘Done’. Then the next picture follows.” 

Eye-tracking data analysis was conducted with SMI BeGazeTM version 3.7. Fixations for each 

image were mapped onto corresponding reference images using SMI fixation-by-fixation 

semantic gaze mapping (Vansteenkiste et al., 2015). Each reference image was divided into 

three prime and three target AOIs (see Fig. 2). The following eye movement variables were 

analyzed: the spatial coordinates of each fixation, the fixation sequence and the fixation 

duration in milliseconds. Due to the explorative nature of this study, no measures against 

inflation of type I error were undertaken, as statistical tests were not regarded as confirmatory 

analyses. 

The study was conducted according to the guidelines for human research outlined by the 

Declaration of Helsinki and was approved by the Ethics Committee of Research of the Leibniz 

Institute for Research and Information in Education, Frankfurt am Main (DIPF, 01JK1606A). 

All subjects and their legal representatives respectively had given written informed consent 

prior to participation.  

Latent Profile Analysis 

Students’ responses to the images presented were recorded as a vector of 4 (images) times 3 

(details to be identified) = 12 dichotomous variables (target correctly identified or not?) and 4 

continuous variables (time in sec. to solve all three search tasks per image). Individual response 

patterns were grouped into latent classes of similar response patterns by means of a Latent 

Profile Analysis (see Ferguson et al., 2020), for statistical model and a practical application). 

Models between 2 and 6 latent classes were estimated using MPLUS 8.4 software. The decision 

to interpret four latent classes (named LC1-LC4 in Figure 4) as the final solution was based on 

the progression in the BIC fit indices (sharp decline after 4 classes) and the Lo-Mendell-Rubin 

test of significant improvements in model fit (p = 0.6707 for a five class solution). Latent class 

analysis (and the generalization of latent profile analysis) results in class membership 

probabilities for each individual to each of the estimated classes. Individual students were 

manifestly classified into latent classes according to their modal class membership probability. 

This categorical variable (reflecting four qualitatively differing solution patterns) then was used 

as dependent variable, which was regressed on by a list of demographic (gender, age) variables 
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and self-reported skills (mentioned above under “subjects”). To arrive at a parsimonious 

multinomial logistic regression model for group membership, a stepwise selection of predictor 

variables was applied, which resulted in three significant predictors (Table 2). Results are 

presented as Odds-Ratios per scale point of three self-ratings of students’ visual performance 

skills for three of the latent classes as compared to the largest (“mainstream”) group.    

Hidden Markov Model 

Hidden Markov models (HMMs) represent efficient and flexible modelling tools for data that 

include temporal constraints and spatial variability such as the sequences of eye movements. 

The intuitive idea behind a Markov Model or a Markov chain is that in series of events where 

each probability of something happening depends only on what happened right before it. For 

eye movements, we can look at the fixation sequence and classify each fixation to their most 

likely state (data-driven Area of Interest) depending on the previous fixation. The HMM divides 

the image into multiple data-driven AOIs which we can call Markov states. Each time a new 

fixation arises in our fixation sequence, we can give the fixation a certain probability of 

belonging to the same AOI or switching to any other one. This probability is called the 

transition probability. The transition probability is conditional to the previous fixation 

observed. Combining the probabilities for each state gives us a transition matrix. In the case of 

hidden Markov models the states are not directly observed. Only the observation sequence (the 

fixation sequence) is known.  

A HMM comprises three components: the initial state distribution (in what states participants 

start in), the state transition probability distribution (how likely it is to transition from one state 

to another), and the observation probability distribution (how likely an observation is produced 

by any given state, i.e. how likely a fixation is linked to any given AOI). Again, each HMM 

state in this study represents a location on the image participants fixated while inspecting that 

area. The transitions between each hidden state (image area) can be placed into a transition 

probability matrix, describing the probability of switching between each hidden state.  

A Hidden Markov model can be defined as 

𝛌 = 𝑨, 𝑩, 𝛑 

where λ is a triplet comprising the model matrices. A is the state transition probability 

distribution of state j following state i. B is the observation (emission) probability distribution 

of observation k from the state j. π is the initial state distribution: π= {πi}, 1≤ i ≤ N. 
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See (Rabiner, 1989) for an introduction to HMM and (Coutrot et al., 2018) and (Boccignone, 

2019) for HMM applied to eye movement data.  

HMMs were estimated using the depmixS4 package (Visser & Speekenbrink, 2010) with the 

software R. Spatial variability can be modelled through the output distribution of an HMM and 

temporal variability through the HMM transition parameters. In the case of eye-tracking data, 

each transition can be interpreted as an outgoing saccade from one data-driven AOI to another. 

The HMMs were formulated based on the spatial coordinates of each fixation. No additional 

constraints were put on the models’ parameter matrices. We estimated HMMs for each expertise 

group (experts vs. non-experts) on each of the nine images.  

Each HMM was estimated from two to 14 states. Selection of model class (number of states for 

each image and group) was achieved by Bayesian Information Criteria (BIC, see Vrieze, 2012). 

If there was a discontinuous progression of the log-likelihood when incorporating a new state 

to the model, alternative seeds to determine randomly chosen starting values were used to avoid 

local optima.  

To visualize the HMM, all fixations (emission points) were exhaustively and disjunctively 

classified to their best suited hidden Markov state and then drawn as 2D density maps (contour 

maps) onto the corresponding images. In order to analyze the precision of the visual search (H3) 

each pre-defined AOI (primes and targets) was linked to the hidden state with the highest 

number of fixations. Percentage of fixations inside pre-defined AOIs in each corresponding 

hidden state was used to determine precision. High fixation overlap of hidden state and AOI 

indicates higher precision while looking for prime and target regions. 

Figure 3 visualizes a hypothetical 7-state HMM of plausible transition probabilities between 

primes and targets.   



Chapter 2. Publications  

 

60 

Figure 3 

Hypothetical Transition Probability Matrix for a Theoretical HMM  

 

Note. In this simple arrangement each AOI represents a hidden state (Prime 1 to 3, Target 1 to 

3 or White Space). Each hidden state has a certain probability of staying in that state or 

transitioning from one to another indicated by arrows. Note that the pairwise numbering is 

arbitrary as there was no instruction to search from top-to-bottom. 

3 Results 

Speed and precision of search 

Table 1 presents error rates for each target and task durations on each of the four images 

presented in Sample I and compares it to the corresponding results for Sample II. In Experiment 

I (Sample I) only images Exhibition, Oppermann, Footprints, and Clock & Graffiti were shown.  
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Table 1 

Percent of Correctly Solved Targets and Mean Time to Solve each Image in Sample I and II 

Task 

Total Sample I 

(N=1056) 
Mean age= 15.27 years 

(SD= 0.94) 

Sample II Experts 

(N=25) 
Mean age= 34.36 years 

(SD=14.69) 

Sample II Non-experts 

(N=25) 
Mean age= 23.80 years  

(SD= 6.92) 

Image 
Target 

No. 
Error 

Rate 
Mean time in 

seconds (SD) 
Error 

Rate 
Mean time in 

seconds (SD) 
Error  

Rate 
Mean time in 

seconds (SD) 

Exhibition 

1 0.038 

25.29 (15.14) 

0.20 

20.52 (6.58) 

0.08 

18.81 (6.02) 2 0.006 0.00 0.00 
3 0.041 0.04 0.04 

Opper-

mann 

1 0.011 

19.16 (10.10) 
0.04 

15.07 (6.77) 
0.00 

13.87 (7.15) 2 0.008 0.00 0.04 
3 0.018 0.00 0.00 

Footprints 

1 0.331 

47.21 (29.54) 
0.32 

44.06 (17.86) 
0.20 

48.73 (33.81) 2 0.362 0.28 0.48 
3 0.895 0.76 0.88 

Clock & 

Graffiti 

1 0.115 

50.39 (28.96) 

0.12 

55.18 (36.43) 

0.12 

47.63 (23.94) 2 0.115 0.00 0.08 

3 0.274 0.16 0.20 

Spider 

Net 

1   0.56  0.68  
2 Not applicable 0.08 41.25 (18.72) 0.08 35.41 (12.03) 

3   0.20  0.32  

Easter 

1   0.12  0.16  
2 Not applicable 0.08 37.29 (16.17) 0.24 33.73 (17.15) 

3   0.00  0.04  

Abbey 

1   0.04  0.00  
2 Not applicable 0.04 47.86 (25.00) 0.00 51.55 (20.00) 

3   0.20  0.60  

Glass-

house 

1   0.12  0.28  
2 Not applicable 0.40 60.12 (38.7) 0.40 57.90 (30.23) 

3   0.20  0.20  

Linocut 

Pattern 

1   0.08  0.00  
2 Not applicable 0.16 86.37 (40.4) 0.24 105.52 (62.69) 
3   0.04  0.08  

 

Students were able to correctly identify the required targets virtually without errors for the 

Exhibition and the Oppermann image (Table 1) and solved the search task in mean durations 

of about 20 to 25 seconds. The Clock & Graffiti image comprised a lot of optical distractors 

and therefore led to an error rate of at least 11.5% per target. Targets in the Footprint image 

were much harder to identify with at least one third of all students failing per target. The two 
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more difficult images required on average double the task duration (about 50 seconds) as 

compared to the other two images. Remarkably, the third target of each of the four images was 

the most difficult one for all four tasks. Footprint target 3 was only correctly solved by slightly 

more than 10% of the students. VL experts, but also novices on average solved the easy images 

faster than students, with the exception of the Clock & Graffiti image, where VL experts worked 

longer than students (H1a). Experts were as good or better at identifying targets in comparison 

to the student sample (H1b). Even though experts found on average one target more than non-

experts MExpert = 22.76 (SD=1.69), MNon-experts= 21.56 (SD=2.65), this was not statistically 

significant; two-sided Welch t(40.781)=1.91, p=.063 (H2a). Across all 9 images experts did not 

differ from non-experts with respect to time on task (MExpert = 45.30 sec., MNon-experts= 45.91 sec, 

F(1,48)= 0.022, n.s. (H2b).  

When error patterns over all four images and invested time periods were grouped into latent 

classes of similar behavior, a latent profile analysis resulted in four distinguishable patterns (see 

methods section for details justifying the decision for 4 classes). Latent class 3 (LC3, n=740) 

more or less represents the same solution pattern (error rates, durations) as the total sample with 

the exception of Clock & Graffiti, where LC3 performed better than the average. Errors 

cumulate in the second largest class LC1 (n=238), where students performed reasonably on the 

Exhibition and Oppermann image, but failed to identify targets over base rates of the Clock & 

Graffiti and the Footprint image. The reason for this low performance might be given by the 

high task-performance speed that members of LC1 displayed especially for the more 

challenging images. The remaining quite small groups (LC2 and LC4) differ mostly with 

respect to the time invested for solving the search tasks. LC2 (n= 56) worked fast on the two 

easy images (and achieved nearly perfect hit rates), but invested much more time (96 sec. and 

125 sec.) for the more difficult images. By doing so, they were able to achieve hit rates 

comparable to or better than the “mainstream group” LC3. By contrast, members of LC4 (n=31) 

represent a group that continuously worked quite slowly (all mean times above 50 sec.) over all 

four images, but ending up in error rates not better than the mainstream.  
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Figure 4 

Probability of Target Misidentification for each Latent Class on each Image (upper Part) and 

Time for Solving each Search Task on each Image (lower Part).  

 

Note. Latent class profiles are depicted from left to right: LC1 “fast and erroneous“ (n=238), 

LC2 "easy images fast, difficult images slowly" (n=56), LC3 “Mainstream” (n=740), and LC4 

“slow working" (n=31). 

A multinomial logistic regression model on the solution pattern as represented by class 

membership explored the potential impact of gender, age, and metacognitive self-perceptions 

of students in Sample I. Only three variables reached a nominal significance level of p < 0.05. 

Gender and age did not affect solution patterns, neither did the variables “Art is important for 

me personally”, “When I see a photographed geometric object, I can imagine what it looks like 

from behind”, “I can remember small details in pictures”, “I like to solve picture puzzles”, “Do 

you regularly attend an art school or art workshops?”, “Understanding art history and theory”. 

But the three variables listed in Table 2 had a significant impact on class membership. The 

global Likelihood Ratio Test for the whole model scored at χ2
(9) = 64.903 (p < 0.001) and 

resulted in a Pseudo-R-square of 0.0746. Each of the three regressor variables reached a Wald 

Chi-square test with p < 0.001. Specific effect sizes (Odds Ratio per increasing response 

category) of the independent variables on the probability of each solution pattern (LC4, LC2 

and LC1 compared to the mainstream pattern LC3) are listed in Table 2.  

Students claiming to have a photographic memory display a lower probability for belonging to 

each of the three non-mainstream latent classes at each increased response category. Most 
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pronounced is this effect for LC1 (“fast and erroneous”). Students belonging to this group (on 

average) proclaim to have a photographic memory to a smaller degree. If students are convinced 

of their ability to visualize things mentally, then this slightly diminishes their chances to belong 

to latent classes LC4 and LC2, but increases the probability for membership in LC1 (“fast and 

erroneous”) by more than 50% per category. This means, that LC1 has a self-perception of high 

competence in recognizing details in pictures and might therefore work very fast on the 

respective tasks, but indeed fail to reach the same precision as the other groups. Students’ self-

reported high performance in art education is associated with higher chances to belong to the 

“slow working” group LC4, but considerably lower chances to belong to LC2 or LC1.   

Table 2 

Effect sizes (Odds Ratios) of self-reported art skills on Latent Profile classification   

Effect 

Comparison Group  

(Reference = LC3 

"mainstream") 

Odds Ratio  

(per 

category) 

95% 

Confidence  

Limits 

“I have a 'photographic memory” 

LC4 "slow working" 0.961 0.632 1.463 

LC2 "easy images fast,  

difficult images slowly" 
0.928 0.671 1.284 

LC1 "fast and erroneous" 0.659 0.554 0.785 

“I can visualize things mentally” 

LC4 "slow working" 0.991 0.659 1.491 

LC2 "easy images fast,  

difficult images slowly" 
0.992 0.716 1.375 

LC1 "fast and erroneous" 1.536 1.298 1.817 

“How well do you perform  

in arts education generally?” 

LC4 "slow working" 1.057 0.686 1.629 

LC2 "easy images fast,  

difficult images slowly" 
0.591 0.435 0.802 

LC1 "fast and erroneous" 0.721 0.605 0.860 

 

From these results it seems clear that interpreting a simple score of correctly solved search tasks 

does not cover art related visual competence in a meaningful way. A deeper understanding of 

the cognitive processes during search tasks has to be acquired from additional images and from 

comparing VL experts to VL non-experts. Results from sample II might contribute to this 

understanding. 
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Eye-movements in Sample II 

Table 3 shows the mean fixation duration and mean number of fixations on each image. VL 

experts generally show longer fixation durations than non-experts. Experts’ mean fixation 

durations ranged from 264.83ms (“Linocut Pattern”) to 317.59 (“Abbey”) and non-experts’ 

mean fixation duration ranged from 256.26 ms (“Linocut Pattern”) to 308.12ms (“Abbey”). For 

most images, experts exhibited more fixations than non-experts. As there is a significant 

difference in age between both expertise groups (t(34.163)=3.252, p<.01 with MExperts = 34.36, 

MNon-experts= 23.80), a correlation between age and eye movement indicators was calculated for 

possible confounders. Age and fixation duration exhibited a moderate correlation of r=0.37, 

p<.01 and no correlation between age and overall number of fixations was found (r=0.08, n.s). 

Table 3  

Mean Fixation Duration (ms) and Number of Fixations per Image 

Mean fixation duration (ms)  

Image 

Experts  

(N=25) SD 

Non-

Experts 

(N=25) SD 

     

Exhibition 302.35 260.12 287.94 249.74 

Oppermann 292.27 230.77 289.26 227.65 

Footprints 284.29 195.00 265.24 182.67 

Spider Net 280.09 228.07 288.71 221.24 

Easter 274.69 201.86 258.32 180.26 

Abbey 317.59 227.79 308.12 222.22 

Clock & Graffiti 297.96 191.01 287.28 197.67 

Glasshouse* 313.90 219.25 292.40 201.58 

Linocut Pattern* 264.83 148.37 256.26 144.71 

Mean number of fixations  

Image 

Experts 

(N=25) SD 

Non-

Experts 

(N=25) SD 

     

Exhibition 59.83 15.76 54.56 19.24 

Oppermann 43.83 18.92 40.24 21.19 

Footprints 129.46 48.21 154.00 117.97 

Spider Net 136.67 55.17 104.84 33.48 

Easter 117.17 43.13 108.92 60.41 

Abbey 136.42 64.07 142.40 47.16 

Clock & Graffiti 168.62 92.71 141.04 71.24 

Glasshouse* 177.22 107.66 162.48 85.99 

Linocut Pattern* 298.78 110.99 346.80 205.27 

Note. *N=24 experts due to insufficient data transmission from eye-tracker during one session. 
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HMM Estimates  

Table 4 shows the optimal number of hidden states based on HMM by expertise group, i.e. 

fixation sequences of all experts are used to estimate one HMM for the entire expert group and 

all fixation sequences of all non-experts for the non-expert group. There is only a small 

difference in the number of states in the expert group and in the non-expert group 

(MeanExperts=8.7 hidden states vs.  MeanNon-Experts=7.8 states) that varies depending on given 

image.  

Table 4  

Optimal* Number of Hidden States based on HMM by Status Group  

Image 
Expert Group  

(N=25) 

Non-Expert 

group (N=25) 

Exhibition 9 9 

Oppermann 7 8 

Footprints 9 6 

Spider Net 10 7 

Easter 7 7 

Abbey 8 10 

Clock & Graffiti 8 8 

Glasshouse** 10 9 

Linocut Pattern** 11 7  

Note. *as indicated by Bayesian Information Criterion (BIC), **N=24 Experts due to 

insufficient data transmission from eye-tracker during one session. 

 

A traditional Heatmap (Bojko, 2009) of fixations and fixation durations of Experts and non-

Experts is given on the image Exhibition (Figure 5). As can be seen, fixations tend to cluster 

around prime and target image regions. Also some fixated areas seem to overlap each other. 

What about the fixations in between, i.e. to WS? If we want to classify each fixation to their 

respective underlying image region, we can use the HMM to infer the most probable state for 

each fixation. We also take the sequence of fixations, as a transition probability matrix into 

account while modelling (in contrast to other classification methods like k-means clustering 

(Steinley, 2006)). 
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Figure 5 

Heatmap of fixation points of experts (red) and non-experts (blue) on image Exhibition 

 

Note. Each circle represents a fixation. Size of circles represents fixation duration. 

As each HMM is based on spatial coordinates of fixation points and their sequence, hidden 

states can be analogously visualized as 2D topological areas on the image incorporating 

additional information. Figure 6 represents hidden areas for the non-expert group and expert 

group on image Exhibition (see Appendix B for all nine images). Every hidden area was 

assigned a different label, either belonging to a prime, target or distractor area (part of WS). 

Interestingly, the novice group includes a broader orientation area which spans across the 

image. We can differentiate this clearly now, as each fixation is matched to their most probable 

state over time, allowing for spatially overlapping states differentiated additionally through the 
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transition probability matrix. By contrast, the expert group clearly defines a figure of a woman 

in front of the museum paintings, resembling the traditional motif of a “Rückenfigur”.  

Figure 6 

HMM Density Map of Hidden States based on the Fixation Sequence for each Group (Left) and 

Assigned Semantic Interpretation of the Hidden States (Right) 

 

Note. States are colored for better differentiation. Each hidden state either represents a prime, 

target or distractor region in WS. The nine states of the non-expert group are: (1) Prime 1, (2) 

Prime 2, (3) Prime 3, (4) Target 1, (5) Target 2 +  faces, (6) Target 3 + Distractor, (7) Distractor 

+ angels, and (8, 9) as two wide orientation states across the image. The nine states of the expert 

group are: (1) Prime 1, (2) Prime 2, (3) Prime 3, (4) Target 1 + angles, (5) Target 2 + faces, (6) 

Target 3, (7) angel figures as distractor, (8) “Rückenfigur”, (9) orientation/undo-buttons. See 

supplementary material for all nine images (Appendix B). 

 

Figure 7 compares another conventional Heatmap (produced by SMI BeGaze) and a density 

map based on the HMM. Regions attracting attention during different phases of the visual 

search become visible through HMM states, otherwise they are overlooked in conventional 

Heatmaps. For example prime 1 (top right corner) is hardly evident by the Heatmap. However, 

the HMM density map shows us how prime 1 is connected to the target region (at the top) and 
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incorporated into a common state. In this case, experts as well as non-experts seem to fixate 

two pre-defined AOIs in rapid succession to form a single HMM state. Both examples given in 

Figure 6 and 7 show how regions not previously identified (in WS) that attract participants’ 

attention are uncovered with the use of HMMs. Figure 7 additionally shows how overlapping 

hidden states differ in their relative time (normalized to each subject’s individual working time). 

Figure 7 

Heatmaps vs. Density Maps on images (“Spider Net” and “Clock and Graffiti”) for the 

expert group and non-expert group  

 

Note. The Heatmaps (left; A, C, E, G) disregard fixation points that are scattered outside of “hot 

spots” because on a global scale they do not carry much information. Image underlying density 

maps are masked out to make colors more visible. The HMM density maps (right; B, D, F, H) 
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shows how every fixation point is connected to their most probable state throughout the image 

(color indicates differences in relative time of attendance). Some hidden states span over 

multiple areas or overlap each other that are still differentiable through time. We can also see 

how local differences in density differ within each state. 

How good does each hidden state represent pre-defined AOIs? Figure 8 displays the overlap of 

hidden states with pre-defined AOIs. There is a clear connection between the hidden states and 

the pre-defined AOIs. In most cases one hidden state is directly associated with one prime or 

target AOI, indicating a meaningful distribution of hidden areas on the image. The more “white” 

a hidden state encompasses the more it includes undefined WS region on the image. Usually 

the target AOIs include more WS. Some hidden states in WS can be defined as distractor areas 

that draw attention during the search. When a hidden area covers multiple pre-defined AOIs 

(see Fig. 8 on image “Linocut Pattern” below, e.g. in state 2 for non-experts) they combine into 

a single state. This may happen due to frequent transitioning between two pre-defined AOIs. 

We can see how the states are not randomly distributed over the image, but are closely related 

to the visual search task (primes and targets). 

Figure 8 

Distribution of Fixations and Percentage Overlap on Pre-defined AOI and Hidden States for 

the Expert (left) and Non-Expert (right) group 
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Note. Each color represents either a target or prime region on the image. White is undefined 

White Space (WS) area. In most cases prime regions are represented by a single hidden state; 

e.g. states for target and prime regions in the expert group on image Exhibition. Target regions 

are usually encompassed by WS area, as they need to be found inside the image. Frequent 

transitioning between multiple pre-defined AOI may integrate into one hidden state; for 

example in the non-expert group on image “Linocut Pattern” (bottom right) one hidden state 

overlaps with P_1, P_2 and P_3. 

In order to determine differences in precision between experts and non-experts (H3), hidden 

states in each HMM were assigned to 3 primes and 3 target AOIs according to their best possible 

fit; each pre-defined AOI to the HMM-state with the most fixation overlap, i.e. the percentage 

of fixations of the corresponding HMM that fell into the predefined AOI region, (see Fig. 8). A 

two-way, repeated measures (three primes and three targets as within factor 1, nine images as 

within factor 2) ANOVA with one between-subjects factor (VL-experts vs. non-experts) was 

estimated using these percentages as dependent variable measuring the precision of the 

fixations, one ANOVA model for primes, one for targets. No main effect for experts vs. non-

experts could be seen in either of the models: though the global F-test for primes pointed at 

differences (Fprimes(1,48)= 13.25), the global F-test for targets (Ftargets(1,48)= 3.96) fell short to 

reach significance and no clear direction of differences was visible (see Figure 9). For both 

primes and targets there was a significant main effect for images (Fprimes(8,41) = 182.77; p < 

0.001; Ftargets(8,41) = 67.33; p < 0.001), and for the three AOIs (Fprimes (2,47) = 105.38; p < 

0.001; Ftargets(2,47) = 8.84; p = 0.0006).  

Both within-subjects effects interacted with the status of experts vs. non-experts in the 

following way: the third prime and target AOI (P_3 and T_3) on all 9 images was on average 

fixated by experts with a significantly higher precision than by non-experts (see Figure 9). Non-

experts on P_3 and T_3 more frequently switched between prime and target and WS regions to 

reassure that they recognized the correct region on the image, whereas VL-experts once they 

had memorized the third prime (coverage rate nearly 90% vs. 75%), VL-experts were able to 

search the corresponding target quite efficiently (coverage rate nearly 50% as compared to only 

37% in non-experts). With regard to differences between images, VL-experts reached a 

significant higher precision in fixating the primes on the “Spider Net”, “Glasshouse” and 

“Linocut Pattern” image, and in fixating the targets of the “Spider Net” and “Linocut Pattern” 

image. Non-experts on the other hand more precisely fixated the primes of the “Footprints” and 
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“Abbey” image indicating that they spent more fixations within the prime regions and reached 

higher precision in fixating target regions in image “Exhibition” and “Oppermann”.  

 

Figure 9  

Fixation Overlap between pre-defined AOIs and Best-Fitting Hidden State (State with Highest 

Fixation Overlap) for Expert and Non-expert Group.  

 

Note. Upper panels (A, B) show overlap between prime regions, lower panels (C, D) between 

target regions. Images: 1=Exhibition, 2=Oppermann, 3=Footprints, 4=Spider Net, 5=Easter, 

6=Abbey, 7=Clock & Graffiti, 8=Glasshouse, 9=Linocut Pattern. **p<.001, *p<.05. 
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4 Discussion 

Student solution patterns 

The majority of students (n=740) took their time to solve the more difficult items “Footprints” 

and “Clock and Graffiti”. Most of these “mainstream” students claimed to have a ‘photographic 

memory’ to a higher degree than other student groups. Overconfidence in student’s ability to 

“visualize images mentally” increases the probability of them rushing through the tasks and 

making more mistakes. Visualizing images mentally can go beyond details in 2-dimensional 

images and therefore not be helpful for the search task. A “photographic memory” much more 

encompasses the necessary skill to attentively focus on details in artwork. On the contrary, high 

self-reported capacity in art education leads students to take it slower on all tasks but does not 

necessarily enable students to outperform other student groups. Art teachers therefore may be 

interested not only in students engagement in art class but also be inclined to know about visual 

memory (“photographic memory”) skills. These results can be first clues for finding student 

groups that need more help in engaging and analyzing artwork or to learn when to invest more 

time in a visual task.  

VL experts could solve three of the common four images faster than students and in a more 

homogeneous manner (less variance of solution time) (H1b) and at equal or even superior 

chances for a correct solution (H1a). Only for the “Clock & Graffiti” image did VL experts take 

longer than students, resulting in a nearly perfect solution probability that was not reached by 

students.  

Expertise differences 

Did VL experts outperform students? This cannot be deduced from mere test solutions, but 

requires data on the solution process as well. Because the pathway to understanding cognitive 

processes is revealed by the analyses of eye movement data, we recorded VL experts’ 

oculomotor behavior while working on the tasks. Clearly this measurement could not be 

performed in a large classroom survey. Therefore, VL experts were compared to non-experts 

in Experiment II. 

VL experts found as many targets and were as fast as non-experts (H2a, H2b) but differed in 

the way they found target regions. HMM analysis revealed that experts were able to divide 

seven of the nine images into the same number of or more areas (hidden states) than novices. 

Aesthetic interpretation of hidden states suggest that WS does not cover a homogeneous region 
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of “non-attraction” but has meaning and “Gestalt” that goes beyond the gist of the scene and 

governs clues important for the scene composition. The idea that a sequence of hidden states 

represents cognitive processes is further emphasized by the visualization of the hidden states of 

experts with density maps, which revealed semantically meaningful regions on the image. 

Dissecting the image into these additional regions might help VL experts in understanding the 

scene composition, best illustrated by specific symbolic objects (angel-figures) or artistic 

compositions (“Rückenfigur”). These regions might be more salient for VL-experts. Given 

experts knowledge about image composition and arrangement, experts may be able to “find 

their way” through the pictures differently. Results hint at fewer hidden states for the non-expert 

group and a wider spread of fixations across WS compared to experts. This is in accordance 

with the findings of Koide et al. (2015) stating that experts regarding abstract paintings tend to 

not only focus their attention on salient regions (for a visual search task, the target and prime 

regions) but were also able to direct their attention to areas that are disregarded by novices. One 

possible explanation would stress the role of working memory as the psychological correlate of 

the underlying cognitive processes during the respective spatiotemporal HMM state. Thus, 

important information for the image arrangement is processed while fixating a certain region 

of the image during a given time period (Irwin, 2004).  

To assess the precision of expert and non-experts search strategy we assigned hidden states to 

each pre-defined AOI with the highest fixation overlap. ANOVA revealed a significant 

interaction of fixation overlap (of hidden state and AOI) with expertise, the image and the pre-

defined AOIs. Precision is higher for the expert group on the third prime and target regions 

(H3). Non-experts show more fixations in previously undefined WS when they look at the third 

prime and search for the third target region, leading to more fixations outside pre-defined AOIs 

within the corresponding hidden state, therefore focusing with less precision than the expert 

group. 

Recent evidence has shown that aesthetically appreciated images lead to enhanced perceptual 

processing (Sarasso et al., 2020). VL experts would have therefore benefitted from the artwork 

stimuli as it might have improved the engagement and encouraged a deeper commitment into 

”analysing” Wagner and Schönau (2016) the image thoroughly. It can also be argued that visual 

working memory (Bahle et al., 2019; Olivers et al., 2011) of experts form an enhanced 

representation or mental model of the images. 
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Hidden Markov models in visual search 

Each HMM state in Sample II represents a location on the image participants fixated while 

inspecting that area during the search. In general, there is a good coincidence between pre-

defined AOIs (primes and targets) and the data driven hidden states. WS mostly comprises 

several distinguishable hidden areas either representing semantically meaningful attractors (e.g. 

people’s faces or control buttons) or distractor regions that had to be excluded (e.g. different 

angel-figures or different parts of the spider net).  

HMMs also allows for an aggregated comparison between fixation sequences. Usually 

comparing multiple scanpaths between subjects is a complex challenge. E.g. what threshold 

values should be used to define a starting/landing point for fixations on important image areas? 

The HMMs based on group level allows for a description of fixation sequences as hidden states 

on the image, as each fixation point was classified to their most probable hidden region over 

time.  

HMMs have not been extensively used in visual search tasks. However, the method presented 

here, can be of great use to investigate complex search processes that can go beyond the visual 

search task presented in this study (e.g. natural scenes, virtual reality and real-world searches) 

in which classical aggregate statistics may fall short. Subtle differences in viewing behavior 

can be more clearly defined. The hidden states estimated by the HMM can be interpreted as 

data-driven AOIs. Instead of defining AOIs by arbitrary thresholds, we can include subject’s 

fixations that lie outside the pre-defined AOIs in WS to be included to any data-driven AOI 

(hidden state) based on the estimated probability.  

The HMM presented here are not exhaustive for eye movement analysis for expertise research 

and can be expanded upon (e.g. additional variables are conceivable as basis for model 

formulation such as the length of saccades or individual fixation durations to assess selective 

attention allocation). Further research is needed in respect to VL skills in the domain of arts, as 

the literature is dominated by studies in sports and medicine and eye movement differences are 

heterogeneous across expertise domains (Brams et al., 2019). 

Limitations 

A few limitations have to be mentioned. First, the images were not tested for low-level saliency 

(Foulsham, 2019). Our focus was on expert vs. non-expert search strategies in identifying 

targets from prime regions. Different levels of saliency could interfere with the results presented 
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here (Loftus & Mackworth, 1978). Thus, further studies could vary the number of visual salient 

features systematically. That way cognitive states prone to bottom-up mechanisms could be 

differentiated from top-down search strategies guided by expertise and/or working memory. 

Another concern for the generalizability of our results is the lack of time constraints combined 

with a motor coordination problem in identifying the targets. Deviating from earlier studies, 

this might lead to a varying number of data points per trial. The visual search task was only 

finished when the participant indicated to have found all three target regions. This led to a wide 

variance in individual search times untypical for other target search experiments that only last 

a few seconds (Coutrot et al., 2018). It remains uncertain how many fixations are efficient for 

HMM for eye movements. Depending on the time constraints and task at hand, different number 

of fixation points might be necessary. Coutrot et al. (2018) argue that images should contain 

various regions of interest to capture systematic patterns of exploration behavior. This can be 

achieved by pre-defined AOI (as in our study) or by using images with different salient areas 

that draw participants attention.  

Lastly, even though the number of participants was above average for eye-tracking studies in 

expertise research (Gegenfurtner et al., 2011), sample size might still have been too small to 

find all differences between VL experts and non-experts, especially as effects of VL on visual 

search behavior seem to be more subtle than proposed by art education research. As the present 

results are exploratory, further research is needed to confirm these observed differences. There 

was also a mean age difference of 10 years between each group. However, as the number of 

fixations was not correlated with age, we would argue that differences in HMMs are not 

primarily due to age differences. A few seconds of eye movement data used to define fixation 

sequences was sufficient to model clearly distinguishable hidden states on a group level. This 

is promising for future use cases with limited sample size and more obvious differences in eye-

movement behavior (e.g., in patients with visuospatial neglect (Cox & Aimola Davies, 2020)).  

Conclusion and future outlook 

This study investigated VL expert and non-expert visual search behavior. The expert group 

revealed a more detailed search strategy, indicated by a higher number of hidden states and 

higher precision for looking at the last prime and searching for the last target. Specific image 

parts, previously not taken into account by pre-defined AOI were outlined in greater clarity 

among VL experts. Non-experts on the other hand, focused on broader and thus fuzzier image 

areas during visual search. For the purpose of constructing a VL assessment test battery, 
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selecting more items of intermediate or greater difficulty, including even more realistic and 

stylistic image compositions, is advised because students displayed a rather skillful ability to 

perform visual search tasks.  

From a methodological view point, the statistical methods used could introduce a new 

perspective on modeling expertise-related differences in eye movements. Future studies could 

investigate the link between topological HMM states and “cognitive” hidden states 

incorporating more variables such as fixation duration or saccadic length into the models. The 

same idea was followed by van der Lans et al. (2008), who found an association between a 2-

state cognitive HMM based on local and global search strategies. Deviating from our art 

oriented approach in choosing visual stimuli, they used a saliency map based on low-level 

perceptual features and the scene’s organization to explain their results. Other recent 

approaches measured oculomotor behavior while switching between hidden cognitive states 

during a decision task (Chuk et al., 2019). In an educational context, not necessarily restricted 

to art education, HMMs states could be helpful to describe how much students are “involved” 

in the given tasks. 
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Abstract 

Differences in the ability of students to judge images can be assessed by analyzing the 

individual preference order (ranking) of images. To gain insights into potential heterogeneity 

in judgment of visual abstraction among students, we combine Bradley-Terry preference 

modeling and model-based recursive partitioning. A sample of 1020 high-school students 

ranked five sets of images, three of which with respect to their level of visual abstraction. 

Additionally, 24 art experts and 25 novices were given the same task, while their eye 

movements were recorded. Results show that time spent on the task, the students’ age, and 

self-reported interest in visual puzzles had significant influence on rankings. Fixation time of 

experts and novices revealed that both groups paid more attention to ambiguous images. The 

presented approach makes the underlying latent scale of visual judgments quantifiable.  

Keywords: visual abstraction, assessment, Bradley Terry model, model-based 

partitioning, ranking, art education, visual literacy  
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1 Judgment of Visual Abstraction 

Every art, whether figurative or not, is a form of abstraction (Gortais, 2003; Witkin, 1983). 

However, the measurement of the perceived level of visual abstraction in artworks remains 

challenging. Based on psychological models of aesthetic judgment, the judgment of visual 

abstraction would be part of the continuous affective evaluation proposed by the model of 

aesthetic experience (Leder et al., 2004; Leder & Nadal, 2014) comprising the early processing 

stage of perceptual analysis and explicit classification of content and style of visual art. In an 

experiments with pairs of modern art paintings that had to be evaluated for similarity, Augustin 

et al. (2008) found that the content (motif) of paintings is processed at presentations as early as 

10ms, while processing the artists’ style can be observed at presentations of 50ms and onwards. 

This initial stage can also include the appraisal of visual abstraction in images of artwork.  

Previous studies explored the preference judgment of abstract art measured by Likert-scale 

ratings and revealed a preference for the artists’ original compositions (Furnham & Rao, 2002; 

McManus et al., 1993). Art experts seem to prefer abstract over realistic representations (Gartus 

et al., 2020; Hekkert & van Wieringen, 1996; Silvia, 2006), whereas novices prefer 

representational paintings (Pihko et al., 2011). Layperson often express a higher sense of 

meaning for representational art than abstract art (Schepman et al., 2015; Schepman & Rodway, 

2021). Studies in computer science used algorithmic approaches to construct and identify the 

level of visual abstraction in images and artworks; e.g. abstraction in portrait sketches (Berger 

et al., 2013; Muhammad et al., 2018). Other studies have demonstrated how concrete 

representations of icons are more beneficial for visual programming than abstract icons (García 

et al., 1994). Visual abstraction can also foster visual communication skills (Fan et al., 2020). 

E.g., pictograms (Tijus et al., 2007) as a form of visual communication, can be based on visual 

similarity (i.e., reproducing the visual characteristics of an object), semantic association (e.g., 

an image of a clock to convey the concept of “time”), and arbitrary convention (connection 

established through verbal reinforcement). Nakamura and Zeng-Treitler (2012) conducted a 

taxonomical analysis of over 800 health-related pictograms and concluded that semantic 

association is the most used strategy and the only effective way for pictograms to represent 

abstract concepts such as love or pain.  

A study that specifically tried to measure the perceived level of visual abstraction used visual 

analog scales to rate artworks as “abstract” and found contrast effects due to sequential 

presentation of high vs. low abstract paintings on the judgment (Specht, 2007). Efforts 

quantifying visual abstraction in artworks were also done by Chatterjee et al. (2010): the 
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Assessment of Art Attributes instrument (AAA) includes “abstraction” as a conceptual-

representational attribute. The level of abstraction is measured through a Likert-scale rating and 

training slides with example images as anchors. Another assessment tool, the Rating Instrument 

for Two-Dimensional Pictorial Works (RizbA) (Schoch & Ostermann, 2020), consists of 26 

six-point Likert-scale items, including two questions regarding the manner of concrete and 

abstract representation.  

However, aesthetic judgments are not only influenced by the properties of the items being 

judged but it is influenced by additional factors such as expertise and personal experience 

(Child, 1965; Hayn-Leichsenring et al., 2020; Jacobsen, 2004; McCormack et al., 2021; Nodine 

et al., 1993). Chamorro-Premuzic and Furnham (2004) showed how university students with 

higher interests in art tend to score higher on art judgment scores and that these judgments were 

significantly related to both personality and intelligence. Identifying critical variables that 

influence students’ judgments of visual abstraction may represent an important milestone for 

empirical art education research.  

Assessment of Latent Image Characteristics for Ranking Tasks 

When underlying image features are latent (e.g., the extent to which a given image is abstract) 

metric scales may fall short when asked to judge these items, by, for example, assigning them 

a number from 1 to 10. Typical disadvantages of the use of such absolute measures may include 

anchor effects (Furnham & Boo, 2011) and end-aversion bias (Streiner & Norman, 2008) 

among others (Choi & Pak, 2005). It is oftentimes easier to compare items to each other, e.g., 

in a series of paired comparison (PC) tasks. Such comparative measures can be analyzed with 

Bradley Terry (BT) models (Bradley & Terry, 1952), also referred to as Bradley-Terry-Luce 

models. BT models are a popular method to uncover a latent preference scale of objects/items 

from paired comparison data (Cattelan, 2012). For example, BT models are frequently used to 

determine the best sport teams (Cattelan et al., 2013), to analyze consumer-specific preferences 

(Dittrich et al., 2000), or to elicit perceived harm of psychotropic substances (Wiedermann et 

al., 2014). When multiple objects (images) are compared simultaneously, ranking tasks (e.g., 

ranking images according to their level of abstraction) constitute valuable alternatives to PCs. 

Ranking data can then be transformed into derived PC patterns (Francis et al., 2010). 

An innovative approach is used that combines BT models with model-based recursive 

partitioning (trees) to detect preference heterogeneity in subgroups (Wiedermann et al., 2021). 

BT models can be used for (art) educational assessment tasks, in which students are instructed 
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to rank images based on given criteria. From a methodological perspective the use of BT models 

in combination with recursive partitioning holds great potential when applied to art education 

assessment: conventional statistical analysis of interaction effects may fall short when tasked 

to address the complex moderation processes of visual judgments. This method enables 

researchers to differentiate between the effects of student characteristics and learning 

interventions on latent preference rankings more closely.  

Current Study 

This study is part of a larger research project on the assessment of Visual Literacy (VL) and 

how VL can be fostered in art education (Frick, Rakoczy, Tallon, Weiß, & Wagner, 2020). VL, 

a core competency in art education, comprises the ability to evaluate artwork with respect to 

aesthetic value. The Common European Framework of Reference for Visual Literacy (CEFR-

VL; Wagner & Schönau, 2016) defines judging (or evaluating) images as the ability to 

formulate a justified statement or estimation about images and artistic creations. 

The aim of the present study is to investigate students’ ability, on the one hand, as well as that 

of experts and novices, on the other hand, to judge images based on the level of perceived visual 

abstraction, while placing a focus on the discovery of individual factors that influence these 

judgments. The ability of visual abstraction is assumed to be as important for visualizations as 

it is for analytic thinking (Punzalan, 2018; Viola et al., 2020). The results may help to determine 

essential variables that impact the judgment of abstraction and in return they might be able to 

help teachers detect and promote students’ development of artistic skills.  

The potential heterogeneity in perceived visual abstraction was evaluated in two samples: A 

sample of high school students and a further sample comprising art experts (art educators, 

artists, designers) and novices (art laypersons). In the student sample, self-reported visual skills 

and demographic variables are used to detect potential differences in students’ performance to 

rank different sets of images based on level of abstraction. In the experts and novices sample 

eye movements were recorded during the image ranking task. Eye movement indicators are 

used to analyze the distribution of attention (Brams et al., 2019; Jarodzka et al., 2017). Eye 

tracking, especially as an exploratory tool, can enhance the multidisciplinary field of VL 

research, as it visualizes cognitive processes involved in visual problem solving and art 

perception (Brumberger, 2021). Visualizing the solution process with VL-expert’s and novices’ 

eye-movements can be used to uncover cognitive processes that differ between the expert and 

novice groups and may further point out difficult or ambiguous image sets.  
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This study addresses the following research questions: What effects do self-reported visual 

skills and student characteristics have on the order of images ranked according to visual 

abstraction? Do VL-experts and novices differ in their ranking patterns and solution strategies? 

2 Methods 

Subjects and Stimuli 

Sample I comprised 1020 students of which 987 worked on the ranking tasks and filled out the 

questionnaire. A total of 52 classes (9th to 13th grade) from 29 schools in Germany took part 

in the study. Two classes did not receive the questionnaire and one class could not be offered 

the ranking task due to technical difficulties. To control for potentially nested effects of 

classrooms, intraclass correlation coefficients (ICCs) for correct rankings were calculated on 

each image set. Due to low values (ICCs range from 0.01 to 0.03, for calculations see 

Chakraborty & Sen, 2016), no multi-level adjustments were necessary. Overall, 52% of 

participants were female, the average age was 15.34 years (SD = 2.96). Schools were recruited 

in the federal states of Hessen, North-Rhine Westphalia, Schleswig-Holstein, and Rhineland 

Palatinate via leaflets, letters and recommendations. Data collection was conducted in 

classrooms with up to 30 students (M= 20.8, SD= 5.10). The image ranking task was part of a 

VL assessment test battery, including demographic questions, art grade, and the following 

questions regarding artistic ability and self-perceived art skills (S1-S5):  

• If you had to rank all of your classmates according to their abilities in the subject of 

art, where would you rank yourself? (S1; scored 1 [as one of the worst] to 5 [as one of 

the best]) 

• How good are you at art in general? (S2; scored 1 [very bad] to 5 [very good])) 

• How good are you in theoretical content (art theory; e.g. interpreting pictures, 

understanding art history)? (S3; scored 1 [very bad] to 5 [very good])) 

• How good are you in practical activities in art class (e.g. painting, drawing, drafting, 

and designing)? (S4; scored 1 [very bad] to 5 [very good]) 

• Compared to your skills in other school subjects: How well do you rate your art skills? 

(S5; scored 1 [much worse] to 5 [much better]) 

 

Additionally the following self-reported visual skills were rated on a scale from 1 (strongly 

disagree) to 4 (strongly agree): Photographic memory (PM): “I have a 'photographic memory'”; 
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Spatial orientation (SO): “When I see a photograph of a geometric object, I can imagine what 

it looks like from behind”); Long-term memory (LM): “I can remember small details in 

pictures”; Imagination (IM): “I can easily picture things mentally”; and Interest in visual 

puzzles (IP): “I like to solve picture puzzles”. 

Sample II comprised 51 participants of which 49 participants had qualitatively sufficient eye-

tracking data to be included for further analyses. Experts and novices were screened based on 

their experience and interest or profession in the visual arts. The expert group (n = 24) consisted 

of photographers, artists, designers, and art students. The novice group (n = 25) consisted of 

students and adults from various educational institutions who were not associated with 

academic or professional work in the visual arts. The mean age of participants were M = 29.08 

years (SD = 12.55). The participants in sample II were assessed individually in seminar or 

laboratory rooms (e.g., at the Academy of Fine Arts in Munich).  

Ranking Task 

We used images with varying level of visual abstraction, i.e. image sets that represent the 

gradual process of transforming figurative artwork to non-figurative artwork (Viola et al., 

2020). As every work of art uses some level of abstraction, many artworks could be 

investigated. Therefore images were curated (or created) by visual arts professionals from the 

board of the European Network for Visual Literacy (ENViL). Image sets were chosen based on 

the likelihood of being discussed in art class, representing a varying degree of abstraction. 

Overall, five ranking tasks were presented on Android tablets with 10.1 inch screen size 

(Andrews et al., 2018). Subjects ranked 5 images, resulting in a total of (5
2
) = 10 paired 

comparisons for each set of images (with a total of 5! = 120 possible combinations; see Table 

1). All participants were presented with the same initial ordering of images and were instructed 

to rank each image according to two characteristics presented below each image set. The image 

sets included: 

1. geometric figures 

2. dogs  

3. bull images, inspired by Pablo Picasso’s Bull lithographs (MacTaggart, 2021)  

4. Mondrian trees 

5. salt packages (only presented in sample I)  
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Images had to be ranked according to the following image characteristics: starting with an 

example item (“geometric figures”), from round to edgy, the items “dogs”, “bull images” and 

“Mondrian trees” had to be ranked by level of abstraction; from most realistic to most abstract. 

Additionally, as a control condition, perceived expensiveness; from cheap to expensive (“salt 

packages”) was assessed. In contrast to the evaluation of image abstraction, rankings based on 

unknown prices should stand out as visible outliers compared to the other rankings. Participants 

used the touchscreen to select and drop each image into empty slots below (see Fig. 1). The 

image rankings are then analyzed to gain insights into the possible effects of the participant 

characteristics on the perceived judgment of abstraction. 

Figure 1  

Ranking Item Bull Images 

 

Note. Each bull picture above needs to be placed into an empty slot below to form a ranking 

from most realistic (left) to most abstract (right). Areas of Interest (AOIs) were not visible by 

subjects. 

 

In sample I school classes were offered a lump sum of 100€ as collective compensation. In 

sample II student participants each received 20€ as compensation. Participants from the expert 

group, who were generally interested in the subject of visual literacy and eye tracking, took part 
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without further incentive. All participants and their legal representatives respectively gave 

written consent before participating in this study. The study was conducted according to the 

guidelines for human research outlined by the Declaration of Helsinki and was approved by the 

Ethics Committee of Research of the Leibniz Institute for Research and Information in 

Education, Frankfurt am Main (DIPF, 01JK1606A). 

Eye Tracking 

Each participant in sample II wore eye-tracking glasses (SMI ETG 2w Analysis Pro) during 

task performance. Eye movements were recorded at 60Hz. A 3-point calibration was performed 

on the tablet for each participant. All participants had normal or corrected to normal eyesight. 

Fixations were mapped onto corresponding reference images using SMI fixation-by-fixation 

semantic gaze mapping (Vansteenkiste et al., 2015). Areas of Interest (AOIs) were drawn on 

each image to assess fixation time and number of fixations spend on each image. Eye-

movement events were determined by the SMI velocity-based algorithm (Engbert et al., 2016). 

Eye-tracking data, i.e., number of fixations, fixation duration and heatmaps were analyzed with 

SMI BeGaze version 3.7. Heatmaps are used as exploratory tools to investigate eye movements 

(Bojko, 2009) supplementing the BT models. 

Data Analytic Strategy 

We used Bradley Terry (BT) models as the basis for recursive partitioning. The BT model is a 

probability model that can be used to predict the outcome of paired comparisons and to obtain 

(cardinal) preferences values for all items (images) on a latent scale (Bradley & Terry, 1952). 

Here, “preference” refers to the judgment of image characteristics (e.g. abstractness) by each 

participant. The probability of preferring item j over item k can be described as 

 𝑝𝑗>𝑘 =  
𝜋𝑗

𝜋𝑗 + 𝜋𝑘
  (1) 

with π representing the “worth” of the item, quantifying the position of the item on a 

standardized latent scale from 0 to 1. The worth parameters (π) indicate how likely an item is 

selected in a paired comparison. BT models can be fitted as loglinear Bradley Terry models 

(LLBT) (Sinclair, 1982; Dittrich et al., 1998). In the basic LLBT, the linear predictor ŋ is given 

by  

ŋ𝑦𝑗𝑘
= ln 𝑚(𝑦𝑗𝑘) =  µ𝑗𝑘 + 𝑦𝑗𝑘(𝜆𝑗 − 𝜆𝑘)   (2) 
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where m denotes the expected frequency of PC decisions, µ𝑗𝑘 is a nuisance parameter for the 

comparison jk which fixes the marginal distribution to 𝑛𝑗𝑘 and 𝑦𝑗𝑘 are indicator variables with 

value 1, if object j is preferred to k and value -1, if object k is preferred to j. The 𝜆 parameters 

can be transformed into worth parameters by the equation  

𝜋𝑗 = exp(2𝜆𝑗)/ ∑ exp(2𝜆𝑘)𝑘 .  (3) 

As the ranking responses of a subject are considered simultaneously a pattern approach is used. 

The response pattern is defined as y = (y12, y13,  …, yjk, …, yJ-1,J). The expected frequency for a 

sequence of preferences y, formulated as a loglinear model, is given as  

𝑚(𝒚) = 𝑚(𝑦12, … , 𝑦𝐽−1,𝐽) = 𝑛𝑝(𝒚)   (4) 

where n is the total number of respondents and 𝑝(𝒚)denotes the probability to observe the 

response pattern y. 

To gain PC patterns of rankings, rankings are converted into a series of paired comparison 

decisions (Dittrich et al. 1998). Note that in the case of forced rankings (i.e., no mid-ranks),  

ties do not occur by definition. Rankings are transformed into a series of paired comparisons of 

which intransitive patterns (e.g. 1 > 2 and 2 > 3, but 3 >1) cannot occur and as such are reduced 

to 𝐽! possible combinations (Dittrich et al., 2002). Model parameters are estimated using a log 

link and a Poisson-distributed error component. Table 1 shows the design structure of the LLBT 

model.  

Table 1 

Design Structure of the Loglinear BT Pattern Model for Rankings Obtained from J = 5 Images  

   Paired Comparison (PC) Patterns    Model Parameters 

Rankings  y12 y13 y14 y15 y23 y24 y25 y34 y35 y45 counts  intercept x1 x2 x3 x4 x5 

a b c d e  1 1 1 1 1 1 1 1 1 1 n1 1 4 2 0 -2 -4 

b a c d e  –1 1 1 1 1 1 1 1 1 1 n2 1 2 4 0 -2 -4 

c a b d e  –1 –1 1 1 –1 1 1 1 1 1 n3 1 2 0 4 -2 -4 

…  … … … … … … … … … … … … … … … … … 

c e d b a  –1 –1 –1 –1 –1 –1 –1 1 1 –1 n118 1 –4 –2 4 0 2 

d e c b a  –1 –1 –1 –1 –1 –1 –1 –1 –1 1 n119 1 –4 –2 0 4 2 

e d c b a  –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 n120 1 –4 –2 0 2 4 

Note. Rankings are transformed into paired comparison (PC) patterns; the y’s represent 

obtained PCs (yjk = 1 if j > k and yjk = –1 if k > j), each possible combination of J! is then 
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counted as observed frequencies in column “counts”, and x’s are auxiliary variables used to 

estimate model parameters indicating how often j was preferred minus how often j was not 

preferred. 

To incorporate subject covariates in BT models we used model-based recursive partitioning 

(MOB; Zeileis et al., 2008) to identify groups of subjects that differ in their preference rankings. 

The covariate space is recursively divided (partitioned) into sub-groups of subjects with varying 

image rankings to form a tree-structured division (Strobl et al., 2011). Each terminal node of 

the tree structure consists of a separate LLBT model with partition-specific model parameters. 

Wiedermann et al. (2021) extended the MOB BT framework to distinguish between focal 

independent variables (e.g., expertise status) and covariates used for recursive partitioning. The 

MOB LLBT model for 𝑔 = 1, …, 𝐺 subgroups can be written as  

log[𝑚(𝑦𝑗𝑘)(𝑔)] = 𝜇(𝑔) + 𝜆𝑠(𝑔) + 𝑦𝑗𝑘|𝑠(𝑔)(𝜆𝑗(𝑔) + 𝜆𝑗𝑠(𝑔) − 𝜆𝑘(𝑔) − 𝜆𝑘𝑠(𝑔))  (5) 

where the intercept 𝜇(𝑔) and the main effect 𝜆𝑠(𝑔) constitute normalizing constants in subgroup 

𝑔, 𝑦𝑗𝑘|𝑠(𝑔) gives the paired comparison decision in group s and partition g (with 𝑦𝑗𝑘|𝑠(𝑔) = 1 if 

j ≻ k and 𝑦𝑗𝑘|𝑠(𝑔) = –1 if k ≻ j), 𝜆𝑗(𝑔) and 𝜆𝑘(𝑔) denote the partition-specific object parameters 

for the reference group, and 𝜆𝑗𝑠(𝑔) and 𝜆𝑘𝑠(𝑔) are the partition-specific effects capturing 

potential group differences (c.f. Wiedermann et al., 2021). 

Covariates are included to assess the additive impact of subjects’ characteristics on the 

perceived worth of image features. Students in sample I include the following covariates: The 

time spent on each image set (“Game Time”), gender, age, art grade, and the questions regarding 

artistic ability and self-perceived art skills. Sample II covariates included age, gender, time 

spent on each image set, and eye-tracking variables fixation time (time spent fixating image 

AOIs) and fixation counts (fixations lying inside image AOIs). VL expertise status (expert vs. 

novice) served as a focal independent variable. 

Statistical analysis and model formulation were conducted with the R-package “prefmod“ 

(Hatzinger & Dittrich, 2012), partitioning was accomplished with the R-package “partykit” 

(Hothorn & Zeileis, 2015). To overcome the risk of spurious tree structures a minimum node 

size of 40 was chosen for Sample I and a minimum of 4 participants for Sample II to reduce 

model complexity. To avoid overfitting, a post-pruning strategy based on the Akaike 

Information Criterion (AIC) was used to prune splits (i.e., bifurcations) that do not improve 

model fit (Zeileis et al., 2008). Non-parametric bootstrapping (using 1000 resamples) was used 
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to evaluate the stability of LLBT trees (Philipp et al., 2018). Here, we focused on selection 

probabilities and average cut-off (splitting) values of the pre-defined covariates. For a stable 

LLBT tree, selection probabilities of the initially selected covariates are expected to be close to 

one and average splitting values are expected to be close to the estimates obtained in the initial 

LLBT tree. 

3 Results 

Student Sample I 

Table 2 shows the descriptive statistics for self-reported variables and time spent on each image 

set for sample I. Depending on the image set, different variables had significant impact on the 

preference rankings.  

Table 2  

Descriptive Statistics of Variables in Sample I (N= 987 Students) 

Variable  Mean (SD)  

Age 15.35 (2.96)  

S1 3.63 (0.97)  

S2 3.70 (0.89)  

S3 3.33 (0.95)  

S4 3.70 (1.08)  

S5 3.26 (1.16)  

PM 2.57 (0.88)  

SO 3.20 (0.76)  

LM 2.70 (0.8)  

IM 2.05 (0.93)  

IP 2.74 (0.91)  

Art grade 1.96 (0.84)  

Mean time on… 

 Percentage of 

correct* ranking 

…Geometric figures 13.28 (5.45) 96 % 

…Dogs 23.01 (10.26) 42 % 

…Bull images 24.33 (12.71) 29 % 

…Mondrian trees 18.16 (9.05) 36 % 

…Salt packages 27.46 (14.49) 04 % 

Note. S1-S5 = self-perceived art skills, PM = Photographic Memory, SO = Spatial Orientation, 

LM = Long-term Memory, IM = Imagination, IP = Interest in visual Puzzles. *intended ranking: 

a>b>c>d>e 
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Table 3 shows the worth parameters for the LLBT tree terminal node in each image set, 

including significant splitting covariates for sample I. Worth parameters (π) range from 0 to 1, 

and sum up to 1 for each node. For most image sets, exception being the “salt packages” and 

the “bull images”, worth parameters decline and form a slope from highest worth to lowest 

worth according to the intended solution for each image set. 

 

Table 3 

Worth Parameters in each Terminal Node from Sample I 

Sample I – Students (n=987) 

Image set 
Term.  

node 
Worth parameters (π) for each image Splitting covariates  

    a b c d e    

Geometric  

figures 

n=634 0.933 0.061 0.005 4.10E-04 2.00E-05 Age <= 15  

n=259 0.921 0.069 0.007 9.00E-04 6.30E-05 Age >15, Time <=15 sec  

n=94 0.593 0.228 0.106 0.053 0.018 Age > 15, Time > 15 sec  

Dogs 

n=182 0.415 0.241 0.143 0.120 0.081 Time<= 20 sec, IP <= 2  

n=312 0.318 0.237 0.184 0.144 0.117 Time <= 20 sec, IP > 2  

n=46 0.280 0.233 0.230 0.158 0.099 Time >20 sec, IP <= 1  

n=447 0.403 0.223 0.184 0.116 0.074 Time >20 sec, IP > 1  

Bull 

images 

n=76 0.403 0.226 0.157 0.134 0.080 Time <= 12 sec  

n=911 0.585 0.186 0.091 0.099 0.038 Time > 12 sec  

Mondrian  

trees 

n=59 0.577 0.157 0.135 0.073 0.058 Time<13 sec, Age<= 14  

n=117 0.509 0.176 0.182 0.081 0.053 

Time<13 sec, Age> 14, 

LM <= 2 
 

n=158 0.831 0.077 0.074 0.013 0.004 

Time< 13 sec, Age> 14, 

LM > 2 
 

n=654 0.624 0.144 0.136 0.052 0.043 Time > 13 sec  

Salt- 

packages 

n=450 0.274 0.325 0.144 0.127 0.130 male  

n=495 0.325 0.347 0.113 0.109 0.107 female  

Note. IP = Interest in visual puzzles, LM= “I can remember small details in pictures” from 1 

(strongly disagree) to 4 (strongly agree) 

Note that at first glance, certain image sets with worth parameters close to zero would indicate 

no preference for any of these images. However, this is due to the continuous transformation of 

the BT model parameters (λ) into a worth parameter (π) on a scale from 0 and 1. For example, 

for the image set “geometric figures”, each image in the first terminal node (n=634 students) is 

about 12-20 times more likely to be judged to be more “round” compared to the preceding 
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image in the order “a then b then c then d then e”. Image c, (with π=0.005) is about 82% more 

likely to be chosen before image d (π=0.00041) from participants in the first terminal node. 

Overall, the time spent on each set and the participants’ age had the largest impact on the 

perceived image features. In general, faster and older student groups tend to form the steepest 

decline in worth parameters between each image, i.e., image preferences between each image 

are more clearly separated, indicating no problems in ranking the images according to the 

intended features. Interestingly, two self-reported visual skills “Interest in visual puzzles” (IP) 

and “long-term memory” (LM) were important for the judgment of abstraction (i.e., ranking 

images from realistic to abstract) on item set “dogs” and item set “Mondrian trees”. Here, 

subgroups with higher scores tended to show steeper decline in worth parameters. 

Figure 2 shows the partitioning tree for the dog images. The worth parameter is presented on a 

log-scale. The student sample is split between fast and slow student groups (about 50%) with 

one group spending less than 20 seconds on the image set (Game_Time < 20) and the other 

group going above 20 seconds. The gap in perceived abstraction level between dog image b and 

c is more difficult to differentiate for students in node 6 and 7, i.e. slower student groups have 

more problems differentiating between the two. However, an interest in visual puzzles (IP>1) 

helps slower students (45%) realize how image c is less realistic than image b. 
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Figure 2  

Partitioned Paired Comparison Tree for the Ranking Task “Dogs” in Sample I 

 

Note. Game_Time= Time spent on image set in seconds, IP=”Interest in visual puzzles”. Fast 

students (<20 seconds) show greater differentiating skill between dog image b and c than slow 

students (>20 seconds). Self-reported IP greater than 1 can increase the perceived differences 

between dog image b and c (node 7), even in slower student groups. 

Figure 3 shows how time spent on the task significantly affects the way students in sample I 

ranked the tree images from realistic (left) to abstract (right). Most students took longer than 13 

seconds to rank the images (n = 654 in node 7) and ranked images b and c close to each other. 

Faster students under the age of 15 also ranked the tree images according to their proposed level 

of abstraction (node 3). Older students with self-reported low long term visual memory skill 

(LM; disagreeing to the statement “I can remember small details in pictures”) rate image c to 

be more realistic than image b (node 5). When these students were agreeing or strongly agreeing 

to that statement instead (node 6) they rated the first image (a) to be nearly 11 times more 
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realistic than the second image (b) and the last image (e) to be about 3 times more abstract than 

the fourth image (d). 

Figure 3  

Partitioned Paired Comparison Tree for the Ranking Task „Mondrian Trees“ in Sample I 

 

Note. Game_Time = Time spent on image set in seconds, LM= “I can remember small details 

in pictures” 

Figure 4 shows the partitioned tree for the “bull images” set for sample I. Surprisingly, most 

students (92%) took longer than 12 seconds and rated image d to be more realistic than image 

c. The “bull image” set is the only image set with a clear deviation from the intended solution. 

Figure 5 shows how the cost of salt packages is clearly split between images “a, b” versus” c, 

d, and e”. There is also a significant difference in gender: male students rank the salt image “b” 

to be less expensive than the female students.  
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Figure 4 

Partitioned Paired Comparison Tree for the Ranking Task „Bull Images“ in Sample I 

 

Note. Game_Time = Time spent on image set in seconds.  
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Figure 5 

Partitioned Paired Comparison Tree for the Ranking Task „Salt Packages“ (Sample I) 

 

Note. m=male, f=female. 

Robustness 

Stability checks were performed with a bootstrapping procedure, using 1000 bootstrap samples. 

Table 4 shows the probability of splits based on each covariate in sample I and sample II. In 

sample I, usually, the time spent on each image set was a common splitting variable, oftentimes 

splitting the decision tree on each image set except for the “Geometric figures”. Students’ age 

had significant influence on the stimuli “bull images” and the “Mondrian trees”.  
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Table 4 

Selection Probabilities of Splits for each Variable on each Image Set for  

Bootstrapping Procedure on Sample I and Sample II 

Probability to split tree 

Variable 

Geometric 

figures Dogs 

Bull 

images 

Mondrian 

trees 

Salt 

packages 

 

Sample I (n= 987 students) 

Age 0.14 0.49 0.60 0.65 0.45 

Gender 0.08 0.42 0.79 0.52 0.92 

Game Time 0.32 0.98 0.98 0.92 0.82 

Art grade 0.16 0.33 0.35 0.39 0.31 

S1 0.11 0.25 0.41 0.35 0.30 

S2 0.08 0.44 0.52 0.52 0.43 

S3 0.28 0.30 0.33 0.30 0.22 

S4 0.12 0.27 0.45 0.55 0.42 

S5 0.02 0.34 0.29 0.48 0.29 

PM 0.29 0.48 0.42 0.44 0.34 

SO 0.02 0.40 0.39 0.56 0.45 

LM 0.27 0.34 0.42 0.44 0.33 

IM 0.11 0.54 0.53 0.61 0.62 

IP 0.18 0.82 0.62 0.66 0.45 

  

Sample II (n= 49 VL-experts and novices) 

Age 0.00 0.20 0.40 0.17 - 

Gender 0.00 0.01 0.00 0.00 - 

Game Time 0.00 0.48 0.03 0.06 - 

Fix. duration a 0.00 0.19 0.07 0.05 - 

Fix. duration b 0.00 0.03 0.00 0.00 - 

Fix. duration c 0.00 0.04 0.00 0.05 - 

Fix. duration d 0.00 0.02 0.01 0.15 - 

Fix. duration e 0.00 0.06 0.01 0.00 - 

Fix. count a 0.00 0.39 0.01 0.01 - 

Fix. count b 0.00 0.28 0.01 0.00 - 

Fix. count c 0.00 0.08 0.00 0.03 - 

Fix. count d 0.00 0.09 0.05 0.01 - 

Fix. count e 0.00 0.05 0.02 0.00 - 

Note. Probabilities of splits >0.60 are marked in bold. S1-S5 = self-perceived art skills,  

PM = Photographic memory, SO = Spatial orientation, LM = Long-term memory, IM = 

Imagination, IP = Interest in visual puzzles, a= most realistic image to e= most abstract image. 
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The stability checks indicate that the results from the empirical sample I are comparable: 

multiple splits on the same decision tree are frequently caused by the time spent on each image 

set. Questionnaire items S1-S5 on self-reported artistic ability do not seem to trigger splits very 

often. A few exceptions are noticeable: for the “Mondrian trees” the self-reported ability to 

imagine (IM) was observed more often to cause a split (M=0.61) in comparison to the long-

term working memory (LM) variable (M=0.44) that is reported in the empirical sample. IM was 

also nearly equally often used to split the tree of the “Salt packages” stimuli. Additionally, 

interest in visual puzzles (IP) was also found to split variables on the “bull images” and 

“Mondrian trees” (>60%), therefore might being underrepresented by the empirical sample. 

Bootstrapping results for the expert and novices in sample II indicate low splitting probabilities 

(<15%) for the eye-tracking variables. An exception being the “dogs” image set with fixations 

on the most realistic image splitting the tree in about 40 percent of the time. Lastly, the time 

spent on the dog images was significant in about 50% of the cases. 

Figure 6 shows at which values continuous variables split the tree structure as a result of the 

bootstrapping procedure exemplified for the “bull images” and “Mondrian trees” image set in 

sample I. For the variable age most splits occurred for students above or below the age of 15 

years. The time spent on the task varied for the bull images with a tendency to split at 5 seconds 

or between the 10-15 seconds. Whereas for the “Mondrian trees” splitting peaked around the 

7-second mark and then continuously dropped until reaching zero at around 22 seconds.  

Expert-Novice Comparison in Sample II 

Worth parameters for the expert and novice comparison are listed in Table 5. Generally, experts 

showed a steeper, linear decline in worth parameters than novices. Subjects could not be 

grouped based on the number of fixations and the fixation duration on AOIs. Further, age was 

the only significant splitting variable on the “bull images” set.  
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Figure 6  

Splitting Value for Continuous Variables in Sample I 

 

Note. Average splitting values for the variables age, time, imagination (IM), and interest in 
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visual puzzles (IP) on “bull images” (left) and “Mondrian trees” (right) as a result of the 

bootstrapping procedure in sample I. 

Table 5  

Worth Parameters in each Terminal Node from Sample II 

Sample II - VL experts and novices (n=49) 

 

Image set Terminal node Worth parameters (π) for each image 
Splitting  

Covariates 
 

    a b c d e    

Geometric 

figures 

n=24 Experts 0.999 1.65E-09 4.65E-18 1.31E-26 2.17E-35 
- 

 

n=25 Novices 0.608 0.248 0.089 0.043 0.012  

Dogs 
n=24 Experts 0.325 0.255 0.191 0.135 0.095 

- 
 

n=25 Novices 0.478 0.197 0.168 0.100 0.057  

Bull 

images 

n=12 Experts 0.999 3.57E-09 1.05E-09 4.55E-10 1.62E-18 Age 

<= 28 

 

n=22 Novices 0.999 3.01E-09 9.28E-10 5.25E-10 1.1E-10  

n=12 Experts 0.307 0.256 0.161 0.161 0.114 Age  

> 28 

 

n=3 Novices 0.999 1.22E-08 2.54E-16 5.2E-24 6.45E-32  

Mondrian 

Trees 

n=24 Experts 0.748 0.141 0.085 0.021 0.006 
- 

 

n=25 Novices 0.999 2.21E-08 1.10E-08 2.58E-09 9.61E-10  

 

We take a closer look at how this item was perceived by the experts and novices. MOB LLBT 

results in in Figure 7 indicate that experts above age 28 judge bull image “c” and “d” to be very 

close in level of abstraction. In contrast, novices above the age of 28 estimate all bulls to have 

the same distance of abstraction to each other, however this may be due to the small sample 

size of only 3 novices in node 3. On the other hand, younger experts show a clear distinction 

between the most realistic and most abstract bull image, but differentiate only marginally 

between the three bull images in the middle. Novices below the age of 29 only differentiate 

strongly between the most realistic bull image to the rest. Generally, older participants 

differentiate better between the images. 



Chapter 2. Publications  

 

100 

Figure 7 

Partitioned Paired Comparison Tree with Estimated Worth Parameters for the Ranking Task 

“Bull Images” in Sample II 

 

Next, we focus on the distribution of attention for the preference ranking through a fixation 

heatmap. The mean fixation time spent on the “bull image” set in sample II was MExperts = 18.37 

sec (SD = 10.17), MNovices = 18.06 sec (SD = 8.38). Experts’ and novices’ fixation times did not 

significantly differ between each bull (F(4)=0.288, n.s.). A comparison of the distribution of 

fixations on each separate bull image during task completion revealed longer fixation times on 

bull images b, c and d compared to the most realistic (a) and most abstract (e) bull, F(4)=28.124, 

p<.001. 

Figure 8 shows a heatmap of mean fixation durations on each bull AOI from start until end of 

trial, supplementing the model described in Fig. 7. The most abstract (right) and most realistic 

(left) bull image attract less attention compared to bulls of similar abstraction level. Fixation 

times of experts and novices was mainly spent on the bulls associated with a medium level of 

abstraction (b, c and d). There is a negative correlation between age and fixation time; r(47)= -

.36, p= .011, i.e., older participants, spend less time on images compared to younger 
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participants. Participants below 28 years spend additional fixation time on the most abstract 

bull image e compared to older groups.  

Figure 8 

Heatmap with Average Fixation Time on Image Set “Bull Images” by Age Groups 

 

4 Discussion 

This study explored how lay students, lay adults, and visual art experts ranked more or less 

abstract images by applying a LLBT model to identify potential heterogeneity in visual 

judgments. Overall, time to complete the ranking task in combination with self-reported skills 

have significant influence on model parameters. In general, the longer students took to rank the 

images, the closer each image was ranked to the previous one, i.e., the difference in the ranked 

preferences between the images decreases. Students who spent more time on the task had 

difficulties ranking the images the intended way. Additionally, visual skills affected the ease to 

differentiate between images. Interestingly, the students’ art grade did not affect the ability to 

rank the presented images with respect to visual abstraction. There was also no apparent 

classroom group effect.  

The slim packaging of the “salt packages” seems to determine the perceived difference in cost. 

In contrast to other images, the knowledge of goods and prices is very different to the evaluation 

of image abstraction and is well reflected by the preference scale: the divergence between small 

and round vs. slim and tall salt packaging can be clearly seen in the steep drop of estimated 

worth parameters after image “b”. It could be hypothesized that male and female students might 
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have different access to merchandise, which could explain the slight difference in cost 

perception by gender. 

Furthermore, ranking abstract images such as the “bull images” revealed difficulties of students 

differentiating image pairs of similar abstraction level. A majority of students ranked bull image 

d as more realistic even though it contains less features than c. Apparently line thickness 

influences the perception of abstraction level for the majority of students. Also the bull’s eye is 

drawn slightly more realistically in bull d in comparison to bull c, which may have influenced 

the ranking. Are these differences in perceived judgment of images outside the intended ranking 

an indication for less skilled student groups? This cannot be derived solely from the ranked 

preferences. Comparing this result to the sample II, revealed how VL experts above the age of 

28 judged both bull images c and d to be nearly identical in abstraction level. Exploring the 

fixation distribution of VL experts’ and novices’ eye movements, exemplified by heatmaps, 

showed how images of similar abstraction level (with similar worth parameters) evoke longer 

fixation durations.  

Students with high self-reported interest in visual puzzle solving were able to distinguish 

abstract images more clearly. The self-reported ability to remember small details in pictures 

(“working memory”) also contributed to students’ ability to rank the level of abstraction of the 

images, indicated by greater systematic difference (i.e., exhibiting a steeper slope across the 

five images) in worth parameters between each image pair. Stability checks suggest that MOB 

LLBT models can sufficiently detect heterogeneity of visual judgments in a large sample of 

students. The time students took to rank the images was a significant splitting covariate for 

almost all image sets. The interest in visual puzzles was the most relevant self-reported ability 

for ranking abstract images. Furthermore, age, for example, was a less prevalent splitting 

variable for the “dogs” image set but not for the “bull images” and “Mondrian trees”. This might 

be caused by the difference between abstraction due to signal character (dogs as information) 

versus an aesthetic expression (trees and bulls as illustrations of experiences).  

As seen in the results of the expert and novice comparison in sample II, VL experts were able 

to determine nuanced abstraction levels between images, as reflected in the similar worth 

parameters between image pairs. Smaller differences between certain image pairs do not 

necessarily reflect poorly on the ability to differentiate abstract images, but may indicate subtle 

image variations perceived by experts. Thus, especially when dealing with images of artwork, 

an interpretation by art experts and teachers is advisable.  
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In general, image sets used in the present study seemed to be of less difficulty for students. 

Judging images of more varying complexity (see García et al. (1994) for an early attempt to 

measure icon complexity) and difficulty could, thus, be a next step in the construction of future 

test batteries on VL. In contrast to measurements of visual abstraction with visual analog scales 

(e.g., the AAA instrument by Chatterjee et al. (2010)), ranking tasks lets participants compare 

multiple images at once. BT trees then can be used in various educational settings, e.g., art 

assignments where exact iconicity between two images is unknown. This modelling approach 

allows one to quantify the distance between images on a standardized latent scale. Here, BT 

models do not rely on the assumption of equidistant response categories. The latent metric scale 

is derived from ordinal (ranking) data to capture the perceived between-group differences of 

judgment. The perceived distance between each image (e.g., level of abstraction) can be used 

to identify closely related and, therefore, hard-to-differentiate objects. Such objects could 

subsequently be discussed and analyzed in art class.   

As an empirically derived observation our results suggest the following: Time spent on task and 

ability to discriminate between images of varying levels of abstraction seem to go hand in hand. 

Abilities related to visual arts (imagination and interest in visual puzzles) seem to support this 

discriminative ability demonstrated by our participants.   

Limitations 

A few limitations of the present study should be mentioned. Firstly, as an exploratory study by 

design, generalizability of empirical results is limited. Only a reduced number of item sets were 

presented. Even though the intended ranking for abstract images was moderately low (between 

29-42%), the images might have been too easy to solve, as no major outliers in worth parameters 

were observed across the student sample. Different sets of stimuli, e.g., computer generated art 

that controls for salience (Furnham & Rao, 2002; Shakeri et al., 2017) with a focus on a single 

dimensions of visual abstraction, such as composition or color (Markovic, 2010) could lead to 

higher variability in perceived judgment. In comparison to other image ranking tasks (e.g., 

Strobl et al., 2011) a ground truth exists (objectively correct ordering of items). However, a 

ranking assignment with heterogeneous preference patterns might indicate ambiguities with 

selected items. For educational assignments a clear preference ranking, with uniformly 

distributed worth parameters might be more desirable.  

In sample II only age was found as a significant splitting variable, which might be due to low 

statistical power. Age of participants might also be confounded with expertise as older persons 



Chapter 2. Publications  

 

104 

tend to have more expertise. Finally, the number of datapoints increase dramatically with the 

number of items for MOB LLBT models. With 5!=120 possible PC patterns and n=987 

participants, the resulting input dataset consists of 118,440 observations, owing to the separate 

design matrices for each subject. Researchers might consider limiting the number of items 

during study design to reduce the design complexity.  
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CHAPTER 3. CONCLUSION 

Summary 

Goal of the presented studies was to explore VL sub-competencies and their effects on cognitive 

strategies during visual tasks. VL research from the perspective of cognitive psychology is 

interested in the perceptual abilities of VL and how specific differences in expertise can be 

empirically assessed. VL as operationalized by ENViL (Wagner & Schönau, 2016), comprises 

sixteen sub-competencies, three of which interpreting, analyzing and judging images were 

investigated further: three eye-tracking studies with VL experts and novices were conducted to 

test the validity of the assessment tool. Exploratory research was required to find empirical 

evidence of phenomenological assumptions with respect to VL. The measurement of eye 

movements recorded while participants solved visual tasks provided an indirect insight into 

experts' and laypeople's cognitive processes.  

Previous research on domain specific visual expertise has found that experts can recover 

information from long-term memory more quickly, allocate attention more effectively, and 

encode features in greater chunks, as seen by their eye movement patterns (Brams et al., 2019). 

Our results show how VL experts take more and different areas of images into account than 

novices do. Detailed investigation into the sequential scanpaths (fixation sequences) between 

task-relevant image areas during visual search suggests expertise-specific solution strategies. 

Empirical assessment further revealed different student profiles on how to manage and solve 

visual tasks. Significant differences in students’ abilities can be seen in all three studies, i.e., 

the comprehension of logical process visualizations, visual search and image rankings.  

A deeper understanding of the cognitive processes involved in VL assessment tasks were 

assessed by eye tracking and by means of latent statistical modelling. Particularly the use of 

eye movements as spatio-temporal data in combination with latent modelling, as shown with 

HMMs, are a remarkably effective way to visualize and clarify the latent cognitive processes 

involved in visual problem solving. The idea to model eye movements as random variables 

underlying a stochastic process opens up a great range of sophisticated applications, particularly 

ones derived from the field of statistical machine learning (Boccignone, 2019). The use of such 

models are not only a suitable technique for eye movement event detection (e.g., Zhu et al., 

2020) but also it is promising for the classification of top-down expertise-driven perceptual 

strategies. The following section reflects on the results in more detail. 
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The comprehension of visual logical models. A grouping algorithm such as LCA appears to 

be suitable for differentiating students based on their ability to decipher PMs. A total of six LCs 

differentiated between varying levels of comprehension of specific model parts. Beyond very 

good performers (“logic champions”) and quite poor performers (“under performers”) there 

exist other groups of students at intermediate levels, which can be related to qualitatively 

differing misunderstandings of the employed PMs. For example, some student groups only 

comprehend simultaneous activities in process models (LC2), others lack the comprehension 

of parallel paths (LC5), yet others cannot compare more than 2 relevant facts in one model 

(LC3). We assume the presence of a high motivation level across both samples as most students 

did not report any issues regarding understanding and following the task instructions, which 

supports the interpretation of the obtained LCs as cognitive styles. Knowing the solution profile 

of students allows teachers to provide meaningful feedback and develop appropriate techniques 

for the improvement of model comprehension. 

Even though the PMs are displayed visually, the VL ability to interpret does not appear to aid 

in the understanding of the PM’s logical structure. In terms of discriminatory validity, this result 

is useful in relation to other VL assessment items. A greater focus may be placed on tasks 

related to artistic expertise or aesthetic judgment. Nevertheless, it would be interesting to test if 

more artistic model notations, such as the inclusion of colors and special fonts, would make it 

easier for VL experts to grasp the logical character of PMs. It appears plausible however that 

the ability to solve PMs does not contribute to the distinctiveness of VL, highlighting an 

important distinction between visual logical models and other types of visual information. It 

seems that the search for subjective factors impacting PM comprehension should not address 

primarily VL but should rather be concerned by other cognitive capacities, e.g., intelligence or 

expertise in computer science and programming.  

Recent studies have further explored the use of eye tracking to measure PM comprehension 

(Duarte et al., 2021). A next step may include the use of eye movement modeling examples 

(EMME) (Jarodzka et al., 2017), i.e., to show the recorded eye movements of experts to guide 

novices’ attention throughout a visual model (Winter et al., 2021). 

Visual search on artworks analyzed with HMMs. HMM results show how VL experts and 

novices differ in their attention allocation during visual search. Experts appear to pay more 

attention to smaller image locations, showing higher precision for some targets indicated by 

HMM state and AOI overlap. Fixation density maps generate appealing visualizations for the 

analysis of the distribution of attention. As a result, they are a valuable tool for exploratory 
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investigations as well as a successful method for data-driven AOI identification. One significant 

limitation of traditional heatmaps is that they are restricted to the spatial dispersion of fixations 

at the expense of information about the order and temporal sequence of scanpaths (Bojko, 

2009). The density maps based on HMM are suitable for research interested in the temporal 

aspects of eye movements. Additionally, the transition probability between data-driven AOIs 

may be considered to determine in what order latent image characteristics are inspected.  

HMMs also allow for an aggregated comparison of multiple fixation sequences. Generally, 

comparing several scanpaths between individuals is a difficult task (Fahimi & Bruce, 2021). 

The threshold values, for example, to set a starting or landing point for fixations on key image 

areas is hard to determine a priori. When HMM are based on (expertise) groups the scanpaths 

can be derived through the transition probabilities between hidden states over time. For HMMs 

each fixation point can be categorized to its most likely hidden state. These hidden states can 

be understood as data-driven AOIs. Rather than establishing AOIs using arbitrary thresholds, 

we may allow subject fixations in whitespace (WS) that are outside the pre-defined AOIs to be 

included in any data-driven AOI (hidden state) depending on the estimated likelihood of 

belonging to a given state. 

The use of HMM presented here is not exhaustive for the analysis of eye movements to capture 

expertise differences. Various possibilities are considerable and may be expanded upon: one 

possibility is the use of additional variables such as saccadic amplitudes or individual fixation 

durations, that might be useful to measure attention distribution. Currently a single fixation is 

not differentiated further regardless of whether it was an intermediate fixation to a target region 

or a visual scrutiny lasting several seconds. Weighting individual fixations (i.e., the emission 

probabilities of HMMs) may further refine the model. 

Another option would be the use of semi-Markov Models (Yu, 2010). This approach would 

relax the Markov property of HMM by incorporating a memory for visual search. For example, 

a more realistic search behavior should consider an already found target region and “switch” to 

a different transition probability matrix after a successful partial search. A similar approach has 

been attempted by Chuk et al. (2019) to model cognitive state changes during facial perception. 

Furthermore, HMM can be used to investigate more complex search processes that can go 

beyond traditional visual search tasks (Haji-Abolhassani & Clark, 2013) and may be useful for 

more natural scenes and real-world searches, for example, for the analysis of visual quality 

inspection operations (Ulutas et al., 2019). 
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The judgment of visual abstraction. The results on the judgment of visual abstraction show 

that the amount of time spent on the ranking task, the students' age, and their self-reported 

interest in visual puzzles had a substantial impact on perceived judgment. Experts' and novices' 

fixation times revealed that both groups paid more attention to more difficult image pairs. The 

MOB LLBT model allows us to quantify the distance between perceived image characteristics 

on a standardized latent scale. This scale is constructed from ordinal (ranking) data in order to 

represent perceived variations in judgments across groups. The stability tests suggest that MOB 

LLBT models can detect visual judgment variability in a large sample of students. The apparent 

distance between each image (the degree of visual abstraction) can be utilized to detect items 

that are closely related and hence difficult to distinguish. Following that, such artworks could 

be discussed and evaluated further in art class. The use of BT models to diagnose latent 

discriminatory ability (instead of preferences) is a possibility that has so far received little 

consideration from empirical educational assessment and thus, if developed further, could lead 

to forthcoming applications. 

The time spent on the task and the ability to distinguish between images of varying levels of 

abstraction appear to be linked. Proficiencies in the visual arts, such as the ability to imagine 

and an interest in visual puzzles, appear to support this discriminative ability. Additionally, 

minor differences in worth parameters between image pairs do not necessarily signify an 

inability to distinguish abstract images, but they may show subtle visual alterations recognized 

by experts.  

Finally, art judgment may go beyond a single characteristic of an image and is often concerned 

by the overall quality or aesthetic value of artwork (Augustin & Leder, 2006; Chong, 2013; 

Winston & Cupchik, 1992). Nevertheless, the presented approach can also be used for these 

higher-level judgments of artwork when constructed as a PC task. 

 

Limitations 

Some limiting factors and restrains to generalizability of the results merit further discussion. 

Eye-tracking equipment. As the eye-tracking experiments were primarily interested in the 

analysis of fixations on AOIs, we chose a head-mounted eye-tracker with a sampling frequency 

of 60Hz for flexibility of use and external validity (Appendix A): undergraduates underwent 

the same data gathering procedure as participants in the expert and novice groups with the 

exemption of wearing eye-tracking glasses. Other equipment could be considered for screen 



Chapter 3. Conclusion  

 

109 

based visual tasks (e.g., a remote eye-tracker with chin rest). However, because subjects needed 

to look down on the tablet screen and touch it with their finger to input their answers we decided 

against a remote eye-tracking setup with unrestrained participants because of off sight data loss 

when participants move their heads (Niehorster et al., 2018).  

When fixating AOIs from a dynamic visual angle, the likelihood of AOI-fixation detection 

errors increases (Orquin & Holmqvist, 2018). As a result, our AOIs were drawn more 

conservatively (larger) to compensate for uncertainty in eye tracking. In future investigations, 

using remote devices with constant lighting conditions and a steady head position, minimizing 

the pupil foreshortening effect (Hayes & Petrov, 2016), could eliminate this imprecision while 

simultaneously allowing pupillometric analysis. Considering that sampling frequency of 60Hz 

is low for modern eye-trackers it is still sufficient for fixation-based eye movement analysis 

and has been used in other studies implementing HMM during visual search (Haji-Abolhassani 

& Clark, 2013). The use of a higher sampling frequency may still improve data quality 

(Andersson et al., 2010).  

Eye-tracking technology is in rapid development (Holmqvist et al., 2011; Holmqvist & 

Andersson, 2017; Orquin & Holmqvist, 2019) with improvements in precision and accuracy of 

data collection as well as ease of use. Future endeavors may consider eye movement analysis 

of complex joint-interactions such as in classroom lessons (Jarodzka et al., 2021).  

Visual tasks and stimuli. To generalize the results of the presented visual tasks to the overall 

effect of VL would be an oversimplification. Only a small number of items were presented in 

each tasks untypical for perceptual learning tasks with a few hundred trials (Fine & Jacobs, 

2002). In general, the image sets employed appeared to be easy to solve for undergraduate 

students (e.g., no major outliers in worth parameters were observed across the student sample 

for the ranking task). As a result, using more items of higher difficulty could be a further step 

in the development of future VL test batteries to avoid ceiling effects.  

Furthermore, the images were not evaluated for low-level saliency (Foulsham, 2019). Different 

levels of saliency may have an impact on the visual search and ranking items (Loftus & 

Mackworth, 1978). Consequently, future research could systematically adjust the number of 

visual prominent elements, e.g., the use of a saliency map based on low-level perceptual 

features (Le Meur & Baccino, 2013) to distinguish between bottom-up cognitive states from 

top-down strategies used by VL experts. 
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Finally, the selection of items analyzed were mainly concerned with receptive features of VL 

(interpreting, analyzing, judging). Producing art is, however, just as important for visual art 

expertise (Chamberlain, 2018) and therefore be indicative for VL expertise. Such items, outside 

the scope of this dissertation, are included as assessment tasks and are considered in future 

assessments (Frick, Rakoczy, Tallon, Weiß, & Wagner, 2020). 

Sample of VL experts and novices. The number of participants was above average for eye-

tracking studies (Brams et al., 2019; Gegenfurtner et al., 2011) but the sample size might still 

be too low to find every difference between the VL experts and non-expert group. There was 

also an age difference between the groups and expertise might be confounded with age as older 

people tend to gain more expertise during their lifetime. However, the engagement with and the 

production of visual art is not necessarily common for older people; e.g., only 5% of adults 

above 52 years of age visit art galleries or museums on a monthly basis and over 50% visit 

museums never or less than once a year (Fancourt & Steptoe, 2018).  

As a validated assessment instrument for VL is yet to be constructed, the group of VL experts 

were instead comprised from a variety of visual art domains (from art teacher to self-employed 

artists). The use of recently validated art interest and knowledge questionnaires, e.g., Specker 

et al. (2020), might be useful for future studies on VL to authenticate expertise status and make 

expert groups more comparable and the findings thereof more replicable. Even though art 

expertise can only be seen as a subcategory it could be used as an approximation of VL. 

Outlook and Concluding Remarks 

The presented studies make an empirical psychological contribution to the analysis of the 

perceiving sub-competencies of VL and offered multiple ways to evaluate perceptual abilities 

through expert-novice comparisons with probabilistic models and eye tracking. 

The results of the visual tasks examined in this thesis are beneficial for both VL research and 

visual art expertise research. The CEFR-VL comprises low-level perceptual abilities as well as 

higher top-down cognitive abilities declared as sub-competencies of VL. It is therefore 

important to distinguish between these sub-competencies of VL. Results show how low-level 

perceptual abilities were important for the visual search and the ranking task of visual 

abstraction.  

Empirical findings from brain and psychological research suggest enhanced cognitive abilities 

for visual experts, such as memory recognition (Evans et al., 2011) and an increase in attention 
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through aesthetic appreciation (Sarasso et al., 2020). Seeley and Kozbelt (2008) argue that 

artists develop enhanced encoding of targets in their visual field via declarative knowledge of 

art compositions and their practice of artistic productive techniques. These attentional strategies 

may explain the perceptual advantages (Kozbelt & Seeley, 2007) of VL experts.  

Research from empirical aesthetics further indicate that low-level perceptual abilities can 

distinguish art experts from novices but these differences may not transfer to other visual 

domains (Angelone et al., 2016; Evans et al., 2011; Jarodzka et al., 2010; Pang et al., 2013). 

Differentiations are mostly seen in the production of artwork, e.g., drawing ability (Calabrese 

& Marucci, 2006; Drake et al., 2021). The type of cognitive processing involved in the 

presented visual tasks are a combination of automatic, but also top-down processes as suggested 

by empirical models of art perception  (Pelowski et al., 2017). Bottom-up processes can further 

be influenced by domain-specific art expertise and declarative knowledge (Pelowski et al., 

2017; Vogt & Magnussen, 2007). The results demonstrate how experts and novices differ in 

the way they deconstruct and analyze visual imagery, i.e., the process of task completion is 

more indicative of VL expertise than the achieved outcome, e.g., the total number of correct 

answers. 

However, most empirically observed differences between VL experts and novices are more 

subtle than that indicated by VL models. Experts and novices only marginally differed in their 

total number of correct targets discovered during visual search, and experts’ judgment of visual 

abstraction is nuanced and refined for specific item pairs. Classical aggregate statistics may fall 

short when tasked to analyze spatio-temporal eye movement data. Subtle differences in viewing 

behavior can be more clearly defined by utilizing latent statistical models for classification of 

response patterns and eye movements. The presented research shows how new methodological 

approaches and multidisciplinary studies can advance the field of empirical VL research and 

indicate which visual tasks are more likely to differentiate between VL experts and non-experts. 

Only one third of current VL research is conducted with quantitative methods, most of which 

only use survey data, and another third is conducted without any reported empirical 

methodology (Matusiak, 2020). The interdisciplinary field of VL-research cannot be 

thoroughly explored without a combination of psychometrics, art education research, and new 

methodological approaches such as eye tracking. Because the literature is dominated by studies 

in sports and medicine, further empirical research in the domain of arts is required, as eye 

movements may vary across visual domains (Brams et al., 2019).  
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As more empirical research is conducted on specific VL sub-competencies a stronger 

conclusion can be drawn on the significance of VL as an overarching latent construct. Today’s 

research on VL has demonstrated that it is not a “failed metaphor” (Cassidy & Knowlton, 1983) 

as research strives to specify VL as measurable competency. The CEFR-VL encourages 

psychological empirical research to support this competency-oriented approach:  

The competency model [CEFR-VL] is based on both research in educational psychology 

on the development of knowledge and abilities, and empirical evidence in the field of 

Visual Literacy education, enabling an accessible, research-based model to be 

developed. (Wagner & Schönau, 2016, p. 100) 

The CEFR-VL is in revision (Schönau et al., 2021; Schönau & Kárpáti, 2019) with adaptation 

to the number of sub-competencies and discussions on basic versus domain specific dimensions 

of VL. Leben (2019) points out how basic perceptual visual competencies (e.g., identifying the 

degree of image iconicity) could be separated by higher-order visual competencies that are also 

affected by cultural upbringing (e.g., when differentiating contemporary from traditional art). 

The results of the presented studies support the idea of differentiating VL sub-competencies 

from perceptual learning abilities and abilities found in visual art expertise. The community of 

VL research has grown into a diverse field with different scientific disciplines and 

methodological approaches (Brumberger, 2019; Levie, 1978; Matusiak, 2020; Michelson, 

2017). Recent approaches in empirical VL and visual art expertise research are still in early 

development. As a result, more research is expected to expand the field, find empirical evidence 

of proposed (sub-)competencies and lay groundwork for a validated VL assessment tool. It is 

up to the research community to decide how empirical evidence of VL is taken into 

consideration for future model iterations to subsequently foster VL in art education. 
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APPENDIX A 

Eye-Tracking 

experiment  

Specification Details 

Eye-Tracker SMI eye-tracking glasses were used (SMI ETG 2w Analysis Pro) 

Video-based corneal reflection eye tracker 

Eye-Tracking 

Software 

SMI iView ETG for recording and calibration 

SMI BeGaze for Semantic Gaze Mapping and statistical analysis 

Video Stimuli Video from SMI eye-tracking Glasses 

• Sampling Rate: 60 FPS 

• Calibration Area: 1290x980 pixels 

Event Detection SMI Event Detection (Velocity-based binocular event detection with saccades as 

primary events (Engbert et al., 2016)). The default eye movement parameters from 

SMI BeGazeTM version 3.7 were used. The following is taken directly from the 

BeGazeTM Manual: 

The SMI ETG Event Detection algorithm pipeline: 

Step Description 

1. Pre-

processing 

1.1 Convert the POR (Point of Regard) pixel values to degrees. 

1.2 Compute velocity and acceleration of the POR (in degrees). 

1.3 Compute velocity skewness (here defined as the ratio of 

velocity mean to velocity median over a 5-sample window). 

2. Noise 

Detection 

Identify single-sample spikes in the POR and remove them by 

interpolation. 

3. Blink 

Detection 

Identify Blinks based on pupil confidence (minimum duration of 

a blink event is 3 samples). 

4. Saccade 

Detection 

4.1 Detect midpoints of saccade candidates by searching for 

samples, which have either: 

- POR velocity values above the threshold αdef, or 

- POR velocity values above αmin and skewness above β. 

4.2 Find beginnings and ends of saccade candidates by searching 

for local maxima in absolute POR acceleration values. 

4.3 Accept saccade candidates as saccades if the detections for 

left and right eye are consistent. 

5. Visual 

Intake 

Detection 

Mark all the remaining samples as Visual Intake. 

6. Post-

processing 

6.1 Remove saccade events smaller than γ in amplitude, or only 

one sample in duration, by interpolating with neighbors. 
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6.2 Mark Visual Intake events shorter than 50ms as “Undefined”. 

6.3 If Undefined event occurs immediately after saccade, merge 

Undefined with saccade. 

6.4 If Undefined event occurs immediately after blink, merge 

Undefined with Blink. 

Threshold 

Name 

Value Units 

αdef 100 °/s 

αmin 8 °/s 

β 5   

γ 0.5 ° 

 

Data collection 

and recording 

location  

Subjects were seated 50-80 cm away from the tablet screen. Each session started 

with a 3-point calibration following the standard procedures for SMI iViewTM. The 

default eye movement parameters from SMI BeGazeTM version 3.7 were used. To 

collect data from Visual Literacy experts as well as novices multiple locations were 

allocated for recording sessions. These included a laboratory room at the HSD 

University of Applied Sciences in Cologne, Ulm University and a seminar room at 

the Academy of Fine Arts in Munich.  

Only the experimenter (MT) and the participant were present during the recording 

session. The rooms were not soundproof, the luminance of the recording sessions 

was not controlled for and therefore might differ slightly.  

The eye-tracking glasses were connected to a laptop PC where the recorded video 

and video footage of the eyes were displayed and monitored by the experimenter.  

The stimuli were presented on Android A6 Tablets with 10.1 inch screen size. All 

test items were programmed specifically for the assessment tool (Andrews et al., 

2018). The process models were created in BPMN 2.0 (OMG, 2011 OMG 

Specification, Object Management Group). 

The equipment and procedure were explained to the participant before they put on 

the eye-tracking glasses.  

 

All participants were given the identical instruction on the tablet screen:  

“In the following, different processes are presented in the form of process models. 

A process model visualizes the sequence of events and decisions. Try to understand 

the process in the process model and select all correct statements (multiple 

statements can be correct).”  
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[In German: “Im Folgenden werden verschiedene Abläufe in Prozessmodellen 

präsentiert. Ein Prozessmodell stellt Abläufe von Ereignissen und Entscheidungen 

visuell dar. Versuche den Ablauf in den Prozessmodellen nachzuvollziehen und 

wähle alle richtigen Aussagen aus (auch mehrere Aussagen können richtig sein).”] 

 

During recording the experimenter sat behind or next to the participant at a separate 

table. All participants gave written informed consent. 

 

Andrews, K., Zimoch, M., Reichert, M., Tallon, M., Frick, U., & Pryss, R. (2018). 

A Smart Mobile Assessment Tool for Collecting Data in Large-Scale Educational 

Studies. Procedia computer science, 134, 67-74. 

 

Omg, O.M.G. (2011 OMG Specification, Object Management Group. ). Business 

Process Model and Notation (BPMN) Version 2.0. [Online]. 

https://www.omg.org/spec/BPMN/2.0/: OMG Group.  [Accessed November 2018]. 

 

Calibration  3-point calibration before each of the 5 tasks on Visual literacy including the Process 

Model Task 

• Black dots on white background placed in the top and in the lower corners of the 

tablet screen.  

• Participants were told by the experimenter to look at each of the three dots in 

consecutive order.  

• Re-calibration was done if the participants gaze was not located at the correct 

points during validation phase. Re-calibration was also conducted when the signal 

was too low during the experiment (indicated by the SMI ETG warning message). 

 

• Validity of calibration was also monitored throughout the recording session (gaze 

overlaid video was displayed on the experimenter’s notebook), video recordings 

of the eye was visible during calibration) 

 

• Participants were instructed to look at a fixation cross that was displayed between 

each model for 2 seconds.  

 

 

 

 

 

Participation and 

Excluded Trials 

Participants in Sample II were enrolled as experts in Visual Literacy, if they were 

members of the European Network of Visual Literacy (ENViL) or working in 

professions requiring a high visual competence (photographer, gallerist, art educator, 

art designer, art students, or self-employed artists).  

 

Novices in Visual Literacy were adults from the clerical and academic staff of 

various educational settings declaring themselves as not overwhelmingly talented or 

familiar with arts and visual design. 
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Participants were asked if they wore glasses or contact lenses. If they wore glasses, 

they were offered SMI corrective lenses and were able to take part in the experiment 

with corrected-to-normal vision. 

 

Participants were excluded if they did not fulfil the inclusion criterion vision, in cases 

where they had poor near acuity (for example could not read the instruction texts on 

tablets even with SMI corrective lenses (+2.5 diopter lenses)) (n=2)  

 

Screened for eligibility: 41 participants 

Non eligible according to our predefined inclusion and exclusion criteria: 5 (2 severe 

limitation in visual acuity, 3 were excluded from analysis because the data quality 

was too low). 

Analyzed sample: 36 participants satisfied all inclusion and exclusion criteria 

 

Quality Threshold 

for analysis 

BeGaze SMI Tracking Ratio needed to be > 95% (n=3 participants excluded) 

Tracking ratio is defined as the number of non-zero gaze positions divided by 

sampling frequency multiplied by run duration expressed in percent. This threshold 

was used because in pretests with the eye-tracking glasses, visual inspection of raw 

data showed frame loss in participants had to be below 5%. 

 

The mean Tracking Ratio for the analyzed sample was 97.76 % 

Reference Image:   

• 3 reference images (one for each model) 

• Size: 1920x1200 pixels (same as image on tablet screens) 

 

AOI related 

metrics 
 

AOI Name AOI Size [px] AOI Coverage [%] on reference 

image 

PM 1 

PM 2 

PM 3 

1033444 

1033444 

1033444 

44.9 

44.9 

44.9 

Relevant model parts* 294400 12.8 

Irrelevant model parts* 739044 32.1 

Statements 1-4  124493 (x4) 5.4 (x4) 

White Space PM1 

White Space PM2 

White Space PM3 

773420 

773420 

773420 

33.6 

33.6 

33.6 

 

*only for Process Model 2 
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APPENDIX B 
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Image title                                                     |             HMM Density map 
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APPENDIX C 

 

 

[Leaflets used for the recruitment] 


